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CONDITION MONITORING OF CUTTING TOOLS USING ARTIFICIAL
NEURAL NETWORKS '

N. GINDY and A. AL-HABAIBEH
University of Nottingham, UK

SUMMARY

The paper presents a methodology for using neural network techniques and simple data processing algorithms
for monitoring the condition of milling cutters during peripheral milling . The learning algorithms considered
in this research utilise artificial neural networks to map some machining parameters to sensory signals. Cutting
force and acceleration signals recorded during machining are first simplified and then fed into the input layer of
the neural network. Using the back-propagation method, the output of the neural network is used to recognise
“normal” as well as “faulty” milling cutters and the depth of cut used. The experimental results show that the
proposed approach of using simple data processing algorithms with neural networks is capable of successfully
identifying common fault conditions in milling cutters in peripheral operations.
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INTRODUCTION

The drive for improved product quality and
reducing inspection costs is attracting many
companies towards exploring the potential of
condition monitoring of machine tools, cutting
tools and manufacturing processes as means of
early detection of faults during component
manufacture and improving performance through
operating under optimal conditions. The
underlying hypothesis is that “if the machine and
process are “normal” then the component
produced should be within tolerance and therefore
there is less need for inspection to prove that this
is the case”.

In spite of several decades of research, the
complex nature of manufacturing processes such
as machining makes the use of analytical
techniques and establishing accurate predictive
mathematical models a very difficult task. Taking
advantage_of the learning ability of artificial
neural networks is therefore becoming an
attractive option in dealing with such complex
problems.

In this article, real-time sensory data is recorded,
processed and analysed automatically during
machining, and is then used as training data set
for a 16-input artificial neural network shown in
Figure 1. After a process of system validation the
neural network is wused for on-line fault
identification and breakage monitoring of cutting
tools.
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The experimental system is based upon force
signals obtained during peripheral milling of test
pieces mounted on a three-component Kistler
force measuring dynamometer. The force signals
are filtered, smoothed and simplified using signal
processing techniques and algorithms and fed into
the input layer of an artificial neural network
with Sigmoid transfer function. Using back-
propagation, the output of the artificial neural
network is then used for pattern recognition and
classification of cutter condition.
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Figure 1: Example of the neural networks used

The basic structure of machine condition
monitoring system is shown in Figure 2 [3]-
Process signals are transferred from sensors to the
system model where process characteristics are
identified. Based on previous knowledge and
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past experience, the impact of the current
situation on the part being machined can be
evaluated. At that stage, the recognised
characteristics are compared with design values.
If process status proves to be incapable of
meeting the design values, the control parameters
are adjusted such that the design parameters are
satisfied. Hence, new machining parameters are
calculated and sent to the controller to drive the
actuators.
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Figure 2 : Basic structure of machine condition monitoring

In order to provide the system with “learning”
capabilities, all activities are considered,
evaluated and memorised by a computer system
which stores all the information in a data base and
modifies the algorithms for self-development of
the total system. To maintain high precision the
required sensing, calculations , and actuation have
be accomplished in real time.

EXPERIMENTAL INVESTIGATION

The experimental investigation was designed to
test the applicability of neural networks for
identifying the fault conditions of a milling
cutters and the depth of cut used. The
experiments involved a peripheral milling of
aluminium parts by using a knee-and-column
type milling machine and two values of depth of
cut (2.5mm and 5 mm) as shown in Figure 3.

A side straight-tooth milling cutter of 16 teeth
and a diameter of 100 mm is used to machine
straight slots in  the aluminium parts, under
constant rotational speed (420 RPM) and feed
rate (89 mm/minute). Two types of sensors were
used, an accelerometer to measure the vibration
and a three component force dynamometer for
measuring cutting forces.

Milling Machine

Charge Amplifier Work piece

voltage Amplifier
Computer \

Figure 3 : The experimental set-up

The signals generated are amplified using charge
amplifiers and fed to a computer for data
analysis. Figure 4 shows the milling process
implemented and the direction of the measured
cutting forces.
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Fy

Depth of cut
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Figure 4: Three forces measured.

Example cutting forces and vibration signals for
three cutter revolutions at a 5 mm depth of cut are
shown in Figure 5. A cyclic behaviour of the
cutting forces caused by deflection of the rotating
shaft can be observed.

After processing, the recorded signals are to
identify the following conditions: a “normal” i.e.
acceptable milling cutter; a milling cutter but with
one broken tooth and a cutter with two teeth
broken. This type of information can be used later
to relate part quality parameters (e.g. tolerance,
surface finish etc. ) to the condition of the cutter
through the signals produced.

1000

Fx (N)
)
s é

Fz(N)
o =)

-20
50 100 150 200 300 350 400 450 500
time (ms)

vibration m/s
o

=

N i

i 4

3

Figure 5: Machining signals for 16 teeth side cutter.
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Figure 6: Machining signals for one tooth

The cutting force and vibration signals isolated
for one cutter tooth is also shown in Figure 6. It
can be seen from the signals that the cutting Fy is
very small compared with the other two forces
and that Fx and Fz are similar in nature but the
magnitude of Fx is approximately twice that of
Fz. From the vibration trace the point at which the
cutter tooth disengages from the part material can
be easily recognised. To simplify data analysis
~procedures, and based on the results obtained, the
value of Fx alone was considered representative
of process characteristics, and therefore
sufficient to identify the desired cutter conditions
without the need to use other recorded signals.
The force signals in the x direction (Fx) for both a
normal cutter and a cutter with one tooth and two
teeth broken are shown in Figure 7.
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Figure 7 : The Cutting force Fx for the normal cutter, one
tooth broken cutter, and two teeth broken cutter.

- SIGNAL PROCESSING

-F_ igure 8 shows the main stages the cutting force
Signal pass through to be identified by the neural
Networks. Different signal processing techniques

are used to prepare the signals for neural
networks.
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Figure 8 : Summary of the signal processing stages.

The signal is first filtered and smoothed ready for
further processing using a low pass filter to
eliminate sudden changes in the force signal. The
filtered signal, shown in Figure 8, is based on
three full revolutions of cutter rotation. A 16-
input neural network is used for signal analysis.

Figure 9 shows the cutting force signals for one
revolution of a normal cutter, one tooth broken,
and two teeth broken cutters. The presentation of
the same data as the input for the neural network
is shown in Figure 10.
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Figure 9 : Cutting force for single revolution ( Smm depth of cut).
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Figure 10 The presentation of the same signals for the neural
network

Comparing the three signals in Figure 9, the
differences which occurs between the time 100
ms and 140 ms time markers can be easily
recognised. For the one-tooth broken cutter, there
is a critical point missing. Moreover, the values
of the cutting forces for the next teeth have
increased. Similarly, the differences are much
more pronounced for the two-teeth-broken cutter.
The gap between the specified interval of time
has increased and the subsequent forces have also
increased more than previously.

A look-ahead algorithm which identifies the
“maximum critical point” within a specific period
of time (based on the time period of each tooth) is
used for simplifying the signal before presenting
it to the neural networks. If there is no critical
maximum value, a zero value is assigned to that
tooth.

THE NEURAL NETWORKS APPLICATION

Two main experiments were performed during
this investigation :

1. The identification of cutter condition (normal
cutter, one tooth broken, and two teeth broken
cutters) at two values of depth of cut (2.5 and
5mm) at identifiable sampling conditions with
respect to cutter teeth.

2. The identification of cutter conditions for
randomly sampled signals. (i.e. signals are
identified regardless of the starting point of
sampling).

The identification of the three conditions of the
cutter for Smm depth of cut only

Based on the results of a comprehensive set of
designed experiments, a (16:28:2) neural network
with Sigmoid function was considered the most
appropriate structure found for representing the
problem. The suggested neural network (shown in
Figure 1) has a learning momentum of 0.4 and a
acceptable error of 0.01. A data set based on 30
samples (bar charts), ten samples for each cutter
condition, was used to train the network. Figure
11 shows the identification results for 15 samples
tested, five of each type. ‘

prediction error %

1 2 3 4 5 6 7 8 9 10 11 13 15

sample number

Figure 11: The percentage prediction error of the (Sigmoid)
network for the new fifteen sample with 0=0.4 .

In this case, the average prediction error is found
to be 2.02% and the maximum error is found to
be less than 2.8% for the 144 training cycles
needed to train the neural network.

The identification of the cutter conditions and
depth of cut

Here, six types of cutting signals are discussed
and identified by the neural network. As before,
there are three conditions concerning the cutter:
normal cutter, one tooth broken, and two teeth
broken cutter. Furthermore, two types of cutting
conditions are identified in this section: 5 mm and
2.5 mm depth of cut. Hence, we have six
combinations of the cutter conditions and the
depth of cut values. Figure 12 shows the filtered
cutting force (Fx) for the three conditions of the
cutter at 2.5 mm depth of cut.
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Figure 12: Cutting signals for 2.5 mm depth of cut.

The “critical point method” is used to simplify
the signals fed to the neural network. Figure 13
shows examples of a normal cutter signal, one-
tooth broken cutter, and two teeth broken cutter
signal, with 2.5 mm depth of cut. Again a
(16:28:3, Sigmoid) neural network is used to
identify the six different conditions.

A total number of 36 signals, 6 of each type, are
fed to the neural network. 334 training cycles are
needed to reach an error of 0.01. Figure 14 shows
the bar chart of percentage prediction error of the
18 samples tested after training the neural
network. The average prediction error for all
signals is 2.05 %, and the maximum error is
5.18% .
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1gure 13: The presentation of 2.5 mm depth of cut signals
] for the neural network.
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Figure 14: The percentage prediction error of the 18 samples.

Random Starting Point

As in the previous analysis, all data is defined to
be in one cutter revolution starting from a fixed
reference point. Thus, the broken teeth are always
number 15 in the case of the one-tooth-broken
cutter or numbers 14 and 15 the in case of two-
teeth-broken cutter. However, such an
assumption is not practical, since it is difficult to
identify the beginning of a revolution for different
cutters under different machining conditions. To
overcome this difficulty, each of the training
signals was presented to the neural network in
several different ways, so that the signal can be
identified regardless of the starting point of
sampling. Figure 15 shows  four possible
representations for the data shown in Figure 10
for the two teeth broken cutter.
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Figure 15: Different methods of representing the same
cutting force signal according to the reference point of
sampling.

The signals are obtained from rotating the
original signal. One of the restrictions of this
method is that the sampling process must start
from a local minimum of the signal.
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For each 30 training signals of Smm depth of
cut, 16 different signals (as described before) are
generated. Hence, the total number of training
signals is 480. In the same manner, the 15 test
samples have become 240 samples. A (16:28:2,
Sigmoid) neural network is implemented with the
same training parameters described previously.
The number of training cycles is found to be
133,332. The average prediction error for the 240
samples is found to be 1.51%. Figure 16 shows
this prediction error.
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Figure 16: The percentage prediction error for randomly
sampled signals.

As shown , the maximum error is found to be as
high as 35%. However, the majority of the
samples errors are below 2%.

CONCLUSION

The experimental methodology and signal
~ processing algorithms reported in this paper
proved capable of detecting tool breakage and
differentiating ~ between  acceptable  and
unacceptable milling cutters, based upon the
number of broken teeth in addition to the depth of
cut used during machining.
In order to implement on-line fault identification
and monitoring systems, the detection algorithms
should be kept as simple as possible to reduce
processing and calculation times. The reported

results show that a combination of simple signal
processing algorithms and artificial neural
networks is a suitable approach useful for
identifying certain faults on the cutting tools used
in peripheral milling operations.

The methodology used permits the application of
artificial intelligence techniques which have the
potential to allow machine tools to exhibit
intelligence in terms of being aware of its
environment and conditions.

Such methodologies can help to reduce the
frequency of component inspection and increase
the productivity of milling operations.

REFERENCES

1. Al-Habaibeh  Amin  (1996), “Machine
Condition Monitoring Using Artificial Neural
Networks”, MSc Thesis, Department of
Manufacturing Engineering and Operations
Management, University of Nottingham.

2. Yotaro Hatamura, Takaaki Nagao, and
Momoru Mitsuishi (1993), “ A fundamental
structure  for intelligent manufacturing”,
Precision Engineering, October 1993, Vol 15,
No 4, Butterworth-Heinemann.

3. Towill D. R., (1985), “Sensor based machine
tool management systems”, UWIST Technote
EP 110, Cardiff.

4. Patrick K. Simpson, (1992) “ Foundations of
Neural Networks”, Artificial Neural Networks,
ed. By E. Sanches and Clifford Lan, IEEE
Press.

5. Y.S. Tarng, Y. W. Hseih, and S. T. Hwang, (
1994), “ An intelligent sensor for monitoring
milling cutter breakage”, The International
Journal of  Advanced  Manufacturing
Technology, Springer-Verlag London Limited.



