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Abstract. We investigate, numerically, the e�ects of externally impo sed
material 
ows on the structure and temporal evolution of liq uid crystal skyrmions.
The dynamics of a 2D system of skyrmions is modeled using the E ricksen-Leslie
theory, which is based on two coupled equations, one for mate rial 
ow and the
other for the director �eld. As the time scales of the velocit y and director
�elds di�er by several orders of magnitude for realistic val ues of the system
parameters, we have simpli�ed the calculations by assuming that the velocity
relaxes instantaneously when compared to the relaxation of the director �eld.
Thus, we have used a �nite-di�erences method known as arti�c ial compressibility
with adaptive time step to solve the velocity �eld and a fourt h-order Runge-
Kutta method for the director �eld. We characterized the sky rmion shape or
con�guration as a function of the time and the average veloci ty of the 
ow �eld.
We found that for velocities above a certain threshold, the s kyrmions stretch in
the direction perpendicular to the 
ow, by contrast to the re gime of weak 
ows
where the skyrmions stretch along the streamlines of the 
ow �eld. These two
regimes are separated by an abrupt (�rst-order) dynamical t ransition, which is
robust with respect to e.g., the liquid crystal elastic anis otropy. Additionally, we
have found how the presence of a second skyrmion a�ects the ev olution of the
shape of the skyrmions, by comparing the evolution of pairs o f skyrmions to the
evolution of a single-skyrmion.

http://arxiv.org/abs/2108.09172v2
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1. Introduction

Active colloids represent a new class of nonequilibrium
soft matter in which energy harvesting and conversion
take place at the level of the individual particles.
In the last decade, signi�cant progress has been
made in developing synthetic self-propelled micro-
particles, which are capable of converting the free
energy of the environment into mechanical energy of
translational or rotational motion [1]. This o�ers
the possibility to use such particles as autonomous
micromotors [2, 3] for, e.g. delivering drugs [4, 5],
sensing speci�c substances [6], assembling structures
via the autonomous local deposition of materials [7],
or removal of contaminants from water [8, 9]. From a
basic science point of view, active colloids exhibit novel
types of emergent collective behavior, not observed
in passive colloids, such as \living crystals" that are
mobile, break apart and reform again [10] or motility-
induced phase separation in systems with purely
repulsive interactions [11, 12, 13].

Recently, a novel class of soft active matter
has been realized experimentally, where topological
solitons in con�ned chiral liquid crystals (LCs) are the
elementary building blocks of the active matter system
[14]. These solitons, named \skyrmions" are spatially
localized, non-singular con�gurations of the LC
director �eld that cannot be transformed continuously
into the uniform state. They are low-dimensional
analogs of Skyrme solitons in nuclear physics [15]. Both
three-dimensional (3D) [16] and two-dimensional (2D)
[17] skyrmions have been realized. The core of a 3D
skyrmion is a double twist torus, where the director
twists from the torus axis in all orthogonal (to the
torus axis) directions [16]. Experiments and numerical
calculations based on the Frank-Oseen elastic free
energy [18] reveal a rich structural behavior and
conformational transitions between skyrmion states
with the same or di�erent Hopf indices. By contrast
to active colloids which are solid, LC skyrmions
are soft as they lack physical interfaces and their
motion is accompanied by the periodic expansion and
contraction of topology-protected distorted LC regions,
mimicking the behavior of biological cells.

The motion of the LC skyrmions is powered by
a time-dependent electric �eld applied to the LC in a
direction normal to the con�ning surfaces { a set up
that resembles the one used in LC display technology
[14]. The basic physical mechanism of the skyrmion
motion is related to the \non-reciprocal" rotational
dynamics of the LC director �eld when the electric
�eld is turned on and o�. Surprisingly, it is possible to
control both the speed and the direction of the motion
by varying the strength and the modulation frequency
of the applied electric �eld [14]. Additionally, skyrmion
motion can be controlled by taking advantage of

the unique optical properties of LCs. For example,
the size and velocity of solitons, as well as their
collective dynamics and self-assembly can be controlled
by combining laser tweezer techniques and photo-
patterning of the in-plane LC director [19].

LC skyrmions exhibit e�ective elastic interactions
that can be easily tuned in strength or switched
from attractive to repulsive [20]. When the volt-
age modulation period is shorter than the LC re-
sponse time, the skyrmion interactions are intrinsi-
cally out-of-equilibrium, resulting in remarkably rich
emergent collective dynamics with recon�gurable out-
of-equilibrium assemblies of skyrmions. At high pack-
ing fractions, hexagonal crystallites of tightly packed
solitons can be brought into coherent motion along an
arbitrary direction, which leads to an increased hexatic
order parameter and is accompanied by the anisotropic
deformation of the hexagonal soliton lattice [19]. Ac-
tive skyrmions can also be used to entrap [21] and
transport microparticles [22], which provides opportu-
nities for the development of novel electro-optic respon-
sive materials as the experimental conditions for active
skyrmions are similar to those used in LC display tech-
nologies.

Despite the extensive body of experimental
research, the many-body dynamics of LC solitons
remains poorly understood. Existing numerical
investigations are limited to a very small number
of skyrmions and exploit the relaxation dynamics of
the LC director �eld only in order to understand
the �eld-induced motion of the skyrmions [14, 20],
ignoring completely the e�ects of the material 
ow
�eld. Experiments revealed the presence of weak
back
ows associated with the skyrmion motion [14],
but no systematic study of this e�ect was pursued.
On the other hand, detailed numerical analysis of the
dynamics of nematic LCs subject to step-like voltage
modulations [23] demonstrated robust generation of
material 
ows by dynamic electric �elds using the
back
ow e�ects. Additionally, in future lab-on-a-
chip applications, active particles will undoubtedly
encounter shear 
ows and will need to autonomously
sense and respond to them.

In the present study, we focus on the e�ects of
externally imposed material 
ows on the structure and
temporal evolution of LC skyrmions. In particular,
we obtain the skyrmion shape or con�guration as a
function of time and the average velocity of the 
ow
�eld. Surprisingly, at early times and for velocities
above a certain threshold, the skyrmions stretch in the
direction perpendicular to the 
ow, by contrast to the
regime of weak 
ows where the skyrmions are stretched
along the streamlines of the 
ow. These regimes
are separated by an abrupt (�rst-order) dynamical
transition, which is robust with respect to e.g., changes
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of the LC elastic constants. Additionally, we show that
the presence of a neighboring skyrmion signi�cantly
a�ects the evolution of the skyrmion shape when
compared to the single-skyrmion case. In Sec. 2 we
outline the theory used to describe the dynamics of
the system in 2D and the numerical method used to
solve the dynamical equations, for the set of material
parameters under consideration. In Sec. 3 we present
and discuss the results for single skyrmions under 
ow
and and for pairs of skyrmions. We emphasise the
results for the con�guration transition found for single
skyrmions under 
ow. Finally, in Sec. 4 we conclude
and point directions for future work.

2. Theory and numerical method

In this section we describe the equations used to
model the skyrmion dynamics and the numerical
methods employed to solve them. We consider a chiral
nematic LC under con�nement, far from any bulk
transition, reducing the skyrmion ordering dynamics
to the dynamics of the director �eld (i.e., we assume
that the scalar nematic order parameter is constant
throughout the sample and does not contribute to the
ordering dynamics).

2.1. Ericksen-Leslie dynamics

Liquid crystals are materials that 
ow like liquids,
but are composed of non-spherical particles with a
preferential direction of alignment in the nematic
phase, known as the director. Cholesterics are
twisted nematics, where the director rotates over a
characteristic distance, known as the pitch. The
simplest model to describe the dynamics of the director
�eld, which is adequate deep in the nematic or
the cholesteric phase, was proposed by Ericksen and
Leslie [24, 25]. It consists of two equations: one for the
material 
ow and the other for the director �eld.

For the material 
ow, we use the Navier Stokes
equation together with the continuity equation:

�@t u� + �u � @� u� = @�
�
� P � �� + � v

�� + � e
��

�
(1)

@� u� = 0 ; (2)

where the viscous stress tensor is:

� v
�� = � 1n� n� n� n� D �� + � 2n� N � + � 3n� N �

+ � 4D �� + � 5n� n� D �� + � 6n� n� D �� : (3)

Here � stands for the 
uid density, P for the
hydrostatic pressure,u for the 
uid velocity, n for the
director �eld (unit vector in the direction of preferential
alignment of the molecules) and � n 's for the Leslie
viscosities of the material. The kinematic transport,
which represents the e�ect of the macroscopic 
ow �eld
on the microscopic structure, is given by:

N � = @t n� + u
 @
 n� � W�
 n
 (4)

while the strain and vorticity tensors are, respectively:

D �� =
1
2

(@� u� + @� u� ) ; W�� =
1
2

(@� u� � @� u� ) :(5)

The elastic stress tensor is:

� e
�� = � @� n


� F
� (@� n
 )

; (6)

where F is the Frank-Oseen elastic free energy:

F =
Z

dV
n K 11

2
(r � n)2 +

K 22

2
[n � (r � n) + q0]2 (7)

+
K 33

2
[n � (r � n)]2

o
: (8)

K 11, K 22, K 33 are the LC elastic constants, andq0 =
2�=p , with p the cholesteric pitch. The second equation
describes the time evolution of the director �eld:

@t n� =
1



h� � �n � D �� � u
 @
 n� + W�
 n
 ; (9)

where 
 = � 3 � � 2 is the rotational viscosity, � =
(� 3 + � 2)=(� 3 � � 2) is the aligning parameter, with
j� j > 1 for 
ow aligning particles and j� j < 1 for 
ow
tumbling ones. Finally, the molecular �eld is:

h� = �
� F
�n �

: (10)

2.2. Parallel plates modeling

We consider 2D domains and assume that the system
is invariant in the direction perpendicular to the
plane. This is a simpli�cation used to reduce
the computational cost, which is quite high for 3D
simulations using the numerical techniques that will be
discussed in the next section. To this end, we add to
the free energy density of Eq. (8) an e�ective anchoring
term everywhere, which mimics the anchoring of the
parallel plates as was done, for instance, in Ref. [26]:

f W = �
W0

2
(nw � n)2; (11)

where W0 is the anchoring strength and nw is the
normal to the plane. In 3D, the anchoring is applied
only at the plates, see Ref. [27].

In addition, we add a friction force to the right
hand side of Eq. (1) to describe the resistance to the

uid 
ow caused by the parallel plates:

F = � � u; (12)

where � is the friction coe�cient. Assuming Poiseuille

ow, u(z) = � a=(2� )z(z � L ), due to an external
accelerationa, the average velocity in the direction of
the acceleration is hui = aL 2

12� . Thus the 2D friction
coe�cient corresponding to the same average velocity
in a 3D system of parallel plates separated byL is

� =
12�
L 2 ; (13)

where � = �� is the absolute viscosity of the 
uid and
� is the kinematic viscosity. In simulation units (see
Table 1), we considerL = 34� x, which is close to the
cholesteric pitch, giving � = 4 :25.
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2.3. Material parameters and time scales

The elastic constants of a typical LC such as MBBA
at 22� C [28] are K 11 = 5 � 10� 12 N, K 22=K11 = 0 :42
and K 33=K11 = 1 :4. However, in the simulations
that follow we have used smaller elastic constants (52.4
times smaller, keeping the ratios) in order to enhance
numerical stability. The parameters in simulation units
are given in the Appendix and the following analysis
of the characteristic times uses the actual parameters.

The Leslie viscosities are� 4 = 0 :08 Pa.s, � 1 =
0:08� 4, � 2 = � 0:93� 4, � 3 = � 0:014� 4, � 5 = 0 :56� 4

and � 6 = � 0:41� 4.
Following Ref. [29], the characteristic time scale

for the relaxation of the director �eld is

� n =

L 2

K
(14)

where L is the relevant length scale. In our system,
it is the separation between the parallel plates but
it could be the electric correlation length in systems
under an external electric �eld. On the other hand,
the characteristic time scale for 
uid 
ow reads:

� v =
�L 2

�
; (15)

with � = � 4=2. The ratio between these time
scales measures the unsteadiness of the 
ow which
is � v

� n
� 10� 6 for the parameters given above. In

problems involving strong electric �elds, the time scales
may become comparable [30]. In the present setting,
however, the time scales are so di�erent that we can
consider that the 
uid relaxes instantaneously when
compared to the director �eld relaxation. Therefore
we can obtain the 
uid velocity steady state solution
while keeping the director �eld �xed. Additionally, the
Reynolds number is very small,Re � 10� 6 and thus
we can set the left hand side of Eq. (1) to zero.

One relevant non-dimensional number that char-
acterize the 
ow is the Ericksen number:

Er =
UL�

K
; (16)

which gives the ratio of the viscous over the elastic
forces. In the simulations that follow, we will vary
this number by changing the average velocity of the

uid, due to an external acceleration a. The analysis of
Sec. 2.2, shows that the resulting velocity isU = a=� .
A second non-dimensional number also relevant in the
problem is the ratio of the anchoring over the elastic
forces [27]:

NW =
W0p2

K
: (17)

In most simulations this anchoring number was kept
�xed (except in simulations of Fig. 4).

2.4. Numerical implementation

Using the approximations discussed in the previous
section, Eq. (1) becomes

@�
�
� P � �� + � v

�� + � e
��

�
� �u � = 0 : (18)

We solve Eqs. (18) and (2) using the arti�cial
compressibility method [31]. This is a �nite-di�erences
method to obtain steady state solutions of the Navier-
Stokes equation. It considers a pseudo time� , and the
solution is iterated until the 
ow reaches the steady
state. In the case under study, the equations are:

@� u� = @�
�
� P � �� + � v

�� + � e
��

�
� �u � (19)

@� P = � c2@� u� ; (20)

where c is an arbitrary constant. The previous
equations are iterated until @� P ! 0 which ensures
that the continuity equation is satis�ed. It is
also possible to control the convergence through the
velocity �eld rather than the pressure, which was done
in this work. We consider that convergence is obtained
when

max
�

jjunew j � j uold jj
hjuji

�
< 10� 6; (21)

which guarantees that the 
uid velocity has converged
locally. Here, unew and uold are the velocity �elds
in the current and the previous pseudo time steps
respectively, whilehjuji is the average of the magnitude
of the velocity in the entire domain. The pseudo time
step � � is chosen using an adaptive scheme in order
to speed up convergence [32]. In short, we calculate
the velocity �eld twice: �rst by using a time step � � ,
which gives u � � , and then by using half of this time
step � �=2 twice, which gives u � � = 2. We compute
the di�erence of the local magnitude of the velocity
calculated using these two time steps and choose the
next time step as follows:

� � new = 0 :9� � old min

 

max

 �
tol

2� umax

� 1
2

; 0:3

!

; 2

!

;

where we set tol = 10� 6 and

� umax = max

 �
� ju � � j � j u � � = 2j

�
�

hjuji

!

: (22)

The 0.9 is a safety factor to increase the chances of
success in the next iteration, i.e. � umax < tol, and
the maximum and minimum values are used to prevent
extreme changes in successive time steps.

The spatial derivatives on the r.h.s of Eq. (9)
are approximated by using �nite-di�erences and the
integration over time is performed using the fourth-
order Runge-Kutta method. More speci�cally, at
each time step in Eq. (9) we use the steady state
(with respect to the pseudo time � ) 
uid velocity
�eld obtained by solving Eqs. (19) and (20), with the
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Figure 1. Time evolution of the skyrmions for two di�erent average vel ocities. On the top row, the average velocity is
hui = 117 :64 � m/s, and the time of the di�erent frames is: (a) 0 s, (b) 9.5 s, ( c) 21.5 s, (d) 46 s, (e) 90 s. In the middle row,
the average velocity is hui = 14 :71 � m/s, and the time of the di�erent frames is: (f) 0 s, (g) 24.5 s, (h) 54.5 s, (i) 79 s, (j) 106.5 s.
(k) is the color bar for the frames (a) to (j). (l) and (m) depic t the magnitude of the velocity �eld corresponding to the fra mes (e)
and (j) respectively.

director �eld kept constant. Typically, the steady state

uid velocity is achieved after a few hundred pseudo
time steps � � (per time step of the director �eld
evolution). At each time step, the initial guess of the

uid velocity �eld, is the velocity �eld of the previous
time step, which increases the speed of convergence.
Although this scheme is computationally much faster
than the co-evolution of the 
uid and the director �elds
with the same time step, it is still very costly for 3D
simulations. Typically, in our 2D simulations, it takes
0.08 MLUPS (million lattice updates per second) in 8
threads. In addition, the simulation of 3D skyrmion,
or toron [27], faces another challenge: strong spurious
currents appear close to the two point defects which
\decorate" the skyrmions at their lower and upper
regions close to the con�ning surfaces. This is due to
the poor resolution of the defect cores with the current
method based on a uniform rectangular grid. More
advanced adaptive mesh techniques are required in
order to resolve the regions around these point defects,
which in turn call for more sophisticated numerical
techniques to solve the 
uid 
ow �eld in 3D problems
with realistic parameters, in reasonable time.

3. Results

3.1. One skyrmion

We start by describing the dynamics of a single
skyrmion on a square domain of size 40� m and periodic
boundary conditions. The initial con�guration is set up
as follows. We begin with an Ansatz for the director
�eld as in Ref. [33]:

ny = sin( a) cos(mb + g)

nx = sin( a) sin(mb + g)

nz = � cos(a); (23)

where

a =
�
2

�
1 � tanh

�
B
2

(r � R)
��

(24)

b = tan � 1
�

x � Cx

y � Cy

�
(25)

r =
q

(x � Cx )2 + ( y � Cy )2: (26)

The parameter R controls the size of the skyrmion,B
controls the sharpness of the interface that separates
the inner and outer regions,m is the winding number of
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the skyrmion, g controls the direction of the skyrmion,
r is the distance from the skyrmion center andb is
the 2D polar angle. The values of the parameters used
in the simulation are (in simulation units): m = 1,
g = �= 2, R = 0 :7p, B = 0 :5, Cx = L X =2, Cy = L Y =2.
The velocity �eld is set to zero while the the Ansatz
con�guration is relaxed until it reaches the steady
state.

Then a body force is applied to set up a mass

ow (from left to right in the �gures). We observe
that the velocity of the skyrmion's center of mass
is approximately the same as the average velocity
in the domain, meaning that the skyrmion is simply
advected by the 
uid 
ow. Small di�erences between
these velocities are observed due to the change in the
skyrmion's center of mass as a result from its shape
change, as discussed next.

The results of the simulations suggest that the
con�guration of the skyrmion changes with time and
does not reach a steady state. The skyrmion keeps
stretching with time until it approaches the domain
size and then interacts with its mirror image(s) due
to the periodic boundaries. More interestingly, the
skyrmion's shape is signi�cantly di�erent below and
above a threshold velocityhui th . In Fig. 1, we illustrate
the time evolution of the skyrmion con�guration
for two di�erent velocities. At large velocities, for
hui > hui th , the skyrmion stretches in the direction
perpendicular to the 
ow and acquires a \C" shape.
When it reaches the border of the domain, its curvature
increases due to the periodic boundaries. By contrast,
at low velocities, for hui < hui th , the skyrmion
stretches in the direction of the 
ow, acquiring a \T"
shape. Figs. 1 (l) and (m) illustrate the velocity �eld
in the last step for each velocity (Figs. 1 (e) and (j)).
Notice that the velocity is essentially uniform except
close to the edges of the skyrmions where it is slightly
di�erent.

In order to analyse the con�guration transition,
we de�ne an order parameter as the second moment of
the skyrmion spatial distribution (akin to mass in the
moment of inertia):

I x =
Z

H (nz )(y � yCM )2dA (27)

I y =
Z

H (nz )(x � xCM )2dA; (28)

where H (x) is the Heaviside step function, xCM and
yCM are the coordinates of the \center of mass" of the
skyrmion de�ned as xCM =

R
H (nz ) x dA=(L X L Y )

and yCM =
R

H (nz ) y dA=(L X L Y ). The integration
is over the entire area of the domain. The ratio
I x =Iy quanti�es the skyrmion distribution along the
directions perpendicular and parallel to the 
ow. If
I x =Iy > 1 the skyrmion is stretched perpendicular to
the 
ow while if I x =Iy < 1 the skyrmion is stretched

Figure 2. (a) Con�guration transition characterized by the
quantity I x =I y as a function of the average velocity. We observe a
discontinuous transition at hui th � 45:96 � m/s above which the
skyrmion is stretched in the direction perpendicular to the 
ow.
The measurements are taken when the length or the height of
the skyrmion reaches 25 � m. (b) Time evolution of the quantity
I x =I y for di�erent velocities.

parallel to it. Fig. 2(a) shows this order parameter as
a function of the 
uid velocity. As the con�guration
changes with time, (see Fig. 2(b)) we measured the
quantity I x =Iy when the length or the height of the
skyrmion reaches 80�x = 25 � m. The results reveal
that the con�guration transition occurs at a velocity
hui th � 45:96� m/s, corresponding to an Ericksen
number Er � 192:7, where we used the pitch as
the characteristic length. We illustrate in Fig. 3 the
con�guration of the skyrmions at the time when its
length or height reaches 80�x = 25� m. For velocities
below the threshold, the length of the \T" cross
increases as the velocity increases. For velocities above
the threshold, the skyrmion becomes more curved as
the velocity increases with the \C" closing up. A
full analysis of the forces acting on the skyrmions is
di�cult as the director �eld and the shear stresses are
far from uniform. Additional complications result from
the e�ect of the substrate friction and the anchoring by
the plates although these forces are likely to be sub-
dominant.
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We have veri�ed that skyrmions with di�erent
elastic constants and 
ow velocities but with the same
Ericksen number (ratio of viscous to elastic forces)
have identical shape. In Fig. 4, we depict skyrmions
for velocities below and above the threshold and
di�erent elastic constants: one half of those used earlier
(Fig. 4(a) and (d)), those used earlier (or the reference
elastic constants, represented asK ref

11 in the �gures)
(Fig. 4(b) and (e)) and four times larger than the
reference elastic constants (Fig. 4(c) and (f)). Note
that we have also changed the anchoring strength to
keep the anchoring numberNW = 12:3 constant. As
the shape of the skyrmions changes with time, we
chose an instant when the size of the skyrmions is
similar. We �nd that the shape of the skyrmions for
the same Ericksen (Er ) and anchoring (NW ) numbers
is very similar. We have checked the collapse of the
con�guration diagrams (similar to the one shown in
Fig. 2(a)) with the Ericksen number, obtained for
di�erent values of the elastic constants. As shown in
Fig. 4(g), the con�guration transition occurs for the
same value ofEr in the three cases.

We have also checked that the skyrmion con�gura-
tion transition persists when the elastic anisotropy [34]
of the LC is switched o� (single LC elastic constant)
and thus conclude that the mechanism is dominated
by the anisotropy of the 
ow �eld. Fig. 5(c) illustrates
the x and y components of the 
ow �eld. Although
the component of the velocity alongy is much smaller
than that along x, its behaviour can be related to the
skyrmion con�guration transition. We note that hjuy ji
increases withhux i below the transition indicating that
part of the 
uid is diverted in a direction perpendicu-
lar to the main 
ow, as a result of the coupling with
the skyrmion's director �eld. The snapshots shown in
Fig. 5 (a) and (b) show that, in the skyrmion region,
the 
ow lines (blue arrows) are predominantly oriented
perpendicular to the director (grey lines). The magni-
tude of the velocity along y, hjuy ji reaches a maximum
at the con�guration transition ( hui th � 45:96� m/s)
and then decreases in the \C" shape region.

3.2. Two skyrmions

In the previous sections, we simulated single skyrmions
on a square domain subject to periodic boundary
conditions, which is equivalent to simulating a lattice
of equally spaced skyrmions. The single skyrmions
interact only when their size is close to the size of
the simulation domain. In what follows, we report the
results of simulations of a pair of moving skyrmions
whose center-to-center vector is at an angle with
respect to the 
ow direction. Before applying the
external 
ow we allow the system of two skyrmions
to relax to the con�guration corresponding to the
minimum Frank-Oseen elastic free energy. In the linear

a b c

ed f

Figure 3. Comparison of skyrmions with length or height equal
to 25 � m at di�erent average velocities. On the top, skyrmions
stretched in the direction of the 
ow with average velocity ( a)
hui = 1 :30 � m/s, (b) hui = 10 :4 � m/s, (c) hui = 14 :71 � m/s. On
the bottom, skyrmions stretched in the direction perpendic ular
to the 
ow with average velocity (d) hui = 50 :0 � m/s, (e)
hui = 58 :82 � m/s, (f) hui = 117 :65 � m/s.

(far-�eld) approximation the skyrmions experience an
elastic repulsive interaction with dipolar symmetry.
In what follows, however, we will focus on near-
�eld e�ects. More speci�cally, we consider how the
presence of a second skyrmion a�ects the shape of a
neighbouring 
owing skyrmion, compared to the shape
of the single skyrmion described above.

We recall, that the shapes in the single skyrmion
case exhibit mirror symmetry with respect to the x-axis
(in the frame of reference, where the skyrmion center
of mass is located on that axis). This mirror symmetry
is broken (Figs. 6 (b) and (c)) for two skyrmions which
initially are not aligned in the direction perpendicular
or parallel to the 
ow (Fig. 6(a)). Additionally the
shapes of the two skyrmions become quite di�erent as
shown in Figs. 6 (b) and (c). This shape asymmetry
can be understood in terms of the 
ow and the
inter-skyrmion repulsion arising from the elastic free
energy. Indeed, as the 
ow induces stretching of
a given skyrmion in the direction of its neighbor,
the skyrmions repel, which in turn suppresses the
stretching. This is noticeable when the skyrmions
\surface-to-surface" (where the surface is de�ned as an
iso-surface corresponding tonz = 0) distance becomes
comparable to the cholesteric pitch.

Next, we quantify the relative change in the
skyrmion shape induced by the presence of the second
skyrmion. To this end, we consider a pair of
skyrmions whose center-to-center vector is initially
aligned with the y-axis (see the left inset in Fig. 6(d)),
i.e., perpendicular to the direction of the external

ow. We calculate the shape order parameterI x =Iy ,
de�ned in Eq. (28), of one of the skyrmions of
the pair and compare it to the corresponding order
parameter for a single 
owing skyrmion. The order
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a b c

d e f

g

Figure 4. Shape similarity of skyrmions with the same
Ericksen and anchoring numbers for di�erent elastic consta nts
and velocities. Figures (a), (b) and (c) correspond to Er = 123 :3
and (d), (e) and (f) to Er = 493 :4. The times were chosen by
inspection for skyrmions with a similar size. (a) K 11 = 0 :5K ref

11

and hui = 14 :7� m/s. (b) K 11 = K ref
11 = 9 :54 � 10� 14 N and

hui = 29 :4� m/s. (c) K 11 = 4 K ref
11 and hui = 117 :6� m/s. (d)

K 11 = 0 :5K ref
11 and hui = 58 :8� m/s. (e) K 11 = K ref

11 and

hui = 117 :6� m/s. (f) K 11 = 4 K ref
11 and hui = 470 :4� m/s. (g)

Relation between the quantity I x =I y and the Ericksen number
for the three di�erent elastic constants.

parameters are plotted in Fig. 6(d) against time. The
average 
ow velocity is set above the con�guration-
transition threshold hui th for a single skyrmion, and
thus both skyrmions tend to stretch in the direction
perpendicular to the 
ow. The stretching is strongly
suppressed, however, due to the elastic repulsion
between the two skyrmions (see the right inset in
Fig. 6(d)). For instance, at t = 20s the surface-to-
surface distance between the skyrmions is 5:9 � m and
the relative di�erence between the order parameters is
10:6% while, at t = 60s the distance is 5:0 � m and the
relative di�erence of the order parameters is 51:8%.

An experimental setup to study the interaction
between 
owing skyrmions may consider a cluster
of them as in Refs. [35, 26]. Depending on the
distance between one skyrmion and its neighbours,
the suppression of the skyrmion's elongation should be
stronger than in the two skyrmions case. A question
to be addressed in future work is how the interaction

a b

c

Figure 5. Anisotropy of the 
ow �eld. (a) and (b) show two
examples of the 
ow �eld close to the skyrmion. The average
velocities are (a) hui = 1 :3� m/s and (b) hui = 117 :6� m/s.
The gray lines represent the director �eld while the blue arr ows
represent the 
uid velocity relative to the skyrmion motion .
(c) Norm of the y-component against the x-component of the
velocity �eld, both averaged in space. The measurements are
taken when the length or the height of the skyrmion reaches 25
� m.

between skyrmions a�ects the threshold velocity for the
con�guration transition.

4. Conclusion

The investigation of 
owing skyrmions is an important
research topic, both theoretically as well as in
applications, e.g. in those involving micro
uidics,
as mass 
ows are expected to a�ect the skyrmions
structure and stability. While this may be bene�cial in
some applications it will be detrimental in others. In
any case it is necessary to identify and quantify these
e�ects and to search for e�cient ways of controlling
them.

Simulation studies of 
owing skyrmions are scarce
(or non-existent) and the results of the investigation
reported here revealed one surprise and highlighted
some of the di�culties that lie ahead.

As for the surprise we found that for velocities
above a certain threshold, 2D skyrmions stretch in the
direction perpendicular to the 
ow, by contrast to the
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a b c

d

Figure 6. Two 
owing skyrmions. (a) Initial con�guration. (b)
hui = 29 :4 � m/s at t = 119 s. (c) hui = 117 :6 � m/s at t = 69
s. (d) Time evolution of the order parameter for one skyrmion
and two skyrmions aligned in the direction perpendicular to the

ow, as shown in the insets, at two instants of time for a 
ow
velocity hui = 58 :82 � m/s.

regime of weak 
ows where the skyrmions stretch along
the streamlines of the 
ow �eld. We also found that the
two regimes are separated by an abrupt (�rst-order)
dynamical transition, which is robust with respect to
e.g., changes of the liquid crystal elastic constants.

This result clearly illustrates that simulations
provide an ideal tool to make progress in the �eld
and our study is likely to be followed by more
sophisticated and realistic ones. Beyond the obvious
generalizations to 3D skyrmions, a full understanding
of the mechanism that drives the con�guration
transition is probably the most pressing question. A
detailed analysis of the 
ow �elds and of the forces
acting on the system is underway and may reveal a
dominant mechanism or mechanisms.

A somewhat (un)related line of research concerns
the (ir)reversibility of the 
owing skyrmion con�gura-
tions, when the 
ow is reversed. Preliminary results
show that, as expected, in a given 
ow regime the
shape changes are reversible during the initial stages
of the 
ow, and become irreversible as the 
ow pro-
ceeds. A quantitative analysis of the irreversibility re-
quires, however, the calculation of the di�erent contri-
butions to the dissipated energy, e.g. dissipation from
the 
uid 
ow, dissipation from the director relaxation,
dissipation from the anchoring conditions, which will
be carried out in future work, both in the di�erent

ow regimes as well as near the skyrmion con�guration

Table 1. Parameters used in simulation and physical units.

symbol sim. units physical units description

� 1 1088 Kg/m 3 density
� x 1 0.3125 � m lattice spacing
� t 1 10� 6 s time step
K 11 0.01 9.54� 10� 14 N elastic constant
� 4 819.2 0.08 Pa.s Leslie viscosity
c 10 0.3125 m/s see Eq. (20)
p 32 10 � m cholesteric pitch
W0 0.00012 3� 10� 5 J/m 2 anchoring strength
� 4.25 3� 10� 11 N s/m friction coe�cient

transition.This may shed further light on the dominant
mechanism of the con�guration transition and provide
a means to control skyrmion shapes.

Appendix: Parameters

Table 1 summarises the parameters used in the
simulations in numerical and physical units. The
conversion between the two systems is obtained from
the values of � t, � x and � . We note that the value
of the time step is only a reference, since we used a
time step 100� t to solve Eq. (9) with �nite-di�erences.
In addition, we recall that we used elastic constants
smaller than those of MBBA.
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