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The developments on next generation loT sensing devices, with the advances on their low power
computational capabilities and high speed networking has led to the introduction of the edge
computing paradigm. Within an edge cloud environment, services may generate and consume data
locally, without involving cloud computing infrastructures. Aiming to tackle the low computational
resources of the loT nodes, Virtual-Function-Chain has been proposed as an intelligent distribution
model for exploiting the maximum of the computational power at the edge, thus enabling the
support of demanding services. An intelligent migration model with the capacity to support Virtual-
Function-Chains is introduced in this work. According to this model, migration at the edge can support
individual features of a Virtual-Function-Chain. First, auto-healing can be implemented with cold
migrations, if a Virtual Function fails unexpectedly. Second, a Quality of Service monitoring model can
trigger live migrations, aiming to avoid edge devices overload. The evaluation studies of the proposed
model revealed that it has the capacity to increase the robustness of an edge-based service on low-
powered loT devices. Finally, comparison with similar frameworks, like Kubernetes, showed that the
migration model can effectively react on edge network fluctuations.

Compared to cloud environments, systems deployed on next generation Internet of Things (IoT) based edge
networks present core differences, especially when it comes to virtualization and migration models. In cloud
infrastructures, virtualization of a service via a virtual machine or a container may facilitate isolation and flex-
ibility, which permits occupancy and means efficiency. In such an environment, migrating a service among
processing nodes offers the system suppleness and adaptability. When compared with an IoT based edge envi-
ronment, virtualization and migration appear specific differences, due to the following remarks. First, IoT based
edge network comprises nodes which appear a high degree of heterogeneity in terms of software capabilities
(e.g., operating systems) and hardware (e.g., CPU architectures). Consequently, there is the need for more
generic virtualization models. Second, IoT based edge nodes have (in most of the cases) less processing power
when compared with those in a cloud environment. Thus, virtualization and migration models with smaller
footprint and less overhead would be more appropriate. Third, a cloud data center relies on a high-bandwidth
and low latency network. On the contrary, edge nodes are interconnected through a WAN and hence usually
experience disconnections!. Having this in mind, it is essential that all the migration models for IoT based edge
environments should keep the volume of the transmitted data as low as possible. Fourth, aggregate migration
time (which equals the downtime of the service) is not considered of high importance on Cloud environments.
Yet, at the edge of the network, QoS fluctuations appear throughout the whole migration process. Finally, edge
services usually execute momentary data analysis and are thus not supposed to write to any persistent memory
(e.g., the disk). On the other hand, Cloud services exploit persistent memory in a much higher degree. Therefore,
migration models on the Edge could neglect it is any data written by the service to persistent memories when
migrating from one edge node to another.
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The scope of this study is to propose and evaluate an intelligent migration model with the capacity to support
Virtual Function Chains at the IoT based edge of the network. Authors, in? presented a model for VFC at the
edge, which can enable complex AI models to be executed on heterogeneous edge networks. This work enhances
the VFC model with a migration model. Compared to similar approaches, the proposed work contributes to
the literature, as it considers a real time QoS monitoring model of triggering live migrations. Additionally, it is
evaluated against commercial approaches (e.g., Kubernetes), presenting significant performance.

VFC model is a novel distributing framework which explores the Virtual Function Chaining (VFC) concept
inspired from the Software-Defined Networks and enables the real-time inference for Al analytics at the Edge,
supported by edge learning services build on deep learning models with the capacity to monitor, assess and
predict the QoS of the supported services. In this model, AI analytics are decomposed to a set of Virtual Func-
tions (VFs), which can be deployed on different edge devices. Using these VFs, a VFC is created which process
the streaming data in a distributed fashion. VFO (Virtual Function Orchestrator) is responsible for deploying
the VFCs, along with the auxiliary services discussed in the next chapters. The VFC framework deploys several
modules which aim to optimal design the service, monitor its QoS metrics and fine-tune its configuration in
order to avoid failures. More specifically, a computational engine is responsible for proposing the optimal setup
of the VFC while an edge-learning service monitors the performance of the edge devices and propose possible
alterations.

The rest of the paper is organized as follows. State of the Art section presents the current status on migration
models, as well as virtualization technologies which support them. Materials and Methods section introduces
the Intelligent Virtual Function Chain model and describes the experiments conducted. Finally, Results section
presents the relative results before Discussion section concludes the paper.

State of the art

Migration at the edge of the IoT network is one of the most challenging research topics in the area of edge com-
puting. As edge environments are highly dynamic and comprise heterogeneous and low-end IoT devices, the
deployment of efficient migration services is important for enhancing their robustness and reliability. Since the
emergence of edge computing, there have been numerous novel approaches for tackling the problem of migration.
One may categorize the proposed migration algorithms and models in two sets, cloud-edge migration algorithms
(which are also referred as offloading algorithms) and edge-edge migration algorithms (Fig. 1). Additionally,
either deterministic or machine learning models can be used.

One of the first approaches have been reported in®. Within this work, authors have presented a method for
minimizing service delay in a migration scenario between two cloudlet servers, after considering both com-
putation and communication elements, controlling processing delay through virtual machine migration and
improving transmission delay with transmission power control. According to the main outcome of this work, the
consideration of both computation and communication constrains results to the optimum design of a migration
model. A replica migration model is proposed in* for facilitating access hotspots to obtain the pairing migration
relationship from source node to target node. The experimental results revealed that the proposed replica migra-
tion algorithm can effectively reduce the migration time, minimize the response time, and improve network
resource utilization. On the same topic, the work presented in’ introduces a model for maintaining a consistent
state of mobile-edge computing application. According to this model, state storage component is decoupled from
the computing one. A key-value storage layer is proposed, to synchronize states between mobile-edge comput-
ing servers. Subsequently, a distributed key-value store framework is proposed, which decouples mobile-edge
computing application design into processing and state, to ensure service continuity. Evaluation results show
that the proposed solution reduces downtime by half in most of the cases, even under high load of state update.
Furthermore, under moderate load of state updates, the framework can eliminate downtime completely.

Authors in®, after introducing edge cognitive computing paradigm, they describe an edge cognitive computing
based dynamic service migration mechanism to provide insight into how cognitive computing is combined with
edge computing. The experimental results show that the proposed architecture has ultra-low latency and a high
user experience, while providing better service to the user, saving computing resources, and achieving a high
energy efficiency. Additionally, the work presented in” models the intra-edge migration problem as a dynamic
resource dependency graph. After introducing an iterative Maximal Independent Set-based multiple migra-
tion planning and scheduling algorithm, based on real-world mobility traces of taxis and telecom base station
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Figure 1. Categories of migration models.
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coordinates, authors provide evidence that the proposed model can efficiently schedule multiple live container
migrations in large-scale edge computing environments.

As far as services migration between different edge environments is concerned, Doan et al.? introduced Flex-
ible and Low-Latency State Transfer in Mobile Edge Computing model, a novel programmable state forwarding
framework. The proposed model flexibly and directly forwards states between source instance and destination
instance based on Software-Defined Networking. Mobility of edge nodes is discussed in’, where it is discussed
that edge network design and services placement may need to be re-calibrated, triggering service migrations
to maintain the advantages offered by mobile-edge computing. In this work, authors proposed a Reinforce-
ment Learning based proactive mechanism for microservice placement and migration. Experiments on the San
Francisco Taxi dataset showed the effectiveness of the proposed model in comparison to other state-of-the-art
methods.

Recently, researchers attempted to explore the potential of machine learning paradigm on next generation
intelligent IoT based edge migration models. For instance, works like'” propose a reinforcement learning based
model for identifying the optimum policy for service migration. According to the later work, the migration
problem is formulated as a sequential decision making problem aiming to minimize the overall response time.
Then, a novel on-policy reinforcement learning based computation migration scheme, which learns on-the-fly
the optimal policy of the dynamic environment is proposed. Numerical results demonstrate that the proposed
scheme can adapt to the uncertain and changing environment, and guarantee low computing latency. Similarly,
authors in'! proposed a user classification mechanism based on users’ mobility patterns to reduce the com-
plexity of decision-making. Then the service migration is formulated as a Markov decision process and then a
reinforcement learning-based framework is introduced, to make service migration decisions in real time in the
dynamic MEC environment. Extensive data-driven experiments demonstrate the efficacy of the proposed model
in reducing the system average delay. Regarding the cloud-edge algorithms are concerned, authors in'? provide a
detailed survey of the specific area, sketching the overall area and research directions. In more details, authors in!3
proposed a lightweight process migration-based computational offloading framework for IoT-Supported Mobile
Edge/Cloud Computing. Compared with similar approaches, the proposed framework does not require applica-
tion binaries at edge servers and thus seamlessly migrates native applications. Experimental work revealed that
the proposed framework shows profound potential for resource-intensive IoT application processing in Mobile
Edge/Cloud Computing. The reviewed research works are summarized in Table 1, where the core remarks of
each work is presented, along with their key characteristics.

While the described migration models contribute to the edge paradigm, they are limited to monolithic
approaches, according to which a service is deployed to a single cloudlet. Yet, distribution schemes, like Virtual
Function Chains, are becoming popular due to the fact that they enable the support of computationally heavy
services to low power edge environments. Virtual Function Chains can act as an application deployment model
for edge services, as it improves both the performance and the robustness of the environment. Thus, a migration
model with the capacity to support natively Virtual Function Chains would be of interest.

loT based edge network and virtualization. Although virtualization is a long-established technology
for Cloud Computing services, its adaptation for the IoT based edge networks is a relatively new field'. From
a technical point of view, virtualization may actually refers to any compute virtualization approach, as long as
there is a model to abstract the runtime from the main environment (e.g., firmware, hardware) where the busi-
ness logic of an application is designed to run. If we consider this definition, virtualization for edge devices may
comprise several different paradigms, covering a path from virtual machines to lightweight containers.

Typical (complete) virtualization is the first version of this technology, and it has been used widely on (full-
stack) guest environments. On the other hand, para-virtualization provides improvements in the form of coop-
eration between the guest environment and the hypervisor. According to para-virtualization a totally inverted

Research work | Cloud <> edge | Edge <> edge | Real-time response | Algorithm type Key characteristics

3 Yes No No Deterministic Considergtiqn of both cgmputational and
communication constraints

: Yes No No Deterministic | (nimoduction of a teplication mechanism

5 Yes No Yes Deterministic Introduction of a cloud based distributed
scheme based on key-value storage

: No es No Determinisic | Drdge cognitive and edge computing

7 No Yes No Deterministic Migration model based on a dynamic
resource dependency graph

8 No Yes Yes Deterministic Exploitation of SDN netwokrs

’ No Yes No Machine learning | Consideration of edge nodes mobility

10 Yes Yes Yes Machine learning 5§:;;:3Te adaptation on environment

1 No Yes Yes Machine learning | Consideration of edge nodes mobility

12 Yes No No Machine learning | Migration of edge-native applications

Table 1. Summary of the state-of-the-art reviewed research works.
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approach is applied, based on the Unikernels'. This change points to lightweight, application specific machine
images to be run directly on a hypervisor (i.e., the VM runtime) or even on bare metal. Anykernels'® are a term
for a modular model to the building of a Unikernel, by making OS-specific (e.g., NetBSD-based) drivers in the
form of libraries. Anykernels provide improved security, lighter footprint, and faster boot times, when compared
to typical VMs.

On the other hand, containers represent a more recent virtualization paradigm, which can be characterized
from the low overhead deployment and lightweight execution of applications on resource hungry IoT devices.
Indeed, containers isolate only the user space environment, leaving the hardware abstraction layer as well as
the application for process sandboxing to the shared kernel co-hosting them. Also, for containerization, there
are a set of approaches a model could adopt, from system containers'” (e.g., LXC, LXD), where the user-level
environment mimics a full-featured operating system, to application ones (e.g., Docker), where a container is
usually expected to host a single user process. Application-based containers, generally present several features
(e.g., lightweight footprint) which make them highly appropriate for the network edge.

Materials and methods

QoS monitoring and failure avoidance. During the execution time of a service, the IoT based edge
environment, unlike cloud infrastructures, is highly dynamic. The edge devices, due to low resources, appear
fluctuations in their main performance metrics, like available CPU and RAM. Yet, for a service to maintain the
QoS standards, adequate resources are required through its lifecycle. The proposed VFC model® is more prune
to the fluctuations on the performance indicators compared to a Monolithic approach. This is due to the fact that
it depends not only from one edge device but from a set of edge devices, where if one of the hosting devices fail
(overload, battery drain, network disconnection), the whole service collapses. Aiming to address this issue, an
intelligent “failure alert” model has been designed and developed, based on a well established Recursive Neural
Network, the Long-Short Term Memory (LSTM). By failure we consider the overloading of an edge node at such
level that the assigned VF can no longer be executed properly, in terms of assigned execution time. A variation
on the LSTM is the Gated Recurrent Unit, or GRU, introduced by'®. It combines the forget and input gates into
a single “update gate” while it also merges the cell state and hidden state compared to the classic LSTM cell.
The model learns long term dependencies on the performance metrics of the edge devices. More specifically,
two' LSTM models have been established, one for predicting CPU usage and one for predicting RAM usage.
The training datasets have been created using the benchmark edge environment and by mimicking artificial
fluctuations on the edge devices. When the inference of the model predicts high CPU and/or RAM utilization,
it informs the Virtual Function Orchestrator node (VFO) for the specific Virtual Function Chain (VFC) that is
possible to face a failure within the specific time-frame. At this point, VFO recalculates the optimal placement
of the VFC and resets the VFC.

As far as the architecture of the deployed LSTM models is concerned, a two layer approach has been adopted,
with one hidden dense layer, each of them comprise 100 nodes. ReLU has been used as the activation function
and ADAM solver for the optimization steps. Finally, the Mean Square Error has been selected as the loss func-
tion. The challenging part of this approach is to acquire a suitable dataset for successfully training the LSTM
models. As no suitable dataset came to our knowledge, the edge environment described in? has been used in
order to produce the suitable datasets. An agent hosted in the VFO device constantly collecting data regarding
the CPU and RAM utilization for each device which is part of a VFC. A software which can mimic overload
demand on the edge devices (stress tool) has been installed on each edge device, under a random distribution
on the required resources. At the same time, VFO monitors the QoS (processed frames/sec) for each one of the
deployed services (Fig. 2). The training datasets have been created after 248 hours of monitoring and collecting
data from the eight (8) devices of the edge environment, with an interval of five (5) secs. This process has resulted
to a set of time series t, = c;, r;, one for each VFC service applied on the edge environment.

The models have been implemented by taking 100 neurons in the LSTM layer. The utilized loss function is
Mean Squared Error. Train and test errors are presented in Fig. 3a, b.

Failure: stateless migration. A failure is considered when an edge node unexpectedly fails and discon-
nects from the virtual chain which materializes a service. As it will be discussed in the next sections, migration
due to failures results to the re-deployment of the virtual function to the most suitable available edge node. We
are referring to such migrations as stateless migrations. Stateless migration result in a re-deployment of a state-
less virtual function on the receiving node. When compared to stateful migration, stateless migration models
tend to be simpler and more straightforward, as it is applied on failure nodes, which are more frequent on edge
networks.

Overload: stateful migration. Due to the low capacity of the IoT based edge devices, in parallel with
the increasing demand of edge services, it is not unusual for an edge network to be overloaded. In such cases,
migrating virtual functions to available edge nodes can result in an overall performance improvement of the
hosted services.

Migration models

Hard (cold) migration. This type of model often refer either as hard (usually on edge networks) or cold
migrations. This notation arises from the fact that the virtual function stops/freezes at a certain point before
starting the migration process. The migrated virtual function will resume as soon as all of its state becomes avail-
able on the receiving edge node. The duration which the virtual function is not running is known as downtime.
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Figure 2. LSTM dataset creation.
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Figure 3. (a) Train and test error for LSTM model 1 (CPU) and (b) Train and test error for LSTM model 2
(RAM).
Soft (live) migration. Figure 4 describes the necessary steps for performing a hard (cold) migration. This model
is considered one of the lowest foot-printed, in terms of computational requirements, which is crucial at the
edge networks. However, its main drawback is the high downtime, as it even overlaps with the total migration
time (i.e., the time required for the whole service state to be available on the receiving node). Finally, this model
migrates the whole state (runtime and persistent data) irrespective of whether part of that state is already present
on the receiving node or not. In parallel, each memory page (and disk block for persistent data) is transferred
only once. A widely used implementation of hard/cold migration model is based on Checkpoint/Restore In
Userspace (CRIU). While this technology has built under the Virtuozzo project for its OpenVZ containers', it
quickly gained popularity and has been reused by other containerization platforms such Docker.

Soft (live) migration models aim at minimizing virtual function downtime. Notation live refers to the fact
that the virtual function keeps running while its state is being transferred to the receiving node. The virtual func-
tion is freezed only for the transmission of a slight amount of data, after which the virtual function runs on the
receiving node. When the downtime is not noticeable on the QoS metrics (or by the end user), live migration is
said to be “seamless”. Live migrations can be categorized in two categories: pre-copy and post-copy.
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Figure 4. Hard (cold) migration model.

Algorithm 1: VF proposed migration model.

Input: edge environment

while service is running do
sleep(30 secs)

for each network node n; do
try:
| [cpu], [ram] = collectNodeState(n;)
catch NoResponseException:
‘ CALL Algorithm2(n;); // cold migration
end
Pfail = QoSAssessment([cpu], [ram)])
if (prai >= K) then
‘ CALL Algorithm3(n;) ; // live migration

end
end

Pre-copy migration models (Fig. 5) took their name from the fact that they copy the largest proportion of the
state prior to freezing the virtual function. Afterwards, the virtual function runs on the receiving node. It is also
known as “iterative migration”, since it performs the pre-copy phase through several iterations. Each iteration
updates the target node with the latest state. The pre-copy phase ends when a maximum number of iterations
is reached (usually predefined) and/or when the last iteration was so short that the number of dirty pages to be
transferred would determine a short downtime. The downtime of pre-copy migration mode is usually short.

Post-copy migration models operate on a reverse rationale, compared with pre-copying. These models ini-
tially suspend the virtual function on the source and copy a minimal state (e.g., CPU execution state, registers
values, cache memory) to the receiving IoT node so that the virtual function can continue its execution there.
Only after that, they copy the rest of the required data. There exist three flavors of post-copy migration, which
vary on the way they perform this second step. The first variant is known as post-copy migration with demand
paging method. Once the resumed virtual function tries to access a memory page that is not available on the
receiving node, it generates a “page fault” and demands that page from the source node. Upon such request, the
source node provides the service with the faulted page. The second method is called post-copy migration with
active pushing. According to this method, the virtual function can generate page faults for forcing the source
node to transfer faulted pages.

However, the overall number of page faults is reduced, as the source node sends concurrently the memory
pages to the receiving node even if the resumed service has not tried to access them yet. Finally, post-copy
migration with pre-paging, can further reduce the number of page faults, as the source node actively transmits
memory pages that are “close” to the latest faulted page, increasing the probability of transmitting a page that
would be requested later on.

Virtual function chain migration model. In this section, the migration model for the proposed Virtual
Function Chaining model is presented. More specifically, the proposed migration model comprises two modes:
(1) Cold migration mode (post-active), which is invoked by the orchestrator when an IoT based edge device
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Figure 5. Live migration model.
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unexpectedly fails, and thus disconnects from the virtual function chains which participated. The reasons for
an edge device to fail can vary, from battery drain to computational overloading. (2) Live migration mode (pre-
active), which is invoked when the overload detection model (QoS monitoring model) predicts that an edge
node will be overloaded in the next time period. The two modes are implemented through algorithms 2 and 3,
as presented below. The two algorithms run in parallel and perform the migrations, when required. For the live
migrations , the pre-copy mode has been selected. The reason for this decision is that the persistent data of the
virtual functions are provisional, especially for streaming services like surveillance analytics. Thus, it does not
make much sense to fully transfer the dirty memory pages which store the latest processing frame. Thus, loaded
execution programs and business logic can be copied a-priory.
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Algorithm 2: Cold migration model.

Input: failed VF

for network node n; do
| collect node state s;

end

1. n, = placementAlgorithm(s;)

2. pack a container with the appropriate
VF

3. orchestrator send the container to the
selected node

4. n, unpacks the container and initialize
the VF

5. orchestrator inform previous and next
VF in the chain about the network update

Algorithm 3: Live migration model.

Input: K, fail probabilities (overload prediction model)

for network node n; do
| collect node state s;

end

for nodes with failing probability > K do
1. n, = placementAlgorithm(s;)

2. failing node(n;) packs a container with the
appropriate VF

3. ng sends the container to the n,

4. n, uppacks the container and initialize the VF

5. orchestrator inform the previous and the next VF
in the chain about the network update

end

The proposed migration model handles inherently the heterogeneity of the edge environment, as it refers
directly to the VFC model, which considers no constraints about the types of the nodes which comprise the
environment. Thus, it can support all different types of edge environments, in terms of heterogeneity (as the
test-bed environment presented in the Results section). Additionally, the QoS assessment module makes the
migration model aware of the resource constraints of the edge nodes and applies a protective framework from
nodes’ overloading.

The migration model is detailed in Algorithm 1. According to the proposed model, VFO probes the status
(RAM and CPU utilization) of all nodes involved in a VFC. During this process, in case a node does not respond,
it is considered as a failed node, and a cold migration is invoked, applying Algorithm 2. All the collected infor-
mation is forward to the QoS assessment module, which infers the overloading probability of each node. For
the nodes which exceeds the K value (as discussed in section Generic edge environment), a live-migration is
generated, aiming to protect the VFC from overloading.

Results

For assessing the performance of the migration model, a set of studies have been performed, both in the simula-
tion environment detailed in recent work by authors?® and on an experimental setup. The aim of these studies is
to (1) assess the network overhead of migrations, (2) assess the influence of the migration model on the QoS of
the deployed services and (3) assess the performance and the overhead of the pre-active mode against the usage
of the post-active mode of migrations.

Simulation environment. In order to acquire the necessary results, a set of simulation scenarios have been
established. While each scenario has certain characteristics, edge environment and VFCs have been modeled
under the same principals to simulate a next generation IoT network application scenario. More specifically, in
Table 2, the modeling features for the edge environment are presented, while in Table 3, the relative information
for the VFC is presented. It is important to mention that the considered environment is heterogeneous.
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Parameter | Description Value

g Number of nodes comprising the edge environment | [100, 200, 300, 400, 500]

w Network links capacity A7(98,2.32)Mbps

c(D Cost function of a node k for | CPU instructions w#m

m CPU instructions/sec the node can execute A7(10%,10%) instructions per sec

Table 2. Edge environment model’s parameters.

Parameter | Description Value

n Number of VFs comprise the VFC LA(8,4])

CPUjoad Instructions per frame for a specific VF | .4"(10%, 10%) instructions/frame
output VF output size per frame in bytes A7(10°,10%) bytes

Table 3. VFC model’s parameters.

Simulation results.  A. Dedicated edge environment. The first set of simulation scenarios were established
by modeling the edge nodes ’behavior’ with constant probabilities. More specifically, an environment with g
nodes has been simulated. Dedicated refers to the fact that the simulated edge environment does not host any
other tasks or jobs, aside from the deployed VFs. For simulating the overload of a node, the following approach
has been applied. Each node has been supplied with a probability P = Pjeaye + Poverioad> Where Pjeqye expresses
the probability the node suddenly fails and Pyyeri0qq €Xpresses the probability a node exceeds K% of its compu-
tational capacity, where K is a constant. It is important to mention that exceeding the K of the computational
power does not mean that a live migration will be triggered. Triggering of a live-migration is based on the ac-
curacy of the overload prediction model (QoS assessment), as presented in the previous section. Regarding the
services’ demand, three different modes have been considered. Namely, low (4 = 54 requests/hour), normal
(4 = 83 requests/hour) and high (4 = 118 requests/hour) demand modes have been simulated*'. More specifi-
cally, the arrival time for a service request has been modeled as a Poisson process, with different A for each mode.
Two main scenarios have been considered. According to the first scenario, only cold migrations are considered.
The QoS model is deployed on the second scenario, where both cold and live migrations are simulated. Accord-
ing to the first scenario, the overload prediction model is not deployed. Thus, a (cold) migration is only triggered
when a node, hosting a virtual function, fails unexpectedly, either due to overload or due to disconnection from
the network. The second scenario deploys the overload prediction model (when the node’s load exceeds K) and
in parallel enables the live migration model, as previously discussed. The results of the simulations are presented
in the following figures. More specifically, Fig. 6¢c, d presents the services downtime (as percentage % to the
overall simulation time) for the different number of edge nodes, when the users’ demand rate is set to normal
(4 = 83 requests/hour).

The next scenario applies the QoS assessment model, which triggers a live migration whenever the load of
a node exceeds probability K. Figure 6a, b presents the influence of Pjyye and Pyyerioaq for different number of
edge nodes. Comparing the presented heatmaps, the influence of the overload prediction model is obvious. On
average, services downtime is improved by 34.2%. Similarly, the total data volume transmitted over the network
for supporting the migrations has been considered. As expected, the volume of the transmitted data for support-
ing VF migrations is greater (19.1%) when the overload prediction model is deployed, as more migrations take
place. Thus, while the overload prediction model improves the QoS for the deployed services, it produces more
network data traffic. Figure 7a, b presents the average downtime of the deployed surveillance services along with
the absolute number of migrations respectively, for different number of edge nodes, when Pz = Poyerioad = 0.1.
From these figures, one can conclude that by increasing the number of the available nodes, downtime is improved
and the required migrations decrease, as the placement algorithm can, statistically, detect more stable nodes to
migrate a VF, when required. In addition, increasing the users’ demand rate increases the average downtime,
as well as the number of required migrations. More important, the deployment of overload assessment module
improves downtime while increasing the required migrations.

B. Generic edge environment. For the next set of simulations, an attempt has been made to simulate the work-
load of a node more realistically. For this, each node & in the edge environment is supplied with a probability
density function J (¢), which describes the probability a job # arrives in the node at time ¢. Each job # is char-
acterized by a CPU load, a memory RAM load and its duration ¢. If a job _# is undertaken by a node, it consumes
its computational resources for ¢ s. If not, it enters a FIFO queue, until the necessary resources are free. A VF has
the same priority as the other jobs, with the difference that it does not wait in the queue, and the orchestrator
seeks for another node candidate.

This intelligent model, which mimics the ’behavior’ of an IoT based edge node more realistically,
allows for the deployment of the QoS assessment model, as described in the previous section (based on the
trained LSTM models). Thus, Pyyerioqd is now simulated by a stochastic process. More precisely, the arrival
time of a new task (different than VFs) is modeled as a Poisson process, with probability mass function
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Figure 6. Services’ downtime (%) with (a, b) and without (¢, d) the deployment of overload prediction model
for n=100 (a, ¢) and n =500 (b, d).

P(k jobs in simulation time) =e* ;,;—l:, where k, / are randomly selected for each different edge node dur-

ing the simulation setup and equals to k = [./(8,5)]and A = .4"(5,2). When a node undertakes a new task, the
processing time of a VF increases. When this time exceeds a certain threshold, implied by the required processed
frames per second, the overload event is triggered, along with the relative migration. For the same set of simula-
tions, Ppegye = -47(0.1,0.005). This probability density function is probed 10 s after the deployment of a VF on
an edge node (either initial installation or installation due to migration). Similarly with the previous section,
Fig. 7¢, d presents the average downtime of the deployed surveillance services along with the absolute number of
migrations respectively, for different number of edge nodes. While the absolute values differ from the dedicated’
edge environment scenario, the trend of the results remain the same, for all three user demand rates. The next
step is to assess the optimum probability K, which acts as a threshold for triggering a live migration, based on
the output of the failure assessment model. Figure 8a, b present the results on a set of simulations performed for
this scope. For these simulations, Py = 0.1, while Pyye0q4 is modeled with the previously described stochastic
process and users’ demand was set to normal. Finally, different sizes of the edge environment have been consid-
ered. As one can notice, smaller values of K cause more migrations and has a benefit effect on services’ downtime
while higher values of K increases downtime and decreases generated volume traffic. For the live migrations, it
is interesting to assess the timing of each different phase of the process. The results for this task are presented in
Fig. 9a. The data transmission phase is the most timely one, especially due to the WAN connection links, which
were simulated in the environment.
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Figure 7. Services’ downtime and number of required migrations for the constant probability model (a, b) and

for the PDF model (c, d).
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Figure 8. Servicesaverage downtime (a) and volume produced by migrations (b) for different values of K and .

Comparison with similar frameworks.
of the proposed VFC migration model, the required time for deploying a service on an edge network with n
devices is analyzed. Without loss of generality, lets assume an edge network with wireless devices, based on WiFi
802.11g connections (S Mbps actual bandwidth). Additionally, let j be the number of VFs to be deployed using ¢
GB containers each. The deployment of a service following the VFC model comprises four steps:

(1) Initial probe of edge devices available resources If a kb is the size of the probing message, then it would

require approximately < S><103

On top of the aforementioned studies regarding the scalability

s for the j devices to transmit the data. (2) Placement problem solving Based on??,

APOPT solver requires polynomial time to solve a mixed-integer problem with one non-linear equation, in
order to solve the VF placement problem?. (3) VFs deployment For each one of the chosen edge devices, it would

require f X ex8x10°

, where fis a coefficient which expresses the delay which will be caused by reaching the limit
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of the output bandwidth of the VFO node. (4) Monitoring phase Every 30 s, the j selected edge devices, hosting
a VF each, are informing the VFO about their available resources, enabling the QoS monitoring service to func-
tion. This phase requires j x a kb of data to be transferred in the network every 30 s, with each transmission to
require % s.

Based on the described network times, as well as the times acquired for solving the placement problem (using
an Intel i7 2.8 GHz (8core) on 8 GB of RAM), the results presented in Fig. 9b has been obtained. The values of
the variables were: j = n/2,¢ = 1.2 GB,a = 2kb, S = 100 Mbps. One can notice that even when using 1000 edge
devices and 500VFs, in order to deploy a service, the required time to select the optimal nodes is kept relatively
small, enabling the efficient scaling up of the model.

Kubernetes framework. Kubernetes® is an open-source container orchestration tool, which quickly after its
introduction, became the de facto standard for managing large container deployments. Kubernetes support by
default orchestration and autoscaling of containerized services, based on the users’ demand. Aiming to evaluate
the performance of the autoscaling capacity of the proposed VFC model, a Kubernetes cluster has been build
using the Raspberry Pi cluster as worker nodes, based on the blueprint proposed in**. The test-bed comprise a
PC (Intel x64 architecture) serving as Kubernetes master node and the 8 Raspberry Pi 4 devices. A video analyt-
ics service (pedestrian detection) has been deployed on the cluster and a user simulated the demand alterations
by changing the requested fps processed. Total edge environment cost and number of deployed VFs have been
considered when comparing the two approaches.

VFC Autoscaling capacity evaluation. A set of experiments for assessing the VFC model’s capacity to autoscale
the deployment of the VFs depending on the users’ QoS demand has been conducted. According to the experi-
mental scenario, the pedestrian detection service has been deployed on both VFC and Kubernetes frameworks.
The simulation run for 60 min on each framework. Within the simulation time, the required QoS (requested fps
processed) was randomly changed every 5 min, within the range [5, 20]. During the first 5 min, the requested fps
was set to 0, aiming to assess the zero-demand footprint of the solutions under comparison. Total edge environ-
ment cost, as well as total number of deployed containerized VFs have been probed and the relative results are
presented in Fig. 10a, b. From the reported results we can observe that the VFC model can follow the demand
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Figure 10. VFC model versus Kubernetes—deployed VFs (a) and total environment cost (b).
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changes more efliciently compared with Kubernetes, even if the improvement is small. As far as the total edge
network cost is concerned, VFC presented a reduction of 12.54% compared to Kubernetes, averaging the cost
over the 60 min experiment.

Results on experimental setup.  After exploring the simulator for assessing the influence of live migrations on
the services status, the migration models have been implemented in the experimental setup, consisting of six
Raspberry Pi 3 and two Raspberry Pi 4 to mimic next generation IoT network. The service deployed was the
same as the one described in% and run for 6000 seconds. While the improvement of the average value of the
processed fps is rather small (~2%), when using the live migrations model, the fluctuation on the QoS is signifi-
cantly decreased (76.3%), making the service much more stable and robust (Fig. 11b).

Aiming to evaluate the performance of the cold migrations model, a set of experiments have been conducted
on the same test-bed. According to these experiments, two healing modes have been considered when an edge
node fails. The first mode (reset mode) establishes a new VFC each time VFO detects a failed node while the
second mode (cold-migration model) applies the described VF cold migration algorithm. According to an experi-
ment, each edge node may fail at a certain time point of a 60 min session. The fail time point of each node is
calculated based on a Poisson distribution (4 = .47(10, 50)). The experiment has conducted 100 times and the
average and variation of the service’s (pedestrian detection service) downtime has been recorded. As presented
in Fig. 11a, the cold-migration model decreases the downtime of the deployed service up to 40.27%, when com-
pared with the simplistic reset mode. This result provides evidence that the proposed cold-migrations model can
improve the robustness of the edge environment, reducing the overall downtime of the services.

Conclusions

The presented results of the previous section support that the proposed migration model can effectively support
both cold and live migrations of containerized VFs, supporting services which are deployed under the VFC
model. More specifically, the results acquired by the simulation environment, both for dedicated edge environ-
ments and generic edge environments showed that live migrations can improve the overall downtime of the
services regardless the users’ demand rates. Additionally, the proposed model presents an effective scale-out
performance, as the size of the edge environment increases. The experiments conducted on the test-bed also pro-
vide encouraging results about the performance of the proposed migration model, as its deployment decreased
the fluctuations of the QoS for a specific service by more than 75%. As far as our future work is concerned, we
are planning on extending the migration model among difference edge environments. According to this mode,
a whole service, deployed as a VFC, will have the capacity to migrate to a different edge environment, after pro-
posing a communication protocol among the involved VFOs.

Discussion

Within this work, the intelligent migration model for the VFC framework has been presented. After present-
ing relevant technologies and methodologies for IoT based edge migration services, the designed approach for
the VFC migration model is detailed. Two types of migrations have been considered, cold migrations and live
migrations among low powered IoT devices. In detail, cold migrations refer to the scenario according to which
an edge node hosting a VF fails unexpectedly, while live migrations refer to the scenario according to which an
IoT based edge node transfers its deployed VF to another edge node, due to possible node failure. The intelligent
algorithm for supporting cold migrations is based on a monitoring mechanism by the VFO edge node. Accord-
ing to this mechanism, VFO probes the binary status of all VFs (up and running/not responding). As soon as a
non-responding VF is detected, VFO executes the placement algorithm for calculating the most appropriate
node to undertake the failed VF. The next step includes the deployment of the VF to the selected node and the
update of the VFC according to the new establishment. As far as live migrations are concerned, the migration
model works in parallel with the VFC QoS monitoring model. According to this pipeline, VFO probes the status
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Figure 11. (a) Mean downtime with and without cold migrations and (b) observed QoS with and without live
migrations.
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of the edge nodes utilized in the VFC and assess their probability to fail in the next period. As soon as the model
detects a failing node, it initiates the live migration model. The next step involves the utilization of the placement
algorithm for detecting the most appropriate node for undertaking the VF from the failing node and of course
the actual migration steps from one node to the other.

The VF migration model plays a important role on the robustness of the overall framework, as it imposes a
self-healing mechanism against edge nodes failure. In contrast to cloud infrastructures, IoT based edge envi-
ronments appear large fluctuations to the capacity and availability of the processing nodes. In order to meet
the different characteristics of such environments, we have proposed an intelligent migration model with light
demands, in terms of computational requirements, which improves the overall QoS of the deployed services,
without requiring an exceed amount of computations. Finally, comparing the capacity of the VFC model to auto-
scale and self-heal, the experiments presented against similar distribution frameworks (Kubernetes) showed that
the proposed model has the capacity to operate efficiently.
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The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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