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Abstract 

Stress may be identified by examining changes in everyone’s physiological reactions. Due to its 

usefulness and non-intrusive appearance, wearable devices have gained popularity in recent years. 

Sensors provide the possibility of continuous and real-time data gathering, which is useful for 

tracking one’s own stress levels. Numerous studies have shown that emotional stress has an impact 

on heart rate variability (HRV). Through the collection of multimodal information from the wearable 

sensor, our framework is able to accurately classify HRV based users’ stress levels using explainable 

machine learning (XML). Sometimes, ML algorithms are referred to as black boxes. XML is a model of 

ML that is designed to explain its objectives, decision-making, and reasoning to end users. End users 

may include users, data scientists, regulatory bodies, domain experts, executive board members, 

and managers who utilize machine learning with or without understanding or anybody whose 

choices are impacted by an ML model. The purpose of this work is to construct an XML-enabled, 

uniquely adaptable system for detecting stress in individuals. The results show promising qualitative 

and quantifiable visual representations that may provide the physician with more detailed 

knowledge from the outcomes offered by the learnt XAI models, hence improving their 

comprehension and decision making. 

 

Introduction 

Stress is an intensified physio-psychological condition of the human body that develops in reaction 

to a demanding situation or difficult occurrence. Stressors are the external elements that cause 

stress. A person’s physical and mental health may be seriously impacted by long-term exposure to 

multiple stressors having an impact simultaneously, which may further result in serious illnesses 

varying from minor symptoms like trouble sleeping, weight loss or gain, headaches, to severe ones 

like heart attack [1]. 

 

In the past, physicians or researchers have relied on interviews and questionnaires to get 

information on people's emotional states. This strategy, however, may be invasive due to the fact 

that it disrupts on-going work or because the interviewer may have their own agenda in mind. 

Detection of emotional states and stress has been studied in a number of different ways, including 

through the observation of physiological reactions [2,3,4,5,6,7,8], via the use of audio-visual data [9, 

10], or writing [11]. 

 

By analyzing physiological changes in the body, stress may be diagnosed. SNS, i.e., the sympathetic 

nervous system, initiates physiological reactions in response to stress by producing adrenaline and 

cortisol. These hormones may raise muscular tension, heart rate, sweat, and breathing. Then, these 

symptoms may be utilized to identify stress in an individual. 

 

The majority of stress detection methods [3, 5, 7] employ generalized models. Although, each 

individual experiences physiological changes in a unique way. Although they provide a broad and 



individualized approach, Shi et al. [6] and Smets, et al. [12] only divide stress into two categories. 

From various machine learning [13] classifiers used in earlier papers, Random Forest (RF) [5, 14, 15], 

SVM [5, 16, 17], and decision trees [15,16,17,18] were found to be the most effective among all due 

to their better results as compared to others in stress detection [19,20,21,22]. 

 

To clarify how machine learning (ML) models create predictions, this research employed explainable 

machine learning (XML) [23,24,25], a novel branch of ML. Humans are able to comprehend machine 

learning (ML) [26, 27] in the form of explainable machine learning (XML). The explanation for its 

choices and behaviours is provided by XML. It helps people understand how machines arrive at their 

conclusions. The rising presence of ML in our daily lives has raised serious concerns among the 

general public, particularly in the medical field [28,29,30,31,32]. If we are going to put our faith in 

these institutions, we must be able to believe in them. 

 

The contribution of the work is as follows: 

 

1. 

The purpose of this research is to propose and develop XML techniques for the categorization of 

stress levels based on multimodal data. 

 

2. 

The outcomes show promise in terms of both qualitative and quantitative visualizations, which may 

provide the clinician with more detailed information to aid in their comprehension and decision 

making of the outcomes provided by the intelligent XML models. 

 

3. 

As far as the authors are aware, no previous research article has used an explainable machine 

learning technique to identify mental stress. 

 

Following is the continuation of this paper: the reason for utilizing explainable ML and why it is 

superior to conventional ML and HRV datasets for stress detection are discussed in “Research 

Methodology”. The experimental outcomes of our classification method are then discussed in 

“Results and Discussion”. “Comparative Study of Several Mental Stress Detection Systems” presents 

the comparative study and finally, “Conclusion” concludes our investigation. 

 

Research Methodology 

This section discusses the reason behind using explainable ML and why it is better than traditional 

ML and HRV datasets for stress detection. XML is depicted as an ML system that provides an 

explanation of the assumptions made during the prediction. Simply, Explainable machine learning 



refers to ML that people can comprehend. XML enhances the accountability, fairness, 

trustworthiness, and transparency of the ML techniques. The main driving force behind XML is that 

more consumers are beginning to doubt the conclusions given by ML. Before relying on the forecasts 

and making judgments, they want to know how they were created. Figure 1 demonstrates the 

concept of the traditional and explainable machine learning approach. Our proposed framework also 

follows the same explainable ML approach that utilizes the WESAD dataset and SHAP interpretability 

model to detect mental stress. 

 

figure 1: The concept of the traditional and explainable machine learning approach 

The two physiological signs that are most often employed to evaluate stress levels are heart rate 

variability (HRV) and electrodermal activity (EDA). We solely evaluated heart rate variability (HRV) 

for stress detection using XML in this study since important research contributions [1, 3, 11, 12] give 

justification for using HRV as a psychological stress indicator. 

 

Dataset Used 

The dataset complied for this investigation is WESAD. Attila Reiss and Philip Schmidt, et al. first 

presented and made this dataset accessible to public in the year 2018 [3]. This multimodal dataset 

assembles mobility information and physiological characteristics from 15 people using the wrist 

sensors (EDA data) and chest-worn (HRV data) sensors Empatica E4 and RespiBAN Professional, 

respectively. The chosen HRV characteristics for this research are RMSSD, SDSD, SDRR_RMSSD, pNNx, 

SD1, SD2, RELATIVE_ RR, VLF, LF, HF and LF/HF [33, 34]. 

Correlated features have been discarded and remaining features been considered for deriving the 

output (mental stress). The resulting dataset has been summarized in the following Table 1. 

  Signal # Of sample # Of features # Of classes 

Original WESAD HRV 158,920 40 3 



 

 

Table 1 Summary of the down sampled dataset 

Results and Discussion 

Simulation findings have been provided here for the purpose of empirical results. Various 

development frameworks have been used for simulations to detect stress, such as Python and 

Orange. Like MATLAB, Orange is also professional software and specially designed for Machine 

Learning applications. 

 

Performance Measures of Different ML Models 

Experiments based on the WESAD dataset were undertaken utilizing four multiclass classification 

algorithms: K-nearest neighbor (KNN), decision tree, random forest, and support-vector machines 

(SVM) (see Fig. 2). The effectiveness metrics for the four classification methods are shown in Table 2. 

Those are the results received from Orange. 

 

figure 2: Implementation of ML algorithms along with explainable blocks using Orange 

Table 2 Comparison of efficiency measures of the different ML Algorithms 

Model AUC CA F1 Precision Recall 

kNN 3.426 0.400 0.399 0.405 0.400 

  Signal # Of sample # Of features # Of classes 

Considered WESAD 108,520 20 3 



Model AUC CA F1 Precision Recall 

Tree 5.949 0.985 0.985 0.985 0.985 

SVM 3.688 0.427 0.417 0.461 0.427 

Random Forest 5.974 1.000 1.000 1.000 1.000 

 

Using Table 2, we can observe that the Random Forest classifier outperforms all other ML models in 

terms of efficiency. 

Figure 3 shows the confusion matrix for the prediction results using Random Forest, SVM, KNN, and 

decision tree. Orange and Weka are the tech frameworks used to simulate these. 

 

figure 3: Confusion matrix of the different ML algorithms 

Receiver operational characteristic (ROC) analysis, which is the graphical tool for evaluating the 

output of a classifier, of four ML algorithms, is shown in Fig. 4a and the Classification accuracy plot, 

i.e., the proportion of correctly classified observations is shown in Fig. 4b. 



 

figure 4: a ROC analysis using RF, SVM, KNN and Tree (DT) algorithms. b Classification accuracy plot 

of the different ML algorithms 

XML Based Model Predictions 

SHAP Global Explainability 

The computational complexity of random forest, SVM, AdaBoost, and XGBoost models makes it 

challenging for the common users to grasp how predictions are formed. A game theoretical post-hoc 

interpretation approach known as Kernel SHAP was used to increase model explainability for these 

types of models. For example, SHAP gives both a global explanation of the model’s structure (global 

explainability) as well as a particular prediction (specific explainability or local explainability). 

 

SHAP Feature Importance 



Identifying the significance of the features is the primary objective of a model (see Figs. 5 and 6). 

Characteristics having high absolute Shapely values are considered as the most important. 

Importance or significance of the features is basically the mean as well as standard deviation of 

impurity reduction accumulated inside each tree. 

  

figure 5: Average impact on model output magnitude (Mean SHAP value) 

 

Figure 6: a, b Feature Importance on model output magnitude 



 

SHAP Summary Plot 

The model’s feature significance and feature impacts are combined to create the summary plot. A 

Shapely value that corresponds to one instance per feature is shown by each point over the figure. 

The feature and X axis values that correspond to each instance are used to determine the location 

on the Y axis. From the Fig. 7, it is clear that SDRR_RMSSD_REL_RR feature has the highest range of 

Shapely value and hence can be considered as the most significant parameter. Color is used to 

represent the feature’s value, which ranges from Low to High. We can see how the distribution of 

the Shapley values for each feature is distributed since the points which got overlapped are jittered 

in the direction of Y-axis. The attributes are listed according to their importance. 

 

Figure 7: Summary Plot 

SHAP Dependence Plot 

The partial dependence plot basically reflects the minimal dependence of only a few parameters on 

the prediction based outcome of any ML model. This plot can also exhibit the nature (like linear, 

monotonic or even complex) of the relationship between a feature and the target. This method is a 

global approach, which considers all the instances, comes to a conclusion on the global relationship 

between a feature and the prediction-based result. A dependency plot (see Fig. 8) is nothing more 

than a scatter plot that shows how one characteristic affects the predictions the model produces. 

Every dot marks a unique prediction (row wise) out from dataset. A dataset’s real value is shown 

along the X-axis. 

 



 

figure 8: SHAP partial dependance plot 

SHAP Force Plot 

This graph (SHAP Force Plot) shows us how easily one model prediction can be explained (see Figs. 9 

and 10). Further, this Force plot is a way for inaccuracy assessment and explanation of a particular 

case prediction; i.e., both the cases where the prediction is accurate and occasions where it is 

inaccurate can be analyzed. This also provides a notion of which features are driving to the incorrect 

forecast. From the graph the average value or base value is obtained, and each feature’s influence 

towards deriving the prediction is shown as well. Features plotted in red lead to the prediction of 

greater than average (Base) value, most likely default value. On the other side, features plotted in 

blue color, lead to the prediction of smaller than average (Base). 

 

Figure 9: Prediction using RF algorithm (left) and prediction using decision tree algorithm (right) 



 

Figure 10: Prediction using SVM algorithm (left) and prediction using KNN algorithm (right) 

SHAP Decision Plot 

Effectively the same output information is depicted through the Decision Plot as the Force Plot. Here 

the model’s average (base) value is marked through the grey vertical line. As usual, a red colored line 

indicates whether the output value has drifted higher or lower relative to the prediction’s average 

value. Whenever, many features are to be considered for analysis purpose, Decision Plot plays 

important role. And, in case of more number of predictors, the information appears to be very 

condensed in the Force plot. For reference, feature values are presented beside prediction line. The 

prediction line illustrates how the SHAP values add up from the base value at the bottom of the plot 

to the ultimate score of the model at the top. These decision plots are easy for interpretation. 

Placing decision plots together can aid in the identification of outliers depending on their SHAP 

scores (see Fig. 11). 



 

Figure 11: SHAP decision plot 

SHAP Results Summary 

In the field of machine learning model interpretation, the SHAP framework has shown to be a 

significant development. SHAP combines a number of current approaches to provide an approach 

that is both theoretically solid and understandable for explaining predictions for any model. The size 

and direction (positive or negative) of a feature’s impact on a prediction are quantified by SHAP 

values. Hence, using SHAP Machine learning models can be explained better with the importance of 

features. 

 

Comparative Study of Several Mental Stress Detection Systems 



In this part, the authors comprehensively compared several mental stress detection methods 

concerning the explainability of the systems (see Table 3). The chart makes it obvious that our 

approach outperforms other techniques for detecting mental stress. 

 

Table 3 Comparison of efficiency measures of the different ML Algorithms 

Reference Year Applied 

software 

applications 

Wearables 

data used 

Applied ML 

Algorithms 

Explainability 

Features 

Available 

Heyat et 

al. [35] 

2022 MATLAB, 

Anaconda 

Yes Decision Tree, Naive 

Bayes, Random 

Forest, and Logistic 

Regression 

No 

AlShorman 

et al. [36] 

2022 MATLAB Yes Support Vector 

Machine and Naive 

Bayes 

No 

Can et al. 

[20] 

2019 MATLAB Yes PCA, LDA, SVM, k-NN, 

Logistic Regression, 

Random Forest, 

Multilayer Perceptron 

No 

Indikawati 

et al. [19] 

2020 Apache 

Spark 

Yes Logistic Regression, 

Decision Tree, and 

Random Forest 

No 

Proposed 2022 MATLAB, 

Orange, 

Weka 

Yes k-NN, Decision tree, 

SVM, Random Forest 

Yes 

 

Conclusion 

Explainable ML improves the ML systems to a greater extent to explain its objectives, decision-

making, and reasoning to end users. In this paper, the authors used multimodal HRV data from the 

WESAD dataset that was collected by the wearable sensors. We have adopted a set of algorithms 

like SVM, KNN, Decision Tree and Random Forest in this research work. We have used several ML 

algorithms to divide people’s stress level into three categories: Not Stressed, Medium Stressed, and 

Highly Stressed. The Random Forest algorithm outperforms all other models that were tested. By 

analyzing the system’s output, the Random Forest method has achieved 83% accuracy in performing 

individualized stress detection. Instead of using a single parameter HRV, a combination of HRV and 

EDA can be applied to detect stress using XML for improving interpretability. 

 

Data availability 

https://link.springer.com/article/10.1007/s42979-022-01605-z#ref-CR35
https://link.springer.com/article/10.1007/s42979-022-01605-z#ref-CR36
https://link.springer.com/article/10.1007/s42979-022-01605-z#ref-CR20
https://link.springer.com/article/10.1007/s42979-022-01605-z#ref-CR19


The data generated and analyzed during the current study are available from the corresponding 

author on reasonable request. 
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