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Abstract Dielectric elastomers (DEs) are electromechanical systems that play an essential role in designing soft 

robotic actuators. Due to their flexibility and lightweight, DEs mainly operate in nonlinear regimes and experience 

nonlinear vibrations in various applications. One of the newly developed stimuli in these actuators is the pumping 

deformation action due the vibratory response of DEs caused by the sound generation. In this study  the nonlinear 

vibration behavior of a DE membrane under a multi-frequency voltage and a multi-frequency lateral tensile 

mechanical load is fundamentally investigated. The governing equations of motion are derived using Euler—

Lagrange’s equation and solved using the Runge-Kutta method. Numerical calculations are presented in the form of 

time-history diagrams, phase-plane diagrams, Poincaré sections, and in the frequency domain using fast Fourier 

transforms. Results reveal that both electrical and mechanical multi-frequency excitations can cause chaos, 

quasiperiodicity, and torus-doubling phenomena in the system. The multi-frequency excitation can control the effects 

of the damping in the system. Results also show that multi-frequency excitations may improve the performance of 

dielectric elastomers, where a higher response amplitude is required. Moreover, the multi-frequency voltage may 

diminish the required high voltage in dielectric elastomers by adding an extra AC voltage. Torus-doubling bifurcation 

is also identified, which originated from the application of multi-mode frequency.  Results also show that applying 

two low amplitude AC voltages can achieve a large amplitude vibration response compared to a single frequency high 

amplitude voltage. The results presented in this paper can thus provide an essential guidance in designing dielectric 

elastomer membranes under large vibratory deformation with low voltage requirements 

Keywords: Nonlinear phenomena; Dielectric elastomers; Multi-frequency voltage; Multi-frequency tensile 

mechanical loading; Torus-doubling bifurcations. 

1 Introduction 

Active polymers are innovative materials that undergo deformation under different types of external loading such as 

electrical forces, magnetic forces, and temperature [1,2]. Active polymers encompass ranging from biological 

polymers [3] to 4D printed shape memory polymers [4]; all of them have their specific applications. Nowadays, 

dielectric elastomers (DEs) have received more attention due to their unique features, including the capability to 

transform electrical energy into mechanical displacement [5], lightweight structure [6], and high elastic energy density 

[7]. DEs are active polymers that electromechanically deform and change shape and size [8–10]. They have several 

practical applications including soft robotic [11] and biomedical [12] applications as well as micro-electro-mechanical 

systems (MEMS) [13]. These active materials have been subjected to various external loads in different mechanical 

applications [14]. Electromechanical loads, in some cases, can lead to complex nonlinear vibration responses in DEs. 

A number of studies have been conducted on the nonlinear vibration behavior of DEs [15,16]. For instance, Sheng et 

al. [15] studied the nonlinear vibration of a rectangular DE balloon using a static tensile load and a time-varying 

voltage. They focused on the influence of damping and concluded that damping could suppress the complex behavior 

of the system. Zhu et al. [17] analyzed the nonlinear time-dependent deformation of a DE spherical shell. A static 

tensile load and a harmonic voltage were utilized in the study by Zhu et al. [17]. In a series of papers, Alibakhshi and 

Heidari  [16,18] studied numerically and analytically nonlinear oscillations of DE, which employed both static and 
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dynamical voltages in conjunction with a static mechanical load. In another study, AliBakhshi et al. [19] investigated 

the nonlinear resonance of a DE resonator by using harmonic mechanical and electrical loads. They concluded that 

time-dependent voltage and time-dependent mechanical load are very effective in the nonlinear vibration of DEs. 

Previous studies, have been mainly limted to the single-mode excitation frequency for both mechanical and 

electrical loads.  A number of studies have recently indicated that multi-modal excitation frequency can be an 

influential parameter in the nonlinear vibration behavior of different mechanical structures. For instance, in a study 

by Younis [20], the multi-mode frequency vibration analysis of a microbeam resonator was conducted. It was shown 

that a voltage source with two excitation frequencies could cause extremely rich dynamical behaviors such as chaos, 

quasiperiodicity, and torus bifurcation in the microbeam. Jaber et al. [21] experimentally and analytically explored 

the nonlinear dynamics of a double-clamped microbeam resonator where a multifrequency voltage was adopted. They 

showed that the multi-mode voltage could generate multiple peaks and a continuous wide-band response. In a different 

study, Ilyas et al. [22] examined the vibration of a micromirror by applying a potential difference containing two 

excitation frequencies. They identified that the resonator's bandwidth near primary resonance could be increased by 

including the mixed frequency. Ibrahim et al. [23] investigated the resonance of a microcantilever under a multi-

frequency voltage, where the primary and secondary resonances were considered. Saadat Nia et al. [24] also 

investigated the nonlinear vibration response of microbeams supported by different foundations under multi-mode 

harmonic transverse load. Ghanbari-Kouchaksaraei and Bahrami [25] proposed multi-frequency excitation for atomic 

force microscopy in which a non-contact mode has been considered. In another study, Mahmoudi and Bahrami [26] 

developed a new excitation for atomic force microscopy based on multi-mode frequency excitation.  

Previous studies show that multi-modal excitation frequency plays a vital role in the vibration response of 

dynamical systems. However, no study has been conducted on the effect of multi-mode electrical and mechanical 

excitation frequency on the nonlinear vibration response of DEs. Like other dynamical systems, DEs may be subjected 

to multi-mode mechanical and/or electrical excitation frequency in real-life applications [27,28]. In a recently 

published paper by Sebastian Gratz-Kelly et al. [28], the principle of designing multi-frequency DE devices was 

studied together to perform acoustic wave generation and linear actuation. They tried to achieve two dynamic 

responses at different frequencies to produce a linear motion and generate sound at the same time. They accomplished 

this by exciting the dielectric elastomer with a single multi-frequency voltage input, including a low-frequency high-

amplitude (responsible for linear actuation) and a high-frequency low-amplitude (responsible for sound generation) 

voltages. They produced the axial motion of the dielectric elastomer, and their membrane model generated voltage-

driven blocking force variations while still making sound with a similar pressure level as in the free case. Thus, it is 

of paramount importance to investigate the nonlinear vibration response behavior of DEs under such complex loading 

conditions. In the present study, the nonlinear vibration response of a DE membrane is investigated under time-

dependent electrical and mechanical loads. The remaining part of the paper proceeds as follows. In the next section, 

equations of motion are first formulated for lateral dynamics of the DE membrane in Section 2. The governing 

equations are solved numerically using a time-integration method, and numerical results are presented and discussed 

in Section 3. The last section is devoted to drawing main conclusions.  

2 DE membrane configuration and formulation of the equations of motion 

Fig. 1 shows a schematic view of a DE membrane in two states of deformation: the reference state (Fig. 1a) and the 

actuated state (Fig. 1b) in a rectangular cartesian coordinate system. For the description of the large deformation 

characteristics 𝑋1, 𝑋2, 𝑋3 are used in the reference state and 𝑥1, 𝑥2, 𝑥3 in the actuated state. The initial dimensions of 

the membrane are 𝐿, 𝐿, and 𝑑, which are length, width, and thickness, respectively. The system is subjected to a time-

dependent in-plane equal-biaxial tensile mechanical load 𝑃e and a time-dependent voltage Φ. In response to these 

applied electromechanical loading, the DE undergoes a large deformation, and its vibratory deformation can be 

expressed in terms of the stretch of the elastomer 𝜆. The geometry of the DE depicted in Fig. 1 a and b can be utilized 

in a wide range of applications. In other words, it is expected that this type of excitation (multi-mode frequency) will 

be applicable to different prototypes of DEs in various applications, for instance, in biomedical engineering [29,30], 

resonators [31], soft robotics [32], metamaterials [33], sound absorber [34], power generation [35] and aerospace 

engineering [36]. In Fig. c and d, and e, future applications of multi-frequency excitations for dielectric elastomers are 

sketched. Fig. 1c illustrates a tactile display [37] that is modeled using DE actuators. Fig. 1d shows a DE-based 

multifrequency sound generator [28], and Fig. 1e depicts a soft robotic [38] designed based on DE actuators.   



 

 

 
Figure 1. The configuration of the dielectric elastomer excited by electromechanical loading (a) reference state (voltage off), (b) actuated 

state (voltage on),  (c) biomedical engineering applications[37], (d) multi-function dielectric elastomer actuators [28], and (e) soft robotics 

applications [38], Used by permission from Elsevier and Wiley.  

2.1 Governing equations of motion 

The nonlinear dynamic behavior of the DE membrane sandwiched between two electrodes is investigated under 

various multi-frequency mechanical and electrical loadings. To formulate the problem and derive the governing 

dynamic equations, the following assumptions have been made: 

• Incompressibility is assumed for DE material. This is a reasonable assumption for the elastomeric materials 

whose Poisson's ratio is nearly equal to 0.5. 

• The inertia in out-of-plane direction is neglected. In other words, only in-plane vibrations are considered. 

This is also a reasonable assumption due to consideration of thin-walled DEs as well as applied in-plane 

forces. Nevertheless, the formulation can be easily expanded to multi-frequency excitations of thick-walled 

DEs, where the inertial force in the thickness direction should be considered. 

• The effect of the temperature and stress in electrodes are neglected.  

In general, for hyperelastic membranes such as DEs, the vibration and deformation are analyzed in terms of the 

stretch of material 𝜆, which is defined as the final length to initial length ratio. The stretch is a dimensionless parameter 

that only depends on time and is independent of spatial coordinates. The principal extension ratios, 𝜆𝑖 , for the DE 

membraned can be described as [39]  

𝜆1 =
𝑥1

𝑋1

=
𝑥1

𝐿
, 𝜆2 =

𝑥2

𝑋2

=
𝑥2

𝐿
, 𝜆3 =

𝑥3

𝑋3

=
𝑥3

𝑑
 (1) 

To analyze the in-plane vibration, it is assumed 𝜆 = 𝜆1 = 𝜆2   for the sake of simplicity. By considering the 

incompressibility (λ1λ2λ3 = 1),  we can write 𝜆3 = 𝜆−2. In the following, the in-plane governing dynamic equation 

will be derived in the term of 𝜆. The hyperelastic Gent model is utilized to model the DE [40]. The Gent model is 

appropriate for DEs with the strain-stiffening property. Different hyperelastic models may be employed to describe 

the strain energy of DEs [41]. The Gent model for strain energy function (𝑊𝐺) is formulated as:  

(a) 

(d) 

(e) (c) 

(b) 



 

 

𝑊𝐺 = −
𝜇0𝐽𝑚

2
𝑙𝑛 [1 −

2𝜆2 + 𝜆−4 − 3

𝐽𝑚

] (2) 

where 𝜇0 the infinitesimal shear modulus, and 𝐽𝑚 stands for a dimensionless material parameter. The Euler—Lagrange 

equation is used to derive the governing dynamic equation [42] as: 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝜆
+

𝜕𝐹𝑑

𝜕�̇�
= 0 (3) 

where ℒ = �̂� − �̂� in which �̂� is the kinetic energy, and �̂� is the total potential described below. The kinetic energy is 

formulated as follows [43]: 

�̂� =
1

3
𝜌𝐿4𝑑 (

𝑑𝜆

𝑑𝑡
)

2

 (4) 

where 𝜌 is the density of elastomeric materials, the potential energy is written as [44,45]: 

�̂� = (𝐿2𝐻) [−
𝜇0𝐽𝑚

2
𝑙𝑛 (1 −

2𝜆2 + 𝜆−4 − 3

𝐽𝑚

) +
1

2
𝜀 (

𝛷

𝑑
)

2

𝜆4 − 𝜀 (
𝛷

𝑑
)

2

𝜆4 −
2𝑃𝑒

𝐿𝑑
(𝜆 − 1)] (5) 

in which ε refers to the permittivity of the elastomer. As discussed in previous literature, the damping effect in DEs 

stems from different sources, where the material viscoelasticity is foremost [15]. More particularly, in the VHB-based 

elastomers, which are commercially available and widely unitized for DEs, viscous damping plays a significant role 

[46]. It should be noted that most constitutive materials used for DEs are polymeric and possess viscosity in their 

material nature. The Rayleigh dissipation function is also formulated as [45]: 

𝐹𝑑 =
1

2
𝑐0𝐿2𝑑 (

𝑑𝜆

𝑑𝑡
)

2

 (6) 

where 𝑐0 is the viscous damping coefficient. The damping model in this paper is linear, which is aligned with the 

Kelvin–Voigt rheological model [47]. By substituting Eqs. (4-6) into Eq. (3), the non-dimensional governing equation 

of motion can be derived as: 

𝑑2𝜆

𝑑𝜏2
+ 𝑐

𝑑𝜆

𝑑𝜏
+

𝐽𝑚(𝜆 −  𝜆−5)

𝐽𝑚 − 2𝜆2 − 𝜆−4 + 3
− 𝑃 − 𝑉𝜆3 = 0 (7) 

in which the following dimensionless variables are used, 

𝜏 =
𝑡

𝐿√𝜌 3⁄ 𝜇
 

𝑐 =
𝑐0

2𝜇𝑑𝐿√𝜌 3⁄ 𝜇
 

𝑃 =
𝑃𝑒

𝜇𝐿𝑑
 

𝑉 =
𝜀

𝜇
(

Φ

𝑑
)

2

 

(8) 

In Eqs. (7) and (8), 𝜏  is the dimensionless time, and 𝑡 represents the original time coordinate; 𝑐0 and 𝑐 indicate 

the original and dimensionless damping coefficients, respectively; 𝑉 and 𝑃 stand for the normalized voltage and 

nondimensional mechanical load, respectively. Two types of external loading are applied to the system. In the first 

case, the mechanical load varies with time while static voltage (a DC voltage) is retained. Conversely, the second 

loading case consists of a sinusoidal voltage superimposed on a static voltage accompanied by a static mechanical 

load. In what follows, multi-frequency excitation for both the mechanical and electrical loads is considered. 

2.2 Governing equation under multi-frequency mechanical load 

Here it is assumed that the applied voltage to DE is static 𝑉 = 𝑉𝐷𝐶 (where the 𝑉𝐷𝐶 is the nondimensional static 

voltage) while the DE is subjected to time-dependent multi-frequency bi-axial mechanical load as: 



 

 

𝑃 = 𝑃𝑠 + 𝑃1 𝑐𝑜𝑠(𝛺1𝜏) + 𝑃2 𝑐𝑜𝑠(𝛺2𝜏) (9) 

where 𝑃𝑠 = 𝑃0/𝜇𝐿𝑑 is dimensionless static mechanical load; 𝑃1 = �̅�1/𝜇𝐿𝑑 and 𝑃2 = �̅�2/𝜇𝐿𝑑 are the dimensionless 

amplitudes of the time-dependent mechanical load in which  𝑃0, �̅�1, and �̅�2 are original quantities, moreover Ω1 =

Ω̃1𝐿√𝜌 3𝜇⁄  and Ω2 = Ω̃2𝐿√𝜌 3𝜇⁄  stand for dimensionless first and second excitation frequency, respectively (Ω̃1 and 

Ω̃2 are original external frequency). Finally, substituting Eq. (9) into Eq. (7) yields:  

𝑑2𝜆

𝑑𝜏2
+ 𝑐

𝑑𝜆

𝑑𝜏
+

𝐽𝑚(𝜆 −  𝜆−5)

𝐽𝑚 − 2𝜆2 − 𝜆−4 + 3
− 𝑉𝐷𝐶𝜆3 = 𝑃𝑠 + 𝑃1 𝑐𝑜𝑠(𝛺1𝜏) + 𝑃2 𝑐𝑜𝑠(𝛺2𝜏) (10) 

2.3 Governing equation under multi-frequency AC voltage 

In this case, the DE is subjected to multi-frequency voltage loading while the mechanical load is kept constant.  

The applied multi-frequency voltage is considered as: 

𝛷 = 𝛷𝐷𝐶 + 𝛷𝐴𝐶1 𝑐𝑜𝑠(�̃�1𝜏) + 𝛷𝐴𝐶2 𝑐𝑜𝑠(�̃�2𝜏) (11) 

in which ΦDC is original static voltage; ΦAC1 and ΦAC2 are the amplitudes of the time-dependent voltage; �̃�1 and �̃�2 

represent the first and second excitation frequency of the voltage. Eq. (11) can also be written in dimensionless form 

as: 

𝑉 = 𝑉𝐷𝐶 + 𝑉𝐴𝐶1 𝑐𝑜𝑠(𝜔1𝜏) + 𝑉𝐴𝐶2 𝑐𝑜𝑠(𝜔2𝜏) (12) 

in which: 

𝑉𝐷𝐶 =
𝜀

𝜇
(

𝛷𝐷𝐶

𝑑
)

2

;  𝑉𝐴𝐶1 =
𝛷𝐴𝐶1

𝛷𝐷𝐶

  ;  𝑉𝐴𝐶2 =
𝛷𝐴𝐶2

𝛷𝐷𝐶

 ;  𝜔1 = �̃�1𝐿√𝜌 3𝜇⁄  ; 𝜔2 = �̃�2𝐿√𝜌 3𝜇⁄  
(13) 

where 𝑉𝐴𝐶1, 𝑉𝐴𝐶2, 𝜔1, and 𝜔2 are dimensionless parameters. Now substituting Eq. (11) into Eq. (7) yields: 

𝑑2𝜆

𝑑𝜏2
+ 𝑐

𝑑𝜆

𝑑𝜏
+

𝐽𝑚(𝜆 −  𝜆−5)

𝐽𝑚 − 2𝜆2 − 𝜆−4 + 3
− 𝑃𝑠 − 𝑉𝐷𝐶[1 + 𝑉𝐴𝐶1 𝑐𝑜𝑠(𝜔1𝜏) + 𝑉𝐴𝐶2 𝑐𝑜𝑠(𝜔2𝜏)]2𝜆3 = 0 (14) 

In the next section, dimensionless parameters will be used to express numerical results. Also, they have been utilized 

to generalize results for any material systems. Via this generalization, the researcher would have many options for 

choosing the system’s parameters, particularly in experimental studies.  

3 Results and discussion 

There are different sources of nonlinearity in DEs, e.g., the material and geometric nonlinearity, which appears in 

hyperelastic models, and nonlinearity due to the electrostatic force. Previous studies on the nonlinear vibrations of 

DEs have reported that these nonlinearities complicate the vibrational response of DEs and can lead to chaotic 

vibrations and diverse routes to chaos, such as quasiperiodicity [48]. The complex nonlinear oscillations of the DE are 

identified by focusing on multi-frequency excitations in the following section. This identification is conducted with 

different valuable numerical tools such as time-histories, phase-plane diagrams, Poincaré maps, and fast Fourier 

transform. This section is divided into four parts to clarify the obtained results: (1) evaluating static equilibrium points 

and natural frequency. (2) results for the system under the multi-frequency voltage excitation are presented, i.e., the 

numerical analysis of Eq. (14). (3) obtaining the numerical calculation of Eq. (10), namely results for the system driven 

by a multi-frequency bi-axial tensile force. 

3.1 static equilibria and natural frequency 

In order to know the resonance area in different excitation methods and distinguish their significance, the natural 

frequencies in static forces are presented. In governing equations, Eqs. (10) and (14), if the voltage and pressure are 

static, the first and second derivatives are neglected, and with no external time-dependent force, the equilibrium 𝜆𝑒𝑞  

is obtained by solving the following algebraic equation 

𝐽𝑚(𝜆𝑒𝑞 − 𝜆𝑒𝑞  −5)

𝐽𝑚 − 2𝜆𝑒𝑞
2 − 𝜆𝑒𝑞

−4 + 3
− 𝑃𝑠 − 𝑉𝐷𝐶𝜆𝑒𝑞

3 = 0 (15) 

As seen in Table. 1, tuning the system’s parameters may change static equilibria so that for some parameters, there 

are three equilibria, where small and large ones are stable while the moderate ones are unstable [49]. As depicted in 

the latter, the small and large equilibria will lead to positive stiffness and natural frequency, but the moderate 



 

 

equilibrium stretch causes negative stiffness, which the former means equilibrium is Table, and the latter mean 

equilibrium is unstable [17]. It is observed for DE with strong strain stiffening, 𝐽𝑚 = 50, one equilibrium point 

appears, while for higher value of 𝐽𝑚 it transforms to three equilibria.  By increasing the static voltage and pressure, 

the small and large equilibria show increasing values. Conversely, with the increase of the static voltage and pressure, 

the moderate equilibria decrease.   

Table. 1 Static equilibrium of the system for different system parameters 

𝑱𝒎 𝑽𝑫𝑪 𝑷𝑺 
𝝀𝒆𝒒 𝝀𝒆𝒒 𝝀𝒆𝒒 

small moderate Large 

100 0.1 0.5 1.149 3.275 6.237 

60 0.1 0.5 1.1489 - - 

100 0.1 0.1 1.0387 3.5424 6.2129 

100 0.1 1 1.442 2.8067 6.2659 

100 0.2 0.5 1.225 1.975 6.7913 

For DEs, the natural frequency is obtained around stable equilibria [17]. One way to obtain the natural frequency is 

by introducing a new variable such as: 

𝜆 = 𝜆𝑒𝑞 + 𝑥 (16) 

where 𝑥 is a new variable, which using it, a new equation is generated. Substituting Eq. (16) into Eq. (7), and neglecting 

the damping and nonlinear terms, the following equation is obtained: 

�̈� + 𝜔2𝑥 = 0 (17) 

where 𝜔 is the natural frequency of the undamped DE. Another way that can lead to obtaining natural frequency is 

the relation proposed by [17], namely, 

𝜔 = √
𝜕𝐺(𝜆, 𝑃𝑆 , 𝑉𝐷𝐶)

𝜕𝜆
 (17) 

where 𝐺 =
𝐽𝑚(𝜆− 𝜆−5)

𝐽𝑚−2𝜆2−𝜆−4+3
− 𝑃 − 𝑉𝜆3. In Table. 2, the natural frequency of the system for parameters of 𝐽𝑚 and 𝑉𝐷𝐶 

are expressed. Results show that the natural frequency of DEs around small equilibria decreases by increasing voltage, 

which is consistent with the results of [15]. In contrast, the natural frequency around the large equilibria increases by 

increasing the voltage. These results help to find the effect of static voltage on the system's natural frequencies as well 

as equilibrium points.  

Table. 2 Natural frequency of the system  

𝑱𝒎 𝑽𝑫𝑪 𝑷𝑺 𝝀𝒆𝒒 𝝎 

100 0.1 0.5 1.149 1.67 

100 0.1 0.5 6.237 4.099 

100 0.2 0.5 1.2258 1.27027 

100 0.2 0.5 6.7913 11.8779 

The natural frequency of DEs has been addressed in the literature [15,17,49]. In order to give more insights into 

the vibrational response of the system, the natural frequency of the system and the influence of different system 

parameters on it are revisited in Table. 1. The natural frequency of the DE is also used to show that the system operates 

in resonant or non-resonant regions in dynamic analysis. The derived equations of motion in Section 2 are solved via 

a Runge-Kutta time-integration method. In the following, for all numerical simulations, the stiffening parameter is 

𝐽𝑚 = 100, which means that the strain stiffening is weak. It is noted that this value of the stiffening parameter is 

common for VHB-based polymers as the primary materials for DEs. In this case study, it is assumed that the static 

component of applied mechanical pressure and DC voltage are set at 𝑃𝑠 = 0.5 and 𝑉𝐷𝐶 = 0.1, respectively, chosen 

from literature [15]. As reported in this literature, the static equilibrium stretches have been generally adopted as the 

initial stretch 𝜆0 on the nonlinear vibration of the DEs. Moreover, the initial velocity of the stretch (�̇�0) has been 

considered as zero. In addition, based on the fixed static parameters (𝑃𝑠 = 0.5, and 𝑉𝐷𝐶 = 0.1), the static equilibrium 

stretches are 𝜆𝑒𝑞 = 1.149, 3.275, and 6.237. The 𝜆𝑒𝑞 = 1.149 and 𝜆𝑒𝑞 = 6.237 are called small and large equilibrium 

stretches, and 𝜆𝑒𝑞 = 3.275 is the moderate equilibrium stretch. The small and large equilibrium stretches are generally 

utilized for DEs as the initial conditions and are interested because they are stable while the moderate one is unstable. 



 

 

In what follows, the dynamic of the DE around small initial conditions 𝜆0 = 1.149, and �̇�0 = 0  is analyzed only as a 

case study.  

The phase-plane has been sampled at every period of external frequency to draw Poincaré sections. Due to the 

consideration of two excitation frequencies, the Poincaré maps are plotted by sampling at both frequencies when the 

system is excited by the alternating mechanical or alternating voltage. For example, for multifrequency voltage, one 

Poincaré plot is depicted by sampling at 2𝜋/𝜔1 (Poincaré map sampled at 𝜔1) and the other one is exhibited by 

sampling at 2𝜋/𝜔2 (Poincaré map sampled at 𝜔2). The outcome of the Poincaré map is the plot of the velocity versus 

the displacement of the system in which different numbers of points appear, defining different types of nonlinearities. 

A long-time integration is carried out to deduce a steady-state oscillation for the system, thereby vanishing the effect 

of transient oscillations. The analysis of the response of the system for multifrequency voltage is evaluated around 

superharmonic resonance 𝜔1 = 𝜔/2 = 1.67/2 = 0.83 and for the multifrequency mechanical load in a non-resonant 

region.  

3.2. Results for the DE under time-dependent voltage 

One of the challenging phenomena in DEs is chaos, which may appear by changing different system parameters, 

for example, increasing the forcing amplitude 𝑉𝐴𝐶1. Therefore, it is essential to investigate whether the multiple 

frequencies may cause chaos or not. As it will provide necessary information for design of reliable DE-based systems. 

With the inclusion of the multifrequency in the system, two new controlling parameters, namely 𝑉𝐴𝐶2 and 𝜔2 appears. 

The influence of these two parameters is respectively analyzed in the following. In Fig. 2, the bifurcation diagram of 

the Poincaré map sampled at 𝜔1 of the system is plotted when the second excitation frequency is the controlling 

parameter, and the DE is ideal. Thereby, the parameters related to the first source of the voltage are 𝑉𝐴𝐶1 = 0.1, and 

𝜔1 = 0.83, in which the system operates near superharmonic resonance, namely 𝜔1 = 𝜔 2⁄ = 1.67 2⁄ = 0.83. 

Moreover, the amplitude of the second voltage is equal to  𝑉𝐴𝐶2 = 0.3. It is observed that the system undergoes 

quasiperiodic and chaotic motions for different values of the second excitation frequency. In order to know the effect 

of time-dependent voltage, the details of the bifurcation diagram in Fig. 2 are plotted in Figs. 3 and 4. 

 
Figure 2. Bifurcation diagram of Poincaré map sampled at 𝜔1 for controlling parameter 𝜔2 with neglected viscous damping (𝑐 = 0) 

Vibration behavior of the dielectric elastomer where it is subjected to multifrequency voltage in which the second 

excitation frequency 𝜔2 = 2𝜔1 = 2 ∗ 0.83 = 1.66,  was augmented to the first excitation voltage (see Fig. 3). It is 

observed that the system encounters a chaotic response when the DE is subjected to a multifrequency electrical 

excitation. Examination of the time-history of response shown in Fig. 3a reveals irregular and unpredictable dynamical 

paths indicative of chaotic behavior. Moreover, the phase-plane plot depicted in Fig. 3b shows complex trajectories 

which are not closed, revealing the chaotic response behavior of the DE again. The Poincaré maps sampled at both 

the first and second frequencies of excitation contain a cloudy shape of points demonstrating the occurrence of the 

chaos in the system (Fig. 3d,e). As depicted in Fig. 3b, continuous spectra arise in the fast Fourier transform (FFT), 



 

 

which is a sign of chaos in the system. Two spectra are shown in FFT, which correspond to the superharmonic 

resonance 𝑓 ≈ 0.83 2𝜋⁄ ≈ 0.13 and natural frequency 𝑓 ≈ 2 ∗ 0.83 2𝜋⁄ ≈ 0.26.  

  
                                    (a)                                (b) 

   
       (c)          (d)         (e) 

Figure 3. Vibrations of the dielectric elastomer under the multifrequency voltage for 𝜔2 = 2𝜔1. (a) time history, (b) FFT (c) phase-plane 

diagram, (d) Poincaré map sampled at 𝜔1, (e) Poincaré map sampled at 𝜔2. 

In Fig. 4, another value of the controlling parameter is chosen 𝜔2 = 4𝜔1 = 4 ∗ 0.83 = 3.32 to better understand 

the behavior of the DE under multifrequency electrical stimuli. It is seen that the response is quasiperiodic, which 

verifies the result of Fig. 2 as well. The prediction of quasiperiodicity from the time history may not be evident and 

sometimes tricky. It is found that in the time history, the amplitude increases and decreases continuously but not in a 

regular pattern, which may indicate quasiperiodicity. The Poincaré map and phase-plane diagram have been utilized 

to identify the quasiperiodic behavior of DE. As depicted in the Poincaré map sampled at 𝜔1 (Fig. 4d), a closed curve 

results in infinite points indicating the quasiperiodic motion of the vibrating DE. Also, in the FFT diagram shown in 

Fig. 4b, a carrier frequency with upper and lower sidebands occurs, confirming the quasiperiodic oscillation of the 

system. It is noted that a quasiperiodic motion refers to incommensurable frequencies in a nonlinear system. In FFT, 

three peaks are illustrated in which they are related to the superharmonic resonance 𝑓 ≈ 0.83 2𝜋⁄ ≈ 0.13, natural 

frequency 𝑓 ≈ 2 ∗ 0.83 2𝜋⁄ ≈ 0.26, and subharmonic resonance 𝑓 ≈ 4 ∗ 0.83 2𝜋⁄ ≈ 0.52. The Poincaré map 

sampled at 𝜔2 shows nested loops (Fig. 4e), which may be given due to torus-doubling bifurcation in the system. 

Examination of conclusions also reveals a new phenomenon, namely a torus-doubling bifurcation, which has not been 

addressed in such systems before. This type of bifurcation response behavior main occurs due to the multifrequency 

content of the excitation environment, whether mechanical or electrical. The evidence of the torus-doubling 

bifurcation is nested loops in the Poincaré plot sampled at 𝜔2 as shown in Fig. 4e.  



 

 

  
                                    (a)                                (b) 

   
       (c)          (d)         (e) 

Figure 4. Vibrations of the dielectric elastomer under the multifrequency voltage for 𝜔2 = 4𝜔1. (a) time history, (b) FFT (c) phase-plane 

diagram, (d) Poincaré map sampled at 𝜔1, (e) Poincaré map sampled at 𝜔2. 

As stated before, the second parameter of the second source of the voltage is the amplitude 𝑉𝐴𝐶2, which is selected 

as the controlling parameter. In Fig. 5, the bifurcation diagram of the Poincaré map sampled at 𝜔1 is exhibited while 

other parameters are 𝑉𝐴𝐶1 = 0.1, 𝜔1 = 0.83, and 𝜔2 = 2𝜔1. Increasing the second amplitude of forcing voltage leads 

to chaos in the DE. As depicted in Fig. 5, the vibrational response of the DE is non-chaotic in the domain 𝑉𝐴𝐶2 =
[0    0.22] because there are limited points for the controlling parameter. After that, the response becomes chaotic for 

𝑉𝐴𝐶2 = 0.23, and again elastomer comes into non-chaotic regions up to 𝑉𝐴𝐶2 ≈ 0.29.  

 
Figure 5. Bifurcation diagram of Poincaré map sampled at 𝜔1 for controlling parameter 𝑉𝐴𝐶2 

Fig. 6 shows more details of the bifurcation diagram by selecting two values of the controlling parameter. Results 

show that DE experiences quasiperiodic motion by decreasing the amplitude of the second AC voltage. In Fig. 6a-b, 

the time history and Poincaré section for 𝑉𝐴𝐶2 = 0.23 are depicted in which the chaos emerges. Also the Fig. 6c-d 



 

 

shows the time history and Poincaré section for 𝑉𝐴𝐶2 = 0.15 are presented where the response becomes quasiperiodic. 

As depicted in Fig. 6, results of time history and Poincaré section verify the outcomes of the bifurcation diagram in 

Fig. 5.   

  

(a) (b) 

  
(c) (d) 

Figure 6. Vibrations of the dielectric elastomer under the multifrequency voltage (a) time history for 𝑉𝐴𝐶2 = 0.23, (b) Poincaré map 

sampled at 𝜔1 for 𝑉𝐴𝐶2 = 0.23, (c) time history for 𝑉𝐴𝐶2 = 0.15, (d) Poincaré map sampled at 𝜔1 for 𝑉𝐴𝐶2 = 0.15. 

In previous results, the effect of damping was ignored (𝑐 = 0). However, in many elastomers such as VHB-

based polymers utilized as constituent materials of DEs, the damping is prominent [46], which mainly appears due to 

the viscosity of elastomeric materials. The presence of damping may limit the performance of DEs; more specifically, 

it decreases the response amplitude. Fig. 7 explores the influence of the multifrequency excitation on damping. As 

depicted in Fig. 7 a-b, the FFT response of DE subjected to single and multifrequency AC voltages considering system 

damping (𝑐 = 0.1) are evaluated, respectively. The excitation frequencies are 𝜔1 = 0.83 and 𝜔2 = 2 ∗ 𝜔1. It is 

observed that when the second voltage amplitude is applied ( 𝑉𝐴𝐶2 = 0.02), the system’s response amplitude increases 

even in the presence of damping. Thus, results suggest that the response limitations due to damping may be alleviated 

using the multifrequency excitation voltage. This observation could pave the way for designing DE membranes for 

different applications. As seen, for the damped system under single AC voltage, the maximum spectrum is about 

0.011, while under multifrequency AC voltage, it increases by nearly 336% to 0.048. Results may provide essential 

guidance on effectively utilizing the multiple external frequencies to increase the response amplitude of a DE system 

with damping. In another case, the frequency response of the system is plotted with and without damping, as shown 

in Fig. 7c-d. In Fig. 7c, 𝑉𝐴𝐶1 = 0.12 without the second excitation frequency, and for Fig. 7,d 𝑉𝐴𝐶1 = 0.12, 𝑉𝐴𝐶2 =
0.02, 𝜔2 = 2 ∗ 0.83. The damping coefficient in these two figures is equal to 𝑐 = 0.1. These diagrams show that the 

response amplitude increases with the inclusion of the multifrequency, which are appropriate for these actuators. 



 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Vibrations of the dielectric elastomer with and without the multifrequency voltage. (a) FFT for 𝑉𝐴𝐶1 = 0.1, 𝑉𝐴𝐶2 = 0, (b) FFT 

for 𝑉𝐴𝐶1 = 0.1 , 𝑉𝐴𝐶2 = 0.02, (c) frequency response for 𝑉𝐴𝐶1 = 0.12, 𝑉𝐴𝐶2 = 0, (d) frequency response for 𝑉𝐴𝐶1 = 0.12 , 𝑉𝐴𝐶2 = 0.03. 

A foremost challenge for researchers investigating DEs membrane is the required high voltage power supply to 

actuate them [50]. Providing a high voltage source may be difficult in real applications and experiential laboratories 

[51]. In previous works, some scholars have worked on new electrode materials to decrease the required voltage [52]. 

A high voltage is necessary to get an increased amplitude of vibration, more particularly for resonators. Another point 

that should be noted is that when a high voltage is applied, it may lead to instability and finally breakdown in DEs 

though it may increase the amplitude. Accordingly, the influence of the multifrequency external load on the response 

amplitude is analyzed in Fig. 8. As depicted in this figure, DE is subjected to a high voltage 𝑉𝐴𝐶1 = 0.2  without the 

second excitation frequency. Also,  two low voltages are considered 𝑉𝐴𝐶1 = 0.02 and 𝑉𝐴𝐶2 = 0.05 in Fig. 8b. The 

other parameters are 𝜔1 = 0.83, 𝜔2 = 2 ∗ 𝜔1 and 𝑐 = 0.1. Results show that applying two low amplitude AC voltages 

can achieve a large amplitude vibration response compared to a single frequency high amplitude voltage. This effect 

is an important observation as the main limitation for DE is the need for a high voltage power supply. As depicted in 

Fig. 8c-d, the frequency response of the system is evaluated with and without damping. In Fig. 7c, 𝑉𝐴𝐶1 = 0.12 without 

the second excitation frequency, and for Fig. 7, 𝑉𝐴𝐶1 = 0.06, 𝑉𝐴𝐶2 = 0.08, and 𝜔2 = 2 ∗ 0.83. The damping 

coefficient in these two figures is equal to 𝑐 = 0.1. As a result, with the inclusion of the multifrequency, the response 

amplitude increases for two low amplitude voltages. 



 

 

  
(a) (b) 

  
(c) (d) 

Figure 8. Vibrations of the dielectric elastomer with and without the multifrequency voltage. (a) FFT for 𝑉𝐴𝐶1 = 0.2, 𝑉𝐴𝐶2 = 0, (b) FFT 

for 𝑉𝐴𝐶1 = 0.02 , 𝑉𝐴𝐶2 = 0.05, (c) frequency response for 𝑉𝐴𝐶1 = 0.12, 𝑉𝐴𝐶2 = 0, (d) frequency response for 𝑉𝐴𝐶1 = 0.06 , 𝑉𝐴𝐶2 = 0.08. 

To provide data for experimental setups, in this section some parameters and examples are introduced. The real 

selected parameters are as follows: the mass density is 𝜌 = 1.2 × 103 kg/m3; the permittivity 𝜀 = 6.198 × 10−11F/
m; 𝜇 = 0.03 MPa;  𝐿 = 50 mm; 𝑑 = 1 mm; 𝐽𝑚 = 110 [14,43]. For these parameters, the dimensionless excitation 

frequency becomes 𝜔1 = �̃�1𝐿√𝜌 3𝜇⁄ = 0.8343, and 𝜔2 = 2𝜔1. With the controlling parameters of 𝛷𝐷𝐶, 𝛷𝐴𝐶1, and 

𝛷𝐴𝐶2, the effect of the mechanical load and damping has been omitted and the initial stretches are considered as 𝜆 = 1 

and �̇� = 0. In Fig. 9b, the FFT plot of the system is presented where the controlling parameters are 𝛷𝐷𝐶 = 800 V, 

𝛷𝐴𝐶1 = 700 V, and 𝛷𝐴𝐶2 = 650 V  resulting in 𝑉𝐷𝐶 = 𝜀 𝜇⁄ (𝛷𝐷𝐶 𝑑⁄ )2 = 0.0013, 𝑉𝐴𝐶1 = 𝛷𝐴𝐶1 𝛷𝐷𝐶⁄ = 0.8750, and 

 𝑉𝐴𝐶2 = 𝛷𝐴𝐶2 𝛷𝐷𝐶⁄ = 0.8125. From this sub-figure, it is concluded that for the low voltage DC and AC voltages in 

the multifrequency mode the amplitude of the FFT is about 0.0027. In Fig. 9a, the response for the single frequency 

high voltage is explored where 𝑉𝐷𝐶 =
𝜀

𝜇
(𝛷𝐷𝐶 𝑑⁄ )2 = 0.0046, 𝑉𝐴𝐶1 = 𝛷𝐴𝐶1 𝛷𝐷𝐶⁄ = 0.6667, and 𝑉𝐴𝐶2 = 𝛷𝐴𝐶2 𝛷𝐷𝐶⁄ =

0 in which 𝛷𝐷𝐶 = 1500 V, 𝛷𝐴𝐶1 = 1000 V, and 𝛷𝐴𝐶2 = 0 V. It is observed that the amplitude of the FFT for this case 

is about 0.0018 and thereby comparing Fig. 9a and b, one can see that the multifrequency low voltage can produce a 

larger response amplitude in comparison to that of the single frequency.  



 

 

  

(a) (b) 

Figure 9. FFT plot of the system under consideration of parameers from experimental setups from [14,43]. (a) single frequency high 

voltage (b) multifrequency low voltage. 

3.3. Results for the DE under time-dependent mechanical load 

This section investigates the response of the DE subjected to a multi-frequency mechanical load while the voltage is 

kept constant. As a test case and to provide all possible conditions in the DE, both resonant and non resont regions are 

considered.The effect of damping has been neglected for the sake of simplicity; also initial stretch is set at 𝜆0 = 1.149. 

First, the dynamic response of DE is subjected to a single-frequency harmonic tensile load with amplitude 𝑃1 = 0.3 

and frequency  Ω1 = 1 are explored. Results are shown in Fig. 10, which indicates that DE behaves like a quasiperiodic 

attractor. The quasiperiodic behavior of the attractor can be better examined in the Poincaré map shown in Fig. 10d. 

A closed-loop in the Poincaré map is the sign of quasiperiodicity in DE under a single-frequency tensile load. The 

existence of distinct spectra with no rational ratios in FFT response is also indicative of quasiperiodic behavior. It is 

seen in the frequency spectra that there are two or more frequencies, and their ratio are not rational. For example, in 

FFT, the peaks are related to  𝑓 ≈ 𝜔 2𝜋⁄ ≈ 1.67 2𝜋⁄ ≈ 0.26, and 𝑓 = Ω1 2𝜋⁄ ≈ 1 2𝜋⁄ ≈ 0.159, in which the ratio 

between these two frequencies is incommensurate.  

  
(a) (b) 

  
(c) (d) 

Figure 10. Vibrations of the dielectric elastomer under the single-frequency mechanical load for 𝑃1 = 0.3, Ω1 = 1. (a) time history, (b) 

FFT (c) phase-plane diagram, (d) Poincaré map. 



 

 

Results for DE subjected to two-mode frequency tensile load (amplitude and frequency of the first mode are 

𝑃1 = 0.3 and  Ω1 = 1  and for those of the second mode are  𝑃2 = 0.3 and Ω2 = 3Ω2), respectively) are shown in Fig. 

11. The initial stench is similar to that single-frequency load. Similar to the frequency A Voltage, with the inclusion 

of the second frequency, a torus-doubling bifurcation trend appears in the DE response. This is clearly evident in the 

Poincaré map sampled at the second frequency,  Ω2 as shown in Fig. 11e, where nested curves exist. Fig. 11 also 

shows the quasiperiodic vibration behavior of the DE subjected to the multi-mode excitation tensile load.  

  
                                    (a)                                (b) 

   
       (c)          (d)         (e) 

Figure 11. Vibrations of the dielectric elastomer under the multifrequency mechanical load for 𝑃1 = 0.3, Ω1 = 1 and 𝑃2 = 0.3, Ω2 = 3Ω1. 

(a) time history, (b) FFT, (c) phase-plane diagram, (d) Poincaré map sampled at Ω1 (e) Poincaré map sampled at Ω2. 

Increasing the amplitude of the second harmonic to 𝑃2 = 0.6 from 0.3 leads to the chaotic response behavior   as 

shown in Fig. 12 in the Poincaré maps sampled at Ω1 and Ω2. Similar to multi-frequency AC voltage, it has also been 

found that the multiple frequency mechanical load can enhance the vibration amplitude of the damped DE. The 

numerical results for the influence of multiple-frequency mechanical load on the damping DE are similar to those in 

Fig.7 and are not reproduced in this section. 

  
                                    (a)                                (b) 



 

 

   
       (c)          (d)         (e) 

Figure 12. Vibrations of the dielectric elastomer under the multifrequency mechanical load for𝑃1 = 0.3, Ω1 = 1 and  𝑃2 = 0.6, Ω2 = 3Ω1. 

(a) time history, (b) FFT, (c) phase-plane diagram, (d) Poincaré map sampled at Ω1 (e) Poincaré map sampled at Ω2. 

3.4. Torus doubling bifurcation 

In order to give more insights into the torus doubling bifurcation, some results are depicted in this subsection. For a 

quasiperiodic motion, the phase-plane diagram is a torus shape. In the Poincaré map, quasiperiodic is a closed loop of 

pints. When a torus doubling appears, it leads to a doubling of quasiperiodic vibration (torus doubling). In other words, 

it causes nested closed curves in the Poincaré map. Fig. 13 shows Poincaré maps sampled at 𝜔1 = 0.83, and other 

parameters are 𝜔2 = 2, 𝑉𝐴𝐶1 = 0.1. It is observed that for the multifrequency, a doubling of quasiperiodic motion 

appears.   

   
        (a)         (b)          (c) 

Figure 13. Torus doubling of the system. (a) 𝑉𝐴𝐶2 = 0 (b) 𝑉𝐴𝐶2 = 0.05 (c) 𝑉𝐴𝐶2 = 0.1. 

4 Conclusion 

In this study, the multi-frequency excitations response of a dielectric elastomer membrane has been analyzed. For this 

purpose, the nonlinear vibration response of a dielectric elastomer membrane subjected to a multi-mode AC voltage 

power supply and a multi-frequency mechanical force has been investigated. The Gent strain energy function was 

utilized to formulate the elastic energy of the dielectric elastomer. The in-plane governing equations of motion were 

subsequently derived using a Lagrange energy approach while assuming the incompressibility and homogeneity of 

the elastomer. The general governing equation has then been modified for two cases: 1- DEs subjected to multi-

frequency mechanical load and constant DC voltage and 2- DEs subjected to multi-frequency AC voltage and constant 

mechanical load.   The governing equations were subsequently solved using the Runge-Kutta method. Numerical 

simulations with unique concentrations toward multiple frequencies were presented using different numerical tools 

such as time-stretch diagram, stretch rate-stretch diagram (phase portrait diagram), Poincaré map, and fast Fourier 

transform (FFT). 

The results showed that the multiple frequencies loads significantly affect the dynamic response of the dielectric 

elastomer. Results also suggest that the multi-mode excitations can control the influence of damping and enhance the 

DE vibration amplitude. This influence may be of significant importance for resonance-based applications of dielectric 

elastomers. A new type of bifurcation, namely torus-doubling bifurcation, was identified in dielectric elastomer while 

subjected to multi-frequency excitation conditions. This phenomenon was not observed for single-mode load 



 

 

excitations. Furthermore, the multi-frequency mechanical and electrical loads can lead to chaotic oscillations in the 

DE system and can increase the response amplitude of the structure. Multi-mode excitations can tune a range of 

dynamical behaviors such as quasiperiodic or chaotic responses. Moreover, the limitations of requiring a high voltage 

can be overcome by utilizing multi-frequency voltage. It is shown that the combination of two AC voltages with a 

small amplitude can lead to increasing amplitude vibration response in a dielectric membrane. In summary, results 

unanimously show that multiple frequency excitation can effectively increase the vibration performance of dielectric 

elastomers, specifically those used in micro-electro-mechanical systems (MEMS). Compared to multi-functional 

membrane actuators established by polymeric transducers (ferroelectric and electrostrictive polymers), Dielectric 

elastomers display a lower Young's modulus (around 10 to 100 MPa but 103 MPa for PVDF-based polymers). They 

can gain more considerable stretches than the PVDF membranes, approximately ten times bigger. Due to the lack of 

data on the nonlinear dynamic analysis of dielectric elastomer membranes under multi-frequency external loads, the 

results presented in this study can provide essential guidance on the design of high-performance dielectric elastomers 

used in producing linear motion with sound generation or in the selfsensing actuators. This paper focused on simple 

geometry, but the multifrequency excitation can be developed for other geometries of DEs. More specifically, for DE-

based microbeams that are used in resonators and atomic force microscopy probes [53,54], the multifrequency 

frequency excitation voltage can enhance their performance, and therefore it would be essential to analyze such 

structures. In other words, not only the results of this paper can be extended to DEs-based microbeam and AFM but 

also different geometries. 
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