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Abstract. We investigate, numerically, the effects of externally imposed
material flows on the structure and temporal evolution of liquid crystal skyrmions.
The dynamics of a 2D system of skyrmions is modeled using the Ericksen-Leslie
theory, which is based on two coupled equations, one for material flow and the
other for the director field. As the time scales of the velocity and director
fields differ by several orders of magnitude for realistic values of the system
parameters, we have simplified the calculations by assuming that the velocity
relaxes instantaneously when compared to the relaxation of the director field.
Thus, we have used a finite-differences method known as artificial compressibility
with adaptive time step to solve the velocity field and a fourth-order Runge-
Kutta method for the director field. We characterized the skyrmion shape or
configuration as a function of the time and the average velocity of the flow field.
We found that for velocities above a certain threshold, the skyrmions stretch in
the direction perpendicular to the flow, by contrast to the regime of weak flows
where the skyrmions stretch along the streamlines of the flow field. These two
regimes are separated by an abrupt (first-order) dynamical transition, which is
robust with respect to e.g., the liquid crystal elastic anisotropy. Additionally, we
have found how the presence of a second skyrmion affects the evolution of the
shape of the skyrmions, by comparing the evolution of pairs of skyrmions to the
evolution of a single-skyrmion.
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1. Introduction

Active colloids represent a new class of nonequilibrium
soft matter in which energy harvesting and conversion
take place at the level of the individual particles.
In the last decade, significant progress has been
made in developing synthetic self-propelled micro-
particles, which are capable of converting the free
energy of the environment into mechanical energy of
translational or rotational motion [1]. This offers
the possibility to use such particles as autonomous
micromotors [2, 3] for, e.g. delivering drugs [4, 5],
sensing specific substances [6], assembling structures
via the autonomous local deposition of materials [7],
or removal of contaminants from water [8, 9]. From a
basic science point of view, active colloids exhibit novel
types of emergent collective behavior, not observed
in passive colloids, such as “living crystals” that are
mobile, break apart and reform again [10] or motility-
induced phase separation in systems with purely
repulsive interactions [11, 12, 13].

Recently, a novel class of soft active matter
has been realized experimentally, where topological
solitons in confined chiral liquid crystals (LCs) are the
elementary building blocks of the active matter system
[14]. These solitons, named “skyrmions” are spatially
localized, non-singular configurations of the LC
director field that cannot be transformed continuously
into the uniform state. They are low-dimensional
analogs of Skyrme solitons in nuclear physics [15]. Both
three-dimensional (3D) [16] and two-dimensional (2D)
[17] skyrmions have been realized. The core of a 3D
skyrmion is a double twist torus, where the director
twists from the torus axis in all orthogonal (to the
torus axis) directions [16]. Experiments and numerical
calculations based on the Frank-Oseen elastic free
energy [18] reveal a rich structural behavior and
conformational transitions between skyrmion states
with the same or different Hopf indices. By contrast
to active colloids which are solid, LC skyrmions
are soft as they lack physical interfaces and their
motion is accompanied by the periodic expansion and
contraction of topology-protected distorted LC regions,
mimicking the behavior of biological cells.

The motion of the LC skyrmions is powered by
a time-dependent electric field applied to the LC in a
direction normal to the confining surfaces – a set up
that resembles the one used in LC display technology
[14]. The basic physical mechanism of the skyrmion
motion is related to the “non-reciprocal” rotational
dynamics of the LC director field when the electric
field is turned on and off. Surprisingly, it is possible to
control both the speed and the direction of the motion
by varying the strength and the modulation frequency
of the applied electric field [14]. Additionally, skyrmion
motion can be controlled by taking advantage of

the unique optical properties of LCs. For example,
the size and velocity of solitons, as well as their
collective dynamics and self-assembly can be controlled
by combining laser tweezer techniques and photo-
patterning of the in-plane LC director [19].

LC skyrmions exhibit effective elastic interactions
that can be easily tuned in strength or switched
from attractive to repulsive [20]. When the volt-
age modulation period is shorter than the LC re-
sponse time, the skyrmion interactions are intrinsi-
cally out-of-equilibrium, resulting in remarkably rich
emergent collective dynamics with reconfigurable out-
of-equilibrium assemblies of skyrmions. At high pack-
ing fractions, hexagonal crystallites of tightly packed
solitons can be brought into coherent motion along an
arbitrary direction, which leads to an increased hexatic
order parameter and is accompanied by the anisotropic
deformation of the hexagonal soliton lattice [19]. Ac-
tive skyrmions can also be used to entrap [21] and
transport microparticles [22], which provides opportu-
nities for the development of novel electro-optic respon-
sive materials as the experimental conditions for active
skyrmions are similar to those used in LC display tech-
nologies.

Despite the extensive body of experimental
research, the many-body dynamics of LC solitons
remains poorly understood. Existing numerical
investigations are limited to a very small number
of skyrmions and exploit the relaxation dynamics of
the LC director field only in order to understand
the field-induced motion of the skyrmions [14, 20],
ignoring completely the effects of the material flow
field. Experiments revealed the presence of weak
backflows associated with the skyrmion motion [14],
but no systematic study of this effect was pursued.
On the other hand, detailed numerical analysis of the
dynamics of nematic LCs subject to step-like voltage
modulations [23] demonstrated robust generation of
material flows by dynamic electric fields using the
backflow effects. Additionally, in future lab-on-a-
chip applications, active particles will undoubtedly
encounter shear flows and will need to autonomously
sense and respond to them.

In the present study, we focus on the effects of
externally imposed material flows on the structure and
temporal evolution of LC skyrmions. In particular,
we obtain the skyrmion shape or configuration as a
function of time and the average velocity of the flow
field. Surprisingly, at early times and for velocities
above a certain threshold, the skyrmions stretch in the
direction perpendicular to the flow, by contrast to the
regime of weak flows where the skyrmions are stretched
along the streamlines of the flow. These regimes
are separated by an abrupt (first-order) dynamical
transition, which is robust with respect to e.g., changes
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of the LC elastic constants. Additionally, we show that
the presence of a neighboring skyrmion significantly
affects the evolution of the skyrmion shape when
compared to the single-skyrmion case. In Sec. 2 we
outline the theory used to describe the dynamics of
the system in 2D and the numerical method used to
solve the dynamical equations, for the set of material
parameters under consideration. In Sec. 3 we present
and discuss the results for single skyrmions under flow
and and for pairs of skyrmions. We emphasise the
results for the configuration transition found for single
skyrmions under flow. Finally, in Sec. 4 we conclude
and point directions for future work.

2. Theory and numerical method

In this section we describe the equations used to
model the skyrmion dynamics and the numerical
methods employed to solve them. We consider a chiral
nematic LC under confinement, far from any bulk
transition, reducing the skyrmion ordering dynamics
to the dynamics of the director field (i.e., we assume
that the scalar nematic order parameter is constant
throughout the sample and does not contribute to the
ordering dynamics).

2.1. Ericksen-Leslie dynamics

Liquid crystals are materials that flow like liquids,
but are composed of non-spherical particles with a
preferential direction of alignment in the nematic
phase, known as the director. Cholesterics are
twisted nematics, where the director rotates over a
characteristic distance, known as the pitch. The
simplest model to describe the dynamics of the director
field, which is adequate deep in the nematic or
the cholesteric phase, was proposed by Ericksen and
Leslie [24, 25]. It consists of two equations: one for the
material flow and the other for the director field.

For the material flow, we use the Navier Stokes
equation together with the continuity equation:

ρ∂tuα + ρuβ∂βuα = ∂β
[

−Pδαβ + σv
αβ + σe

αβ

]

(1)

∂αuα = 0, (2)

where the viscous stress tensor is:

σv
αβ = α1nαnβnµnρDµρ + α2nβNα + α3nαNβ

+ α4Dαβ + α5nβnµDµα + α6nαnµDµβ . (3)

Here ρ stands for the fluid density, P for the
hydrostatic pressure, u for the fluid velocity, n for the
director field (unit vector in the direction of preferential
alignment of the molecules) and αn’s for the Leslie
viscosities of the material. The kinematic transport,
which represents the effect of the macroscopic flow field
on the microscopic structure, is given by:

Nβ = ∂tnβ + uγ∂γnβ −Wβγnγ (4)

while the strain and vorticity tensors are, respectively:

Dαµ =
1

2
(∂αuµ + ∂µuα) , Wαµ =

1

2
(∂αuµ − ∂µuα) .(5)

The elastic stress tensor is:

σe
αβ = −∂αnγ

δF

δ(∂βnγ)
, (6)

where F is the Frank-Oseen elastic free energy:

F =

∫

dV
{K11

2
(∇ · n)2 +

K22

2
[n · (∇× n) + q0]

2 (7)

+
K33

2
[n× (∇× n)]2

}

. (8)

K11, K22, K33 are the LC elastic constants, and q0 =
2π/p, with p the cholesteric pitch. The second equation
describes the time evolution of the director field:

∂tnµ =
1

γ
hµ − λnαDαµ − uγ∂γnµ +Wµγnγ , (9)

where γ = α3 − α2 is the rotational viscosity, λ =
(α3 + α2)/(α3 − α2) is the aligning parameter, with
|λ| > 1 for flow aligning particles and |λ| < 1 for flow
tumbling ones. Finally, the molecular field is:

hµ = −
δF

δnµ
. (10)

2.2. Parallel plates modeling

We consider 2D domains and assume that the system
is invariant in the direction perpendicular to the
plane. This is a simplification used to reduce
the computational cost, which is quite high for 3D
simulations using the numerical techniques that will be
discussed in the next section. To this end, we add to
the free energy density of Eq. (8) an effective anchoring
term everywhere, which mimics the anchoring of the
parallel plates as was done, for instance, in Ref. [26]:

fW = −
W0

2
(nw · n)2, (11)

where W0 is the anchoring strength and nw is the
normal to the plane. In 3D, the anchoring is applied
only at the plates, see Ref. [27].

In addition, we add a friction force to the right
hand side of Eq. (1) to describe the resistance to the
fluid flow caused by the parallel plates:

F = −χu, (12)

where χ is the friction coefficient. Assuming Poiseuille
flow, u(z) = −a/(2ν)z(z − L), due to an external
acceleration a, the average velocity in the direction of

the acceleration is 〈u〉 = aL2

12ν . Thus the 2D friction
coefficient corresponding to the same average velocity
in a 3D system of parallel plates separated by L is

χ =
12µ

L2
, (13)

where µ = ρν is the absolute viscosity of the fluid and
ν is the kinematic viscosity. In simulation units (see
Table 1), we consider L = 34∆x, which is close to the
cholesteric pitch, giving χ = 4.25.
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2.3. Material parameters and time scales

The elastic constants of a typical LC such as MBBA
at 22◦C [28] are K11 = 5 × 10−12 N, K22/K11 = 0.42
and K33/K11 = 1.4. However, in the simulations
that follow we have used smaller elastic constants (52.4
times smaller, keeping the ratios) in order to enhance
numerical stability. The parameters in simulation units
are given in the Appendix and the following analysis
of the characteristic times uses the actual parameters.

The Leslie viscosities are α4 = 0.08 Pa.s, α1 =
0.08α4, α2 = −0.93α4, α3 = −0.014α4, α5 = 0.56α4

and α6 = −0.41α4.
Following Ref. [29], the characteristic time scale

for the relaxation of the director field is

τn =
γL2

K
(14)

where L is the relevant length scale. In our system,
it is the separation between the parallel plates but
it could be the electric correlation length in systems
under an external electric field. On the other hand,
the characteristic time scale for fluid flow reads:

τv =
ρL2

µ
, (15)

with µ = α4/2. The ratio between these time
scales measures the unsteadiness of the flow which
is τv

τn
∼ 10−6 for the parameters given above. In

problems involving strong electric fields, the time scales
may become comparable [30]. In the present setting,
however, the time scales are so different that we can
consider that the fluid relaxes instantaneously when
compared to the director field relaxation. Therefore
we can obtain the fluid velocity steady state solution
while keeping the director field fixed. Additionally, the
Reynolds number is very small, Re ∼ 10−6 and thus
we can set the left hand side of Eq. (1) to zero.

One relevant non-dimensional number that char-
acterize the flow is the Ericksen number:

Er =
ULµ

K
, (16)

which gives the ratio of the viscous over the elastic
forces. In the simulations that follow, we will vary
this number by changing the average velocity of the
fluid, due to an external acceleration a. The analysis of
Sec. 2.2, shows that the resulting velocity is U = a/χ.
A second non-dimensional number also relevant in the
problem is the ratio of the anchoring over the elastic
forces [27]:

NW =
W0p

2

K
. (17)

In most simulations this anchoring number was kept
fixed (except in simulations of Fig. 4).

2.4. Numerical implementation

Using the approximations discussed in the previous
section, Eq. (1) becomes

∂β
[

−Pδαβ + σv
αβ + σe

αβ

]

− χuα = 0. (18)

We solve Eqs. (18) and (2) using the artificial
compressibility method [31]. This is a finite-differences
method to obtain steady state solutions of the Navier-
Stokes equation. It considers a pseudo time τ , and the
solution is iterated until the flow reaches the steady
state. In the case under study, the equations are:

∂τuα = ∂β
[

−Pδαβ + σv
αβ + σe

αβ

]

− χuα (19)

∂τP = −c2∂αuα, (20)

where c is an arbitrary constant. The previous
equations are iterated until ∂τP → 0 which ensures
that the continuity equation is satisfied. It is
also possible to control the convergence through the
velocity field rather than the pressure, which was done
in this work. We consider that convergence is obtained
when

max

(

||unew| − |uold||

〈|u|〉

)

< 10−6, (21)

which guarantees that the fluid velocity has converged
locally. Here, unew and uold are the velocity fields
in the current and the previous pseudo time steps
respectively, while 〈|u|〉 is the average of the magnitude
of the velocity in the entire domain. The pseudo time
step ∆τ is chosen using an adaptive scheme in order
to speed up convergence [32]. In short, we calculate
the velocity field twice: first by using a time step ∆τ ,
which gives u∆τ , and then by using half of this time
step ∆τ/2 twice, which gives u∆τ/2. We compute
the difference of the local magnitude of the velocity
calculated using these two time steps and choose the
next time step as follows:

∆τnew = 0.9∆τoldmin

(

max

(

(

tol

2∆umax

)
1

2

, 0.3

)

, 2

)

,

where we set tol = 10−6 and

∆umax = max

(

∣

∣|u∆τ | − |u∆τ/2|
∣

∣

〈|u|〉

)

. (22)

The 0.9 is a safety factor to increase the chances of
success in the next iteration, i.e. ∆umax < tol, and
the maximum and minimum values are used to prevent
extreme changes in successive time steps.

The spatial derivatives on the r.h.s of Eq. (9)
are approximated by using finite-differences and the
integration over time is performed using the fourth-
order Runge-Kutta method. More specifically, at
each time step in Eq. (9) we use the steady state
(with respect to the pseudo time τ) fluid velocity
field obtained by solving Eqs. (19) and (20), with the
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Figure 1. Time evolution of the skyrmions for two different average velocities. On the top row, the average velocity is
〈u〉 = 117.64 µm/s, and the time of the different frames is: (a) 0 s, (b) 9.5 s, (c) 21.5 s, (d) 46 s, (e) 90 s. In the middle row,
the average velocity is 〈u〉 = 14.71 µm/s, and the time of the different frames is: (f) 0 s, (g) 24.5 s, (h) 54.5 s, (i) 79 s, (j) 106.5 s.
(k) is the color bar for the frames (a) to (j). (l) and (m) depict the magnitude of the velocity field corresponding to the frames (e)
and (j) respectively.

director field kept constant. Typically, the steady state
fluid velocity is achieved after a few hundred pseudo
time steps ∆τ (per time step of the director field
evolution). At each time step, the initial guess of the
fluid velocity field, is the velocity field of the previous
time step, which increases the speed of convergence.
Although this scheme is computationally much faster
than the co-evolution of the fluid and the director fields
with the same time step, it is still very costly for 3D
simulations. Typically, in our 2D simulations, it takes
0.08 MLUPS (million lattice updates per second) in 8
threads. In addition, the simulation of 3D skyrmion,
or toron [27], faces another challenge: strong spurious
currents appear close to the two point defects which
“decorate” the skyrmions at their lower and upper
regions close to the confining surfaces. This is due to
the poor resolution of the defect cores with the current
method based on a uniform rectangular grid. More
advanced adaptive mesh techniques are required in
order to resolve the regions around these point defects,
which in turn call for more sophisticated numerical
techniques to solve the fluid flow field in 3D problems
with realistic parameters, in reasonable time.

3. Results

3.1. One skyrmion

We start by describing the dynamics of a single
skyrmion on a square domain of size 40µm and periodic
boundary conditions. The initial configuration is set up
as follows. We begin with an Ansatz for the director
field as in Ref. [33]:

ny = sin(a) cos(mb+ g)

nx = sin(a) sin(mb+ g)

nz = − cos(a), (23)

where

a =
π

2

[

1− tanh

(

B

2
(r −R)

)]

(24)

b = tan−1

(

x− Cx

y − Cy

)

(25)

r =
√

(x− Cx)2 + (y − Cy)2. (26)

The parameter R controls the size of the skyrmion, B
controls the sharpness of the interface that separates
the inner and outer regions,m is the winding number of
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the skyrmion, g controls the direction of the skyrmion,
r is the distance from the skyrmion center and b is
the 2D polar angle. The values of the parameters used
in the simulation are (in simulation units): m = 1,
g = π/2, R = 0.7p, B = 0.5, Cx = LX/2, Cy = LY /2.
The velocity field is set to zero while the the Ansatz
configuration is relaxed until it reaches the steady
state.

Then a body force is applied to set up a mass
flow (from left to right in the figures). We observe
that the velocity of the skyrmion’s center of mass
is approximately the same as the average velocity
in the domain, meaning that the skyrmion is simply
advected by the fluid flow. Small differences between
these velocities are observed due to the change in the
skyrmion’s center of mass as a result from its shape
change, as discussed next.

The results of the simulations suggest that the
configuration of the skyrmion changes with time and
does not reach a steady state. The skyrmion keeps
stretching with time until it approaches the domain
size and then interacts with its mirror image(s) due
to the periodic boundaries. More interestingly, the
skyrmion’s shape is significantly different below and
above a threshold velocity 〈u〉th. In Fig. 1, we illustrate
the time evolution of the skyrmion configuration
for two different velocities. At large velocities, for
〈u〉 > 〈u〉th, the skyrmion stretches in the direction
perpendicular to the flow and acquires a “C” shape.
When it reaches the border of the domain, its curvature
increases due to the periodic boundaries. By contrast,
at low velocities, for 〈u〉 < 〈u〉th, the skyrmion
stretches in the direction of the flow, acquiring a “T”
shape. Figs. 1 (l) and (m) illustrate the velocity field
in the last step for each velocity (Figs. 1 (e) and (j)).
Notice that the velocity is essentially uniform except
close to the edges of the skyrmions where it is slightly
different.

In order to analyse the configuration transition,
we define an order parameter as the second moment of
the skyrmion spatial distribution (akin to mass in the
moment of inertia):

Ix =

∫

H(nz)(y − yCM )2dA (27)

Iy =

∫

H(nz)(x − xCM )2dA, (28)

where H(x) is the Heaviside step function, xCM and
yCM are the coordinates of the “center of mass” of the
skyrmion defined as xCM =

∫

H(nz)x dA/(LX LY )
and yCM =

∫

H(nz) y dA/(LX LY ). The integration
is over the entire area of the domain. The ratio
Ix/Iy quantifies the skyrmion distribution along the
directions perpendicular and parallel to the flow. If
Ix/Iy > 1 the skyrmion is stretched perpendicular to
the flow while if Ix/Iy < 1 the skyrmion is stretched

Figure 2. (a) Configuration transition characterized by the
quantity Ix/Iy as a function of the average velocity. We observe a
discontinuous transition at 〈u〉th ≈ 45.96 µm/s above which the
skyrmion is stretched in the direction perpendicular to the flow.
The measurements are taken when the length or the height of
the skyrmion reaches 25 µm. (b) Time evolution of the quantity
Ix/Iy for different velocities.

parallel to it. Fig. 2(a) shows this order parameter as
a function of the fluid velocity. As the configuration
changes with time, (see Fig. 2(b)) we measured the
quantity Ix/Iy when the length or the height of the
skyrmion reaches 80∆x = 25µm. The results reveal
that the configuration transition occurs at a velocity
〈u〉th ≈ 45.96µm/s, corresponding to an Ericksen
number Er ≈ 192.7, where we used the pitch as
the characteristic length. We illustrate in Fig. 3 the
configuration of the skyrmions at the time when its
length or height reaches 80∆x = 25µm. For velocities
below the threshold, the length of the “T” cross
increases as the velocity increases. For velocities above
the threshold, the skyrmion becomes more curved as
the velocity increases with the “C” closing up. A
full analysis of the forces acting on the skyrmions is
difficult as the director field and the shear stresses are
far from uniform. Additional complications result from
the effect of the substrate friction and the anchoring by
the plates although these forces are likely to be sub-
dominant.
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We have verified that skyrmions with different
elastic constants and flow velocities but with the same
Ericksen number (ratio of viscous to elastic forces)
have identical shape. In Fig. 4, we depict skyrmions
for velocities below and above the threshold and
different elastic constants: one half of those used earlier
(Fig. 4(a) and (d)), those used earlier (or the reference

elastic constants, represented as Kref
11

in the figures)
(Fig. 4(b) and (e)) and four times larger than the
reference elastic constants (Fig. 4(c) and (f)). Note
that we have also changed the anchoring strength to
keep the anchoring number NW = 12.3 constant. As
the shape of the skyrmions changes with time, we
chose an instant when the size of the skyrmions is
similar. We find that the shape of the skyrmions for
the same Ericksen (Er) and anchoring (NW ) numbers
is very similar. We have checked the collapse of the
configuration diagrams (similar to the one shown in
Fig. 2(a)) with the Ericksen number, obtained for
different values of the elastic constants. As shown in
Fig. 4(g), the configuration transition occurs for the
same value of Er in the three cases.

We have also checked that the skyrmion configura-
tion transition persists when the elastic anisotropy [34]
of the LC is switched off (single LC elastic constant)
and thus conclude that the mechanism is dominated
by the anisotropy of the flow field. Fig. 5(c) illustrates
the x and y components of the flow field. Although
the component of the velocity along y is much smaller
than that along x, its behaviour can be related to the
skyrmion configuration transition. We note that 〈|uy|〉
increases with 〈ux〉 below the transition indicating that
part of the fluid is diverted in a direction perpendicu-
lar to the main flow, as a result of the coupling with
the skyrmion’s director field. The snapshots shown in
Fig. 5 (a) and (b) show that, in the skyrmion region,
the flow lines (blue arrows) are predominantly oriented
perpendicular to the director (grey lines). The magni-
tude of the velocity along y, 〈|uy|〉 reaches a maximum
at the configuration transition (〈u〉th ≈ 45.96µm/s)
and then decreases in the “C” shape region.

3.2. Two skyrmions

In the previous sections, we simulated single skyrmions
on a square domain subject to periodic boundary
conditions, which is equivalent to simulating a lattice
of equally spaced skyrmions. The single skyrmions
interact only when their size is close to the size of
the simulation domain. In what follows, we report the
results of simulations of a pair of moving skyrmions
whose center-to-center vector is at an angle with
respect to the flow direction. Before applying the
external flow we allow the system of two skyrmions
to relax to the configuration corresponding to the
minimum Frank-Oseen elastic free energy. In the linear

a b c

ed f

Figure 3. Comparison of skyrmions with length or height equal
to 25 µm at different average velocities. On the top, skyrmions
stretched in the direction of the flow with average velocity (a)
〈u〉 = 1.30µm/s, (b) 〈u〉 = 10.4µm/s, (c) 〈u〉 = 14.71µm/s. On
the bottom, skyrmions stretched in the direction perpendicular
to the flow with average velocity (d) 〈u〉 = 50.0µm/s, (e)
〈u〉 = 58.82 µm/s, (f) 〈u〉 = 117.65 µm/s.

(far-field) approximation the skyrmions experience an
elastic repulsive interaction with dipolar symmetry.
In what follows, however, we will focus on near-
field effects. More specifically, we consider how the
presence of a second skyrmion affects the shape of a
neighbouring flowing skyrmion, compared to the shape
of the single skyrmion described above.

We recall, that the shapes in the single skyrmion
case exhibit mirror symmetry with respect to the x-axis
(in the frame of reference, where the skyrmion center
of mass is located on that axis). This mirror symmetry
is broken (Figs. 6 (b) and (c)) for two skyrmions which
initially are not aligned in the direction perpendicular
or parallel to the flow (Fig. 6(a)). Additionally the
shapes of the two skyrmions become quite different as
shown in Figs. 6 (b) and (c). This shape asymmetry
can be understood in terms of the flow and the
inter-skyrmion repulsion arising from the elastic free
energy. Indeed, as the flow induces stretching of
a given skyrmion in the direction of its neighbor,
the skyrmions repel, which in turn suppresses the
stretching. This is noticeable when the skyrmions
“surface-to-surface” (where the surface is defined as an
iso-surface corresponding to nz = 0) distance becomes
comparable to the cholesteric pitch.

Next, we quantify the relative change in the
skyrmion shape induced by the presence of the second
skyrmion. To this end, we consider a pair of
skyrmions whose center-to-center vector is initially
aligned with the y-axis (see the left inset in Fig. 6(d)),
i.e., perpendicular to the direction of the external
flow. We calculate the shape order parameter Ix/Iy,
defined in Eq. (28), of one of the skyrmions of
the pair and compare it to the corresponding order
parameter for a single flowing skyrmion. The order
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a b c

d e f

g

Figure 4. Shape similarity of skyrmions with the same
Ericksen and anchoring numbers for different elastic constants
and velocities. Figures (a), (b) and (c) correspond to Er = 123.3
and (d), (e) and (f) to Er = 493.4. The times were chosen by

inspection for skyrmions with a similar size. (a) K11 = 0.5Kref
11

and 〈u〉 = 14.7µm/s. (b) K11 = Kref
11

= 9.54 × 10−14 N and

〈u〉 = 29.4µm/s. (c) K11 = 4Kref
11

and 〈u〉 = 117.6µm/s. (d)

K11 = 0.5Kref
11

and 〈u〉 = 58.8µm/s. (e) K11 = Kref
11

and

〈u〉 = 117.6µm/s. (f) K11 = 4Kref
11

and 〈u〉 = 470.4µm/s. (g)
Relation between the quantity Ix/Iy and the Ericksen number
for the three different elastic constants.

parameters are plotted in Fig. 6(d) against time. The
average flow velocity is set above the configuration-
transition threshold 〈u〉th for a single skyrmion, and
thus both skyrmions tend to stretch in the direction
perpendicular to the flow. The stretching is strongly
suppressed, however, due to the elastic repulsion
between the two skyrmions (see the right inset in
Fig. 6(d)). For instance, at t = 20s the surface-to-
surface distance between the skyrmions is 5.9µm and
the relative difference between the order parameters is
10.6% while, at t = 60s the distance is 5.0µm and the
relative difference of the order parameters is 51.8%.

An experimental setup to study the interaction
between flowing skyrmions may consider a cluster
of them as in Refs. [35, 26]. Depending on the
distance between one skyrmion and its neighbours,
the suppression of the skyrmion’s elongation should be
stronger than in the two skyrmions case. A question
to be addressed in future work is how the interaction

a b

c

Figure 5. Anisotropy of the flow field. (a) and (b) show two
examples of the flow field close to the skyrmion. The average
velocities are (a) 〈u〉 = 1.3µm/s and (b) 〈u〉 = 117.6µm/s.
The gray lines represent the director field while the blue arrows
represent the fluid velocity relative to the skyrmion motion.
(c) Norm of the y-component against the x-component of the
velocity field, both averaged in space. The measurements are
taken when the length or the height of the skyrmion reaches 25
µm.

between skyrmions affects the threshold velocity for the
configuration transition.

4. Conclusion

The investigation of flowing skyrmions is an important
research topic, both theoretically as well as in
applications, e.g. in those involving microfluidics,
as mass flows are expected to affect the skyrmions
structure and stability. While this may be beneficial in
some applications it will be detrimental in others. In
any case it is necessary to identify and quantify these
effects and to search for efficient ways of controlling
them.

Simulation studies of flowing skyrmions are scarce
(or non-existent) and the results of the investigation
reported here revealed one surprise and highlighted
some of the difficulties that lie ahead.

As for the surprise we found that for velocities
above a certain threshold, 2D skyrmions stretch in the
direction perpendicular to the flow, by contrast to the
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a b c

d

Figure 6. Two flowing skyrmions. (a) Initial configuration. (b)
〈u〉 = 29.4µm/s at t = 119 s. (c) 〈u〉 = 117.6µm/s at t = 69
s. (d) Time evolution of the order parameter for one skyrmion
and two skyrmions aligned in the direction perpendicular to the
flow, as shown in the insets, at two instants of time for a flow
velocity 〈u〉 = 58.82µm/s.

regime of weak flows where the skyrmions stretch along
the streamlines of the flow field. We also found that the
two regimes are separated by an abrupt (first-order)
dynamical transition, which is robust with respect to
e.g., changes of the liquid crystal elastic constants.

This result clearly illustrates that simulations
provide an ideal tool to make progress in the field
and our study is likely to be followed by more
sophisticated and realistic ones. Beyond the obvious
generalizations to 3D skyrmions, a full understanding
of the mechanism that drives the configuration
transition is probably the most pressing question. A
detailed analysis of the flow fields and of the forces
acting on the system is underway and may reveal a
dominant mechanism or mechanisms.

A somewhat (un)related line of research concerns
the (ir)reversibility of the flowing skyrmion configura-
tions, when the flow is reversed. Preliminary results
show that, as expected, in a given flow regime the
shape changes are reversible during the initial stages
of the flow, and become irreversible as the flow pro-
ceeds. A quantitative analysis of the irreversibility re-
quires, however, the calculation of the different contri-
butions to the dissipated energy, e.g. dissipation from
the fluid flow, dissipation from the director relaxation,
dissipation from the anchoring conditions, which will
be carried out in future work, both in the different
flow regimes as well as near the skyrmion configuration

Table 1. Parameters used in simulation and physical units.

symbol sim. units physical units description

ρ 1 1088 Kg/m3 density
∆x 1 0.3125 µm lattice spacing
∆t 1 10−6 s time step
K11 0.01 9.54×10−14 N elastic constant
α4 819.2 0.08 Pa.s Leslie viscosity
c 10 0.3125 m/s see Eq. (20)
p 32 10 µm cholesteric pitch
W0 0.00012 3×10−5 J/m2 anchoring strength
χ 4.25 3×10−11 N s/m friction coefficient

transition.This may shed further light on the dominant
mechanism of the configuration transition and provide
a means to control skyrmion shapes.

Appendix: Parameters

Table 1 summarises the parameters used in the
simulations in numerical and physical units. The
conversion between the two systems is obtained from
the values of ∆t, ∆x and ρ. We note that the value
of the time step is only a reference, since we used a
time step 100∆t to solve Eq. (9) with finite-differences.
In addition, we recall that we used elastic constants
smaller than those of MBBA.
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