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Investigation of social and cognitive predictors in non-
transition ultra-high-risk’ individuals for psychosis using
spiking neural networks
Zohreh Doborjeh1,2,3✉, Maryam Doborjeh4✉, Alexander Sumich5,6, Balkaran Singh4, Alexander Merkin7,8, Sugam Budhraja4,
Wilson Goh9,10,11, Edmund M-K Lai 4, Margaret Williams12, Samuel Tan10, Jimmy Lee 10,13 and Nikola Kasabov 4,14,15

Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and
planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis
may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking
Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy
Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing
speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The
UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across
groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods.
Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified
the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal
social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%;
outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising
direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis
and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.
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INTRODUCTION
Over the last few decades, early identification and intervention of
individuals at Ultra-High Risk (UHR) for psychosis has become a
major translational research goal, in the hope of developing
tailored methods to minimise the risk and impact of conversion to
clinically relevant illness1,2. Whilst prediction of conversion to
clinically relevant psychosis has been a main point of interest in the
UHR populations, it is equally important to understand protective
mechanisms present in UHR individuals who do not transition3–5.
Social6–9 and cognitive10–14 functioning in UHR may have value in
predicting illness progression. In particular, the covariation of social
and cognitive measures across time might be useful in identifying
and predicting outcome in UHR. To this end, the current study aims
to apply novel computational neural network methods to long-
itudinal social and cognitive data in UHR to predict non-transition
(i.e., remittance or maintenance of a nonclinical state).
A significant proportion of UHR individuals including those who

remit from UHR conditions15, experience sustained declines in
social functioning (i.e., real-life interpersonal behaviour, perceptual
abilities, verbal and nonverbal communication)6–8,16. Deficits in

social skills performance have been identified in schizophrenia.
This included individuals at UHR for psychosis, individuals in early
stages of psychosis, and individuals with chronic psychosis17–19.
Studies of social functioning reported a higher degree of social
skill impairment in UHR individuals who develop psychosis than in
those who do not develop, although the lack of study power must
be emphasised, which may indicate that a lack of social skills is a
sign of susceptibility to psychosis9,17.
Cognition is another domain linked to poor performance in

non-transition UHR individuals in follow-up studies10,11. This has
been found within the specific neurocognitive domains of
working memory, speed of processing, attention and executive
functions12–14. Association between social and cognitive function-
ing factors to UHR individuals transitioning have been described
cross-sectionally in the areas of theory of mind8,20, emotion
recognition21,22 and attributional bias8.
To the best of our knowledge, no longitudinal studies have

elucidated on social and cognitive interaction using advanced
predictive tools in identifying and prognosis of non-transitioning
UHR individual outcomes. This highlights the importance of
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longitudinal research on the predictive strength of symptom
variables on social and cognitive data interaction that might have
high translational potential in clinical psychiatric practice.
Advanced computational and machine learning methods have

the potential to provide a method for development tools that can
reliably predict individual health outcomes for multimodal and
heterogeneous illnesses, such as schizophrenia23,24. Machine
learning methods, such as pattern recognition, include computa-
tional algorithms that can learn from a large multivariate dataset to
make accurate predictions concerning clinical outcome25. The
potential of machine learning for prediction of individual outcomes
in psychosis was illustrated in a study by de Nijs et al.23. The authors
showed that patient-reportable baseline data (e.g., Global Assess-
ment of Functioning (GAF) scores, psychotic symptoms, quality of
life, antipsychotics use, psychosocial needs and depressive
symptoms predicted global (accuracy 63.5–67.6%) and sympto-
matic (accuracy 62.2–64.7%) outcomes after 3-year and 6-year
follow-ups. Worthington et al. (2022) applied a gradient boosting
machine algorithm to clinical and demographic data to predict
prodromal symptom remission in a UHR cohort. The classification
accuracy was obtained at 60.0–72.0% with a sensitivity of 0.68%
and specificity of 0.53%. The Worthington et al.’s study is notable as
the first to examine interactive clinical and demographic predictors
of symptomatic remission in people who do not progress to
psychosis using an advanced data-driven techniques26.
The current study extends the use of data-driven model

development to explore the use of a wide range of dynamic
markers of social and cognitive variables to predict 2-year
symptomatic outcomes and transition status. A subgroup of
UHR’s individuals was included based on the clinical status at the
final assessment (month 24) and compared them with the Healthy
Control (HC) group. Examining the interaction and interrelations
between social and cognitive variables over time required
incorporating them into one unifying model27. To this end, the
computational Spiking Neural Network (SNN) model was used for
interaction and classification of social and cognitive data (using
2-year data for training and testing) and prediction (using
18 months of longitudinal data to test the model to predict the
outcome at month 24). The results were also compared against
other machine learning techniques that are suitable for time-series
data for classifying and prognosis.

RESULTS
The results from the designed SNN-based methodology (that is
fully explained in the methods section), is depicted graphically in
Fig. 1, and consists of the following steps:

(1) Visualization of the interaction between social and cognitive
variables.

(2) UHR outcome classification and prediction.
(3) Statistical analysis of the SNN models for assessing the

model significance.

Visualization and interaction of social and cognitive data
Figure 2a–c illustrate how the SNN models were trained on the
longitudinal time-series of social and cognitive data across (a) HC
group; (b) Remitter group and (c) Maintained group. The 23 social-
cognitive variables (reported in Table 1) were mapped into a 3D
SNN, where the spatial coordinates of the input neurons were
defined based on the Graph Matching method28 (GM). The GM
method positions highly correlated spike sequences of the 23
variables into topologically closer input neurons in the SNN. The
intensities of the SNN connections vary across the variables for
each group. To demonstrate the differences between the SNN
models of HC and UHR subgroups, the average-value of the
connection weights (Wa) (Refers to the temporal relationship

between two neurons as measured by the time of spike were
extracted across every single social and cognitive variable.
The average-value of connection weights in the SNN models of

HC and Remitter groups were greater (Wij: 1.2 and Wij: 0.97
respectively) than the Maintained group (Wij: 0.52). In addition to
the average-value of all the connection wights in each SNN, we
also reported a greater detail on the SNN connections in Fig. 3 that
better demonstrates the differences between the models: (1) “HC
vs Remitter” and (2) “HC vs Maintained”. Figure 3 shows the
average-value of connection weights for each variable separately.
This is calculated by taking average of connection weights among
neurons which are directly connected to the SNN input variables
(social and cognitive variables).
As shown in Fig. 3, the most prominent discriminative cognitive

variables between HC and Remitters are verbal memory and
semantic fluency (vegetables) from the Brief Assessment of
Cognition in Schizophrenia (BACS) test; filtered score in Perceptual
Closure (PC) test; and target and distractor accuracies scores in the
Snakes in the grass (SNK) test. The discriminative social variables
between HC and Remitters are odd behaviour, language, and
social interpersonal from the High-Risk Social Challenge (HiSoC)
test. These cognitive variables and the corresponding functions
including verbal memory, processing speed, attention, and
inhibition; and social functioning, including communication and
fluency of speech can be suggested as potential predictive
markers for identifying Remitters.
Figure 3 shows that the performance of HC and Maintained groups

are different across verbal memory, digit sequencing, token motor
task, semantic fluency, and symbol coding from the BACS test; target
and distractor accuracies from (SNK) test; all the variables from the PC
test and the total score for the Continuous Performance Task (CPT).
The social skills performance also differs across HC and Maintained in
affect, odd behaviour, language, and social interpersonal from the
HiSoC test. These findings suggest that the cognitive and social
functions, including verbal memory, working memory, motor speed,
processing speed, attention, inhibition, nonverbal affect, communica-
tion and fluency of speech are the most discriminative and predictive
markers for identifying the Maintained subgroup.
The significance of the trained SNN models across HC and UHR

subgroups were examined by calculating the number of spikes
that were exchanged between the cognitive and social variables.
This is demonstrated by Feature Interaction Network (FIN)29 is
shown in Fig. 4. Here, every node represents a cluster of spiking
neurons that are centred by one data variable. The neurons are
clustered using a dynamic evolving clustering technique which is
based on network theory30–32. The lines in FIN demonstrate spikes
were exchanged between neurons of adjacent clusters during the
Spike Time Dependent Plasticity (STDP) learning. The thicker lines
suggest greater number of transmitted spikes, representing more
temporal interaction and greater exchange of information
between the variables. A stronger social and cognitive interaction
in the Maintained group is shown in Fig. 4c in comparison with
other groups (Fig. 4a, b). This finding can be used to study the
causal interaction between variables over time and to predict
important variables that may affect other variables to change in
UHR individuals’ status.

Classification and Prediction of UHR’s individuals’ outcomes
For identification of UHR individuals, we applied classification
using SNN classifier of dynamic SNN (explained in the Method
section). There is a total number of 169 samples across three
classes (n= 81 HC; n= 58 Remitters; and n= 30 Maintained). The
classification was performed based on 30 times of cross-validation
through a random 50–50% split. The balance accuracy is reported
in Table 2a. A predictive modelling experiment was also carried
out to investigate how early the SNN can capture the
discriminative patterns of changes in social and cognitive data
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between groups for the purpose of predicting the individual
outcomes. The class label for each individual’s data is given in
relation to the outcome diagnosed in 24-month. An SNN model
was tested (using only the data collected during the first
18 months) to predict the output classes for the three groups of
participants at the time of 24-month (label as HC, Remission and
Maintained at 24-months).
The prediction experiment was based on running a 2-fold cross-

validation (random 50–50 split) 30 times, and the average of all 30
balance accuracies was calculated (reported in Table 2b). The
6-month ahead prediction of outcomes (HC, Remission and
Maintained) is reported as 80.2% balance accuracy (Table 2b).
The classification and prediction were also conducted using other

traditional methods, including k-nearest neighbours (KNN), random

forest, and support-vector machine (SVM) through a random
50–50% split performing 30 times. Here, for each individual’s data
sample (which is interpolated to time series), all the variables’ time
points were concatenated into a single vector, which unlike the SNN
model that can reactive temporal data, disregards the intrinsic
temporal structure of the interpolated social and cognitive data. To
perform a fair comparison, we also applied long short-term memory
(LSTM) and Convolutional neural network (CNN) method that can
learn from streaming timeseries (Table 3a, b).

Statistical analysis
To evaluate the significance of the trained SNN models, a
Multivariate Analysis of Variance (MANOVA) tested for differences
across groups in connection weights, separately for the social and

Fig. 1 The diagram of the protocol of study includes population, data preprocessing, and the designed SNN-based methodology for
visualisation, classification and prediction. a The longitudinal data that were measured from Ultrahigh risk individuals for psychosis and
healthy control over a 2-year period; b interpolation of data points between the five measurements T0 (baseline), T1 (after 6 months), T2 (after
12 months), T3 (after 18 months) and T4 (after 24 months) to get the information-trend (time series); c Illustration of the designed
methodology, containing encoding the changes in the time series into spike sequences and mapping them into a 3-Dimensional space of an
SNN for learning, visualisation, and interaction; d computational modelling for classification and prediction of an individual transitioning
outcome using dynamic two-years social and cognitive data.

Fig. 2 3D SNN connectivity models in the form of visualization on the longitudinal time series of social and cognitive data across groups
(healthy control and UHR). Each model was mapped with a size of 1000 neurons (10 × 10 × 10 dimensions), which were then trained using the
Spike Time Dependent Plasticity learning rule (STDP) to visualize 2-year social and cognitive data for a 81 HC samples; b 58 Remitter samples; and
c 30 Maintained samples. For the variable mapping to SNN, the more correlated input variables (in terms of correlation in their spike trains) were
mapped into nearby input neurons in SNN. The models were initialised using small-word connectivity with a radius set to 2 neuron distance, and
then trained using STDP. The blue lines are positive connections (excitatory), and the red lines are negative connections (inhibitory) based on
STDP learning. For each SNN model here, the average value of connection weight is reported as a metric below each model.
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cognitive tests. Between groups variables included Sex (male,
female) and Group (HC, Remitter, Maintained). Sub scores from
each test were entered as separate dependent variables.
Greenhouse-Geisser corrections were used to correct all violations
of the assumption of sphericity. There was a significant main effect
of Group in the PC test [F (3)= 3.1, p < 0.03, ƞ2= 0.05]. There was a
significant effect of Sex in PC sub-score (percentage of correctly
identified items), with higher connection weights in men than
women. There was a significant Group × Sex interaction effect for
HiSoC Affect Dimension [F (2)= 3.07, p= 0.05, ƞ2= 0.04] and
HiSoC Social Interpersonal Dimension [F (2)= 3.21, p < 0.04,
ƞ2= 0.04]. Post-hoc tests showed higher scores for Affect in male
Remitters compared to Maintained (p < 0.04). In women, on-the-
other-hand, the Social Interpersonal Dimension was better in
Remitters than Maintained (p < 0.01). Figure 5 shows a raincloud
plot of the connections weights as a function of group and social
and cognitive performance.

DISCUSSION
Using a rigorous computational SNN approach, we developed
models to investigate the dynamic social and cognitive interac-
tions and to predict 2-year outcomes of UHR’s individuals for
psychosis. Findings identified the most important cognitive and
social variables (particularly verbal memory, processing speed,
attention, affect and interpersonal social functioning) that showed
discriminative patterns in the SNN models of HC vs UHR
subgroups. The explainable SNN model enabled us to have a
better understanding of the interaction of data variables across
groups over time (with higher social and cognitive variables
interaction for UHR Maintained subgroup than Remitter

subgroup). Finally, the accuracy of social and cognitive data
classification was higher when using SNN models compared with
traditional machine learning methods (e.g., SVM, LSTM, Random
Forest and CNN).

UHR state for psychosis and non-transition
Longitudinal modelling of social and cognitive performance
revealed that the majority of individuals (64.5%) were remitted
during the 24-month follow-up, while about 34% of the
individuals maintained their UHR status and only 2% converted
to clinically relevant psychosis. These results were consistent with
more recent studies that reported that the rate of transition from
an UHR status to clinically relevant psychosis has dropped
dramatically from over 50% to 15% with follow-ups exceeding 1
year5.

Dynamic social and cognitive changes and interactions
The results showed that participants at UHR for psychosis were
differentiated from HC, and Remitters were differentiated from
Maintained according to 24-months social and cognitive perfor-
mance. The total connection weights value showed Control >
Remitter > Maintained (Fig. 2a–c). In particular, greater connectiv-
ity weights were generated for the “PC” cognitive test in the HC
group than in other UHR subgroups. Greater connection weights
here reflect better performance. The “PC” task tests ability to
complete what is incompletely presented in the visual field to
achieve “good” or as complete a figure as possible by percep-
tion33. PC scores have previously been found lower in well-
established (chronic) schizophrenia than the general population,

Table 1. The 23 data variables along with the corresponding social and cognitive domains used in this study.

Variables numbers Cognitive test: the Brief Assessment of Cognition in Schizophrenia (BACS)
(9 variables)

Cognitive domains

1 List learning Verbal memory

2 Digit sequencing Working memory

3 Token motor task Motor speed

4–7 Semantic fluency for animals, fruits, vegetables, and raw scores Processing speed

8 Symbol coding Attention and processing speed

9 Tower of London Executive functions/reasoning and problem solving

Social test: the High-Risk Social Challenge (HiSoC) (4 variables) Social domain

10 Affect Fluency of speech, engagement, social anxiety

11 Odd behavior and language Facial affect, nonverbal affect, gaze, anergia

12 Social-interpersonal Speech valence, appearance, clear communication

13 Averaged score Total social score

Cognitive test: snakes in the grass (SNK) (5 variables) Cognitive domains

14–19 Reaction time score and accuracy score towards Target and
distractor stimuli

Visual attention, inhibition, attentional bias, speed
processing

Cognitive test: perceptual closure (PC) (3 variables) Cognitive domains

20–22 Filtered perceptual closure score and percentage of correctly identified items Energizing or arousing, attention to the complete
figure, ability to maintain a major set.

Cognitive test: continuous performance task (CPT) (1 variable) Cognitive domains

23 Averaged score Sustained and selective attention

Z. Doborjeh et al.
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and was interpreted as reflecting atypical attention, or inability to
maintain a major set33.
In between group comparison, HC and Remitter groups differed

slightly in the connectivity of symbol coding from BACS test and
affect dimension from HiSoC test. This suggests cognitive and
social functions in the Remitter group (attention, processing speed
and affect) returned to a similar level as the HC after 24 months.
Moreover, the connection weight values of some of the cognitive
sub-variables increased for the Remitter group to some different
degrees. For example, the connection weights for the PC test
(correct answer accuracy), SNK (total score accuracy) and BACS
(semantic fluency in fruits and animals and token motor task) were
higher than in the HC at 24-months. These variables correspond to
organisation, visual, motor speed and processing speed domains,
respectively. These results were consistent with Kendler et al.
(2016) study that reported an improved cognition in individuals at
UHR with time34.
The difference between the HC group and the Maintained

subgroup are across all the social and cognitive variables except
SNK test performance. The connection weight values of SNK sub-
variables increased slightly for the Maintained group in relative to
HC group. These variables represent cognitive abilities related to
visual attention and processing speed. An increase in variability of
test performance over time suggest the possibility that the
underlying cognitive architecture may have devolved in Main-
tained group during follow-up. Thus, measures of dedifferentia-
tion of cognitive components may be one of the most powerful
factors in later conversion in individuals at risk for psychosis35.
Through statistical analysis of the extracted connection weights,

significantly higher connection weights were seen in the Remitters
group for HiSoC social interpersonal dimension than in other
groups at 24 months that reflect greater co-variation between
social interpersonal score and other cognitive measures with time.
There was also a significant effect of sex in HiSoC as the Affect
dimension was protective in male Remitters and the Social
Interpersonal dimension was protective in female Remitters. These
findings are in alignment with McGlashan36 that found females

had better premorbid social functioning than males. Vila-
Rodriguez et al.37 expanded these studies and discovered that
females performed better in social interpersonal skills than males.
These findings suggest that social interpersonal functioning in
females and affective functioning in males could be the most
important social variable to differentiate the groups and sex and
can be used for predicting progression.
Through FIN analysis in Fig. 4, for the Maintained group, a

stronger exchange of information between social and cognitive
variables was seen, suggesting that dynamic variations in social
and cognitive performance interact differently with time in the
different groups. This interaction was more between BACS and
SNK from cognitive functioning and interpersonal and odd
behaviour from social functioning. According to STDP rule in
SNN model, connectivity with greater weights reflects stronger
spike transmission between inputs. Thus, the STDP rule develops
neural connectivity among the spatially distributed inputs in the
SNN model that represents the spatiotemporal relationships
between the social and cognitive data variables. Finding is Fig. 4
indicates the strength of intercorrelation between cognitive and
social variables and reflect how particularly attention and
processing speed deficit in Maintained group can affect the
dysfunctionality of other aspects of social skills including
communication, and fluency of speech.

UHR’s classification and prediction
The classification of social and cognitive data over 2-years resulted
in significantly higher accuracy across groups, compared to other
machine learning methods (Table 2a). The prediction accuracy of
dynamic social and cognitive data for Remitter and Maintained
groups was 80.2% when only 18-months of data was used which
suggested the existence of discriminative patterns between the
groups at one year and half earlier (Table 2b). Compared to
commonly applied predictive risk models for UHR which are based
on modelling static variables, the current study is one of the newly
advanced studies on developing a temporal-based risk prediction

Fig. 3 The average of connection weights within 23 clusters of neurons inside the SNN, each of which includes neurons that are directly
connected to one of the 23 social-cognitive variables, across three groups: Control group (blue bar), Remitter group (orange bar), and
Maintained group (green bar). The components of cognitive BACS test include verbal memory, digit sequencing, token motor task, semantic
fluency, symbol coding, and tower of London; the components of social HiSoC test include affect, odd behaviour, and language, and social
impersonal; the components of cognitive SNK test include target and distractor accuracy and reaction time; the components of cognitive PC
include the filtered, averaged and accuracy of perceptual closure scores; and the cognitive CPT test include the total score.
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model using longitudinal social and cognitive data and SNN. With
machine learning techniques, the spatiotemporal variables of
social and cognitive data were converted into one vector of
variables. As a result, temporal connections cannot be obtained. In
comparison, the computational SNN models allow the integration
of dynamic interactions between social and cognitive perfor-
mance during various neuropsychological tasks performance.

Limitations and future work
There are some limitations to consider. First, we only selected the
common social and cognitive variables that were collected across
all the five times of follow-ups; thus, we ended up using 23 social
and cognitive variables. Second, the SNN models were trained and
tested on a small set of data and the findings are valid for the
defined scope. However, we demonstrated the potential of our
model in UHR’s predictive marker detection and 6-months ahead
prediction with a better balance accuracy compared to other
machine learning tools. Therefore, the SNN model needs to be
further tuned and calibrated using more data for the general-
isation purpose. Further longitudinal studies are needed to look at
a time period over the 24 months done in the current study with a
larger cohort population. Future research might look at the non-
transitioned individual differences in time, that is affected by other
variables including ethnicity, and culture. Of the ethnic groups
reported, schizophrenia is a culture-bound illness, that is, a
difference in culture can influence how it manifests. The results of

this paper will be further extended through developing a SNN
model to learn from multimodal data including genetic, neuroi-
maging, clinical along with social and cognitive longitudinal data.
We plan to conduct personalised profile modelling for every
individual using the personalised modelling approach. Our future
work also includes enhancing the interpolation phase by
optimising the number artificial datapoints between original data
measurements.
In conclusion, the research demonstrated the feasibility of a

computational SNN approach for longitudinal outcome prediction,
in the most difficult to prediction, a non-transition UHR population
for psychosis, based on social and cognitive data interaction. Our
findings support the importance of temporal changes (over two
years) and the co-variation across certain social and cognitive
variables in predicting outcomes. The SNN models resulted in a
good balanced accuracy for 6-month ahead prediction of UHR
outcomes (based on 18-month data) for individuals who are likely
to remit and for those who are likely remain stable at 24-month
period. Thus, the designed SNN architecture in this study can be
suggested as a possible supportive tool for early detection of UHR
individuals. The SNN approach has shown to be potential in
modelling UHR data. This can benefit psychiatrists and other
health professionals in identifying non-converted individuals and
allow them to initiate early and appropriate targeted
interventions.

Fig. 4 The amount of spike interaction during the Spike Time Dependent Plasticity (STDP) learning in the SNN between each two
variables from the 23 social and cognitive variables through Feature interaction network (FIN) Model. a HC group; b Remitter group; and
c Maintained group. Each node represents a cluster of neurons around one variable (connected directly inside the SNN). Each line represents
how two clusters of neurons (representing variables) exchanged spikes during STDP learning. The thicker the line between two variables, the
greater the level of spike. interaction between them.
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METHOD
Participants and inclusion criteria
The original study conducted in Singapore included n= 384 HC
individuals (mean age= 21.7 years and SD= 3.4) and n= 173 UHR
individuals (mean age= 21.3 years and SD= 3.5). All participants
were between the ages of 14 and 29.

Current inclusion criteria. Only individuals who had their data
collected from all variables across all five time points T0-T4 were
included in the current study. Thus, a total number of 171
individuals were selected for UHR group (n= 90) and HC group
(n= 81); age mean =21.29 and SD= 3.70; 106 males and 65
females. UHR individuals were then categorised into three classes
(Remitters, Converters, and Maintained), based on the clinical
scores at 24-month follow-up (Fig. 1a). Remitters (n= 58) refers to
those UHR participants who were UHR-positive at baseline but did
not meet the UHR criteria at the 24-month. Converters (n= 2)
refers to those participants who were UHR-positive at baseline and
developed a first episode of psychosis within 24-months.
Maintained (n= 30) refers to those participants who were UHR-
positive at baseline and remained UHR-positive at 24-month
period of follow-up. The Converter group was dropped from the
current study due to low sample size. Hence, the final study
dataset contained 169 individuals (HC, Remitters, Maintained).

Assessment
Multimodal data (demographic, clinical, social, and cognitive) were
collected every six months over two years: T0= baseline
assessment, T1= 6-months, T2= 12-months, T3= 18-months
and T4= 24-months follow-ups. In total, twenty-three social and
cognitive variables were identified (reported in Table 1) that were
determined as common variables collected at baseline (T0) and at
all follow-up assessments (T0 - T4).

Clinical assessments. The Comprehensive Assessment of At-Risk
Mental States (CAARMS) was employed to determine the UHR’
clinical status38. The UHR subgroup was then categorised into
three classes (Remitters and Maintained), based on the CAARMS
scores at 24-month follow-up.

Social assessment. The performance-based social skills was
measured by the High Risk Social Challenge Task (HiSoC)39. The
HiSoC has been used in UHRs for psychosis studies as a
standardized and performance-based social skills measure that
has demonstrated high levels of validity and reliability. Social skills
are measured in terms of the display of affect, odd behaviour, and

language, and social-interpersonal when evaluating the task. A
5-point Likert scale is used to rate the 16 items in the task (with
higher scores indicating better social skills).

Cognitive assessment. The cognitive assessments are based on
four cognitive neuropsychological batteries, including (i) The Brief
Assessment of Cognition in Schizophrenia (BACS)40,41 which
comprises list learning, digit sequencing, token motor task,
semantic fluency, Tower of London, and symbol coding tests; (ii)
The Snakes in the grass (SNK)42,43 test of fear-relevant attention
(accuracy and reaction time); (iii) The Continuous Performance
Test (CPT)44;and iv) Perceptual Closure test (PC)45.

Data analysis
Interpolation. To capture the 2-year trend in these 23 social-
cognitive variables across groups, we applied an interpolation
technique which is a common practice in clinical data genera-
tion46,47. There are examples of successfully applying interpolation
techniques that improved the modelling of changes in limited
measured datasets, including hippocampus-amygdala in schizo-
phrenia48, heart rate measurement in atrial fibrillation49, and MRI in
traumatic brain injury50 and MRI modelling in prediction of
dementia51. Durrleman et al. shows estimated timepoints (values)
generated by interpolation in a different range of longitudinal
datasets inferred continuous shape trajectory from observations
sparsely distributed in time52. One of the interpolation methods is
linear interpolation that requires knowledge of two data points and
assumes constant rate of change between them. This is a process
of using known data values to estimate unknown data values. In
the current study, a linear interpolation is used to generate the
values between the limited number of data measurements (T0-T4)
in 2 years. The interpolated data points do not alter the trend of
original data and only depict the linear pattern of changes
between the five follow-up measurements. In the current study, a
linear interpolation is used to generate the values between the
limited number of data measurements (T0-T4) in 2 years. The
interpolated data points do not alter the trend of original data and
only depict the linear pattern of changes between the five follow-
up measurements. Interpolation technique allows to generate
artificial data point per month, transforming the data from static
domain to time series while preserving the original trend of
changes across groups. This led to generate 245 times points (time
series) for each variable associated with 24 months, plus 5 time-
points from the original data collection as shown in Fig. 1b. The
interpolation of all the social and cognitive variables to time series,
shown in Supplementary Fig. 1, represents the trends in the time

Table 2. Classification and Prediction of Healthy Control and UHR’s Individuals’ Outcomes Using Spiking Neural Network.

(a) Classification accuracy outcome

Group Control Remitted Maintained Total accuracy Standard deviation

Accuracy % 0.89 0.71 0.64 0.78 0.2

(b) Prediction accuracy outcome

Group Control Remitted Maintained Total accuracy Standard deviation

Accuracy % 0.94 0.68 0.68 0.80 0.2

(a) Classification of 169 samples into three classes: HC (class 1, containing 81 samples), Remitter group (class 2, containing 58 samples, and maintained group
(class 3, containing 30 samples. Class labels are extracted from T4 (at 24 month). For classification, the whole length of cognitive and social time series (T0-T4)
was used in the training and testing sets. The results are the average of balance accuracies from 30 rounds of 2-fold cross-validation. (b) Prediction of three
classes (HC, Remitted, and Maintained, labels are extracted from 24 month). For prediction, the length of cognitive time series in testing sets was 18 months
(only T0-T3) to predict the outcome at month 24. This is to predict which individual is likely to remit or maintain the level of social- cognitive statues at time T4
(at 24-months of assessment) when the SNN model was only tested by the data from earlier time (18-monthss). The SNN parameters set as the following:
Encoding threshold: 0.50; Firing threshold: 0.50; STDP learning rate: 0.01; Mod: 0.8; Drift: 0.005.
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eries and the gradual changes. This interpolation is conducted
prior to modelling the data using machine learning models and
SNNs (explained in the following section). For SNN models, the
interpolated time series were then encoded into sequences of
binary events, called spikes that capture significant upward and
downward changes in the 2-year social-cognitive data.

Computational spiking neural network modelling. The SNN model
has been developed as a connectionist network framework that
both spatial and temporal components of data can be learnt and

trained in one model. The SNN model has a 3-dimensional
structure of artificial spiking neurons28 and a learning algorithm
that learns from streaming data and adapts the connection
weights, representing spatio-temporal relationship between vari-
ables30. Interpolated social and cognitive variables are used as
input30 to the SNN model to learn the patterns of changes in
longitudinal data in relation to the outcomes (HC and UHR
subgroups).
The data modelling architecture possesses the following

modules:

Table 3. Classification and Prediction of UHR’s individuals’ outcomes Using Machine Learning Tools.

(a) Classifying between Remitter and Maintained

Algorithm Accuracy % F1 MCC AUROC Sensitivity Specificity

LSTM 0.593 Sd (0.07) 0.231 (0.17) 0.019 (0.16) 0.493 (0.08) 0.787 (0.16) 0.228 (0.19)

CNN 0.524 (0.12) 0.294 (0.18) 0.012 (0.12) 0.498 (0.06) 0.628 (0.34) 0.384 (0.35)

SVM 0.625 (0.07) 0.253 (0.14) 0.063 (0.17) 0.524 (0.07) 0.839 (0.09) 0.219 (0.31)

Random Forest 0.596 (0.09) 0.220 (0.16) 0.047 (0.21) 0.518 (0.07) 0.868 (0.10) 0.166 (0.31)

(b) Predicting between Remitter and Maintained (Prognosis) Baseline to 18 months data and labels at 24 months

Algorithm Accuracy F1 MCC AUROC Sensitivity Specificity

LSTM 0.569 (0.07) 0.175 (0.14) −0.050 (0.12) 0.474 (0.08) 0.783 (0.17) 0.176 (0.18)

CNN 0.556 (0.09) 0.291 (0.15) 0.005 (0.12) 0.492 (0.07) 0.664 (0.24) 0.335 (0.25)

SVM 0.641 (0.07) 0.280 (0.17) 0.079 (0.20) 0.533 (0.08) 0.825 (0.10) 0.241 (0.16)

Random Forest 0.633 (0.08) 0.288 (0.13) 0.114 (0.19) 0.541 (0.07) 0.842 (0.12) 0.241 (0.13)

(a) Classification results of two classes (Remitter and Maintained) using machine learning tools including Random Forest, Support vector machine (SVM),
K-nearest neighbour (KNN), and Long Short term memory (LSTM) and Convolutional neural network (CNN).
(b) The prediction task was also conducted using Random Forest, SVM, KNN, LSTM, and CNN. The F score, Matthew’s correlation coefficient (MCC), Area Under
the Curve (AUROC) for measuring the performance of the machine learning tools are also reported.

Fig. 5 A raincloud plot of the connections weights as a function of group (healthy control and UHR) and social and cognitive
performance. a Distribution of the connection weights comparison between healthy control and maintained groups. b Distribution of the
connection weights comparison between HC and Remitter groups.
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(i) Input module: a threshold-based encoding algorithm53 was
applied to the interpolated timeseries of each variable and
converted them into sequences of spikes, representing
significant changes in each variable values that occurred over
time. This results in a compact representation of events (spikes)
and removing noise. The variables were spatially mapped into
input neurons in the SNN to feed the model with the spike
sequences. The 3D mapping of the SNN and the initialisation
procedure are explained Supplementary material.

(ii) SNN training module: a twofold learning process is applied.
First, the input spikes are passed into the SNN model for
unsupervised learning using Spike Time dependent Plasticity
(STDP)54 (Fig. 1c). Then, the trained SNN model is connected
to an output layer for supervised learning to capture
associations between the trained SNN model and the
training sample class labels (HC and UHR subgroups). The
supervised learning is based on a Dynamic Evolving SNN
(deSNN), shown in (Fig. 1d)55. The detains of the STDP is
explained in Supplementary material.

(iii) Classification and prediction module: the trained SNN model
was tested using the social and cognitive data of those
individuals who were excluded from the training process.
The testing and training sets were defined, based on a 2-fold
cross validation in which 50% of samples were selected
randomly as the training set, while and other 50% hold-out
samples were used as testing set. This process was repeated
30 times and the random selection approach assured sample
permutation. For the classification task, the whole temporal
length (T0-T4) of the social and cognitive variables were used
for training and testing to detect the outcomes (in month
24). However, for the prediction task, only the first 18 months
(T0-T3) of the data were used to test the model for
performing a 6-month-ahead prediction of outcomes (at
month 24). Since the dataset is imbalanced (Remitted n= 58
and Maintained n= 30), balanced accuracy is calculated as
(Sensitivity+ Specificity) / 2, reported in confusion Table 2.,
representing the number of correctly classified and miss-
classified samples.

(iv) Visualisation, interaction and knowledge discovery module:
in the trained SNN, the spatiotemporal connections between
the social and cognitive variables were visualised and
traditional statistics used to test for differences between
groups. Differences between HC and UHRs subgroups in SNN
models were also studied by computing spatio-temporal
interactions between the social-cognitive variables, using a
Feature Interaction Network (FIN).

Figure 1a–d presents the protocol of study, as well as the
designed computational SNN-based methodology for data
modelling, visualisation, interaction, classification and prediction.
The details of the designed SNN computational models including
mathematical formulas and algorithms are presented in the
Supplementary Material, Section 1.1.

Ethical approval
All aspects of the study were completed in alignment with
appropriate regulations and guidelines of Nature journal publish-
ing. Ethical approval was granted by the Singapore National
Healthcare Group’s Domain Specific Review Board. Informed
consent was obtained from all participants. For those under 21
years of age, the consent was obtained from a legal
representative.

SOFTWARE AVAILABILITY
The software used for the implementation of the designed
method can be found at http://www.kedri.aut.ac.nz/neucube/.

DATA AVAILABILITY
Dataset is not publicly available due to participant consent statement but could be
available from the corresponding author upon reasonable request and with
permission of NTU and IMH, Singapore, considering a data sharing agreement
procedure.

Received: 26 October 2022; Accepted: 26 January 2023;

REFERENCES
1. Fusar-Poli, P. et al. The psychosis high-risk state: a comprehensive state-of-the-art

review. JAMA Psychiatry 70, 107–120 (2013).
2. Addington, J., Farris, M., Devoe, D. & Metzak, P. Progression from being at-risk to

psychosis: next steps. NPJ Schizophr. 6, 1–7 (2020).
3. Addington, J. et al. Predictors of transition to psychosis in individuals at clinical

high risk. Curr. Psychiatry Rep. 21, 1–10 (2019).
4. Studerus, E., Ramyead, A. & Riecher-Rössler, A. Prediction of transition to psy-

chosis in patients with a clinical high risk for psychosis: a systematic review of
methodology and reporting. Psychol. Med. 47, 1163–1178 (2017).

5. Simon, A. E. et al. Ultra high-risk state for psychosis and non-transition: a sys-
tematic review. Schizophr. Res. 132, 8–17 (2011).

6. Lim, K., Rapisarda, A., Keefe, R. S. & Lee, J. Social skills, negative symptoms and
real-world functioning in individuals at ultra-high risk of psychosis. Asian J. Psy-
chiatr. 69, 102996 (2022).

7. Lee, S. J., Kim, K. R., Lee, S. Y. & An, S. K. Impaired social and role function in ultra-
high risk for psychosis and first-episode schizophrenia: its relations with negative
symptoms. Psychiatry Investig. 14, 539 (2017).

8. Glenthøj, L. B. et al. Social cognition in patients at ultra-high risk for psychosis: what
is the relation to social skills and functioning? Schizophr. Res. Cogn. 5, 21–27 (2016).

9. Glenthøj, L. B., Kristensen, T. D., Gibson, C. M., Jepsen, J. R. M. & Nordentoft, M.
Assessing social skills in individuals at ultra-high risk for psychosis: validation of
the High Risk Social Challenge task (HiSoC). Schizophr. Res. 215, 365–370 (2020).

10. Rek-Owodziń, K., Tyburski, E., Waszczuk, K., Samochowiec, J. & Mak, M. Neuro-
cognition and social cognition—possibilities for diagnosis and treatment in ultra-
high risk for psychosis state. Front. Psychiatry 12, 765126 (2021).

11. Allott, K. et al. Twelve-month cognitive trajectories in individuals at ultra-high risk
for psychosis: a latent class analysis. Schizophr. Bull. Open 3, sgac008 (2022).

12. Tandon, R., Nasrallah, H. A. & Keshavan, M. S. Schizophrenia,“just the facts” 4.
Clinical features and conceptualization. Schizophr. Res. 110, 1–23 (2009).

13. Seidman, L. J. et al. Neuropsychology of the prodrome to psychosis in the NAPLS
consortium: relationship to family history and conversion to psychosis. Arch. Gen.
Psychiatry 67, 578–588 (2010).

14. Glenthøj, L. B. et al. Self-perceived cognitive impairments in psychosis ultra-high
risk individuals: associations with objective cognitive deficits and functioning. npj
Schizophr. 6, 1–6 (2020).

15. Addington, J. et al. Clinical and functional characteristics of youth at clinical high-risk
for psychosis who do not transition to psychosis. Psychol. Med. 49, 1670–1677 (2019).

16. Cotter, J. et al. What drives poor functioning in the at-risk mental state? A sys-
tematic review. Schizophr. Res. 159, 267–277 (2014).

17. Pinkham, A. E., Penn, D. L., Perkins, D. O., Graham, K. A. & Siegel, M. Emotion
perception and social skill over the course of psychosis: a comparison of indivi-
duals “at-risk” for psychosis and individuals with early and chronic schizophrenia
spectrum illness. Cogn. Neuropsychiatry 12, 198–212 (2007).

18. Ikebuchi, E., Nakagome, K. & Takahashi, N. How do early stages of information
processing influence social skills in patients with schizophrenia? Schizophr. Res.
35, 255–262 (1999).

19. Mueser, K. T., Bellack, A. S., Douglas, M. S. & Morrison, R. L. Prevalence and stability
of social skill deficits in schizophrenia. Schizophr. Res. 5, 167–176 (1991).

20. Cotter, J. et al. Examining the association between social cognition and func-
tioning in individuals at ultra-high risk for psychosis. Aust. N. Z. J. Psychiatry 51,
83–92 (2017).

21. Amminger, G. P. et al. Affect recognition and functioning in putatively prodromal
individuals. Schizophr. Res. 147, 404–405 (2013).

22. Glenthøj, L. B. et al. Emotion recognition latency, but not accuracy, relates to real
life functioning in individuals at ultra-high risk for psychosis. Schizophr. Res. 210,
197–202 (2019).

23. de Nijs, J. et al. Individualized prediction of three-and six-year outcomes of
psychosis in a longitudinal multicenter study: a machine learning approach. NPJ
Schizophrenia 7, 1–11 (2021).

24. Tandon, N. & Tandon, R. Using machine learning to explain the heterogeneity of
schizophrenia. Realizing the promise and avoiding the hype. Schizophr. Res. 214,
70–75 (2019).

Z. Doborjeh et al.

9

Published in partnership with the Schizophrenia International Research Society Schizophrenia (2023)    10 

http://www.kedri.aut.ac.nz/neucube/


25. Weissler, E. H. et al. The role of machine learning in clinical research: transforming
the future of evidence generation. Trials 22, 1–15 (2021).

26. Worthington, M. A. et al. Individualized prediction of prodromal symptom
remission for youth at clinical high risk for psychosis. Schizophr. Bull. 48, 395–404
(2022).

27. Doborjeh, Z. et al. Interpretability of spatiotemporal dynamics of the brain pro-
cesses followed by mindfulness intervention in a brain-inspired spiking neural
network architecture. Sensors 20, 7354 (2020).

28. Kasabov, N. K. NeuCube: a spiking neural network architecture for mapping,
learning and understanding of spatio-temporal brain data. Neural Netw. 52,
62–76 (2014).

29. Liu, R., Beus, P., Madler, S. & Bush, B. Analysis of Watts-Strogatz Networks. Arizona
State University, (2015).

30. Doborjeh, M., Doborjeh, Z., Kasabov, N., Barati, M. & Wang, G. Y. Deep learning of
explainable EEG patterns as dynamic spatiotemporal clusters and rules in a brain-
inspired spiking neural network. Sensors 21, 4900 (2021).

31. Doborjeh, M. G., Kasabov, N. & Doborjeh, Z. G. Evolving, dynamic clustering of
spatio/spectro-temporal data in 3D spiking neural network models and a case
study on EEG data. Evol. Syst. 9, 195–211 (2018).

32. Doborjeh, M. G. & Kasabov, N.Dynamic 3D clustering of spatio-temporal brain
data in the NeuCube spiking neural network architecture on a case study of fMRI
data. In Neural Information Processing: 22nd International Conference, ICONIP 2015,
Proceedings, Part IV 22 (pp. 191–198). Springer International Publishing (2015).

33. Snyder, S. Perceptual closure in acute paranoid schizophrenics. Arch. Gen. Psy-
chiatry 5, 406–410 (1961).

34. Kendler, K. S., Ohlsson, H., Mezuk, B., Sundquist, J. O. & Sundquist, K. Observed
cognitive performance and deviation from familial cognitive aptitude at age 16
years and ages 18 to 20 years and risk for schizophrenia and bipolar illness in a
Swedish national sample. JAMA Psychiatry 73, 465–471 (2016).

35. Lam, M. et al. Longitudinal cognitive changes in young individuals at ultrahigh
risk for psychosis. JAMA Psychiatry 75, 929–939 (2018).

36. McGlashan, T. H. & Bardenstein, K. K. Gender differences in affective, schi-
zoaffective, and schizophrenic disorders. Schizophr. Bull. 16, 319–329 (1990).

37. Vila-Rodriguez, F., Ochoa, S., Autonell, J., Usall, J. & Haro, J. Complex interaction
between symptoms, social factors, and gender in social functioning in a
community-dwelling sample of schizophrenia. Psychiatr. Q. 82, 261–274 (2011).

38. Oliver, D. et al. Meta-analytical prognostic accuracy of the Comprehensive
Assessment of at Risk Mental States (CAARMS): the need for refined prediction.
Eur. Psychiatry 49, 62–68 (2018).

39. Gibson, C. M., Penn, D. L., Prinstein, M. J., Perkins, D. O. & Belger, A. Social skill and
social cognition in adolescents at genetic risk for psychosis. Schizophr. Res. 122,
179–184 (2010).

40. Keefe, R. S. et al. The Brief Assessment of Cognition in Schizophrenia: reliability,
sensitivity, and comparison with a standard neurocognitive battery. Schizophr.
Res. 68, 283–297 (2004).

41. Huang, Y.-C. et al. Defining cognitive and functional profiles in schizophrenia and
affective disorders. BMC Psychiatry 20, 1–9 (2020).

42. Jensen, C. Examining Snake Detection Theory: Conscious and Unconscious
Responses to Snakes (The California State University, 2019).

43. Öhman, A., Flykt, A. & Esteves, F. Emotion drives attention: detecting the snake in
the grass. J. Exp. Psychol. Gen. 130, 466 (2001).

44. Kahn, P. V. et al. Standardizing the use of the Continuous Performance Test in
schizophrenia research: a validation study. Schizophr. Res. 142, 153–158 (2012).

45. Snodgrass, J. G. & Kinjo, H. On the generality of the perceptual closure effect. J.
Exp. Psychol.: Learn. Mem. Cogn. 24, 645 (1998).

46. Lehmann, N., Villringer, A. & Taubert, M. Colocalized white matter plasticity and
increased cerebral blood flow mediate the beneficial effect of cardiovascular
exercise on long-term motor learning. J Neurosci 40, 2416–2429 (2020).

47. Leng, J., Xu, G., Zhang, Y. J. C. & Applications, M. W. Medical image interpolation
based on multi-resolution registration. Comput. Math. Appl. 66, 1–18 (2013).

48. Keller, J. et al. Hippocampal and amygdalar volumes in psychotic and non-
psychotic unipolar depression. Am. J. Psychiatry 165, 872–880 (2008).

49. Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and
norms. Front. Public Health 5, 258 (2017).

50. Lee, B. & Newberg, A. Neuroimaging in traumatic brain imaging. NeuroRx 2,
372–383 (2005).

51. Doborjeh, M. et al. Personalised predictive modelling with brain-inspired spiking
neural networks of longitudinal MRI neuroimaging data and the case study of
dementia. Neural Netw. 144, 522–539 (2021).

52. Durrleman, S., Allassonnière, S. & Joshi, S. Sparse adaptive parameterization of
variability in image ensembles. Int. J. Comput. Vis. 101, 161–183 (2013).

53. Petro, B., Kasabov, N., Kiss, R. M. & Systems, L. Selection and optimization of
temporal spike encoding methods for spiking neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 31, 358–370 (2019).

54. Pfister, J.-P. & Gerstner, W. Triplets of spikes in a model of spike timing-
dependent plasticity. J. Neurosci. 26, 9673–9682 (2006).

55. Kasabov, N., Dhoble, K., Nuntalid, N. & Indiveri, G. Dynamic evolving spiking
neural networks for on-line spatio-and spectro-temporal pattern recognition.
Neural Netw. 41, 188–201 (2013).

ACKNOWLEDGEMENTS
The authors acknowledge the Ministry of Business, Innovation and Employment
(MBIE), New Zealand; Data Science Funding and the National Research Foundation,
Singapore for funding and supporting this research project. This research is
supported by the MBIE Catalyst: Strategic—New Zealand-Singapore Data Science
Research Programme Funding and the National Research Foundation, Singapore
under its Industry Alignment Fund—Pre-positioning (IAF-PP) Funding Initiative.

AUTHOR CONTRIBUTIONS
Z.D. designed and did the experiments, analysed both statistical and computational
modelling of data, interpreted results, and wrote the initial draft of the manuscript.
M.D. contributed to the design and implementation and experimentation of the
computational models, analysis, interpretation, and contributed to the writing of the
manuscript. A.S. contributed to the experimental design, statistical analysis,
interpretation, and writing of the manuscript. A.M. contributed to the interpretation
of the results and writing the manuscript. B.S. and S.B. contributed to performing the
experiment in the analysis of data and running the machine learning methods for
classification and predictions purposes. S.T. contributed to pre-processing and
cleaning of data and writing of the manuscript. M.W. contributed to the
interpretation of the results and writing of the manuscript. Professor Edmund Lai,
contributed to the interpretation of the results and writing of the manuscript. W.G.
contributed to conducting the research project, interpreting the results, and writing
the manuscript. J.L. initiated the project funding, collected the longitudinal cognitive
data, and contributed to the writing of the manuscript. N.K. as a science leader of the
project, proposed the overall design of the computational architecture based on SNN
and the corresponding learning algorithms and contributed to writing the
manuscript. All authors have read and agreed to the submitted version of the
manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41537-023-00335-2.

Correspondence and requests for materials should be addressed to Zohreh
Doborjeh or Maryam Doborjeh.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Z. Doborjeh et al.

10

Schizophrenia (2023)    10 Published in partnership with the Schizophrenia International Research Society

https://doi.org/10.1038/s41537-023-00335-2
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Investigation of social and cognitive predictors in non-transition ultra-high-risk&#x02019; individuals for psychosis using spiking neural networks
	Introduction
	Results
	Visualization and interaction of social and cognitive data
	Classification and Prediction of UHR&#x02019;s individuals&#x02019; outcomes
	Statistical analysis

	Discussion
	UHR state for psychosis and non-transition
	Dynamic social and cognitive changes and interactions
	UHR&#x02019;s classification and prediction
	Limitations and future work

	Method
	Participants and inclusion criteria
	Current inclusion criteria

	Assessment
	Clinical assessments
	Social assessment
	Cognitive assessment

	Data analysis
	Interpolation
	Computational spiking neural network modelling

	Ethical approval

	Software availability
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




