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Abstract 

 

There are significant numbers of masonry bridges on the U.K. railway network, which require regular 

condition monitoring by asset engineers and identify defects that would lead to structural failures. The 

most common defects observed in masonry structures are crack, spalling, bulging, joint defects, and 

loss of section. As a part of the bridge examination process, an engineer needs to be onsite, and 

sometimes it causes traffic interruption for a significant period to facilitate the examination process. 

Replacing the physical examination with a digital examination process would significantly reduce the 

number of site visits and traffic interruptions, which speed up the examination process and improve 

the safety and the efficiency of engineers' work. Point cloud data captured during the digital 

examination process has been successfully used in several studies to understand the accurate 

geometry of bridge structures, including detecting certain defects. Many software tools are available 

to perform the analysis on point cloud data. However, there is a gap in mapping and comparing the 

capabilities of that software in relation to the detection of masonry bridge defects. Therefore, this 

paper aims to analyse the ability of commonly used point cloud data analysis software to detect 

masonry defects in railway bridges.   
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1. Introduction 

 

Masonry bridges are a significant share of the U.K.'s transport network, and most of these bridges have 

been in operation for more than a century (McKibbins et al., 2006). The Railway network in the U.K. 

consists of approximately 18000 masonry bridges which are around 47% of its total bridge assets (Orbán, 

2004). These bridges require regular monitoring by experienced engineers for the prevention of masonry 

defects to avoid any unexpected structural failures. The current examination practice requires a 

significant amount of planning, site visits, inspections and measurements of detected defects, and 

appropriate documentation by experts and engineers (Network Rail L3 / CIV / 006 Part 1B, 2019). The 

downside includes the closure of roads or lanes, which slow down the traffic flow, the expert and 

engineers need to travel to the site, and a large amount of manual input to prepare the documentation. 

As a result, a substantial amount of time is required to complete the whole process. The digital 

examination process refers to the capture of the entire physical asset with digital capture technology, 

such as Terrestrial Laser Scanning (TLS), or 360 imaging devices.  Replacing physical  examination with a 

digital examination process would considerably minimise some of these issues, for example, reducing the 

number of site visits by engineers and consequently shortening the overall examination time. There are 

other benefits of the digital examination process such as repeating an inspection with minimum effort, 

automated documentation at high level and quick validation of the examination report at different levels 

within the organisation. Terrestrial laser scanning and close-range photogrammetry (CRP) are the two 

standard procedures to generate digital 3D models of built environment. Terrestrial laser scanning is 

performed using a laser scanner that generates point cloud data as an output.   CRP involves capturing a 

series of visual images from different angles and combine those images together to create a 3D model 

in the form of point cloud data (Luhmann et al., 2006). Point cloud data can convey important 

information about the actual geometry and surface condition of a scanned structure to a significant level 

of accuracy depending on the scan resolution. Study shows that measurement using point cloud data 

has achieved very close proximity with measurement using laser distometer (Kushwaha, Pande & 

Raghavendra, 2018). Both TLS and CRP are highly accurate in relation to size, shape and dimension of a 
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3D model; however, in a measurement study of vertical under clearance and beam geometry of bridges, 

TSL is found slightly ahead of CRP in terms of statistical correlation coefficient (Riveiro et a l., 2013).  

 

Significant research works have been conducted regarding the utilisation of point cloud data to monitor 

structural heath, identify common structural defects around the globe; and these research works have 

established the suitability of point could data in relation to structural defect detection (Rashidi et al., 

2020). For example, Cavalagli et al. (2020) demonstrated the practicality of point cloud data analysis for 

detection of crack, material losses and spalling in a historical masonry bridge. Talebi et al. (2022) 

proposed a framework for digital inspection of railway bridges using point cloud data. Kushwaha et  al. 

(2020) used TLS and CRP for generating point cloud data and achieved over 90% accuracy to classify 

areas with corrosion, vegetation, and water penetration in different bridge structures. In recent years, 

several researchers attempted to automatically identify and quantify crack, spalling and corrosion in 

concrete structures by analysing 2D image and point cloud data with the help of artificial neural network. 

For example, Yan et al., (2021) have demonstrated the use of convolutional neural network with  visual 

(RGB) image and point cloud data to automatically detect and quantify crack on concrete structures, 

where more than 92% detection accuracy has been achieved. Peng et al. (2020) used high resolution 2D 

image and region based fully convolutional neural network to locate and classify the region of crack in 

concrete bridges. Wang et al. (2020) demonstrate a procedure to detect bridge bottom cracks in 

concrete structure using image stitching technique in 2D images which is captured using unmanned 

aerial vehicles (UAV). All these research works are limited to concrete structure only; and hence, there is 

a research scope to develop methodology for defect detection in masonry structures using point cloud 

data. The automated damage detection is still not reliable enough to be operated solely, rather it 

requires intervention and supervision from human experts (Dorafshan, Thomas & Maguire, 2018). 

Therefore, it is reasonable to primarily consider manual analysis of point cloud data with the help of 

commonly available software. Moreover, there are many software tools available to perform meaningful 

analysis on point cloud data including some effective and low-cost ones. As a result, systematic methods 

of point cloud data analysis have good potential to replace some elements of the physical examination 

process currently followed by rail engineers. This paper aims to investigate a digital analysis process 

through point could data for bridge examination. Point cloud data captured using TLS is considered for 

analysis in the current research. CloudCompare software is used to perform the analysis on point cloud 

data. CloudCompare is an open-source software with ability to efficiently analyse TLS point cloud data 

and it is widely used in several research in this field (Girardeau-montaut, 2016). 

 

2. Masonry Defects 

 

In general, masonry defects are categorised as bulging and leaning walls, failure in bonding and 

defects in joints, development of cracks, corrosion on the surfaces, defective cavity walls etc., (Noy & 

Douglas, 2005). However, masonry bridges do not have cavity walls and the defects observed are 

limited to bulging, crack, spalling and joints defect. According to Network Rail's L3/CIV/006 Part 1E, 

(2019) reference document, the masonry defects are classified as i) bulging, ii) crack/fracture/ring 

separation, iii) spalling, iv) joints defect and v) loss of section.  

 

Table 1: Defect types and measurement requirements for different defects. (Source: Network Rail 

L3/CIV/006 Part 1E, 2019, pages 23-30) 

Defect 

type 

Measurement required for Severity extent 

Area 

(m2) 

Length 

(mm) 

Width 

(mm) 

Aperture 

(mm) 

Depth 

(mm) 

Step 

(mm) 

Distortion 

(degree) 

Displacement 

(mm) 

Bulging Yes Yes Yes No No  Yes No 

Crack/ 

fracture/ 

ring 

separation 

Yes Yes No Yes No Yes No No 

Spalling Yes Yes Yes No Yes No No No 

Joint Defect Yes No No No Yes No No No 

Loss of 

section 

Yes Yes Yes No No No No Yes 



45 

 

Each defect is further classified into several severity levels based on the dimension and location of the 

defects. As a result, it is required to measure specific dimensions for each defect during the 

examination process to evaluate the severity, the extent and the overall condition of a masonry bridge. 

To develop a method of point cloud data analysis for defect detection, it is necessary to understand 

the types of masonry defect and their inspection and measurement requirements. Table 1 represents 

the measurement requirements for each defect type in accordance with reference documents from 

Network Rail. It is found in Table 1 that three basic types of measurement are required to fulfil the 

examination criteria. These are: 

i) area measurement to estimate the surface area covered by a particular defect,  

ii) linear measurement such as length, width, depth, step, and aperture,  

iii) angular measurement such as the magnitude of distortion.  

 

Width

Defected Area

Length

Width

Step

Side elevation

Aperture

Front elevation

Distortion

Displacement

DistanceHypotenuse

Base

Distortion in degree

Displacement

Original Profile

(a) (b)

(c) (d)
 

Figure 1: Understanding the measurement requirements for different defects. 
Source: Network Rail L3/CIV/006 Part 1E, 2019. 

 

Fig. 1-a schematically represents the length, width, and depth of a defect, as well as area covered by a 

defect such as spalling, joints defect etc. Fig. 1-b schematically shows the length of crack, step, and 

aperture of crack. Fig. 1-c shows a schematic representation of distortion in degree and Fig. 1-d 

schematically shows displacement. Distortion and displacement are required measurement criteria for 

bulging and loss of section respectively.   

 

3. Methodology 

 

The proposed methodology contains six steps which is presented in Fig. 2. It is assumed that the point 

could data is already registered, and geo-located.   

   

Step 1: The registered point cloud data normally contains excess information in the form of noise such 

as data points that are not associated with the structure to be analysed. In this case, the surrounding 

environments including ground underneath a bridge are largely considered as noise. This information 

not only increases the file size of the point cloud dataset but also consumes high computing resources 

and computing time for performing analysis. As the purpose of the analysis is to look at the bridge 

defects only, the first step involves the removal of noise and surrounding environment from the 

registered point could data. It can be manually done with the help of segmentation tools available in 

most of the point cloud software. Some software provides automatic segmentation of surrounding 

environment to a certain extent; however, it requires manual intervention to precisely remove all 

noises.   
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Figure 2: Flow chart of the proposed methodology. 

 

Step 2: The key technique used for the analysis is to create a reference surface that represents a 

healthy state of the masonry structure and then estimate the deviation of point could data from the 

reference surface. Hence, it is required to select and segment the surface to be analysed and labelled 

as the target surface. The segmentation of the target surface from the whole structure will facilitate the 

analysis to be run on the target surface only. There are two benefits of it; firstly, it will not consider 

other surfaces on the structure which is less likely to provide any meaningful information; and 

secondly, it will expedite the overall analysis process. Moreover, previous research studies recommend 

segmentation of structures to be done prior to analysis for defect detection using digital techniques 

(Mirzazade et al., 2021; Riveiro, DeJong & Conde, 2016).  

 

Step 3: To define the reference surface, some points on the healthy areas of the target surface are 

required to be selected. It is assumed that the healthy part of the surface represents an ideal surface 

which is defect free. Theoretically, the reference surface can be generated with a minimum of three 

points; however, taking more points would facilitate the generation of a highly accurate reference 

surface. Hence, it is recommended to pick as many points as possible on the healthy area to define the 

reference surface.  

 

Step 4: This step involves the calculation of deviation between the reference surface and the target 

surface. Once the calculation is completed, the result is evaluated to detect the presence of defects. 

Most of the currently available software applications allow the user the perform linear distance 

calculations between a point cloud and a mesh surface. The current project uses CloudCompare 

software to perform the comparison. The software allows computing the signed distance between a 

reference mesh and a point cloud using Cloud-to-Mesh distance tool (Wiki, 2015).  

 

Step 5: After completing the distance calculation, the result needs to be carefully evaluated to identify 

the presence of defects. A positive deviation from the reference plane represents the surface is coming 

out of its original position. This could happen either due to bulging if the deviation is observed over 

an area or due to the presence of cracks if the deviation is observed along a curve. A negative 

deviation from the reference surface is observed due to the presence of spalling, crack/fracture, joints 

defect or loss of section. The presence of a crack will show the deviation along a curve or line. The 

presence of joints defect will show the deviation along brick joints either as a straight line or as a 

stepped line. Loss of section will result in a negative deviation over an area. In general spalling also 

result in negative deviation; however, in some cases it could show a positive deviation if the spalled 

section tends to come out of a wall.  

 

Step 6:  This step involves performing required area measurements, linear measurements, and angle 

measurements for different defect types as presented in Table 1. CloudCompare software provides 

tools to measure any area bounded by a polyline and linear distance between two selected points. The 
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depth and step can be estimated by comparing the colour of the target surface, when presented using 

scaler intensity values, with the colour scale. Distortion can be estimated from the inverse sine formula 

as presented in equation (1) and according to the analogy presented in Fig. 1-c.   

 

                            (1) 

Here, hypotenuse represents the linear distance between a point on the healthy area and a point in 

area with the highest deviation on a target surface; base represents the numerical value of the highest 

deviation on any target surface as shown in Fig. 1-c. 

 

4. Result and Discussion 

 

The results of computed deviation between a reference surface and a target surface for different 

segments of a structure are presented in Fig. 3 to Fig. 6. 

 

Spalling
>2mm

2 mm

1 mm

0 mm

-1 mm

-2mm
 

Figure 3: Detection of spalling >= 2mm. 

 

Fig. 3 and Fig. 4 show examples of spalling detection using the proposed method at less than 2 mm 

depth and less than or equal to 5 mm depth, respectively. The visual image (on the left) in Fig. 3 shows 

the presence of spalling in three places and the scaler field presentation of the analysis result (on the 

right) shows the spalled area in blue colour which is pointed with arrows.  

 

Spalling >=5mm

5.0 mm

2.5 mm

0   mm

-2.5 mm

-5.0 mm
 

Figure 4: Detection of spalling >= 5mm. 

 
It is noted from the colour bar [in Fig. 3] that the depth of spalling is nearly 2 mm for all three cases. A 

deformation in the wall is also noticed (circled in red) which is not possible to be detected from the 

visual image. The red areas on the scaler field image show the presence of vegetation although it is 

not taken into consideration at this point. Similarly, Fig. 4 shows the presence of spalling with a depth 

around 5 mm. Fig. 5 presents examples of crack detection and joints defect detection using the 

proposed method. In the visual image at the top left of Fig. 5, window A shows the presence of crack 

and window B shows the presence of joints defects. The scalar field representation of the analysis 

result at the bottom right shows the corresponding areas of crack and joints defect. Fig. 6 shows an 

example of bulging detection using the proposed method. The surface analysis performed on the right 

side wall of the arch reveals the presence of irregularities on the wall surface. The blue areas represent 

the wall deviated inward by 20 mm and the red areas represent the wall deviated outward by 20 mm. 

The outward deviation is considered as bulging.   
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Unit in Meter

A

B

 
Figure 5: Detection of crack and joints defect. 

 

Meter

 
Figure 6: Detection of bulging. 

 

The examples of measurement techniques discussed in step 6 of the methodology section are shown 

in Fig. 7 to Fig. 11. In CouldCompare, measurement of any area covered with a defect can be 

performed by bounding that area with a polyline and extracting the estimated area from its property 

pane. The software facilitates the estimation of an area with any shape; and hence, the area of 

complex shapes can be precisely measured which is difficult to achieve in physical measurements .  

 

Surface area = 0.13 m2

Surface area = 0.011 m2

Surface area = 0.03 m2

Surface area = 0.007 m2

 
Figure 7: Measurement of area for spalling. 

 

Fig. 7 shows examples of surface area measurement of complex shapes on the target surface that is 

identified as spalling. The linear measurement of depth, step and displacement can be achieved from 

the colour bar associated with the scaler filed representations [Fig. 3 - Fig. 6].  
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Step of crack = 2.5 mm

Unit in Meter

 
Figure 8: Measurement of step for crack. 

 

Fig. 8 shows an example of a step measurement for a detected crack. From the colour bar associated 

with the scaler intensity image of the analysis result the estimated step is around 2.5 mm. Linear 

distance measurement between two selected points can be implemented for the measurement of 

length, width, and aperture. CloudCompare software has a tool that allows users to estimate the 

distance between any two picked points (Girardeau-Montaut, 2015).  

 

Aperture of crack = 20mm
A

B

 
(a) 

 

Length of crack = 643.6 mm

C D

 
(b) 

Figure 9: (a) Measurement of aperture for crack, (b) Measurement of crack length. 

 

Fig. 9-a shows an example of aperture measurement for a crack where the aperture is the linear 

distance between points A and B. using the point picking tool in CloudCompare the aperture is 

measured as 20 mm. Fig. 9-b shows an example of determining the length of crack using point picking 

tool in terms of the linear distance between two points C and D which is 643.6 mm. It is noticed from 

both figures that in addition to the linear distance in 3D space, the point picking tool also provides the 

difference between the points in all three axes in the form of ∆X, ∆Y and ∆Z all three planes in the 

form of ∆X.Y., ∆Y.Z. and ∆X.Z.  Therefore, measurement should be carefully performed by taking the 

appropriate 3D distance. The distortion measurement for bulging requires some additional calculation 
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using equation (1). The hypotenuse can be estimated by picking one point in the healthy area and 

other points on the area with the highest deviation from the reference surface.  

 

A

B

 
Figure 10: Measurement of bulging.  

 

In Fig. 10, point A represents a point on the healthy surface and point B represents a point on the area 

with the highest deviation from the reference surface. The distance between these points is measured 

in the same way as it is done for length and aperture measurements, and it is found to be 986 mm in 

this case. The base in equation (1) is the value of deviation at point B which is estimated as 20 mm with 

the help of the colour bar as shown in Fig. 6. Replacing these values in equation (1), the distortion is 

calculated as 1.17o.   

 

5. Conclusion 

 

Switching from physical examination to digital examination for maintenance of masonry bridges would 

enhance the accuracy of the examination process, shorten the time required and reduce the cost 

associated with the examination process. Point cloud data obtained from 3D scanning using TLS has 

been largely used in the civil engineering domain to enhance the accuracy of a structure's geometric 

information. Literature shows that significant research has been conducted for defect detection in 

concrete structures. However, limited study has been carried out in masonry structures. A sequential 

analysis method is developed for the identification and measurement of masonry defects in railway 

bridges using point cloud data to satisfy the examination requirements for bridge examination. The 

implementation of the proposed method for the analysis of four different defect types has been 

demonstrated. The result established the feasibility of implementing point cloud data analysis 

techniques for masonry defect detection and measurement. It also shows the practicability of using 

point cloud data to perform required measurement for the bridge examination process. Detection and 

measurement for loss of section are not demonstrated in the current paper due to the absence of the 

defect in the available data set. However, it is expected that the proposed method can be successfully 

implemented for detection and measurement of loss of section as well because it is similar to the 

detection procedure of spalling. The current analysis process involves the manual execution of 

different steps using CloudCompare software. Future research will focus on the ability of other popular 

point cloud software to perform similar steps as well as the possibility of automation to facilitate the 

rapid execution of the examination process.    
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