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A food bank network design examining food nutritional value and
freshness: a multi objective robust fuzzy model

Abstract

One main reason for food scarcity is its improper and uneven distribution amongst

those who require aid. To overcome this issue, charities and food banks serve as the

connection between beneficiaries and donors. They are mostly nonprofit organizations but

they incur operational costs for storage and delivery of the donated food items. The donated

food items are either canned and cold, or hot meals from over production of businesses;

and therefore their freshness, inventory and shelf-life bring about additional operational

challenges in distribution and logistics. The uncertainty of demand and supply is another

challenge to overcome, which necessitates a robust plan. This article proposes a multi-

objective mathematical programmingmodel for a food bank network design to optimize the

cost, food freshness and its nutritional value. A robust fuzzy counterpart of the model is

developed togetherwith three solutionmethods including ε-constraint,MOGWOandNSGA

II. The MOGWO algorithm shows a better performance in our numerical experiment with

large instances. Its application on a case study resulted in a supply network with lower cost,

smaller fleet size and higher food quality, although less fresh distributed foods compared to

thebenchmarknetwork. The trade-offbetween the cost and freshness of food isdepictedhere

by examining shelf-life of products and vehicle capacity. The long lasting products incur

less transportation cost due to compactness of packaging, and similarly, higher capacity

vehicles lead to more cost efficient dispatch with longer routes which decrease the freshness

of food. According to our numerical results, higher uncertainty rate in the network increases

total cost, but also overall nutritional value of the distributed food over the network due to

greater supply of food.

Keywords: Food-bank, Multi-objective, Freshness, Robust Fuzzy Model, MOGWO, NSGA

II

1 Introduction

In 2016, the proportion of people in the EU at risk of poverty or social deprivationwas estimated

to be 23.4%, affecting 117.5 million people (Martins 2019). Approximately 20 to 30 percent of

total food production in the EU is wasted each year across the food supply chain (FSC) from

farm to family, valued at approximately 143 billion euros (Stenmarck et al. 2016). The European

Union has taken a number of actions in recent years to decrease food waste across the FSC,

including member states’ commitments to cut food waste by 30%. Food scarcity is not the

primary cause of food insecurity; as these numbers demonstrate, rather, the real challenge is to
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distribute the available food evenly among those who require aid. As a result, many charities

such as food banks (FB) serve as middlemen between food resources and people (Sengul Orgut

et al. 2016; Albala 2015). These organizations typically acquire the foods from businesses and

donors and store themwith necessary equipment, and thendistribute themdirectly or indirectly

to people in need through nonprofit and government agencies.

For socio-economic players such as FBs, the return on investment and other economic factors

are not the most important considerations; instead, they are more concerned with social and

environmental issues. As a result, FBs play a critical role in ensuring the long-term viability of

the FSC. An FB is a charitable, non-profit organization that distributes food to those who are

unable to obtain sufficient food (Glover et al. 2014). The St. Mary FB in Phoenix, Arizona, was

the world’s first FB, founded by John Van Hengel in 1967 (Neter et al. 2016). Since 1980s, FBs

have expanded all over the world and currently there are active food banking groups in more

than 30 countries as subsidiaries of the World Food Bank Network (FBN). Some FBs, operate

on a “front-line” strategy, delivering food directly to beneficiaries. The remainder operate on a

“warehouse” basis, supplying food to intermediaries such as food warehouses and other front-

line organizations. In the United States, communities often have an FB that serves front-line

agencies as a centralized warehouse.

Although most charities are free, some FBs levy a nominal “joint maintenance” fee to

cover their storage and delivery costs. Foods can come from any part of the FSC, such as

overproduction of producers or over-ordered of retailers and therefore, the majority of these

items are nearing their “expiration” date. In such circumstances, FBs work with the food

sector and regulatory agencies to ensure that they are distributed safely and legally (Riches

2018). Many FBs refuse to supply fresh products, preferring canned or packagedmeals instead.

Nevertheless, some have attempted to change this as part of a growing global understanding

of nutritional needs. According to González-Torre and Coque (2016) the main activities of FBs

are,

- Identification of additional food sources and food donor companies,

- Volunteer recruitment and food collection as the part of public awareness campaigns.

In most situations, FBs are not in charge of providing food directly to the citizens; instead,

they distribute it to a variety of officially authorized charities who hand out the collected food

to the recipients (Berner and OâĂŹBrien 2004). In other words, FBs are devoted to leading a

good chain and bridging the gap between surplus food and an active demand. In fact, the goal
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of a FB is to create a value on food that would otherwise be wasted to landfill despite being

safe and nutritious for human consumption. Thus, besides their common goal of assisting

people in need, they are also ecologically beneficial by decreasing waste which has a significant

environmental impact.

They generally rely on their suppliers such as food companies and other contributors,

and essentially operate as wholesalers. According to Gentilini (2013), some of their main

beneficiaries and stakeholders are:

- Families, children & youth organizations, addiction treatment organizations, religious

lodging facilities, workers of unions, and so on.

- Food producers, distributors, shopping malls, wholesalers, warehouses, retailers, trans-

portation companies, financial institutions, advertising and communications agencies,

public institutions, and a variety of national and international organizations

In 2013, a national poll revealed that FB customers prefer wholesome foods, with fresh fruits

and vegetables being the most popular products that customers have not received. The quality

of fresh food has increased as a result of infrastructure for storage and distribution, as well as

stakeholder demand for fresh and healthy food (Wetherill et al. 2019). Dealing mainly with

perishablematerialswhichmight be lost in termsof quality andquantity,makes FBmanagement

difficult. FBs work in partnership with cold storage agencies to facilitate delivering fresh and

dairy products to their clients. They have employed a variety practices to improve supply of

fresh fruits and vegetables. For instance, by informing agencies and attempting to make direct

contact with donors, they have shortened the distribution time which is more advantageous for

maximizing products shelf-life (Gharehyakheh et al. 2019).

In the interest of FBs’ role in the procurement and distribution of high-quality food to

charities, this article studies a FSCnetworkdesignmodelwith the three objectives ofminimizing

total cost, maximizing the freshness, and nutritional value of the food baskets supplied to

charities. The supply and demand balance of food supply in an FBN is another crucial concern

because either the food amount given by donors, or the demand amount of charities varies over

time. Therefore, a control method must be used in design to capture this uncertainty. We have

used a fuzzy robust programming method to control the uncertain parameters in this paper

and other contributing characteristics are listed below:

- Considering the nutritional value of the food basket in the FBN;
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- Addressing the freshness of foods by employing an exponential deterioration function to

quantify it over time;

- Considering the uncertainty in supply and demand in the FBN and fuzzy parametrization

of unknown inputs;

- Using a hybrid model of location-allocation-routing-inventory problem (HLARIP) in the

formulation;

- Defining amodified chromosome to encode the solution space to facilitate implementation

of heuristic algorithms;

- Extensive numerical experiments to investigate the performance of proposed solution

algorithms and also comparison between output of our model and a benchmark on real

case study.

The rest of this article is structured as follows. Section 2 reviews the literature and identifies

the potential research gaps. In Section 3, a three-echelon FBSCN model under uncertainty

assumption is proposed where uncertain parameters are dealt with using the fuzzy robust

programming method. Section 4 describes the methods used for solving our multi-objective

model, including the augmented ε-constraint method, NSGA II and MOGWO algorithms. The

numerical results of the presented model together with a sensitivity analysis are presented in

Section 5 and finally, Section 6 concludes the paper with additional managerial insights and

directions for future studies.

2 Literature review

The relevant literature is classified into four themes, discussed in the following subsections.

A summary table is provided at the end of this section to assist readers with positioning this

article among the existing studies.

Food bank

Neter et al. (2014) examined food security among recipients of Dutch FBs and identified possible

demographic, lifestyle andnutrition-related factors. They studied 11 out of 135Dutch FBs across

the Netherlands. Their results showed a high prevalence of food insecurity among recipients

of Dutch FBs. Orgut et al. (2016) developed a mathematical model for the North Carolina FBs

aiming to maximize their effectiveness by minimizing the amount of undistributed food. Their
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model identifies optimal policies for allocating additional receiving capacity to cities in their

serving area. Gonzalez-Torre et al. (2017) analyzed the impact of FBs on the SCs which they

belong to. They first summarized the background of international studies on the subject and

then presented the results of an empirical study in Spain where data were collected through a

survey and analyzed using a cluster sampling method. Martins et al. (2019) presented a mixed

integer linear model for redesigning a multi echelon FSCN to collect food aid and distribute

it to charities, which covered all aspects of sustainability, economic, environmental and social

factors through their three objective functions. Their study shows that the greatest correlation

occurs between the economic objective and the other two ones.

Ataseven et al. (2020) used survey data from managers and secondary data collected from

the Feeding America website to model and measure FBs performance; examining the relation-

ship between supply integration, demand integration and internal integration in food banking.

They employed regression and Monte Carlo simulation techniques to test their hypotheses on

integration policies. According to their findings, external integration must take place before

internal integration for non-profit FBs, and demand integration has a stronger effect on perfor-

mance than supply integration. Chen et al. (2021) considered a vehicle routing problem with

the aim of minimizing the traveled distance taking into account capacity and transmission time

constraints. Their results showed that by correcting the route of vehicles, 94.4% of customers

can benefit from the services of their FB. Mandal et al. (2021) studied a food SC problem con-

sidering its cost and environmental impact, while Mensah et al. (2021) explored the prospects

and constraints of implementing food banking in the Ghanaian metropolitan area of Kumasi

addressing food poverty and providing food aid during a pandemic (such as COVID-19). They

used a multi-stage sampling method to select 385 respondents and applied descriptive statis-

tics and Probit regression model to analyze the factors affecting the food banking. According

to their results the most important limitations in implementation of food banking are finan-

cial. Among the most recent studies, Kaviyani-Charati et al. (2022) developed a mathematical

model to design a non-profit FBSC in Iran. They considered the sustainability factors in their

proposed multi-objective model and solved it by NSGA II algorithm and ε-constraint method.

Their results suggest that applying a heterogeneous fleet is necessary to reduce food waste and

transportation costs. Dubey and Tanksale (2022) investigated FBs in the India by identifying

barriers that impede their growth and adoption. They developed a network of inter-relationship

between those barriers, and argued that the lack of planning and coordination is the most sig-

nificant obstacle. Finally, Blessley and Mudambi (2022) studied FBSC during the turbulence of
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US-China trade war and the COVID-19 pandemic in 2018âĂŞ2020.

Food distribution routing

Davis et al. (2014) considered the collection and delivery of food to a humanitarian organization,

where use of food delivery points (FDPs) is suggested to increase the access to food. They

proposed a capacitated set covering model for identifying FDP locations, and a periodic vehicle

routing problem to determine weekly schedules. Amorim and Almada-Lobo (2014) modeled a

multi-objective model to minimize logistics costs and maximize product freshness. They used

the ε-constraint method and a multi-purpose evolutionary algorithm to solve the problem.

Morganti and Gonzalez-Feliu (2015) examined urban procurement for perishable products by

studying the case of the food hub in Parma, Italy. They analyzed plans to deliver food to urban

distributors such as corporate retail chains, independent retailers, hotels, restaurants and kit

stores. In the context of humanitarian logistics Rey et al. (2018) proposed a model for allocation

anddistributionof the surplus food collected for hunger relief aiming tominimize the travel cost.

They showed that the problem isNP-hard andproposed exact andheuristic solution algorithms.

Dai et al. (2020) designed a cyclic inventory-routing problemwith perishable products in a VMI

supply chain. Their objective is to minimize the average total cost including not only the fixed

and transportation cost of vehicles, inventory and shortage cost of retailers, but also startup

and holding cost of the manufacturer. Akpinar (2021) modeled a vehicle routing problem with

a time window for food industry aiming at minimizing the total traveled distance, and solved

their model by genetic algorithm. Pratap et al. (2022) proposed a production-inventory-routing

problem for perishable food under uncertainty and used a stochastic optimization approach

to model it. In a different setting, Worasan et al. (2022) proposed a multi-product vehicle

routing problem with cross-docking operations for food industry to ensure that products can

be delivered on time and with minimum transportation and hiring costs. They considered

both the supplier side and customer side and developed a heuristic algorithm to find the

best neighborhood. Also, Yao et al. (2022) proposed a green vehicle-routing model for fresh

agricultural products to minimize the total cost. They employed the ant-colony algorithm to

solve their model. Their results show that the increase in carbon tax will restrict the carbon

emission behaviors of the distribution companies, but it will also reduce their economic benefits

to a certain extent at the same time.

7



Food supply chain

Yu and Nagurney (2013) proposed a network-based food SCmodel of competition and perisha-

bility taking into account the disposal costs of spoiled food products. Govindan et al. (2014)

proposed a multi-objective optimization model by integrating sustainability decisions into a

perishable FSCN aiming to minimize total costs and carbon emissions. They used MOPSO and

AMOVNS algorithms to solve the problem. Similarly, Accorsi et al. (2016) proposed a linear

programming model to balance logistics costs and carbon emissions in the agricultural-food

ecosystem. According to their results, there is an interdependence between infrastructure, pro-

duction, distribution and environmental resources. De Keizer et al. (2017) investigate a logistics

network design for perishable products with a declining quality period where as time elapses

or temperature increases, product quality decreases and more effort is required to deliver the

product at the right time and with the right quality. Nagurney et al. (2018) presented a com-

petitive food SC network model wherein in addition to the volume of freshly produced and

distributed products, the initial quality of fresh products is also important. The quality of new

products is determined by time, temperature and other characteristics related to processing,

transportation, storage, etc. Wu et al. (2018) focused on the flow of the perishable food for a

case of railway catering service. They proposed a Newsvendor-based model to address the

demand uncertainty. Rohmer et al. (2019) presented a newmodel of the sustainable food SCNP

bymaintaining a proper diet that minimizes various economic and environmental goals. Using

the ε-constraint method, they formed a Pareto frontier and argued that the target level of sus-

tainability plays an important role in the food SC. Zhang et al. (2019a) modeled a multi period

closed-loop SCproblem for the food industry. They considered two goals includingmaximizing

SC profits and minimizing greenhouse gas emissions. Addressing the global food insecurity

and increasing global hunger, Mogale et al. (2020) proposed amulti periodmathematical model

to minimize the aggregate cost of installation, maintenance, carbon emission and risk penalty.

Huang et al. (2021) studied pricing and optimization policies of the perishable food SC

under inflation, which has been increased due to SC disruptions from COVID-19 outbreaks.

They used a discounted cash flow method to measure profit under inflation. Hamilton et al.

(2021) studied the economic impact of the secondary food market by examining donations

and pricing behavior for competing retailers. They used a structural model of retail oligopoly

price discrimination and estimated the effect of food donation. Yadav et al. (2021) proposed

a three-objective mathematical model for designing a fresh food distribution problem where

sustainability is considered by formulating economic (total cost minimization), environmental
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(emission minimization) and social (delivery time minimization) objectives. They used the

ε-constraint and LP-metric method to solve their model. Recently, Orjuela-Castro et al. (2022)

presented big challenges of modeling in perishable food supply chain such as the inclusion of

delivery times, losses and fresh food storage needs which depend of the transport time, the

configuration and number of echelons. Finally, Abbas et al. (2022) studied supply chain network

of China by using logistics regression and simulation techniques to estimate its robustness.

Uncertainty in the SCN

Kara and Dogan (2018) applied a learning-basedmodeling for inventory of perishable products

at random demand and definite time to minimize total SC cost, while Aras and Bilge (2018)

presented a multi echelon and multi product SCN model for the competitive snack market in

Turkey. They solved different scenarios based on different demand growth rates. Similarly,

under the uncertain demand scenario, Rafie-Majd et al. (2018) proposed an integrated strategic,

tactical and operational optimization approach in SC management with a perishable product.

Farrokh et al. (2018) presented a two echelon random scheduling model to reduce costs and

reduce risk in a food and drug SCN. The first decisions included strategic decisions such as

determining the number of suppliers according to their location and capacity. While the second

decisions were related to transportation operations. Nasrollahi and Razmi (2019) provided a

mathematical model for integrated SC design and maximum coverage of areas under uncer-

tainty. Their main goal was to increase the maximum demand met by customers in addition

to reducing the cost of the entire network. They used the centroid method to control their

uncertain parameters. Gholami-Zanjani et al. (2021) designed a comprehensive two echelon

scenario-basedmathematicalmodel for designing a food SCNunder demand uncertainty. They

developed aMonte Carlo method to produce plausible scenarios and used the Benders analysis

technique to solve the problem. Manteghi et al. (2021) presented a sustainable food SCmodel to

balance economic and environmental goals. Their main goal is to increase the profit and reduce

the amount of carbon emissions. They have created several competitive models and identified

optimal decisions based on the game theory approach. Kothamasu et al. (2021) developed a con-

tingency planning model for FB disaster relief operations. They considered different scenarios

for uncertain parameters minimizing network-related costs due to limited resources. Tirko-

laee and Aydin (2022) designed a bi-level decision support system to optimize a sustainable

multi-level multi-product supply chain and co-modal transportation network for perishable

products distribution. They proposed perishability of products as a performance measure and
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applied a fuzzyweightedGoal Programming approach to solve it. Gholian-Jouybari et al. (2022)

proposed a robust convex optimization approach to control the uncertainty of parameters in

a sustainable agri-food SCN problem and solved it using the LP-metric method and Keshtel

algorithm. Finally, Seydanlou et al. (2022) developed a sustainable closed-loop supply chain

network for the olive industry in Iran aiming at minimizing the total cost and carbon emissions

while maximizing job opportunities. They proposed four meta-heuristic algorithms to solve

their model.

Table 1 provides a classification system for mathematical models in the field of FB is and

Table 2 summarizes the differences between characteristics of the reviewed articles.

Table 1: Classification system for mathematical models in the context of FB
SC Setting Symbol Parameters type Symbol
Single Product SPr Fuzzy F
Multi Product MPr Stochastic S
Single Period Spe Robust R
Multi Period Mpe Robust-Fuzzy RF
Single Echelon SEc Deterministic D
Multi Echelon MEc Solution Method Symbol

Exact Solution E
Model Objective Symbol Heuristics Algorithm H
Min Cost MCO Simulation S
Min Delivery Time MDT Meta-Heuristics Algorithm M
Max Quality Level-Freshness MQF Decisions Symbol
Min CO2 Emission MCE Location L
Min Distance MDI Allocation A
Max Nutritional Value MNV Routing R
Maximum Social Responsibilities MSR Inventoty I
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Table 2: Characteristics of various articles in the field of FB
Author Structure Objective(s) Decisions Parameters

Type
Solution
Method

Li et al. (2006) Spe-Mec-Spr MCO A D E
Dabbene et al. (2008) Mpe-Sec-Mpr MCO R-I-L R E
Bosona and Gebresenbet
(2011)

Spe-Sec-Spr MCE A-I-L D E

Paleshi et al. (2011) Mpe-Mec-Spr MCO A-I-L D E
Zhao and Dou (2011) Spe-Mec-Spr MCO R-A-L D M
Rong et al. (2011) Mpe-Mec-Mpr MCO-MQF R-I D E
Manzini and Accorsi
(2013)

Spe-Mec-Spr MCE R-A-L D E

Cuevas-Ortuno and
Gomez-Padilla (2013)

Mpe-Mec-Spr MCO R-A D E

Validi et al. (2014) Spe-Sec-Spr MCO-MCE R R E
Govindan et al. (2014) Mpe-Mec-Spr MCO-MCE R-A-L D M
Davis et al. (2014) Spe-Mec-Spr MDI R-A-L D E
Amorim and Almada-
Lobo (2014)

Spe-Mec-Spr MCO R-I F E

Agustina et al. (2014) Spe-Mec-Spr MDT I-L D E
Accorsi et al. (2016) Spe-Sec-Spr MCO-MCE A-L D E
Martins et al. (2016) Mpe-Mec-Mpr MCO-MCE R-A-L D E
Orgut et al. (2016) Mpe-Mec-Spr MCO A-L R H
Sengul Orgut et al. (2016) Spe-Sec-Spr MDT R-A D E
Cuevas-Ortuño and
Gómez Padilla (2017)

Spe-Mec-Spr MCO A-I F E

Reihaneh and Ghoniem
(2017)

Spe-Mec-Spr MCO-MQF R-A D H

Musavi andBozorgi-Amiri
(2017)

Spe-Mec-Spr MDT-
MCO-MCE

R-A-L D M

Bocewicz et al. (2017) Mpe-Sec-Mpr MDT R-I-L D S
Aras and Bilge (2018) Mpe-Sec-Mpr MCO A-L R E
Bortolini et al. (2018) Mpe-Mec-Mpr MCO-MCE R-A D E
Gharehyakheh and
Sadeghiamirshahidi
(2018)

Spe-Mec-Mpr MCO R-A-I D E

Rohmer et al. (2019) Spe-Mec-Mpr MCO-MCE A-L D M
Mogale et al. (2018) Mpe-Sec-Mpr MDT-MCO A-L D M
Schneider and Nurre
(2019)

Spe-Sec-Spr MDI R D H

Martins et al. (2019) Mpe-Mec-Mpr MCE A-L D E
Zhang et al. (2019a) Mpe-Mec-Mpr MCO R-L D H
Zhang et al. (2019b) Mpe-Mec-Spr MCE R-A D E
Li et al. (2020) Spe-Mec-Spr MCO I D H
CastaÃśÃşn et al. (2020) Spe-Mec-Spr MCO A D E
Marthak (2020) Mpe-Sec-Mpr MCO R-A-L D E
Mogale et al. (2020) Mpe-Mec-Spr MCE A-I-L D M
Pourmohammad-Zia et al.
(2021)

Spe-Mec-Spr MCO A-I-L D H

Patidar et al. (2021) Spe-Sec-Spr MCO A-I-L F E
Burgess and Sunmola
(2021)

Spe-Sec-Spr MDI R-I F M

continuing in the next page...
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Table 2: Cont’d
Author Structure Objective(s) Decisions Parameters

Type
Solution
Method

Manteghi et al. (2021) Spe-Sec-Mpr MCO A-I-L S E
Solina andMirabelli (2021) Mpe-Sec-Spr MCO I D E
Mandal et al. (2021) Mpe-Mec-Mpr MCO-MCE R D E
Long and Liao (2021) Spe-Sec-Spr MCO A-I-L S H
Güner and Utku (2020) Mpe-Mec-Spr MCO R-I D E
Kazancoglu et al. (2021) Mpe-Mec-Spr MCE A-I-L D E
Taghikhah et al. (2021) Mpe-Mec-Spr MCE I D E
Vostriakova et al. (2021) Mpe-Mec-Spr MDI A-I-L D S
Jouzdani and Govindan
(2021)

Mpe-Mec-Mpr MCO-MCE I-L S M

Gholami-Zanjani et al.
(2021)

Mpe-Mec-Mpr MCO A-I-L S E

Kothamasu et al. (2021) Spe-Mec-Spr MCO I-L S E
Chen et al. (2021) Spe-Mec-Spr MCO A-I-L D E
Kaviyani-Charati et al.
(2022)

Mpe-Mec-Mpr MCO-
MCE- MSR

L-A-I S M-E

Yadav et al. (2021) Mpe-Mec-Mpr MCO,
MDT, MCE

L-A D E

Pratap et al. (2022) Mpe-Mec-Mpr MCE A-R-I S M
Worasan et al. (2022) Spe-Mec-Mpr MCO R-A D M
Tirkolaee andAydin (2022) Spe-Mec-Mpr MCO, MDT L-A F E
Yao et al. (2022) Spe-Mec-Spr MCO, MCE A-R D M
Abbasian et al. (2022) Mpe-Mec-Mpr MCO-MCE L-I-R D M- E
present Research Mpe-Mec-Mpr MCO-

MQF-MNV
R-A-I-L RF M-E

Having reviewed the above-listed studies, it is observed that to the best of our knowledge,

there is no comprehensive mathematical model in the context of food bank network modeling

for perishable items, in which the freshness of products and the nutritional value of the food

basket are considered. The comprehensive characterization of the existing studies with their

decisions for the food distribution network did not exist either. Therefore, this article addresses

the strategic and tactical decisions such as facility location, vehicle routing, allocation and

inventory. In addition, applying a fuzzy robust programming method, as a new uncertainty

control mechanism in this context, has led to more realistic results. From the solution approach

perspective, a novelmeta-heuristic algorithm isdevelopedbyproviding anewencodingmethod

to achieve near-optimal results.

3 Problem statement and modeling

A schematic three-echelon FBN is shown in Figure 1 wherein two types of food contributors do-

nate to charities. The first one includes restaurants, hypermarkets, and other businesses which
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provide free foods to FBs, while the second one consists of financial donors. FBs create a variety

of hot and cold food baskets and deliver them to charities using various vehicles. Hot foods

should be provided to charity as soon as possible after being collected from donors, while the

donated foodswith longer shelf-life (cold)may be refrigerated in FBs for a longer period of time.

As the distribution of food baskets by vehicles is a vehicle routing problem, selecting the right

vehicle and FB is critical for the speedy distribution of the food baskets. Each food basket has a

shelf-life that is inversely proportional to the amount of time passed (Piergiovanni and Limbo

2019). The relationship between time and product freshness is depicted in Figure 2. As shown,

the freshness of the food basket declines when the transit time increases. Therefore, vehicles

should deliver the appropriate food baskets to charities as quickly as possible. In addition, FBs

must meet the minimal required nutritional value of each charity in the contents of their food

baskets. As a result, the problem has three separate objective functions: minimizing total costs,

maximizing product freshness, and maximizing food basket nutritional value. Choice of the

right FB, determining the route of each vehicle for food baskets distribution, ruling the amount

of cold food inventory in the FBs and dispatching schedule of food baskets are the decisions to

make in a simultaneous optimization of these three objective functions.

Figure 1: Food Bank Network in Three-Echelon Supply Chain

The following assumptions are made for modeling our food bank supply chain network

problem (FBSCNP):

- Different types of foods with high and low durability are considered.

- Foods with high shelf-life (cold food) can be stored in FBs.

- The number and location of charities are known.

- The budget available to financial institutions to purchase food in each period is limited.
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Figure 2: perishability rate of food over time

- The minimum nutritional value of the food basket is specified and should be met for each

charity.

- The collection time of foods from donors is negligible.

A nonlinear mathematical programming model of FBSCNP with respect to the above-stated

assumptions, decisions and objectives is presented below in the next subsection using the

nomenclature in Table 3.
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Table 3: Nomenclatures list for the model formulation
Sets

I ′ Set of food donors I ′′ Set of financial donors I Set of Total donors I =
I ′ ∪ I ′′

L Set of FBs C Set of Charities N Set of Total FBs and Chari-
ties locations

V Set of vehicles T Set of time periods P ′ Set of foods with high shelf-
life (Cold Foods)

P ′′ Set of foods with low shelf-
life (Hot Foods)

P Set of food baskets

Parameters

fl
Fixed cost of setting up a
FB at location l ∈ L

gv Fixed cost of using vehicle
v ∈ V

ol,p

Operating cost of packaging
and distribution food basket
p ∈ P in FB l ∈ L

θ delay penalty for vehicles
arriving late to FBs

ξ̃1
n,n′ Transportation cost between

node n ∈ N and n′ ∈ N
ξ̃2

i,l

Transportation cost between
food donor i ∈ I and FB
l ∈ L

he,t
storage cost of food e ∈ P ′

in any FBs at period t ∈ T
d̃c,p,t

Demand of charity c ∈ C
of food basket p ∈ P at
period t ∈ T

ψl Maximum distribution ca-
pacity of FB l ∈ L

ω̃i,e,t

Maximum supply of food
item e ∈ P ∪ P ′′ by food
donor i ∈ I ′ at period
t ∈ T

γv Maximum capacity of vehi-
cle v ∈ V

kn,n′
Transportation time be-
tween node n ∈ N and
n′ ∈ N

φc Service time in charity c ∈
C

[αc, βc]
Time window for delivery
of the food basket to charity
c ∈ C

δe,p
Number of food e ∈ P ′ ∪
P ′′ in a food basket p ∈ P

κe
The nutrition value of food
item e ∈ P ′ ∪ P ′′

ρc,p,t

Minimum required nutri-
tion value of food basket
p ∈ P for charity c ∈ C in
period t ∈ T

Ωi,e,t

Cost on purchasing food
e ∈ P ′ ∪ P ′′ by financial
donor i ∈ I ′′ in period
t ∈ T

si,t

Budget of financial donor
i ∈ I ′′ the purchase of food
in period t ∈ T

up shelf-life of food basket p ∈
P

.

Decision variable

Wl,p,v,t

Number of food basket p ∈
P distributed by vehicle
v ∈ V from FB l ∈ L in
period t ∈ T

Gc,p,t

satisfied demand ratio of
food basket p ∈ P by char-
ity p ∈ P in period t ∈ T

Dl,c,v,t

Arrival time of vehicle v ∈
V to charity c ∈ C which
dispatched from FB l ∈ L
in period t ∈ T

Mc,v,t

Exceeding time from the
arrival schedule for vehicle
v ∈ V at charity c ∈ C in
period t ∈ T

Fl,c,v,p,t

freshness of food basket p ∈
P at charity c ∈ C which
distributed by vehicle v ∈
V dispatched from FB l ∈
L in period t ∈ T

Yi,l,e,v,t

Number of food item e ∈
P ′ ∪ P ′′ collected by donor
i ∈ I ′ ∪ I ′′ and shipped to
FB l ∈ L by vehicle v ∈ V
in period t ∈ T

Ql,e,t

Inventory of food item e ∈
P ′ at FB l ∈ L in period
t ∈ T

Uc,v,t Auxiliary variable for sub
tours elimination

Xn,n′,v,t

equals if vehicle v ∈ V
passes between node n ∈ N
and n′ ∈ N in period
t ∈ T ; 0, otherwise.

Rl,c,v,t

equals 1 if vehicle v ∈ V
is used to dispatch food
from FB l ∈ L to charity
c ∈ C in period t ∈ T ;0,
otherwise.

Zl
equals 1 if a FB is set at lo-
cation l ∈ L; 0, otherwise.

Av, t

equals 1 if vehicle v ∈ V
used to ship products be-
tween donors and FBs in
period t ∈ T (Allocation); 0
otherwise.

Bv,t

equals 1 if vehicle v ∈ V is
used to ship foods between
FBs and charities in period
t ∈ T (Routing)
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3.1 FBSCN model under uncertainty

location setup cost: min
{∑

l flZl

Vehicle usage cost: +
∑

v,t gv(Av,t +Bv,t)
packaging & storage costs: +

∑
l,p,v,t ol,pWl,p,v,t +

∑
l,e,t he,tQl,e,t

delay cost in distribution +
∑

c,v,t θMc,v,t

transportation cost: +
∑

n,n′,v,t ξ̃
1
n,n′Xn,n′,v,t +

∑
i,l,e,v,t ξ̃

2
i,lYi,l,e,v,t}

. (1)

max
∑

l,c,p,v,t

Fl,c,p,v,t (2)

max
∑

l,p,v,e,t

δe,pκeWl,p,v,t (3)
s.t.∑
v∈V

∑
n∈N

Xn,c,v,t = 1, ∀c ∈ C, t ∈ T (4)

∑
n′∈N

Xn′,n,v,t =
∑

n′∈N

Xn,n′,v,t, ∀n, n′ ∈ N, v ∈ V, t ∈ T, (5)

∑
l∈L

∑
c∈C

Xl,c,v,t ≤ 1, ∀v ∈ V, t ∈ T, (6)

∑
v∈V

Rl,c,v,t ≤ 1, ∀l ∈ L, c ∈ C, , t ∈ T (7)

∑
n∈N

(Xl,n,v,t +Xn,c,v,t) ≤ 1 +Rl,c,v,t, ∀l ∈ L, c ∈ C, v ∈ V, t ∈ T (8)

Uc,v,t − Uc′,v,t + |C|Xc,c′,v,t ≤ |C| − 1, ∀c, c′ ∈ C, v ∈ V, t ∈ T (9)

Wl,v,p,t ≥
∑
c∈C

Gc,p,td̃c,p,tRl,c,v,t, ∀l ∈ L, p ∈ P, v ∈ V, t ∈ T (10)

∑
v∈V

∑
p∈P

Wl,p,v,t ≤ ψlZl, ∀l ∈ L, t ∈ T (11)

∑
c∈C

∑
n∈N

∑
p∈P

Gc,p,td̃c,p,tXn,c,v,t ≤ γvBv,t, ∀v ∈ V, t ∈ T (12)

∑
e∈P ′∪P ′′

δe,pκeGc,p,td̃c,p,t ≥ ρc,p,t, ∀c ∈ C, p ∈ P, t ∈ T (13)

Dl,c,v,t ≥ κl,c −M(1−Xl,c,v,t), ∀l ∈ L, c ∈ c, v ∈ V, t ∈ T (14)

Dl,c′,v,t ≥ Dl,c,v,t + kc,c′ + φc′ −M(2−Xc,c′,v,t −Rl,c,v,t), ∀l, c, c′ ∈ C, v ∈ V, t ∈ T (15)

Fl,c,v,p,t ≥ 100e−
Dl,c,v,t

up −M(1−Rl,c,v,t), ∀l ∈ L, c ∈ C, p, v ∈ V, t ∈ T (16)

αcRl,c,v,t −Dl,c,v,t ≤Mc,v,t ≤ Dl,c,v,t − βcRl,c,v,t, ∀l ∈ L, c ∈ C, v ∈ V, t ∈ T (17)∑
i∈I

∑
v∈V

Yi,l,e,v,t =
∑
p∈P

∑
v∈V

δe,pWl,p,v,t, ∀l ∈ L, e ∈ P ′′, t ∈ T (18)

Ql,e,t = Ql,e,t−1 +
∑
i∈I

∑
v∈V

Yi,l,e,v,t −
∑
p∈P

∑
v∈V

δe,pWi,p,v,t, ∀l ∈ L, e ∈ P ′′, t ∈ T (19)
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∑
l∈L

∑
v∈V

Yi,l,e,v,t ≤ ω̃i,e,t, ∀i ∈ I ′, e ∈ P ′ ∪ P ′′, t ∈ T (20)

∑
i∈I

∑
e∈E

∑
l∈L

Yi,l,e,v,t ≤MAv,t, ∀v ∈ V, t ∈ T (21)

∑
i,v,e

Ωi,e,tYi,l,e,v,t ≤ si,t +
∑
t′<t

(
si,t′ −

∑
l,v,e

Ωi,e,t′Yi,l,e,v,t′

)
∀i ∈ I ′′, t ∈ T (22)

Dl,c,v,t ≤MRl,c,v,t, ∀l ∈ L, c ∈ C, v ∈ V, t ∈ T (23)

Xl,l′,v,t = 0, ∀l, l′ ∈ L, v ∈ V, t ∈ T (24)

Gc,p,t, Dl,c,v,t,Mc,v,t, Fl,c,v,p,tQl,e,t, Uc,v,t ≥ 0, ∀c ∈ C, l, e, p ∈ P, v ∈ V, t ∈ T (25)

Rl,c,v,t, Xn,n′,v,t, Zl, Av,t, Bv,t ∈ {0, 1}, ∀l, c, n, n′ ∈ N, v ∈ V, t ∈ T (26)

Wl,p,v,t, Yi,l,e,v,t ∈ Z+, ∀l ∈ L, i, e, p ∈ P, v ∈ V, t ∈ T. (27)

Equation (1) shows the total cost of FB network including their setup, utilization of vehicles,

the running costs of storage and packaging food baskets, the transportation costs of the food

baskets and potential delay penalties, and also the food procurement cost associated with

financial donors. In each time period, Equation (2) aims to maximize the total freshness of the

food basket supplied to charities. Equation (3) aims to maximize overall nutritional value of

all charities. Equation (4) assures that only one vehicle is authorized to deliver food baskets to

each charity at any time period. According to Equation (5), each vehicle must depart the charity

after visiting it. Equations (6) and (7) guarantee that only one vehicle may provide food baskets

to charity during each time period. Equation (8) assures that any vehicle must leave and return

to the same FB after visiting charities at any time period. Sub tour elimination restrictions are

represented by equation (9). The total number of food baskets donated to charities by each

vehicle is shown in Equation (10). Equation (11) assures that the total number of food baskets

supplied by each FB does not exceed its distribution capacity. Equation (12) assures that the

number of food baskets transported is less than the maximum capacity of vehicles. Equation

(13) guarantees that the minimum nutritional content of food packets for each charity is met

at each period. Equations (14) and (15) determine the arrival time of vehicles to each charity.

Equation (16) calculates the freshness of food baskets based on the arrival time of vehicles. The

time window limitation is shown in Equation (17). The number of hot food items needed for

each food basket is imposed in Equation (18), while the number of cold food items that can

be refrigerated in FBs is shown in Equation (19). The quantity of food donated at each time

period is controlled by Equation (20). The utilization of vehicles for food collection is detected

by Equation (21). The quantity of food delivered by financial donors at each time period is
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handled by Equation (22). The logical relationship between variables are shown in equations

(23) and (24), while the type and domain of variables are shown in constraints (25) – (27).

The proposed FBSCNmodel subsumes an allocation sub-problem and a routing one, which

are both known as NP-hard problems. Hence, FBSCN is also NP-hard as it can be reduced to

one of them.

3.2 Robust Fuzzy Optimization Model

Due to the dynamic nature of several important parameters (such as transportation costs, sup-

ply and demand) that are beyond planning, as well as the lack of necessary historical data at

the design stage, these parameters are based mostly on comments and experiences of experts.

Other approaches such as stochastic programmingmight be applicable if we could benefit from

such historical data to estimate the probability distribution of parameters. Thus, the parameters

above are expressed as uncertain data in trapezoidal fuzzy numbers. The probabilistic program-

ming approach is often used to deal with uncertain constraints that include non-deterministic

data on the left or right side of the equation. A minimum degree of certainty is used in this

approach to manage the confidence level for satisfaction of these uncertain constraints. To this

end, the pessimistic standard fuzzy approach whose abstract form is shown in (28a)–(28d).

minZ = fY + c̃X (28a)

s.t.

aX ≥ d̃ (28b)

bX ≤ s̃Y (28c)

Y ∈ {0, 1}, X ≥ 0. (28d)

The vectors f , c̃, d̃ and s̃ indicate the fixed cost, variable cost (transport), demand and supply,

respectively. Furthermore, a and b are coefficient matrices, while X and Y are continuous and

binary variables, respectively. The objective function is dealt with its expected value, while the

uncertain constraints with their pessimistic fuzzy form of chance constraint programming as

shown in (29a)–(29d):

minE[Z] = fY + E[c̃]X (29a)

s.t.

NEC{aX ≥ d̃} ≥ α (29b)
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NEC{bX ≤ s̃Y } ≥ β (29c)

Y ∈ {0, 1}, X ≥ 0 (29d)

where α and β control the minimum degree of certainty of uncertain constraints with a (pes-

simistic) decision-making approach. Considering trapezoidal fuzzy parameters, the general

form of equation (29a)–(29d) will become (see Zahiri et al. 2018; Ghahremani-Nahr et al. 2019):

min fY +
(
c1 + c2 + c3 + c4

4

)
X (30a)

s.t.

aX ≥ (1− α)d3 + αd4 (30b)

bX ≤ (1− β)s2 + βS1 (30c)

Y ∈ {0, 1}, X ≥ 0. (30d)

Theminimum confidence level required tomeet the uncertain constraints is specified according

to thepreferenceofdecision-makers. Theobjective function in the suggestedmodel is insensitive

to the deviation from its expected value, implying that robust solutions are not assured in the

basemodel. That is, a considerable riskmay be imposed on such a decision-making, particularly

in strategic ones, while solution consolidation is crucial. Thus, it is worthwhile employing the

robust fuzzy optimization technique to the problem to benefit from the advantages of both

robust and fuzzy programming. The robust fuzzy optimization framework employed in this

article is given in (RFOF):

(RFOF) minE[Z] + ζ(Z(max)−Zmin
) + η1[d4 − (1− α)d3 − αd4] + η2[βs1 + (1− β)s2 − s1]Y

(31a)

s.t.

(30b), (30c), (30d)

where Z(max) = fY + c4X , Z(min) = fY + c1X and E[Z] =
(

c1+c2+c3+c4

4

)
X . To calculate these

for FBSCN model, first let

Γ :=
∑

l

flZl +
∑
v,t

gv(Av,t +Bv,t) +
∑

l,p,v,t

ol,pWl,p,v,t +
∑
c,v,t

θMc,v,t +
∑
l,e,t

he,tQl,e,t.
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Then,

E[Z] = Γ +
∑

n,n′,v,t

[
ξ1

n,n′ + ξ2
n,n′ + ξ3

n,n′ + ξ4
n,n′

4

]
Xn,n′,v,t +

∑
i,l,e,v,t

[
ξ1

i,l + ξ2
i,l + ξ3

i,l + ξ4
i,l

4

]
Yi,l,e,v,t,

(32)

Z(max) = Γ +
∑

n,n′,v,t

ξ4
n,n′Xn,n′,v,t +

∑
i,l,e,v,t

ξ4
i,lYi,l,e,v,t, (33)

Z(min) = Γ +
∑

n,n′,v,t

ξ1
n,n′Xn,n′,v,t +

∑
i,l,e,v,t

ξ1
i,lYi,l,e,v,t. (34)

Thus, the robust fuzzy counterpart of FBSCN is obtained as follows.

min E[Z] + ζ
(
Z(max) − Z(min)

)
+ η1

∑
c,p,t

[
d4

c,p,t − (1− α)d3
c,p,t − αd4

c , p, t
]

+ η2
∑
i,e,t

[
βω1

i,e,t + (1− β)ω2
i,e,t − ω1

i,e,t

]
(35)

Objectives (2) and (3)

s.t.

Wl,p,v,t ≥
∑

c

Gc,p,t

[
(1− α)d3

c,p,t + αd4
c,p,t

]
Rl,c,v,t, ∀l ∈ L, p ∈ P, v ∈ V, t ∈ T (36)

∑
c,n,p

Gc,p,t

[
(1− α)d3

c,p,t + αd4
c,p,t

]
Xn,c,v,t ≤ γvBv,t, ∀c ∈ C, p ∈ P, t ∈ T (37)

∑
e

δe,pκeGc,p,t

[
(1− α)d3

c,p,t + αd4
c,p,t

]
≥ ρc,p,t, ∀c ∈ C, p ∈ P, t ∈ T (38)

∑
l,v

Yi,l,e,v,t ≤
[
βω1

i,e,t + (1− β)ω2
i,e,t

]
, ∀i ∈ I ′, e ∈ P ′ ∪ P ′′, t ∈ T, (39)

(4)− (9), (11), (14)− (19), (21)− (27).

The first expression in Equation (35) refers to the expected value of the first objective function

basedon themeanvalues of theunknownparameters. The second term imposes thepenalty cost

of deviation from the expected value of the first objective function (robustness of optimality).

The third and fourth terms reflect the penalty costs of supply and demand deviations (uncertain

parameter). Coefficients ζ, η1 and η2 denote the weight of such penalties, respectively, while α

and β show the minimal degree of confidence for the fuzzy numbers which should be between

0.1 and 0.9.
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4 Solution approaches

Various methods are used to solve the multi-objective problems. This section describes three

of them used in this article including the augmented ε-constraint, the NSGA II and MOGWO

algorithms. The first one is used for solving and evaluation of the model in small size, while the

other two are employed for solving larger samples. They are both population-based algorithms

which have high efficiency in searching the solution space. The othermotive behind their choice

here, is the fact that they are old and newmeta-heuristics, respectively (Deb et al. 2002; Mirjalili

et al. 2016). The most important part of meta-heuristic algorithms might be the representation

of initial solution (initial chromosome) and decoding it.

4.1 The Augmented ε-constraint Method

Thismethod is an extension of ε-constraintmethod in solvingmulti-objective problems (Mavro-

tas 2009). Despite its advantages, there are some challenges as well: (i) calculating the range

of objective functions in the efficient solution set, (ii) ensuring the efficiency of the obtained

solution, (iii) increasing solving time of the problems if there are more than two objective func-

tions. To overcome these drawbacks of the ε-constraint method, the augmented version uses

the lexicographic method to calculate the objective values and converts the constraints related

to the sub-objective functions to equation by auxiliary variables. The objective functions are

ranked by the decision-maker based on their importance. That is, the objective functionwith the

higher priority is optimized as a single objective model. Let f1(x) be the objective function with

the highest priority and its optimal value equals to f∗1 . Then, to optimize the second objective

function, by adding the constraint f1(x) = f∗1 , the optimal solution of the first objective function

is maintained and the second objective value, f∗2 , is obtained and used to optimize the objective

function with the next priority. This approach can be applied to our three-objective FBSCN

problem as follows:

minZ1 + δ

(
s2
r2

+ s3
r3

)
(40)

s.t.

Z2 − s2 = ε2 (41)

Z3 − s3 = ε3 (42)

(4)− (9), (11), (14)− (19), (21)− (27), (36)− (39).
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In the above model ri, i = 2, 3 are the domains of the objective functions, εi, i = 2, 3 are

the solution obtained in each iteration and δ is a small positive number. As FBSCN model

is nonlinear, Baron solver is used to implement the augmented ε-constraint method to solve

problems in small size. This solver is not able to solve large sample sizes. Therefore, NSGA II

(Deb et al. 2002) and MOGWO (Rezaei et al. 2018) algorithms are used to solve larger sample.

The flowcharts of the proposed algorithms are as shown in Figures 3 and   )٣جايگزين شكل (  : ١٩صفحه .4
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Figure 3: The Flowchart of NSGA II Algorithm

4.2 Initial Solution (Chromosome) and Decoding

FBSCNmodel is made up of a variety of decision variables. Decisions related to the amount of

food supply basket (demand satisfaction) are made in the first part; decisions related to vehicle

routing are made in the second part, and decisions related to the optimal allocation of food /

finance from donors to the FB are made in the third part. Figure 5 depicts the initial solution

instance with five charities, three FBs, four food/financial donors, three types of vehicles, and

only one period and product. The coded solution is shown in a 3 × (|I| + |J | + |C|) matrix in

the bottom of this figure and the data used for decoding the chromosome is listed in Table 4.

To decode the initial solution, we do the following steps in each section:

Decoding the real demand of charities

It is determined according to the percentage of unmet demand of each charity (second row)
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Figure 4: The Flowchart of MOGWO Algorithm

Table 4: The random data used in chromosome decoding
ξ i1 i2 i3 i4 ψ

j1 15 7 12 10 60
j2 9 13 10 14 60
j3 10 12 18 20 50

ω 30 20 40 20

below:

 The real demand of charities 

 

𝑐  𝑐  𝑐  𝑐  𝑐  Charities 
18 30 21 18 25 𝐷𝑒𝑚𝑎𝑛𝑑 

0.513 0.688 0.166 0.180 0.231 𝑈𝐷 

15.966 21.36 17.514 14.76 19.225 𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑(1 − 𝑈𝐷) 

 

 

 

 Decoding the Vehicle Routing Problem Stage 

 

𝑑 = 52.705 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 1 → 𝐶 → 𝐶 → 𝐶  𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 → 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 1 → 𝐶 − 𝐶 − 𝐶  

𝑑 = 36.120 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 2 → 𝐶 → 𝐶  𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 → 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 2 → 𝐶 − 𝐶  

 

 

 

 Decoding the select of FB 

𝑗  𝑗  𝑗  𝐹𝑜𝑜𝑑 𝐵𝑎𝑛𝑘 
7 5 2 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 − 𝑜𝑙𝑑 

50 60 60 𝜓 

7 5 0 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 − 𝑛𝑒𝑤 

 

As a result, vehicle routing from FBs can be described as follows: 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑅𝑜𝑢𝑡𝑖𝑛𝑔 
2 𝑗 → 𝐶 → 𝐶 → 𝑗  

1 𝑗 → 𝐶 → 𝐶 → 𝐶 → 𝑗  

 

 

 Decoding the Flow between Donors and FBs 

|𝐼| + |𝐽| 
Node 

𝑗  𝑗  𝑗  𝑖  𝑖  𝑖  𝑖  

7 5 0 4 3 1 6 𝑅𝑎𝑛𝑑() 

- - - 3 1 2 3 𝑉𝑁 

 

Decoding the Vehicle Routing part

The sequence of visits to charities is determined based on the initial solution in the first step

and the amount of met demand is calculated. Thus, the charity with the lowest priority is

considered as the first node to be visited by the vehicle. If the amount of food transported by

each vehicle exceeds the allocated capacity of the vehicle, the demand of high-priority charities

will be met by another vehicle. For example based on Figure 5, {C1−C3−C5} can be allocated

to Vehicle 1 and {C2 − C4} can be allocated to Vehicle 2.

 The real demand of charities 

 

𝑐  𝑐  𝑐  𝑐  𝑐  Charities 
18 30 21 18 25 𝐷𝑒𝑚𝑎𝑛𝑑 

0.513 0.688 0.166 0.180 0.231 𝑈𝐷 

15.966 21.36 17.514 14.76 19.225 𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑(1 − 𝑈𝐷) 

 

 

 

 Decoding the Vehicle Routing Problem Stage 

 

𝑑 = 52.705 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 1 → 𝐶 → 𝐶 → 𝐶  𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 → 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 1 → 𝐶 − 𝐶 − 𝐶  
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Figure 5: Initial Solution instance of FBSCN
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In this part, based on the amount of food distribution of FBs and the capacity of donors, the

optimal flow allocation is performed on the modified chromosome of the previous part. It is

performed based on the following steps.

Step 1: The highest priority is selected from the modified chromosomes as the starting part of the

allocation (eg. FB 3 with priority 7)

Step 2: The donor / FB is selected based on the lowest transportation cost with the FB / donor

obtained from Step 1 (eg. Donor 1 with transportation cost of 10)

Step 3: The vehicle needed to transport food is selected between the two nodes (eg. Vehicle 3).

Step 4: Optimal flow allocation between selected nodes is achieved based on the minimum

amount (eg. Donor supply, FB requirement and vehicle capacity) (min{36.120, 30, 50} =

30).

Step 5: Donor supply and FB needs are updated ψ3 = 36.120-30 = 6.120 and ω1 = 30− 30 = 0

Step 6: If the donor supply or the need for the FB is zero, the priority associated with that center

will be reduced to 0.

Step 7: Steps 1 to 6 will continue until the total donor priority is reduced to 0.

Step 8: If all FB priorities are not met, financial donors will be used to supply food to meet the

remaining needs of FBs.

The routing-location and allocation of the problem instance of Figure 5 is shown in Figure 6

after this decoding process.
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The following steps are performed for optimal flow allocation: 

 The highest priority is selected from the modified chromosomes as the starting part of the 
allocation (FB No. 3 with priority 7) 

 The donor / FB is selected based on the lowest transportation cost with the FB / donor 
obtained from step (1) (donor 1 with transportation cost of 10) 

 The vehicle needed to transport food is selected between the two nodes (vehicle 3). 
 Optimal flow allocation between selected nodes is achieved based on the minimum 

amount (donor supply, FB requirement and vehicle capacity) (min {36.120,30,50} = 30). 
 Donor supply and FB needs are updated ψ_3 = 36.120-30 = 6.120 and ϖ_1 = 30-30 = 0 
 If the donor supply or the need for the FB is zero, the priority associated with that center 

will be reduced to 0. 
 Steps 1 to 6 will continue until the total donor priority is reduced to 0. 
 If all FB priorities are not met, financial donors will be used to supply food to meet the 

remaining needs of FBs. 

According to the decoding, the routing-location and allocation of the problem will be as shown 
in Figure (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6- Routing-locating and allocation based on initial solution decoding 
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Figure 6: Routing-locating and allocation based on initial solution decoding
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4.3 Comparison indicators of solution methods

Each of the aforementioned methods leads to creation of different efficient solutions. Thus,

different measures should be used to compare them and here, 5 of them are introduced.

• Number of Pareto Frontier (NPF): Shows the number of undefeated solutions in the Pareto

frontier obtained for each method, and the higher the value of NPF, the more efficient the

method.

• Maximum spread Index (MSI): This measure shows howmany of the solution of a Pareto

frontier are distributed in the solution space, which is calculated from the following

equation wherein fmax
k and fmin

k denote the maximum andminimum objective values for

the kth objective.

MSI =

√√√√ K∑
k=1

(
max
k=1

fmax
k − fmin

)2
(43)

The higher the value of this index, the more appropriate the diversity of Pareto frontier

solutions are (Javid 2021).

• Space Metric (SM): Indicates the uniformity of the solutions, which is calculated from

the following equation. A solution algorithm whose SM value is less is more desirable.

SM =
∑K−1

i=1 |d̄− di|
(K − 1)d̄

(44)

where di = min
j=1,...,n,j 6=i

{
K∑

k=1
|f i

k − f
j
k |
}
, ∀i = 1, . . . , n (45)

• Mean of ideal deviations (MID): This index is used to measure the degree of proximity

to the optimal level of the real Pareto, which is calculated from the following equation.

The algorithm that has the lowest value of this measure has a higher efficiency. In this

relation n is the number of solution in the Pareto optimal front.

MID =
∑K

k=1

√
(f1

k − fmin
k )2 + . . .+ (fn

k − fmin
k )2

K
(46)

where f i
k and fmin

k are the objective value of the ith efficient solution and minimum value

for the kth objective function.

• Computation time (CPU-Time): An algorithm with less computational time is obviously

more desirable.
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5 Numerical analyses

5.1 Parameter settings for the solution algorithms

In order to increase the efficiency of the algorithms in optimizing the objective functions, it

is necessary to tune the initial parameters of both meta-heuristic algorithms. Therefore, 9

experiments are designed by Taguchi method and the proposed algorithms are tested based

on the levels presented in Table 5. The mean of S/N ratios diagram for selecting the optimal

level of meta-heuristic algorithm parameters is shown in Figure 7 where the highest points is

the desired level to set the parameters. Therefore, for the NSGA II algorithm the value ofNpop

is 200, the value ofMaxit is 200, and values of Pc and Pm are 0.08 and 0.9, and in the MOGWO

algorithm, the value ofNwolf is 300, the value ofMaxit is 200 and values of A and C are 1 and

2, respectively.

Table 5: The initial value of the parameters at different levels
Algorithm Parameter Level 1 Level 2 Level 3

Maxit 100 150 200
NSGA II Npop 150 200 300

Pc 0.03 0.05 0.08
Pm 0.7 0.8 0.9

Maxit 100 150 200
MOGWO Nwolf 150 200 300

Pc 1 2 3
Pm 1 2 3
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Figure 7: The mean of SN ratios plot obtained for Taguchi experimental design

5.2 Small problem instance

We first start with small sample size of the problem to examine the decisions. Hence, the size

and parameters of the small instance are set according Table 6 and 7.

The additional parameters corresponding to the robustness of the model are set as α =

27



Table 6: Sample problem size in small size
Set Size Set Size Set Size
I ′ 1 C 6 P 2
I ′′ 2 N 9 P ′ 1
I 3 V 8 P ′′ 2
L 3 T 3

Table 7: The parameters interval based on the uniform distribution function
Parameter Range Parameter Range
fl ∼ U(10000, 12000) φc ∼ U(2, 5)
gv ∼ U(300, 400) [αc, βc] ∼ U([10, 12], [40, 50])
ol,p ∼ U(2, 3) κe ∼ U(5, 8)
kn,n′ ∼ U(15, 20) ρ(c, p, t) ∼ U(100, 110)
he,t ∼ U(2, 3) Ω(i, e, t) ∼ U(1, 5)
ψl,p ∼ U(200, 220) up ∼ U(60, 900)
γv ∼ U(60, 80) sit 5000
θ 6
Uncertain
parameter Fuzzy number ∼ U(λ1, λ2, λ3, λ4)

ξ̃n,n′ ∼ U([20, 25], [25, 30], [30, 40], [40, 45])
ξ̃i,l ∼ U([5, 10], [10, 15], [15, 20], [20, 25])
d̃c,p,t ∼ U([5, 10], [10, 15], [15, 20], [20, 25])
ω̃i,e,t ∼ U([120, 140], [140, 160], [160, 180], [180, 200])

β = 0.5, η1 = η2 = 2 and ζ = 10. The augmented ε-constraint method was implemented by

Baron solver for this small size instance and 34 efficient solution were obtained in the average

execution time of 1687.4 seconds. The corresponding Pareto frontier is shown in Figure 8.

Figure 8: Pareto frontier obtained by solving a small instance

As shown in this figure, the nutritional value of the food baskets of charities has positive
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correlation with the total cost because more food baskets should be distributed and it needs to

increase the food supply from food and financial donors, which in turn increases the cost of

supply, packaging, maintenance and transportation in FB Supply chain. In addition, to increase

the freshness of the distributed food more vehicles and closer facilities to charities should be

used, which leads to an increase in costs. Therefore, objective 3 and 1 also have a positive

correlation.

To demonstrate the details of the output, the pictorial representation of the first efficient

solution is shown in Figure 9 wherein, two centers (2 and 3) out of three FBs are selected to

cover the food baskets of charities. Also, two donation centers (1 and 2) are selected for food

supply as well as financing the FBs. The freshness of the dispatched foods over time is also

shown in Figure 10. As seen, the freshness decays exponential in time but with much higher

rate for hot meals. Finally, Table 8 shows the percentage of demand met for each charity.

Table 8: Percentage of satisfied demand of charities from hot and cold food baskets
Charities Packet Period 1 Period 2 Period 3

1
Warm 0.478 0.478 0.454
Cold 0.971 0.971 0.923

2 Warm 0.478 0.413 0.413
Cold 0.923 0.839 0.879

3 Warm 0.432 0.478 0.413
Cold 0.971 0.879 0.923

4 Warm 0.454 0.454 0.454
Cold 0.879 0.971 0.839

5 Warm 0.432 0.432 0.432
Cold 0.923 0.971 0.923

6
Warm 0.432 0.432 0.432
Cold 0.971 0.923 0.971
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Figure 9: Optimal location-routing and flow allocation in the efficient solution of the small
sample problem
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Figure 10: Fresh amount of hot and cold food packages at the time of delivery to charities
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5.2.1 Sensitivity analysis on uncertainty level

In the previous subsection, the uncertainty rates were considered as α = β = 0.5. The higher

the uncertainty rate goes, the higher demand level in charities for various foods, and in contrast

the less food supply by donors will be imposed to the supply chain system. Figure 11 depicts

the trend of optimal objective values under different uncertainty rates. As shown, with the

increase in the rate of uncertainty, the total nutritional value of food baskets has increased due

to the increase in demand for variety of products. Furthermore, with the increase in demand,

due to the limited capacity of vehicles, more vehicles have been used to distribute food baskets.

This has led to an increase in the freshness and quality of the food basket through the timely

delivery of food to charities. Unsurprisingly, this has caused to higher transportation and total

cost of the FB supply chain.
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OBF3 OBF2 OBF1 𝛼 = 𝛽 

8135.185 3341.164 215383.760 0.1 

8241.188 3341.164 216108.508 0.2 

8246.703 3341.164 217071.545 0.3 

8259.926 3341.164 218256.046 0.4 

8265.207 3341.164 219173.265 0.5 

8296.203 3379.908 220100.184 0.6 

8307.089 3379.908 220911.418 0.7 

8310.353 3379.908 221485.831 0.8 

8315.177 3419.662 222151.542 0.9 

 

Figure 11 - The process of changing the value of the objective functions under different rates of 
uncertainty 

According to the results of Figure (11), it is observed that with the increase of uncertainty 
rate, the amount of demand of charities for various foods increases and in contrast, the 

Figure 11: The process of changing the value of the objective functions under different rates of
uncertainty

5.2.2 Sensitivity analysis on the impact of vehicle capacity

The next factor analyzed is the vehicle capacity. Accordingly, the effect of reducing the capacity

of the vehicle by 15% and 30% on the freshness of the delivered food basket delivered is

investigated in three different scenarios. Figure 12 shows the average trend of foods freshness
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Figure 12: The trend of changes in food freshness under reduced vehicle capacity

changes in charities for both warm and cold food baskets. The general increasing trend in this

figure is because of more frequent and shorter travel time of the vehicles when they have less

capacity.

5.2.3 Sensitivity analysis on the impact of shelf-life

Another influential factor in network decisions is the distribution time of food baskets related

to the shelf-life parameter. Figure 13 shows the shift in objective values by increasing and

decreasing the shelf-life of both hot and cold foods in the FB network. For the sake of simplicity,

it is represented by percentage with respect to the base shelf-life of the items in food baskets.

Thus, 10, 15 and 20% longer or shorter shelf-life are tested with positive and negative values

on the figure, respectively. It is not surprising to see the transportation costs in the network

increases for more perishable products in order to deal with their delivery in a tighter time

window. Thus, a declining trend is observed in the first part (Objective 1) of Figure 13. Also, as

the shelf-life of product shortens, the freshness of products (Objective 2) drops off during the

distribution of food baskets to charities. It is due to the fact that the nonlinear function in the

right hand side of (16) is increasing in up. However, the overall nutritional value (Objective 3)

shows an insensitive behavior to the shelf-life and remains unchanged.
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Figure 13: The sensitivity of objective functions to the shelf-life of food items

5.2.4 Inspecting performance of the meta-heuristics

The NSGA II and MOGWO meta-heuristic algorithms are also used to solve small instances

for evaluation purpose. The objective values as well as other the performance indicators

are used to compare them. The Pareto frontier obtained obtained by these algorithms are

illustrated in Figure 8 where in their trend is close to the exact solution (ε-constraint) from

BARON solver. NSGA II has obtained 61 efficient solutions in 117.3 seconds and the MOGWO

has obtained 54 efficient solutions in 124.16 seconds, which are much faster than that of the

ε-constraint implemented by BARON solver. Based on a comparison of the mean objective

value of the efficient solutions, the relative deviation of the cost objective function obtained by

the NSGA II and MOGWO meta-heuristic algorithms from that of the modified ε-constraint

method are 2.81% and 2.29%, respectively. Other indicators for comparing efficient solutions

are summarized in Table 9. The numbers associated with the winner algorithm with respect to

each index is bold in this table.
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Table 9: Comparison of efficient solution indicators for the algorithms in small instance
Index ε-constraint MOGWO NSGA II
NPF 34 54 61
MSI 290680.3 316020.6 302652.3
SM 77435.2 162180.9 155081.9
MID 0.944 0.705 0.694
CPU-time (s) 1687.5 124.2 117.3

5.3 Large problem instances

To examine the problem in larger sizes 12 instances are designed according to dimensions listed

in Table 10 and parameters given in Table 7. As the solver is unable to deal with larger sizes of

the problem they are solved only by NSGA II and MOGWO and the corresponding results are

summarized in Tables 11 and 12. The NPF, MSI, SM, MID and CPU-Time indices in these tables

depicts the average results over 3 replication of each instance for both algorithms, separately.

Table 10: Size of sample problems in larger sizes
Sample # I L C V T P P ′ P ′′

1 5 6 10 10 3 3 4 4
2 6 8 15 15 3 3 4 4
3 8 12 18 20 3 3 6 6
4 10 18 25 25 6 4 6 6
5 12 20 32 30 6 4 8 8
6 15 25 40 35 6 4 8 8
7 20 30 50 40 9 5 10 10
8 25 35 62 45 9 5 10 10
9 30 40 70 50 9 5 12 12
10 35 50 80 55 12 6 12 12
11 40 60 90 60 12 6 15 15
12 50 70 100 65 12 6 15 15

Table 11: Mean comparison indices of efficient answers in NSGA II meta-heuristic algorithm
Sample # NPF MSI SM MID CPU time

1 63 25787.94 30191.61 0.63 165.1
2 69 39884.08 28961.60 0.88 241.4
3 75 35945.16 46713.31 0.59 325.9
4 67 30651.97 53775.69 0.64 442.7
5 58 31256.82 33778.50 0.55 618.8
6 55 39801.00 51220.79 0.79 774.6
7 51 28298.03 47013.28 0.84 993.5
8 56 45948.33 20268.61 0.77 1334.5
9 80 41482.35 44086.82 0.71 1468.2
10 65 49358.23 35470.85 0.82 1584.3
11 62 49496.07 56639.65 0.82 1699.5
12 61 47348.58 20046.04 0.84 1812.2

The pictorial comparison of NSGA II and MOGWO algorithms over all large instances are
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Table 12: Mean comparison indices of efficient answers in MOGWOmeta-heuristic algorithm
Sample # NPF MSI SM MID CPU time

1 75 48271.61 43104.79 0.85 121.3
2 78 51361.14 29674.15 0.62 167.8
3 74 45190.48 43542.18 0.56 217.2
4 66 55499.53 34140.71 0.80 272.9
5 71 52958.97 21072.88 0.73 334.5
6 80 59216.23 25276.23 0.73 409.8
7 66 48283.35 41652.74 0.83 479.8
8 72 43128.64 34204.58 0.89 520.1
9 73 37640.73 24581.64 0.68 663.0
10 50 50273.97 30233.74 0.83 763.7
11 65 54470.06 38221.68 0.71 905.2
12 70 45586.32 25752.36 0.92 1338.2

illustrated in Figure 14. We can observe the superiority of NSGA II in CPU-time. However,

with respect to other indices the winner algorithm may change from over different instances.
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Figure 14: Comparison between efficient solution of meta-heuristic algorithm for large problem
instances
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5.4 Case study

After examining the effectiveness of two meta-heuristic algorithms (MOGWO and NSGA II) in

solving numerical examples in larger sizes, in this subsection a case study from the capital city

in Iran is analyzed. As the analyses in previous subsections show the efficiency of MOGWO

algorithm ismore thanNSGA II algorithm, this case study is solved by the former one. The case

study, which is adopted from Kaviyani-Charati et al. (2022), has been conducted in Iran over 22

municipal regions of Tehran province with an area of about 730 square kilometers. According

to the demographic structure and population growth of the studied region during the last 50

years, its population has increased from 3 million people to more than 9 million (amar.org.ir).

This has led to more challenges in metropolitan management and also food deficiencies of

residents. Figure 15 shows the map of 22 municipal regions in Tehran province.
 

 

Figure 14. Urban area of Tehran in Iran 
 

  

Figure 15: Urban regions of Tehran in Iran

Due to the Covid-19 pandemic in recent years, the economic recession has deteriorated in

Iran. According to recent studies conductedbyFood andAgricultureOrganization of theUnited

Nations (FAO), Ministry of Health (HM), field research (FR), non-governmental organizations

(NGO) and Imam Khomeini Relief Foundation (IKRF), about 5 million people in Iran are facing

hunger and food insecurity. According to recent statistics, it can be said that this figure for

Tehran is around 6% of the population (Kaviyani-Charati et al. 2022). This happens while about

35% of produced foods is wasted due to its fast perishability nature (Fami et al. 2019), which

explains the importance of an efficient food bank network model.

In this case study there are 3 different types of food packages including warm (cooked meat

with 243 calories and a perishable time of 2 hours), refrigerated (vegetables and fruits with
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229 calories and a perishable time of 5-7 days), and dry (bread, rice and canned food with 456

calories and perishability time of 5 hours) during one week of the year. According to studies,

the average amount of calories needed by the body for an adult man is about 2800 calories while

for a woman is about 2200 calories. The donors of these items include great restaurants in the

city, universities, grocery stores and residential houses. Table 13 summarizes the number of

food donors in the city and urban areas. In addition to donating food by donors, some fresh

food can be purchased from stores and supermarkets at an affordable price using donations

(money) and funds. Donations are first collected from both public and private sectors, and

then given to local food banks. The demand zones as well as financial and food donor regions

are illustrated in Figure 15 while all regions of Tehran are considered as potential food banks

locations.

Table 13: The number of food donors in the different regions of Tehran province
Region Groceries Restaurants Universities

10 6 4 3
11 9 6 4
15 9 6 2
16 7 5 1
19 8 6 2

Following Kaviyani-Charati et al. (2022), the parameters have been set based on the opinions

of experts including ten experts from theNational Relief Foundation (NRF), Iran Food andDrug

Administration (IFDA) and four academics. Thus, the fuzzy trapezoid parameters are drawn

from the following uniform distributions:

- demand amount of charities: ∼ U(960, 1400) ∗ [0.9, 0.95, 1.05, 1.1],

- food supply amount by donors: ∼ U(600, 820) ∗ [0.9, 0.95, 1.05, 1.1],

- transportation cost($) per kilometer: ∼ U(10, 15) ∗ [0.9, 0.95, 1.05, 1.1].
Food storage costs are estimated at $2 and operational costs at $1 . The service time at each

demand point is equal to 10 minutes and the transit time is considered proportional to the

average vehicle speed (60 km/h). The transportation costs and transit time between different

regions of Tehran are based on the distance matrix given in Table 15 in Appendix. Also, the

transportation capacity of each vehicle is equal to 3000 packages while its fixed usage cost is

1000 dollars. Finally, the fixed setup cost of food banks equals 100,000 dollars based on the

average cost of buildings.

Solving the model by MOGWO algorithm resulted in 3 food bank locations. As shown on

Figure 16 regions 11, 15 and 19 are selected for food bank locations while their covered demand

points are specified by the same color. The allocation of food or financial donors to the food
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banks, and the suggested routes for transportation of food to the demand points are given in

Figure 17. 

 

Figure 15. The optimal location of food banks and the areas covered by each food bank in 
the case study 

  

Figure 16: The optimal location of food banks and the areas covered by each food bank in the
Tehran case study

According to the obtained results, the average cost of the food bank network in Tehran

equals 479,173.8 dollars. Also, the average freshness of distributed foods over regions equals

92.47 (out of 100). Moreover, the total nutritional value of the distributed foods equals 32382.42

kilo-calories. Comparing this network with that of Kaviyani-Charati et al. (2022) proposed by

their allocation-locationmodel, it can be stated that our network is 4.58%more cost-efficient due

to less allocation of vehicles in food distribution; the average value of distributed food is 3.51%

more in our network; but the freshness of distributed food is 4.21% less in our configuration. In

particular, the aforementioned benchmark model requires 24 vehicles, while with an efficient

vehicle routing in our model, this number has reduced to 14. That is why the freshness of is

slightly compromised, which is due to the nature of this trade-off. Thus, from the managerial

point of view as long as the freshness of food is kept above the satisfactory level a huge amount

of logistics operations and investment on facilities can be avoided. Moreover, the proportion

of cold and warm foods can shed light on choice of vehicle fleet. As observed in Section 5.2.2

the higher capacity vehicles may lead to about 15% less fresh warm food while the sensitivity

of freshness for cold foods is shown to less than 3%. Thus, a more cost efficient fleet can be

chosen provided that the proportion of cold foods are higher. The region-wise freshness of the

distributed food obtained by our model is compared with the benchmark network in Table 14.
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Figure 17: Allocation and Vehicle routing in a case study

Table 14: Pairwise comparison of food freshness for each demand point: our network vs.
benchmark

Region Benchmark Our model
2 95.10 90.126
6 97.35 97.35
7 95.87 95.87
8 94.14 90.29
9 95.39 91.017
12 97.95 86.99
14 96.82 93.23
15 100.00 100.00
16 97.01 81.93
18 97.05 97.05
19 100.00 100.00
20 95.72 92.20
21 92.61 86.06

Mean 96.54 92.47
Note: Kaviyani-Charati et al. (2022) have not considered food freshness in their study. The numbers above is based

on application of their network as a benchmark rather than their direct results.
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6 Conclusion

This paper has introduced a model for solving an FBSCN problem under uncertainty. The

proposed model simultaneously adopted all strategic and tactical decisions, including the

location of FBs, routing the distribution of food baskets to charities, and the amount of food

supply fromfoodorfinancial donors. Themainobjectives of thepaperwere tominimize the total

cost of supply network, maximize the freshness of the food baskets supplied to the charities,

and maximize overall nutritional value of food baskets offered. Uncertainty of supply and

demand necessitates a parameter controlling method without which the demand of charities is

not properlymet. Thus, a fuzzy robust optimizationmethodwas used to control the parameters

of supply and demand as well as transportation costs. The robustness reassures that with slight

increase in network costs theminimum requirement of charities and freshness of the distributed

food are retained.

Due to the complexity of the problem, direct application of off-the-shelf optimizer is inef-

ficient, which is in favor of heuristic solution approaches. Therefore NSGA II and MOGWO

algorithms were designed based on a modified chromosome definition. The numerical study

over small instances proved their close performance to the ε-constraint method as the exact

solution while they were computationally much faster. Further, our numerical results for large

instance showed that in general NSGA II generated efficient solutions closer to the ideal point

(MID), while MOGWO algorithm has performed better with respect to other indicators NPF,

MSI, SM and CPU-Time.

From the managerial perspective, as discussed on our case study with the focus on the cost

factor, the distribution fleet size can be significantly reduced with minor compromise to the

freshness, or by a shift in type of the food. Also, our numerical results showed that with the

increase in uncertainty rate, the costs associated with network design increases as well. Also,

the Pareto frontier showed that the higher targets for nutritional value of the food basket will

increase the FB supply chain costs as it necessitates an increase in supply, food storage and

transportation. Moreover, to increase the freshness of food more vehicles should be used. In a

similar analogy, whichmight sound counter-intuitive, it was observed that by reducing vehicles

capacity the number of food baskets distributed to charities increased because more vehicles

are employed.

This study had some limitations that can be addressed in future studies as follows: (i)

Potentially a creative exact solution can be designed to tackle medium size problem instances.

As discussed, this problem is NP-hard and a polynomial-time exact solution method to obtain
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the optimal solution of large instances is unlikely to exist. However, a decomposition-based

algorithm which decouples the routing and allocation sub-problems to deal with might be

interesting to examine. Such a math-heuristic algorithm can be designed based on combination

of heuristics and off-the-shelf optimizers , (see Kian et al. 2022); (ii) the uncertainty nature of

the problem can be viewed in a different setting and approach such as scenario-based stochastic

programming. The addressed problem here is a network design rather than its redesign under

some unobserved data where no a priori probability distribution exists for parameters to con-

struct their corresponding scenarios. However, investigating a similar setting benefiting from

a set of experienced collected data can facilitate the application of a scenario-based stochastic

programming approach; (iii) additional heuristics can be designed and compared. The two

meta-heuristic algorithms proposed in this study contrasted a traditional one (NSGA II) with a

contemporary one (MOGWO).However, the comparison of existing several othermeta-heuristic

algorithms such as such as MOALO, MOPSO and MOSCA is always an interesting research

question that can be considered as a direction future studies.
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Appendix

Table 15: Distance matrix of Tehran regions in kilometers
Regions 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 15.4 6.9 14.5 19.7 14.1 15.1 14.6 27.4 24.3 20.2 21.2 19.8 23.7 24.1 26.4 24.7 32.2 28.2 31.2 33.7 28.5
2 - 12.7 19.6 4.5 10.6 14.3 18.1 12.7 9.3 13 18.2 22.1 26 27.3 21.5 13.4 17.4 16.6 27.1 18.3 17.3
3 - - 13.6 13.9 7.5 7.9 13.5 22.6 19.5 16.3 13.4 19.3 23.2 23.5 18.7 18.6 24.1 22 30.6 27.5 23.5
4 - - - 22.1 17.1 12.5 6.7 28.5 27.1 23.7 18.8 6.9 10.8 17.1 23.2 28 34.7 27.9 23.6 35.9 34.2
5 - - - - 13.5 17.3 21.1 14.8 13 16.5 22.9 25.1 27.9 30.1 24.4 20.3 19.6 20.2 30 16.8 13.7
6 - - - - - 5.6 10.4 15 9 6.9 10.2 12.1 14.2 15.3 12.8 12.6 19.7 16.1 22.3 20 25.6
7 - - - - - - 6.1 22.1 20.6 10.9 8.5 7.8 12.7 13 13.7 20.9 31.5 24.7 20.1 27.2 27.4
8 - - - - - - - 25.5 14.8 15.7 15.4 2.8 7.7 14.1 20.4 24.9 32.9 26.1 21.5 30.6 33
9 - - - - - - - - 9 13.1 20.5 33.6 31 28.3 21.8 9.9 7.1 12.2 21.9 5.7 25.6
10 - - - - - - - - - 4.2 9.9 15.1 16.7 17.1 11.3 4.2 10.6 10.7 16.9 14.6 24.5
11 - - - - - - - - - - 5.3 21 13.3 13.6 7.8 5.2 9.2 9.4 15.6 17.7 29
12 - - - - - - - - - - - 15.5 9.1 9.9 7.5 7.9 16.6 11.4 8.5 21.2 40.1
13 - - - - - - - - - - - - 4.8 12.8 18.9 23.7 30.4 23.6 19.3 46.2 32.5
14 - - - - - - - - - - - - - 8.3 12.7 17.2 25.9 19.2 14.9 41.8 49.4
15 - - - - - - - - - - - - - - 7.8 12.3 21.4 14.6 10.3 37.3 44.9
16 - - - - - - - - - - - - - - - 9.6 16.7 10 4.9 32.6 40.2
17 - - - - - - - - - - - - - - - - 6.2 5.4 15.3 16.6 26.5
18 - - - - - - - - - - - - - - - - - 7.7 18.2 12.5 28.3
19 - - - - - - - - - - - - - - - - - - 11.3 20.1 33.2
20 - - - - - - - - - - - - - - - - - - - 33.1 40.8
21 - - - - - - - - - - - - - - - - - - - - 19
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