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Appendix S1: Computational models 

Transitional probability models 

The implementation of forward and backward transitional probability models (FTP and BTP, 

respectively) followed previous studies (e.g., Frank et al., 2010; Larsen et al., 2017; Saksida 

et al., 2016), in which the transitional probability of a phoneme/syllable pair is computed as: 

 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑇𝑃(𝑈𝑡−1, 𝑈𝑡) =
𝐹(𝑈𝑡−1,𝑈𝑡)

𝐹(𝑈𝑡−1)
      ;      𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑇𝑃(𝑈𝑡−1, 𝑈𝑡) =

𝐹(𝑈𝑡−1,𝑈𝑡)

𝐹(𝑈𝑡)
 

 

Where 𝐹(𝑈𝑡−1, 𝑈𝑡) is the frequency of a pair of units (two phonemes or syllables), while 

𝐹(𝑈𝑡−1) and 𝐹(𝑈𝑡) are the frequencies of the first and second unit respectively. We used a 

strictly incremental version of these models, in which transitional probabilities are updated at 

every utterance. A word boundary is placed within a phoneme/syllable target pair if the 

transitional probabilities of the surrounding pairs are both greater than the target pair 

transitional probability (i.e., relative threshold). Utterance boundaries are used as additional 

units available to the models, therefore for the phoneme pair ↵h in [↵hellobaby↵], 𝐹(𝑈𝑡−1) 

would correspond to the frequency of the utterance-initial marker ↵ and 𝐹(𝑈𝑡) to the 

frequency of the phoneme h. 

Although using an absolute threshold has been shown to increase models’ 

performance at Precision and Recall measures (Gambell & Yang, 2006; Saksida et al., 2016), 

we instead used a relative threshold where word boundaries are posited based on the 

transitional probabilities of the surrounding biphones or syllable pairs. The choice of a 

relative threshold is consistent with studies showing that infants segment at local minima of 
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transitional probability (e.g., Saffran et al., 1996; 1999), while we are not aware of any 

experimental findings that provide direct evidence for an absolute threshold mechanism. 

Further, we used a strictly incremental version of the transitional probability models (i.e., 

word boundaries are set based on current transitional probabilities of surrounding pairs), to 

match CLASSIC-UB and PUDDLE’s incremental way of learning. Note that one could apply 

the same incremental principle to an absolute threshold, by updating a running average; 

indeed, absolute transitional probabilities can fall out of predictive incremental learning 

models (e.g., Baayen et al., 2013; Harmon & Kapatsinski, 2021). 

 

PUDDLE 

PUDDLE (Monaghan & Christiansen, 2010) parses utterances phoneme by phoneme, 

searching for a matched string in its lexicon (we also adapted the original model to process 

the input syllable by syllable). At the start of the segmentation process, whole sentences are 

stored in the lexicon as this is initially empty. Items in the lexicon are ranked by absolute 

frequency of occurrence (which guides further string matching). The frequency of an item is 

updated every time it is discovered in the input, making the model strictly incremental. The 

lexicon in PUDDLE stores chunks that can begin or end utterances and these can comprise 

phonemes, phoneme pairs, or longer sequences of phonemes up to whole utterances. When 

PUDDLE finds a match in the lexicon, it only recognizes the item if (1) there is an item on its 

left which ends with a previously encountered ending, and (2) there is an item on its right 

which begins with a previously encountered beginning. 

 

Random baseline 

We chose to implement a fully random baseline which relies on a random coin toss to place a 

boundary after each input unit (Lignos, 2012). This baseline represents a scenario in which a 
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child would segment the input by making random guesses on word boundary locations and 

tends to mostly segment short and frequent words as the input gives more opportunities to 

correctly segment them (Grimm et al., 2017) – i.e., these words are more likely to be 

discovered by chance. Comparing to chance is informative because, ideally, we would want a 

more complex model, which implements a specific segmentation mechanism, to at least 

perform better than chance. A fully random baseline is also more informative than baselines 

which consider each utterance or each unit as a word (e.g., Bernard et al., 2020). These 

baselines would only discover a very low proportion of word types from the phonemic input 

(an utterance baseline would only discover types that appear as one-word utterances, while a 

unit baseline would only discover mono-phonemic word types). Finally, pseudo-random 

baselines are problematic because of their prior knowledge assumptions: For example, it is 

unlikely that infants have knowledge of the true probability of a word boundary to occur in 

the language (oracle baseline; e.g., Bernard et al., 2020), or the true average word length in 

cross-linguistic terms (Loukatou et al., 2019).  

 

Appendix S2: Input preprocessing 

The 7 CHILDES corpora used were: Belfast (Henry, 1995), Manchester (Theakston et al., 

2001), Thomas (Lieven et al., 2009), Tommerdahl (Tommerdahl & Kilpatrick, 2013), Wells 

(Wells, 1981), Forrester (Forrester, 2002), Lara (Rowland & Fletcher, 2006). The corpora 

were imported into the R environment (R Core Team, 2018) using the package childesr 

(Braginsky et al., 2019), which guarantees a standardized procedure for obtaining the 

utterance samples. The corpora were phonetically transcribed using the CMU dictionary 

(Lenzo, 2007). The transcription process was carried out without considering word stress 

markers in the dictionary. Utterances containing one or more words not appearing in the 

CMU were discarded. 
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 The advantage of using a transcription dictionary is that it allows automatic 

transcription of large input corpora into phonetic form. However, it has the important 

limitation of assuming that words always consist of the same phonemes in running speech. 

This is not the case as words undergo significant phonetic reduction in conversational speech 

(e.g., until [ʌntɪl] may be also realized via phoneme deletion [_ntil] or substitution [ʌntəl]; 

see Johnson, 2004). Addressing this limitation would require access to either phonetically 

transcribed corpora which include different word realizations (e.g., Schuppler et al., 2011), or 

systems that directly operate on raw speech (e.g., Arnold et al., 2017; Ten Bosch et al., 2022). 

The corpora differed by MLU (Mean Length of Utterance; see Table S2A). If 

utterances are not shuffled, the models’ performance oscillates depending on the corpus 

MLU. This happens because long sentences are more difficult to segment for all 

segmentation models. Given the input to different children is likely to show variability in 

MLU across time, we controlled for this variation by randomly shuffling the utterances’ 

order; given this variation influenced all models equally, this choice should not affect 

comparisons between models. 

 When required, the syllabification of the input was performed using the WordSeg 

package (Bernard et al., 2020), which applies the maximal onset principle (Phillips & Pearl, 

2015). Note we are not claiming such procedure corresponds to how the infant would 

segment the input into syllables (for work focused on this problem, see Räsänen et al., 2018), 

as by definition the maximal onset principle requires prior knowledge of word onsets. Rather, 

it is a convenient deterministic strategy for pre-syllabifying the corpora, which can then be 

used as input for the models under the assumption that infants might be already organizing 

speech as strings of syllabic constituents before they have started representing word forms 

(e.g., Bertoncini & Mehler, 1981; Bertoncini et al., 1988; Bijeljac-Babic et al., 1993). 

Further, it is worth noting that the maximal onset principle is not the only strategy that could 
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be used, as other factors can influence English syllabification (e.g., word-edge frequency, 

stress, vowel quality, sonority, morphology; Derwing, 1992; Derwing & Eddington, 2014; 

Olejarczuk & Kapatsinski, 2018).  

 The input for the models were all utterances from the 7 corpora that were directed to 

children of age 2 (see Table S2A). We believe this choice to focus on age 2 is justified for 

two reasons. Firstly, at age 2 a larger amount of data on children’s own productions is 

available in the corpora. Since we evaluate our models on measures that are based on child 

productions (i.e., age of first production and word-level measures), focusing on age 2 allows 

us to test the models on a much larger sample of word types. At ages earlier than 2 years 

child productions decrease significantly in type frequency (e.g., at year 1 child word types are 

about 1/4 of year 2 word types) which would significantly limit the sample of words used to 

compute our evaluation measures. 

 

Table S2A. 

Descriptive statistics of phonetically transcribed CHILDES English corpora filtering for 

utterances directed to children of age 2. For each corpus, the table indicates the number of 

input utterances, Mean Length of Utterance (MLU, i.e., average number of words in an 

utterance), number of words including repetitions (Word tokens), number of different words 

(Word types).   

Corpus Utterances MLU Word tokens Word types 

Forrester 3,183 4.89 15,567 1,576 

Tommerdahl 5,700 4.84 27,610 1,646 

Wells 16,292 3.62 59,042 3,053 

Belfast 17,923 5.52 99,004 3,922 

Lara 59,598 3.68 219,184 4,316 
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Thomas 194,695 5.23 1,018,726 8,160 

Manchester 307,079 3.96 1,215,740 9,587 

 

Secondly, the corpora also contain many more utterances directed to 2 year olds than 

to younger children. The input available in CHILDES at year 0 or 1 is significantly smaller in 

size compared to input directed to year 2. For example, our 2-year-olds’ input comprises 

604,000 utterances, while 1-year-olds’ input only contains 54,274 utterances. This is 

problematic because a smaller sample of utterances is more likely to be biased and less likely 

to preserve the characteristics of naturalistic speech directed to young children. Thus, 

focusing on age 2 represents a compromise: This is the youngest age group for which a large 

enough (and thus representative) sample of child-directed speech is available. 

To illustrate this point further, we have generated Figure S2A below. In this figure 

(panels “Raw” of each lexical measure), one can see that the characteristics of the input 

change significantly from age 0 to 2, with presence of more long, infrequent, low-

neighborhood and high-phonotactic words as age increases. Crucially, we can show that these 

differences are mostly due to differences in sample size (see also Montag et al., 2018). This is 

because the likelihood of finding long/infrequent/low-neighborhood/high-phonotactic words 

increases as sample size increases. Indeed, when we match input at different age bins by 

sample size (i.e., sampling the same number of utterances as in the smallest age sample) we 

see that the differences between corpora decrease substantially (see “Matched” panels of 

figure S2A). Therefore, the loss from choosing input directed to age 2 (i.e., maximising 

sample size at the expense of input age) is lower compared to choosing input smaller in size 

at earlier ages, which would instead grossly misrepresent the characteristics of the naturalistic 

input. 
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In conclusion, although some differences between speech at different ages remain 

when we control for input sample size and it is thus possible that the age 2 input is not 

entirely representative of the input at younger ages, the input that we have available for 

younger children is almost certainly not representative of naturalistic input directed to 

children of those ages either, because so little of it is available in existing corpora. Future 

studies may try and replicate these analyses using speech directed at earlier ages, once large-

scale corpora of language input directed at such earlier ages become available to researchers. 

 

 

Figure S2A. Word characteristics of word type distributions for input directed at year 0, 1, 

and 2. “Raw” panels show word characteristics when considering all utterances available at 

each age (age 0 = 11,745; age 1 = 54,274; age 2 = 604,000). Age 1 and 2 utterances were 

taken from the same corpora used in the main manuscript, while age 0 utterances were taken 

from the Korman corpus (Korman, 1992), which contains maternal speech directed to infants 
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aged between 4 and 16 weeks. “Matched” panels refer to word type distributions when each 

input is matched by age 0 sample size, therefore randomly sampling 11,745 utterances from 

age 1 and age 2 corpora. Also note that results do not depend on the particular random 

samples computed, as repeating the sampling procedure produces identical distributions. 

 

Appendix S3: Word age of first production estimation 

Word age of first production has been used in Grimm et al. (2017; 2019) as an index of word 

learning. If a word is first produced early in development, it is assumed that this is in part 

because it is easy to learn. To compute word age of first production estimates, we used 

Grimm et al.’s (2017; 2019) procedure, as its validity was assessed in two ways: corpora age 

of first production estimates showed a fairly strong correlation with American English CDI 

parent-report measures of child expressive vocabulary (Spearman’s rho = .50, p <.001) and a 

stronger correlation with the only estimates for British English that are directly derived from 

children (i.e., from a picture-naming task; Morrison et al., 1997; Spearman’s rho = .65, p 

<.001).  

To estimate word age of first production, MLU was used as a proxy of the 

developmental stage at which a word is acquired. For a given word, we first computed MLU 

for each transcript via bootstrapping (to compensate for differences in number of utterances). 

The lowest MLU across transcripts was then taken as age of first production value in order to 

correct for inflation (as it is likely that children knew a target word before they produced it in 

the recordings). This method also avoided having to find a set of common words across 

corpora to calculate a mean stage; the latter would mean discarding a high amount of low 

frequency words that do not appear in all corpora, resulting in a skewed set of high-frequency 

words. 
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Appendix S4: Comparison of Precision and Recall measures. 

A narrative account of the findings in Table S4A and S4B is included in the paper at section 

Results and Discussion / Precision and Recall. 

 

Table S4A 

Comparison of Precision and Recall measures when phonemic input is used. Pairwise 

comparisons via Welch’s t-test for unequal variances. p values and bootstrap 95% confidence 

intervals are corrected for multiple comparisons (using Holm’s correction). The table shows: 

type of comparison and accuracy measure, mean accuracy of first and second model 

considered (M1 and M2; e.g., in the first row, M1 = BTP and M2 = PUDDLE), difference 

between mean accuracy values (∆M), t value, corrected p value, degrees of freedom (df), 

lower and upper cut-offs of corrected bootstrap 95% confidence intervals around the 

difference (Lower and Upper Bci). FTP = Forward Transitional Probability; BTP = 

Backward Transitional Probability 

Comparison Measure M1 M2 ∆M t p df 

Lower 

Bci 

Upper 

Bci 

BTP vs. PUDDLE Recall .45 .79 -.33 -73.05 <.001 19,044.5 -.348 -.32 

BTP vs. PUDDLE Precision .42 .73 -.32 -66.73 <.001 19,681.9 -.333 -.304 

BTP vs. Baseline Recall .45 .17 .28 60.43 <.001 19,391.0 .266 .293 

BTP vs. Baseline Precision .42 .14 .27 59.57 <.001 19,094.8 .258 .284 

BTP vs. CLASSIC-UB initial/final Precision .42 .5 -.09 -16.96 <.001 19,989.6 -.101 -.071 

BTP vs. CLASSIC-UB final Precision .42 .49 -.07 -13.26 <.001 19,936.1 -.084 -.055 

BTP vs. FTP Recall .45 .51 -.05 -10.31 <.001 19,998.0 -.066 -.038 

BTP vs. FTP Precision .42 .47 -.05 -10.26 <.001 19,997.8 -.067 -.037 

BTP vs. CLASSIC-UB initial/final Recall .45 .5 -.04 -8.58 <.001 19,988.7 -.058 -.028 

BTP vs. CLASSIC-UB final Recall .45 .45 .01 1.17 .243 19,907.3 -.004 .016 

FTP vs. Baseline Recall .51 .17 .33 71.56 <.001 19,381.2 .318 .346 

FTP vs. Baseline Precision .47 .14 .32 70.78 <.001 19,073.4 .31 .338 

FTP vs. PUDDLE Recall .51 .79 -.28 -61.57 <.001 19,032.8 -.294 -.266 

FTP vs. PUDDLE Precision .47 .73 -.26 -55.74 <.001 19,668.1 -.279 -.251 

CLASSIC-UB final vs. Baseline Precision .49 .14 .34 72.09 <.001 18,639.9 .326 .355 

CLASSIC-UB final vs. PUDDLE Recall .45 .79 -.34 -71.29 <.001 18,476.8 -.355 -.321 
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CLASSIC-UB final vs. Baseline Recall .45 .17 .27 56.75 <.001 18,895.5 .259 .289 

CLASSIC-UB final vs. PUDDLE Precision .49 .73 -.25 -50.59 <.001 19,362.6 -.265 -.231 

CLASSIC-UB final vs. FTP Recall .45 .51 -.06 -11.13 <.001 19,911.2 -.073 -.042 

CLASSIC-UB final vs. CLASSIC-

UB initial/final 

Recall .45 .5 -.05 -9.44 <.001 19,955.8 -.066 -.034 

CLASSIC-UB final vs. CLASSIC-

UB initial/final 

Precision .49 .5 -.02 -3.36 .003 19,973.2 -.032 -.004 

CLASSIC-UB final vs. FTP Precision .49 .47 .02 3.28 .003 19,942.2 .004 .028 

CLASSIC-UB initial/final vs. 

Baseline 

Precision .5 .14 .36 77.5 <.001 18,935.1 .345 .374 

CLASSIC-UB initial/final vs. 

Baseline 

Recall .5 .17 .32 68.94 <.001 19,245.2 .311 .339 

CLASSIC-UB initial/final vs. 

PUDDLE 

Recall .5 .79 -.29 -62.62 <.001 18,872.7 -.304 -.274 

CLASSIC-UB initial/final vs. 

PUDDLE 

Precision .5 .73 -.23 -47.98 <.001 19,575.9 -.247 -.215 

CLASSIC-UB initial/final vs. FTP Precision .5 .47 .03 6.79 <.001 19,991.8 .02 .047 

CLASSIC-UB initial/final vs. FTP Recall .5 .51 -.01 -1.63 .206 19,989.9 -.02 .002 

PUDDLE vs. Baseline Recall .79 .17 .61 149.07 <.001 19,950.6 .598 .624 

PUDDLE vs. Baseline Precision .73 .14 .59 138.79 <.001 19,825.3 .574 .601 

 

Table S4B 

Comparison of Precision and Recall measures when syllabified input is used (columns refer 

to the same variables shown in Table S4A). 

Comparison Measure M1 M2 ∆M t p df 

Lower 

Bci 

Upper 

Bci 

BTP vs. PUDDLE Recall .38 .89 -.51 -116.28 <.001 15,269.446 -.528 -.503 

BTP vs. PUDDLE Precision .46 .85 -.4 -87.41 <.001 17,137.092 -.411 -.384 

BTP vs. CLASSIC-UB 

initial/final 

Precision .46 .66 -.2 -39.55 <.001 19,734.761 -.217 -.185 

BTP vs. CLASSIC-UB 

initial/final 

Recall .38 .58 -.2 -37.96 <.001 19,913.453 -.219 -.186 

BTP vs. CLASSIC-UB final Precision .46 .57 -.11 -20.43 <.001 19,984.445 -.123 -.093 

BTP vs. CLASSIC-UB final Recall .38 .48 -.11 -19.2 <.001 19,996.639 -.12 -.088 

BTP vs. Baseline Recall .38 .46 -.08 -14.24 <.001 19,997.407 -.095 -.063 

BTP vs. Baseline Precision .46 .51 -.06 -10.37 <.001 19,997.833 -.072 -.041 

BTP vs. FTP Precision .46 .49 -.04 -6.79 <.001 19,987.974 -.052 -.022 

BTP vs. FTP Recall .38 .41 -.03 -5.52 <.001 19,997.237 -.047 -.016 

FTP vs. PUDDLE Recall .41 .89 -.48 -109.94 <.001 15,324.968 -.499 -.471 

FTP vs. PUDDLE Precision .49 .85 -.36 -80.7 <.001 17,360.737 -.376 -.346 

FTP vs. Baseline Recall .41 .46 -.05 -8.75 <.001 19,997.989 -.064 -.033 

FTP vs. Baseline Precision .49 .51 -.02 -3.69 .001 19,990.389 -.034 -.006 

CLASSIC-UB final vs. 

PUDDLE 

Recall .48 .89 -.41 -93.02 <.001 15,343.657 -.422 -.394 

CLASSIC-UB final vs. 

PUDDLE 

Precision .57 .85 -.29 -64.64 <.001 17,397.080 -.302 -.272 

CLASSIC-UB final vs. 

CLASSIC-UB initial/final 

Precision .57 .66 -.09 -18.51 <.001 19,838.308 -.107 -.079 
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CLASSIC-UB final vs. 

CLASSIC-UB initial/final 

Recall .48 .58 -.1 -18.31 <.001 19,933.371 -.112 -.081 

CLASSIC-UB final vs. FTP Precision .57 .49 .07 13.78 <.001 19,997.734 .057 .088 

CLASSIC-UB final vs. FTP Recall .48 .41 .08 13.71 <.001 19,997.914 .059 .091 

CLASSIC-UB final vs. 

Baseline 

Precision .57 .51 .05 9.95 <.001 19,987.279 .037 .068 

CLASSIC-UB final vs. 

Baseline 

Recall .48 .46 .03 4.95 <.001 19,997.843 .013 .042 

CLASSIC-UB initial/final vs. 

PUDDLE 

Recall .58 .89 -.31 -74 <.001 15,872.605 -.325 -.297 

CLASSIC-UB initial/final vs. 

PUDDLE 

Precision .66 .85 -.19 -46.49 <.001 18,269.313 -.208 -.179 

CLASSIC-UB initial/final vs. 

FTP 

Precision .66 .49 .16 32.86 <.001 19,825.279 .151 .18 

CLASSIC-UB initial/final vs. 

FTP 

Recall .58 .41 .17 32.39 <.001 19,928.617 .157 .189 

CLASSIC-UB initial/final vs. 

Baseline 

Precision .66 .51 .15 28.66 <.001 19,747.424 .129 .161 

CLASSIC-UB initial/final vs. 

Baseline 

Recall .58 .46 .12 23.37 <.001 19,926.899 .108 .14 

PUDDLE vs. Baseline Recall .89 .46 .44 98.97 <.001 15,318.378 .422 .448 

PUDDLE vs. Baseline Precision .85 .51 .34 75.27 <.001 17,165.941 .326 .351 

 

Appendix S5: Frequency-weighted age of first production analyses: Pairwise differences 

between models’ adjusted 𝑅2 

A narrative account of the phonemic analysis is available in section Results and Discussion / 

Word Age of First Production  of the main manuscript. Instead, here we focus on findings 

when models were run on syllabified input (see Table S5A). Models run on syllabified input 

did not perform better than the baseline. PUDDLE performed better than CLASSIC-UB 

initial-final (∆Adj 𝑅2 =.023 [.008, .041]) and CLASSIC-UB final (∆Adj 𝑅2 =.040 [.024, 

.062]) at predicting children’s word age of first production. However, the difference between 

PUDDLE and the baseline was not significant (∆Adj 𝑅2 = .020 [-.001, .039]) and neither was 

the difference between the baseline and CLASSIC-UB initial-final (∆Adj 𝑅2 = .003 [-.012, 

.020]).  

CLASSIC-UB initial-final performed better than CLASSIC-UB final (∆Adj 𝑅2 = .017 

[.010, .026]) at predicting children’s word age of first production. 
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PUDDLE explained a significantly higher proportion of variance in word age of first 

production than forward (∆Adj 𝑅2 = .048 [.023, .068]) and backward transitional probability 

models (∆Adj 𝑅2 = .061 [043, .082]). 

 

Table S5A 

Frequency-weighted age of first production analyses: Pairwise differences between models’ 

Adjusted 𝑅2 when phonemic or syllabified input is used. The table shows model comparisons 

by type of input (phonemic vs. syllabified). For each pairwise comparison we report 

difference in Adjusted 𝑅2 values (∆𝑅2), and lower and upper limits of bootstrap confidence 

intervals (based on 1000 iterations and corrected using Holm’s correction). 

Comparison 

Input 

type ∆𝑅2 

Lower 

Bci 

Upper 

Bci 

BTP vs. Baseline Phoneme .008 -.011 .026 

FTP vs. Baseline Phoneme .010 -.011 .031 

FTP vs. BTP Phoneme .002 -.013 .016 

CLASSIC-UB final vs. Baseline Phoneme .043 .020 .069 

CLASSIC-UB final vs. BTP Phoneme .035 .013 .059 

CLASSIC-UB final vs. FTP Phoneme .033 .011 .057 

CLASSIC-UB final vs. PUDDLE Phoneme .001 -.015 .018 

CLASSIC-UB initial/final vs. Baseline Phoneme .048 .024 .073 

CLASSIC-UB initial/final vs. BTP Phoneme .04 .010 .061 

CLASSIC-UB initial/final vs. FTP Phoneme .038 .016 .059 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .006 -.016 .029 

CLASSIC-UB initial/final vs. CLASSIC-UB final Phoneme .005 -.006 .016 

PUDDLE vs. Baseline Phoneme .042 .021 .064 

PUDDLE vs. BTP Phoneme .034 .011 .054 

PUDDLE vs. FTP Phoneme .032 .014 .054 

Baseline vs. BTP Syllable .041 .024 .058 

Baseline vs. FTP Syllable .028 .012 .047 

Baseline vs. CLASSIC-UB final Syllable .020 .005 .040 

Baseline vs. CLASSIC-UB initial/final Syllable .003 -.012 .020 

FTP vs. BTP Syllable .013 .005 .022 

CLASSIC-UB final vs. BTP Syllable .021 .011 .032 

CLASSIC-UB final vs. FTP Syllable .008 -.004 .020 

CLASSIC-UB initial/final vs. BTP Syllable .038 .025 .054 

CLASSIC-UB initial/final vs. FTP Syllable .025 .010 .044 

CLASSIC-UB initial/final vs. CLASSIC-UB final Syllable .017 .010 .026 

PUDDLE vs. BTP Syllable .061 .043 .082 

PUDDLE vs. FTP Syllable .048 .023 .068 

PUDDLE vs. CLASSIC-UB final Syllable .040 .024 .062 
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PUDDLE vs. CLASSIC-UB initial/final Syllable .023 .008 .041 

PUDDLE vs. Baseline Syllable .020 -.001 .039 

 

Appendix S6: Frequency-unweighted age of first production analyses 

Interestingly, Larsen et al. (2017) found that a forward transitional probability model run on 

syllabified input showed the best performance, predicting 19% of variance in word age of 

acquisition. In contrast, we found that a forward transitional probability model run on 

syllabified input predicts a low proportion of variance (Adj 𝑅2 = .013 [.007, .021]; see Table 

1 in the main paper): We suggest this difference is related to differences in the predictor 

measure: we weighted the predictor measure by the frequency of a target word in the input, 

while Larsen used raw counts. Accordingly, when we used raw counts and syllabified input, 

we were able to replicate Larsen’s finding (see Table S6A and S6B), with the forward 

transitional probability model showing the best performance (Adj 𝑅2 = .311 [.284, .338]), 

followed by CLASSIC-UB final (Adj 𝑅2 = .301 [.274, .327]). Importantly, however, even in 

this analysis we found that no model outperformed the baseline (Adj 𝑅2 = .340 [.310, .364]), 

with the baseline performing significantly better than forward transitional probability (∆Adj 

𝑅2 = .029 [.010, .047]). Note that Larsen did not include a comparison to a random baseline. 

We also obtained the same result when using raw counts and phonemic input, with 

CLASSIC-UB final showing the best performance (Adj 𝑅2 = .227 [.205, .250]) but not being 

able to outperform the Baseline (Adj 𝑅2 = .273 [.252, .295]; ∆Adj 𝑅2 = .046 [.026, .069]). 

These results indicate that controlling for input word frequency and including a random 

baseline are both important to draw conclusions about the developmental plausibility of 

different segmentation models. A discussion on the role of the random baseline is included in 

Appendix S13. 
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Table S6A 

Adjusted R2 for linear regression models predicting word age of first production as a function 

of unweighted Log10 number of times a word was correctly segmented by each model. 

Heteroskedasticity-robust standard errors are computed using a HC2 estimator. Lower Bci 

and Upper Bci indicate lower and upper bounds of bootstrap confidence intervals around the 

estimate (based on 1000 iterations). Holm’s correction was applied. 

 Phonemic input Syllabified input 

Model Adjusted R2 Lower Bci Upper Bci Adjusted R2 Lower Bci Upper Bci 

Baseline .273 .252 .295 .340 .310 .364 

BTP .153 .140 .167 .225 .202 .249 

FTP .168 .151 .185 .311 .284 .338 

CLASSIC-UB final .227 .205 .250 .301 .274 .327 

CLASSIC-UB initial/final .196 .176 .219 .278 .252 .302 

PUDDLE .195 .175 .214 .217 .194 .238 

 

Table S6B 

Pairwise differences between Adjusted 𝑅2 of unweighted age of first production models. The 

table shows models comparison, input type considered, difference in Adjusted 𝑅2 values, 

lower and upper limits of bootstrap confidence intervals (based on 1000 iterations and 

corrected using Holm’s correction). 

Comparison 

Input 

type ∆𝑅2 

Lower 

Bci 

Upper 

Bci 

Baseline vs. BTP Phoneme .12 .101 .14 

Baseline vs. FTP Phoneme .105 .088 .126 

Baseline vs. PUDDLE Phoneme .078 .06 .098 

Baseline vs. CLASSIC-UB initial/final Phoneme .077 .056 .097 

Baseline vs. CLASSIC-UB final Phoneme .046 .026 .069 

FTP vs. BTP Phoneme .015 .00 .029 

CLASSIC-UB final vs. BTP Phoneme .074 .051 .098 

CLASSIC-UB final vs. FTP Phoneme .059 .031 .083 

CLASSIC-UB final vs. PUDDLE Phoneme .032 .009 .056 

CLASSIC-UB final vs. CLASSIC-UB initial/final Phoneme .031 .02 .042 

CLASSIC-UB initial/final vs. BTP Phoneme .043 .022 .065 

CLASSIC-UB initial/final vs. FTP Phoneme .028 .008 .048 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .001 -.014 .017 

PUDDLE vs. BTP Phoneme .042 .022 .06 

PUDDLE vs. FTP Phoneme .027 .009 .047 

Baseline vs. PUDDLE Syllable .123 .101 .145 
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Baseline vs. BTP Syllable .115 .095 .137 

Baseline vs. CLASSIC-UB initial/final Syllable .062 .042 .08 

Baseline vs. CLASSIC-UB final Syllable .039 .02 .058 

Baseline vs. FTP Syllable .029 .01 .047 

BTP vs. PUDDLE Syllable .008 -.015 .03 

FTP vs. PUDDLE Syllable .094 .067 .122 

FTP vs. BTP Syllable .086 .064 .109 

FTP vs. CLASSIC-UB initial/final Syllable .033 .012 .056 

FTP vs. CLASSIC-UB final Syllable .01 -.007 .026 

CLASSIC-UB final vs. PUDDLE Syllable .084 .061 .109 

CLASSIC-UB final vs. BTP Syllable .076 .053 .1 

CLASSIC-UB final vs. CLASSIC-UB initial/final Syllable .023 .013 .033 

CLASSIC-UB initial/final vs. PUDDLE Syllable .061 .041 .08 

CLASSIC-UB initial/final vs. BTP Syllable .053 .023 .079 

 

Appendix S7: Approximation of child production vocabulary by phonemic length. 

Analyses were run on both phonemic and syllabified input. A narrative account of the 

phonemic-input analysis is available in section Results and Discussion / Word-level Measures 

/ Phonemic length of the main manuscript; below we focus on syllabified input. 

 When syllabified input was used (see Fig S7, Table S7A and S7B), the model with the 

best performance was CLASSIC-UB final (𝑋2 = 14.62 [7.11, 56.59]), but even this model did 

not outperform the baseline (𝑋2 = 16.62 [6.1, 64.2]; ∆𝑋2 = 2.00 [-25.63, 31.97]) at 

approximating children’s vocabularies by phonemic length. A discussion on the role of the 

random baseline is included in Appendix S13. 

CLASSIC-UB initial-final (∆𝑋2 = 420.11 [274.95, 581.06]) and CLASSIC-UB final 

(∆𝑋2 = 424.83 [299.34, 576.60]) showed a better performance than PUDDLE at 

approximating children’s vocabularies by phonemic length. 

 No significant difference was found when comparing CLASSIC-UB final and 

CLASSIC-UB initial-final (∆𝑋2 = 4.72 [-33.69, 43.77]). 
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 Finally, PUDDLE performance did not differ statistically from backward (∆𝑋2 = 

38.38 [-211.69, 295.25]) and was significantly worse than forward transitional probability 

models (∆𝑋2 = 309.26 [78.34, 508.42]). 

 

Table S7A 

Child-model comparison by phonemic length. We compared the probability of observing 

words of different phonemic lengths in the models’ vocabularies against the expected 

probability of words being of a given phonemic length in children’s vocabularies. 

Comparisons were tested via a Chi-Square Goodness of Fit Test. The 𝑋2 statistic always 

compares the distance of a model’s distribution from children’s. The table shows the type of 

comparison, the input type used, the Chi-squared statistic (𝑋2), degrees of freedom (df), p 

value and cut-offs of 95% bootstrap confidence interval of the statistic. Holm’s correction 

was applied to p values and confidence intervals. 

Comparison Input type 𝑋2 df p value Lower Bci Upper Bci 

Children vs. Baseline Phoneme 528.99 6 <.001 421.46 691.44 

Children vs. BTP Phoneme 1314.99 6 <.001 1112.25 1552.42 

Children vs. FTP Phoneme 1274.04 6 <.001 1107.59 1486.48 

Children vs. CLASSIC-UB final Phoneme 244.9 6 <.001 167.47 357.26 

Children vs. CLASSIC-UB initial/final Phoneme 311.02 6 <.001 223.76 440.03 

Children vs. PUDDLE Phoneme 1178.97 6 <.001 969.29 1406.66 

Children vs. Baseline Syllable 16.62 6 .022 6.1 64.2 

Children vs. BTP Syllable 401.07 6 <.001 268.08 598.9 

Children vs. FTP Syllable 130.19 6 <.001 67.29 244.6 

Children vs. CLASSIC-UB final Syllable 14.62 6 .023 7.11 56.59 

Children vs. CLASSIC-UB initial/final Syllable 19.34 6 .011 6.62 74.01 

Children vs. PUDDLE Syllable 439.45 6 <.001 317.47 604.34 

 

Table S7B 

Pairwise differences between the Chi-squared statistics reported in Table S7A, comparing 

how well two models’ observed probabilities of phonemic lengths fit children’s expected 

probabilities, when phonemic or syllabified input is used. Therefore, the ∆𝑋2 measure 

examines whether two models’ distributions are at the same distance from children’s. The 
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order of each pairwise difference was set as in the column Comparison (e.g., in Baseline vs. 

CLASSIC-UB final, the CLASSIC-UB final 𝑋2 estimate is subtracted from the Baseline 𝑋2 

estimate). The table shows models comparison, difference in Chi-squared statistics (∆𝑋2), 

input type considered, lower and upper limits of bootstrap confidence intervals (based on 

1000 iterations and corrected using Holm’s correction). 

Comparison 

Inout 

type ∆𝑋2 Lower Bci Upper Bci 

Baseline vs. CLASSIC-UB final Phoneme 284.09 146.62 416.98 

Baseline vs. CLASSIC-UB initial/final Phoneme 217.97 69.46 393.14 

BTP vs. CLASSIC-UB final Phoneme 1070.09 874.65 1291.03 

BTP vs. CLASSIC-UB initial/final Phoneme 1003.97 813.07 1255.92 

BTP vs. Baseline Phoneme 785.99 564.44 983.90 

BTP vs. PUDDLE Phoneme 136.01 -75.75 368.09 

BTP vs. FTP Phoneme 40.94 -133.07 239.68 

FTP vs. CLASSIC-UB final Phoneme 1029.14 856.78 1260.98 

FTP vs. CLASSIC-UB initial/final Phoneme 963.02 736.17 1207.71 

FTP vs. Baseline Phoneme 745.05 551.63 946.67 

FTP vs. PUDDLE Phoneme 95.07 -111.00 287.36 

CLASSIC-UB initial/final vs. CLASSIC-UB final Phoneme 66.12 -41.65 172.99 

PUDDLE vs. CLASSIC-UB final Phoneme 934.07 717.61 1153.22 

PUDDLE vs. CLASSIC-UB initial/final Phoneme 867.95 679.12 1084.11 

PUDDLE vs. Baseline Phoneme 649.98 423.18 858.81 

Baseline vs. CLASSIC-UB final Syllable 2.00 -25.63 31.97 

BTP vs. CLASSIC-UB final Syllable 386.45 203.26 578.85 

BTP vs. Baseline Syllable 384.45 223.81 556.98 

BTP vs. CLASSIC-UB initial/final Syllable 381.73 200.61 570.78 

BTP vs. FTP Syllable 270.88 122.27 419.30 

FTP vs. CLASSIC-UB final Syllable 115.57 31.55 219.54 

FTP vs. Baseline Syllable 113.57 31.45 212.32 

FTP vs. CLASSIC-UB initial/final Syllable 110.85 13.61 226.86 

CLASSIC-UB initial/final vs. CLASSIC-UB final Syllable 4.72 -33.69 43.77 

CLASSIC-UB initial/final vs. Baseline Syllable 2.72 -36.82 44.92 

PUDDLE vs. CLASSIC-UB final Syllable 424.83 299.34 576.60 

PUDDLE vs. Baseline Syllable 422.83 253.88 609.58 

PUDDLE vs. CLASSIC-UB initial/final Syllable 420.11 274.95 581.06 

PUDDLE vs. FTP Syllable 309.26 78.34 508.42 

PUDDLE vs. BTP Syllable 38.38 -211.69 295.25 
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Fig. S7A. Proportion of unique words (types) produced by children and discovered by each 

model by phonemic length, when syllabified input is used. 

 

Appendix S8: Approximation of child production vocabulary by weighted log10 word 

frequency. 

Analyses were run on both phonemic and syllabified input. A narrative account of the 

phonemic-input analysis is available in section Results and Discussion / Word-level Measures 

/ Word Frequency of the main manuscript; below we focus on syllabified input. 

When syllabified input was used (see Fig S8A, Table S8A and S8B), PUDDLE 

outperformed CLASSIC-UB initial-final (∆D = .031 [.006, .058]) and CLASSIC-UB final 

(∆D = .053 [.028, .079]) at approximating children’s vocabularies by weighted Log10 word 

frequency. However, neither PUDDLE nor CLASSIC-UB initial-final were able to 

outperform the baseline (D = .05 [.03, .07], p = <.001) (baseline vs. PUDDLE, ∆D = .003 [-

.017, .028]; CLASSIC-UB initial-final vs. baseline, ∆D = .028 [.000, .052]). A discussion on 

the role of the random baseline is included in Appendix S13. 

CLASSIC-UB final did not differ statistically from CLASSIC-UB initial-final (∆D = 

.022 [-.002, .045]). 
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Finally, PUDDLE outperformed forward (∆D = .052 [.028, .081]) and backward 

transitional probability (∆D = .066 [.039, .091]) at approximating children’s vocabularies by 

weighted Log10 word frequency. 

 

Table S8A. 

Child-model comparison by weighted Log10 word frequency. We compared models’ 

distributions of unique words by weighted Log10 word frequency to child distribution. 

Comparisons were tested via Kolmogorov–Smirnov test statistic. The table shows the type of 

comparison, the input type used, the Kolmogorov–Smirnov test statistic (D), p value and cut-

offs of 95% bootstrap confidence interval of the statistic. Holm’s correction was applied to p 

values and confidence intervals. 

Comparison Input type D p value Lower Bci Upper Bci 

Children vs. Baseline Phoneme .29 <.001 .27 .32 

Children vs. BTP Phoneme .26 <.001 .23 .30 

Children vs. FTP Phoneme .23 <.001 .20 .27 

Children vs. CLASSIC-UB final Phoneme .13 <.001 .11 .15 

Children vs. CLASSIC-UB initial/final Phoneme .16 <.001 .14 .19 

Children vs. PUDDLE Phoneme .13 <.001 .11 .16 

Children vs. Baseline Syllable .05 <.001 .03 .07 

Children vs. BTP Syllable .11 <.001 .09 .14 

Children vs. FTP Syllable .10 <.001 .08 .12 

Children vs. CLASSIC-UB final Syllable .10 <.001 .08 .12 

Children vs. CLASSIC-UB initial/final Syllable .07 <.001 .06 .10 

Children vs. PUDDLE Syllable .04 <.001 .03 .06 

 

Table S8B 

Pairwise differences between the Kolmogorov–Smirnov statistics reported in Table S8A, 

comparing how closely two models’ distributions of unique words are to children’s 

productions by weighted Log10 word frequency, when phonemic or syllabified input is used. 

The table shows models comparison, input type, difference in Kolmogorov–Smirnov test 

statistics (∆D), lower and upper limits of bootstrap confidence intervals (based on 1000 

iterations and corrected using Holm’s correction). 
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Comparison 

Input 

type ∆D 

Lower 

Bci 

Upper 

Bci 

Baseline vs. CLASSIC-UB final Phoneme .169 .136 .198 

Baseline vs. PUDDLE Phoneme .163 .127 .192 

Baseline vs. CLASSIC-UB initial/final Phoneme .132 .087 .159 

Baseline vs. FTP Phoneme .064 .028 .101 

Baseline vs. BTP Phoneme .03 -.006 .069 

BTP vs. CLASSIC-UB final Phoneme .138 .098 .175 

BTP vs. PUDDLE Phoneme .133 .096 .175 

BTP vs. CLASSIC-UB initial/final Phoneme .101 .063 .139 

BTP vs. FTP Phoneme .034 -.001 .072 

FTP vs. CLASSIC-UB final Phoneme .105 .067 .145 

FTP vs. PUDDLE Phoneme .099 .063 .132 

FTP vs. CLASSIC-UB initial/final Phoneme .068 .028 .106 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Phoneme .037 .006 .072 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .032 -.006 .069 

PUDDLE vs. CLASSIC-UB final Phoneme .005 -.020 .036 

Baseline vs. PUDDLE Syllable .003 -.017 .028 

BTP vs. PUDDLE Syllable .066 .039 .091 

BTP vs. Baseline Syllable .063 .028 .089 

BTP vs. CLASSIC-UB initial/final Syllable .035 .009 .060 

BTP vs. FTP Syllable .015 -.008 .034 

BTP vs. CLASSIC-UB final Syllable .014 -.010 .038 

FTP vs. PUDDLE Syllable .052 .028 .081 

FTP vs. Baseline Syllable .048 .023 .073 

FTP vs. CLASSIC-UB initial/final Syllable .021 -.002 .042 

CLASSIC-UB final vs. PUDDLE Syllable .053 .028 .079 

CLASSIC-UB final vs. Baseline Syllable .049 .019 .074 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable .022 -.002 .045 

CLASSIC-UB final vs. FTP Syllable .001 -.017 .016 

CLASSIC-UB initial/final vs. PUDDLE Syllable .031 .006 .058 

CLASSIC-UB initial/final vs. Baseline Syllable .028 .000 .052 

 

 

Fig. S8A. Gaussian kernel density estimate of the distribution of unique words in children’s 

speech (Children) and discovered by each model, by weighted Log10 word frequency. 
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Syllabified input is used. The area under each curve represents 100% of data points. Curve 

peaks represent the mode of each distribution.  

 

Appendix S9: Approximation of child production vocabulary by weighted neighborhood 

density. 

Analyses were run on both phonemic and syllabified input. A narrative account of the 

phonemic-input analysis is available in section Results and Discussion / Word-level Measures 

/ Neighborhood Density of the main manuscript; below we focus on syllabified input. 

When syllabified input was used (see Fig. S9A, Table S9A and S9B), CLASSIC-UB 

final showed the best performance (D = .03 [.02, .05], p = .005) at approximating children’s 

vocabularies by weighted neighborhood density, but it was not able to outperform the 

baseline (D = .03 [.02, .04], p = .029; ∆D = .006 [-.007, .02]. A discussion on the role of the 

random baseline is included in Appendix S13. 

CLASSIC-UB final did not differ statistically from CLASSIC-UB initial-final (∆D = 

.019 [-.002, .038]). 

Finally, PUDDLE did not differ statistically from backward transitional probability 

(∆D = .049 [-.002, .090]) and performed significantly worse than forward transitional 

probability (∆D = .122 [.079, .155]) at approximating children’s vocabularies by weighted 

neighborhood density. 

 

Table S9A 

Child-model comparison by weighted neighborhood density. We compared models’ 

distributions of unique words by weighted neighborhood density to child distribution. 

Comparisons were tested via Kolmogorov–Smirnov test statistic. The table shows the type of 
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comparison, the input unit used, the Kolmogorov–Smirnov test statistic (D), p value and cut-

offs of 95% bootstrap confidence interval of the statistic, adjusted using Holm’s correction. 

Comparison Input type D p value Lower Bci Upper Bci 

Children vs. Baseline Phoneme .2 <.001 .18 .23 

Children vs. BTP Phoneme .37 <.001 .34 .4 

Children vs. FTP Phoneme .34 <.001 .32 .37 

Children vs. CLASSIC-UB final Phoneme .14 <.001 .12 .17 

Children vs. CLASSIC-UB initial/final Phoneme .18 <.001 .16 .21 

Children vs. PUDDLE Phoneme .29 <.001 .26 .32 

Children vs. Baseline Syllable .03 .029 .02 .04 

Children vs. BTP Syllable .12 <.001 .10 .14 

Children vs. FTP Syllable .05 <.001 .03 .07 

Children vs. CLASSIC-UB final Syllable .03 .005 .02 .05 

Children vs. CLASSIC-UB initial/final Syllable .05 <.001 .03 .07 

Children vs. PUDDLE Syllable .17 <.001 .14 .19 

 

Table S9B 

Pairwise differences between the Kolmogorov–Smirnov statistics reported in Table S9A, 

comparing how closely two models’ distributions of unique words are to children’s 

productions by weighted neighborhood density, when phonemic or syllabified input is used. 

The table shows models comparison, input type, difference in Kolmogorov–Smirnov test 

statistics (∆D), lower and upper limits of bootstrap confidence intervals (based on 1000 

iterations and corrected using Holm’s correction). 

Comparison 

Input 

type ∆D 

Lower 

Bci 

Upper 

Bci 

Baseline vs. CLASSIC-UB final Phoneme .063 .034 .092 

Baseline vs. CLASSIC-UB initial/final Phoneme .021 -.007 .050 

BTP vs. CLASSIC-UB final Phoneme .228 .191 .261 

BTP vs. CLASSIC-UB initial/final Phoneme .185 .147 .222 

BTP vs. Baseline Phoneme .164 .127 .197 

BTP vs. PUDDLE Phoneme .081 .049 .110 

BTP vs. FTP Phoneme .028 -.002 .058 

FTP vs. CLASSIC-UB final Phoneme .199 .168 .229 

FTP vs. CLASSIC-UB initial/final Phoneme .157 .122 .191 

FTP vs. Baseline Phoneme .136 .101 .171 

FTP vs. PUDDLE Phoneme .053 .023 .083 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Phoneme .042 .007 .074 

PUDDLE vs. CLASSIC-UB final Phoneme .146 .115 .178 

PUDDLE vs. CLASSIC-UB initial/final Phoneme .104 .065 .135 
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PUDDLE vs. Baseline Phoneme .083 .049 .118 

BTP vs. Baseline Syllable .092 .055 .123 

BTP vs. CLASSIC-UB final Syllable .086 .044 .119 

BTP vs. FTP Syllable .073 .045 .100 

BTP vs. CLASSIC-UB initial/final Syllable .066 .028 .103 

FTP vs. Baseline Syllable .019 -.01 .044 

FTP vs. CLASSIC-UB final Syllable .013 -.019 .039 

CLASSIC-UB final vs. Baseline Syllable .006 -.007 .02 

CLASSIC-UB initial/final vs. Baseline Syllable .026 .001 .046 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Syllable .019 -.002 .038 

CLASSIC-UB initial/final vs. FTP Syllable .007 -.023 .036 

PUDDLE vs. Baseline Syllable .141 .113 .164 

PUDDLE vs. CLASSIC-UB final Syllable .135 .110 .155 

PUDDLE vs. FTP Syllable .122 .079 .155 

PUDDLE vs. CLASSIC-UB initial/final Syllable .115 .087 .142 

PUDDLE vs. BTP Syllable .049 -.002 .090 

 

 

Fig. S9A. Gaussian kernel density estimate of the distribution of unique words in children’s 

speech (Children) and discovered by each model, by weighted neighborhood density. 

Syllabified input is used. 

 

Appendix S10: Approximation of child production vocabulary by weighted phonotactic 

probability. 

Analyses were run on both phonemic and syllabified input. A narrative account of the 

phonemic-input analysis is available in section Results and Discussion / Word-level Measures 

/ Phonotactic Probability of the main manuscript.  
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When syllabified input is used, no significant differences were found between 

models’ performance at approximating children’s vocabulary by weighted phonotactic 

probability (see Fig. S10A, and Table S10A and S10B). 

 

Table S10A 

Child-model comparison by weighted phonotactic probability. We compared models’ 

distributions of unique words by weighted phonotactic probability to child distribution. 

Comparisons were tested via Kolmogorov–Smirnov test statistic. The table shows the type of 

comparison, the input type used, the Kolmogorov–Smirnov test statistic (D), p value and cut-

offs of 95% bootstrap confidence interval of the statistic, adjusted using Holm’s correction. 

Comparison Input type D p value Lower Bci Upper Bci 

Children vs. Baseline Phoneme .05 .002 .03 .08 

Children vs. BTP Phoneme .08 <.001 .05 .12 

Children vs. FTP Phoneme .08 <.001 .05 .11 

Children vs. CLASSIC-UB final Phoneme .07 <.001 .05 .10 

Children vs. CLASSIC-UB initial/final Phoneme .09 <.001 .06 .12 

Children vs. PUDDLE Phoneme .05 <.001 .03 .08 

Children vs. Baseline Syllable .02 .77 .01 .04 

Children vs. BTP Syllable .01 .77 .01 .03 

Children vs. FTP Syllable .02 .368 .01 .05 

Children vs. CLASSIC-UB final Syllable .02 .368 .01 .04 

Children vs. CLASSIC-UB initial/final Syllable .03 .044 .02 .06 

Children vs. PUDDLE Syllable .02 .77 .01 .04 

 

Table S10B 

Pairwise differences between the Kolmogorov–Smirnov statistics reported in Table S10A, 

comparing how closely two models’ distributions of unique words are to children’s 

productions by weighted phonotactic probability, when phonemic or syllabified input is used. 

The table shows models comparison, input type, difference in Kolmogorov–Smirnov test 

statistics (∆D), lower and upper limits of bootstrap confidence intervals (based on 1000 

iterations and corrected using Holm’s correction). 



 25 

Comparison 

Input 

type ∆D 

Lower 

Bci 

Upper 

Bci 

BTP vs. Baseline Phoneme .031 -.001 .073 

BTP vs. PUDDLE Phoneme .028 -.021 .072 

BTP vs. CLASSIC-UB final Phoneme .007 -.029 .045 

BTP vs. FTP Phoneme .002 -.027 .033 

FTP vs. Baseline Phoneme .029 -.007 .064 

FTP vs. PUDDLE Phoneme .026 -.018 .078 

FTP vs. CLASSIC-UB final Phoneme .005 -.032 .034 

CLASSIC-UB final vs. Baseline Phoneme .024 -.014 .059 

CLASSIC-UB final vs. PUDDLE Phoneme .021 -.028 .075 

CLASSIC-UB initial/final vs. Baseline Phoneme .042 .008 .081 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .038 -.011 .098 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Phoneme .017 -.014 .05 

CLASSIC-UB initial/final vs. FTP Phoneme .012 -.022 .045 

CLASSIC-UB initial/final vs. BTP Phoneme .01 -.032 .05 

PUDDLE vs. Baseline Phoneme .003 -.038 .042 

Baseline vs. BTP Syllable .004 -.016 .024 

FTP vs. BTP Syllable .009 -.014 .03 

FTP vs. Baseline Syllable .005 -.017 .023 

FTP vs. PUDDLE Syllable .003 -.018 .019 

CLASSIC-UB final vs. BTP Syllable .01 -.014 .028 

CLASSIC-UB final vs. Baseline Syllable .006 -.017 .022 

CLASSIC-UB final vs. PUDDLE Syllable .003 -.017 .02 

CLASSIC-UB final vs. FTP Syllable .001 -.015 .015 

CLASSIC-UB initial/final vs. BTP Syllable .017 -.017 .037 

CLASSIC-UB initial/final vs. Baseline Syllable .013 -.008 .034 

CLASSIC-UB initial/final vs. PUDDLE Syllable .011 -.012 .032 

CLASSIC-UB initial/final vs. FTP Syllable .008 -.015 .029 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Syllable .008 -.014 .027 

PUDDLE vs. BTP Syllable .006 -.021 .027 

PUDDLE vs. Baseline Syllable .002 -.017 .022 
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Fig. S10A. Gaussian kernel density estimate of the distribution of unique words in children’s 

speech (Children) and discovered by each model, by weighted phonotactic probability. 

Syllabified input is used.  

 

Appendix S11: CLASSIC-UB initial-final vs. CLASSIC-UB final 

In this section, we briefly discuss whether the comparison between CLASSIC-UB initial-

final and CLASSIC-UB final (on all the measures considered in our study) suggests that the 

addition of utterance-initial markers improves model performance.  

 As can be seen in Fig. 2 and Appendix S4, CLASSIC-UB initial-final shows a better 

performance than CLASSIC-UB final in the traditional measures, reaching .50 Precision and 

.50 Recall with phonemic input (vs. .49 Precision and .45 Recall), and .66 Precision and .58 

Recall with syllabified input (vs. .57 Precision and .48 Recall). This suggests that the 

inclusion of initial (in addition to final) utterance-boundary markers is useful in segmenting 

the speech input, as other studies have shown (Seidl & Johnson, 2006; 2008). 

However, results for the developmental measures suggest that utterance-initial markers 

do not significantly improve model performance. CLASSIC-UB initial-final does not explain 

more variability in child age of first production compared to CLASSIC-UB final, suggesting 

that an initial utterance-boundary marker might not be necessary to predict word age of first 

production (see Table S6A). Similarly, adding utterance-initial markers does not significantly 

improve the model’s ability to capture any of the word-level characteristics of children’s 

vocabularies (see Table S7B-S10B).  

When considering measures that are not weighted by input frequency (i.e., traditional 

measures, unweighted age of first production, word-level measures) (see Appendix S4 and 

S6-S10), this result is likely due to the ratio of type to token frequency of the words present 
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in the input at utterance-initial and final position. Namely, token frequency (i.e., frequency of 

a word including repetitions) is lower for words appearing at the end of utterances (M = 

305.35, SE = 28.81) than words appearing at the start of utterances (M = 652.05, SE = 62.81). 

At the same time, the input contains higher type frequency (i.e., more different words) at the 

end of utterances (N = 5,485) than at the beginning (N = 786). This suggests that CLASSIC-

UB’s segmentation accuracy increases when provided with utterance-initial markers because 

there are more repeated words that the model will be able to segment correctly at the start of 

utterances, but their role becomes marginal for building a lexicon as the majority of novel 

words appear at utterance ends (e.g., Fernald & Mazzie, 1991). 

This result provides evidence in support of previous work (e.g., Pearl et al., 2010) 

suggesting that utterance-initial words might be segmented with higher accuracy because 

they have a higher token frequency (e.g., pronouns, determiners) than more variable 

utterance-final ones (e.g., nouns, verbs). Additionally, using measures based on child data we 

showed that the high type frequency of utterance-final words might be important in the 

process of building a lexicon from the segmented words. In other words, even if the 

perceptual salience of word boundaries at utterance-initial and final edges equally facilitates 

word extraction in the lab (Seidl & Johnson, 2006; 2008), their role in the naturalistic 

environment might be moderated by frequency information. The repeated presentation of few 

different words in utterance-initial position might increase the likelihood of segmenting those 

words correctly. Conversely, encountering a large number of different words at utterance 

ends might increase the chance of building a more diverse (i.e., larger) vocabulary. Finally, 

this also means that facilitatory effects of utterance boundaries in naturalistic settings might 

be different for languages where, for example, new words do not tend to be placed at 

utterance ends as in English child-directed speech (e.g., Dutch, Japanese; Han et al., 2021). 
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Appendix S12: Does PUDDLE represent a child with more advanced vocabulary knowledge? 

The difference between CLASSIC-UB and PUDDLE in the word-level measures (i.e., with 

CLASSIC-UB better approximating children’s vocabularies by phonemic length and 

neighborhood density) might be explained by differences in vocabulary size: at the end of 

learning, PUDDLE has a larger vocabulary than CLASSIC-UB, and might be taken to 

represent a child with more advanced vocabulary knowledge. Conversely, it is possible that 

an earlier stage of PUDDLE with smaller vocabulary may show similar performance to 

CLASSIC-UB on our developmental measures. To assess this possibility, we can look at 

models’ developmental cascades, to see whether models’ differences still hold when we 

consider the stage at which PUDDLE has reached a vocabulary equal in size to CLASSIC-

UB’s. We carry out this analysis only for phonemic input, because CLASSIC-UB develops a 

smaller vocabulary than PUDDLE only when using phonemic input, but not when using 

syllabified input (see Table S12A). 

 

Table S12A 

Raw number of word types learned by CLASSIC-UB models and PUDDLE when run on 

phonemic or syllabic input, ranked from largest to smallest. 

Model Input type Word types learned 

CLASSIC-UB final Syllables 8,047 

CLASSIC-UB initial/final Syllables 7,451 

PUDDLE Syllables 5,903 

PUDDLE Phonemes 3,967 

CLASSIC-UB final Phonemes 3,611 

CLASSIC-UB initial/final Phonemes 3,049 
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In Fig. S12A, black vertical lines indicate the stage at which PUDDLE has reached a 

vocabulary size equal to CLASSIC-UB final’s or CLASSIC-UB initial/final’s (as indicated 

by the text labels). If differences between models are explained by vocabulary size, we 

should find that PUDDLE word-level distributions at the vertical lines become similar to 

CLASSIC-UB’s distributions at stage 20 (i.e., at the end of its learning). Instead, for those 

measures that were found to show significant differences - i.e., phonemic length and 

neighborhood density - we can see that differences between PUDDLE and CLASSIC-UB 

models hold across stages, with PUDDLE’s learning being always biased toward short (3-

phoneme and 4-phoneme) words and high-neighborhood words compared to CLASSIC-UB 

models. 

 

 

Fig. S12A. Proportion of types discovered at each input stage for each word-level measure. 

Proportion of types is computed by dividing the cumulative number of word types by the 

total number of types at a specific stage. Stage is computed by dividing the segmented 
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utterances into 20 equal stages (note that the 604 stages used for Precision and Recall were 

divided into wider stages, 20, because the probability of discovering new word types 

decreases substantially at later stages). For continuous word-level measures (i.e., word 

frequency, neighborhood density, and phonotactic probability), word types were divided into 

groups based on child-directed speech tertiles. For example, T1 in the word frequency 

measure identifies words that have a low frequency in child-directed speech (<= 33rd 

percentile), while T3 refers to high-frequency words in child-directed speech (> 66th 

percentile). Black vertical lines indicate the stages at which PUDDLE has reached a 

vocabulary size equal to CLASSIC-UB final or CLASSIC-UB initial/final. 

 

As discussed in the main paper (see Measures of Developmental Plausibility section of the 

General Discussion), differences in performance can be explained by CLASSIC-UB’s ability 

to learn words with overlapping phonological sequences (see Jones, 2016). Indication of this 

can be seen when we look at the length and neighborhood findings separately by word 

frequency. In Fig. S12B below, we can see that CLASSIC-UB becomes more accurate at 

capturing child vocabularies as frequency increases. This happens because frequent words are 

more likely to share phonological sequences with previously learned words, consequently 

boosting CLASSIC-UB’s learning compared to other models which do not show such 

facilitation (as their learning mechanism is uniquely based on tracking target sequences’ 

frequency). Namely, other models’ performance at capturing child phonemic length and 

neighborhood density does not improve as word frequency increases. 
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Fig. S12B. Child and models’ phonemic length and neighborhood density distributions at 

different child-directed word frequency tertiles. 

 

We also conducted a final exploratory analysis to support our claim that CLASSIC-UB 

captures long and low-neighborhood words from the child vocabularies better than PUDDLE. 

Specifically, we wanted to check whether CLASSIC-UB actually learns more long and low-

neighborhood words than PUDDLE or rather it simply misses a portion of children’s short, 

high-neighborhood words (that PUDDLE instead captures), producing in turn an increase in 

the relative proportion of long, low-neighborhood words in its vocabulary.  
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Thus, we looked at the absolute number of children’s word types captured by each 

model, as shown in Figure S12C. In this figure, we plot the raw number of types produced by 

children, alongside the number of children’s words that CLASSIC-UB final or PUDDLE 

have captured or missed (by phonemic length and neighborhood density). Note that this 

analysis excludes a portion of words that the models learned from the input but that were not 

produced by children; when including this set of words, the results we obtain are consistent 

with the analysis reported below. As can be seen in Figure S12C, differences in phonemic 

length are not only due to the fact that PUDDLE captures more 3- and 4-phoneme children’s 

words than CLASSIC-UB, but also to the fact that CLASSIC-UB captures a higher absolute 

number of 5- to 8-phoneme words than PUDDLE. Similarly, although PUDDLE captures a 

higher number of high-neighborhood words (T3), it also captures a lower absolute number of 

words in the low and middle neighborhood range (T1 and T2) than CLASSIC-UB. In sum, 

this analysis supports our claim that CLASSIC-UB’s learning mechanism facilitates the 

learning of words that are generally more difficult to learn (i.e., long and with a low number 

of similar words in the input) but that children nevertheless acquire. 
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Figure S12C. The plot shows the raw number of word types produced by children, alongside 

the raw number of word types produced by children that CLASSIC-UB final and PUDDLE 

learned (captured) or not learned (missed). Phonemic length considers children’s words from 

2 to 8 phonemes, while weighted neighborhood density considers children’s words in low 

(T1), middle (T2) and high (T3) neighborhood child-directed speech tertiles. 

 

Appendix S13: Controlling for baseline segmentation performance 

An unexpected finding of the present study is that, when we used syllabified input, no model 

was able to outperform the baseline in developmental measures. Providing a model with the 

input syllabic structure likely represents a strong facilitation which makes it difficult to 

compare competing models. First, given that models’ input contains 81% of monosyllabic 
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tokens, syllabifying the input (i.e., avoiding oversegmentation of syllables) allows a model to 

discover – by chance - a large proportion of word types. For example, although models were 

exposed to limited input compared to what children receive, when processing syllabified 

input they discovered more word types (M = 7223, min = 5903, max = 8047) than Thomas 

(the child with the largest production vocabulary; N = 5899). The models also learned more 

low-frequency words than children when run on a syllabified input (see Fig. S8A in the 

Appendix), and this may be for the same reason.  

 Furthermore, previous computational work has shown that providing chunking 

models with the input syllabic structure might not be necessary, as models run on phonemic 

input only commit a small proportion of intra-syllabic segmentation error (Goldwater et al., 

2009). To confirm this, more work that compares models and infants’ actual segmentation 

performance is needed. For example, future work could investigate whether the issue with the 

syllabic baseline applies cross-linguistically or is only present in languages such as English 

that have a large number of mono-syllabic words.  
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