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Abstract 

The COVID-19 pandemic, geopolitical risks and net-zero targets have created not only 

pressures but incentives for energy investors. The renewable energy has become the largest 

energy sector and provided significant investment opportunities. However, companies 

operating in this sector are highly risky due to economic and political barriers. Therefore, it is 

of crucial importance for investors to properly assess the risk-return dynamics of these 

investments. This paper examines the risk-return characteristics of clean energy equities at a 

disaggregate level using a battery of performance metrics. The main results provide evidence 

of significant heterogeneity across clean energy sub-sectors; for instance, fuel cell and solar 

stocks display higher downside risks than the others, while the developer/operator equities are 

the least risky. The findings further provide evidence of higher risk-adjusted returns during the 

coronavirus pandemic; as an example, energy management companies appear to provide the 

highest risk-adjusted returns in the wake of the COVID-19. Comparing the performance with 

traditional sectors, clean energy stocks outperform certain sectors, including dirty assets. These 

findings offer important implications for investors, portfolio managers, and policy makers. 
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1. Introduction 

Climate change and global heating have been seriously threatening the ecosystem and all living 

organisms. Climatic risks, such as deforestation, even played a notable role in the emergence 

of COVID-19 pandemic, leading to the transmission of various deranged viruses from animals 

to humankind (Ford et al., 2022). Given the acceleration of climate change over the recent years 

and its devastating consequences, it has been imperative to take immediate actions to reduce 

greenhouse gas emissions before any irreversible repercussions on the ecosystem. In this 

respect, countries have massively started investing in green energy to lessen greenhouse gases, 

especially aligned with the 2015 Paris Agreement.1  Accordingly, green finance has become the 

key to channel capital investments in environmentally friendly projects that can lead the path 

to build a net zero economy, providing superior benefits in environmental management 

(Alkathery et al., 2022; Zhang et al., 2023). In view of a recent report of the International Energy 

Agency (IEA) (2022), the global energy investment is expected to increase by 8% in 2022, 

reaching to USD 2.4 trillion in total of which USD 1.4 trillion makes up investments in clean 

energy (CE, henceforth). The IEA report (2022) further indicates that renewable energy 

investments have also been growing at a rate of 12% since the coronavirus pandemic, 

accounting for two-thirds of the growth in the energy sector.2 In addition, as shown in Figure 

1, it is worth noting that the total installed power capacity for alternative energy in 2019 is 

 
1 The Paris Agreement signed in 2015 by 196 countries adopted the first-ever legally binding global 

climate treaty which aimed to limit global warming well below the threshold of 2 °C (above pre-

industrial level) – in fact, the treaty set a goal to reduce the global warming increase to 1.5 °C to avoid 

dangerous climate change. 

2 For more details, see the IEA’s report of “World Energy Outlook 2022” which is available at: 
https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf 

https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf


estimated to be tripled by 2050 (Bloomberg N. E. F., 2020). Consequently, the substantial 

amounts of capital flow in green investing, along with the positive outlook for CE, have 

attracted investors allocating significant resources to sustainable assets3, creating an 

“investment enthusiasm” which contributed to the investment resiliency in the sector even 

during the pandemic (Tan et al., 2021). 

[Insert Figure 1 about here] 

CE is an alternative to fossil fuel-based energy and plays a central role in mitigating climate 

change. Investments in CE help to meet climate and sustainability goals set by the 2015 Paris 

Climate Agreement and the United Nations (UN) Sustainable Development Goals. In 2022, the 

global oil and gas sector income is expected to jump to USD 4 trillion which is more than 

double of the last five-years average and the total global energy bill is anticipated to hit USD 

10 trillion (IEA, 2022) as a consequence of the ongoing Russian invasion of Ukraine. The 

exorbitant prices severely damage economies, forcing governments to intervene to cushion the 

blow of higher energy costs. At this point, expediting the transition to CE and diversifying the 

sources of energy supply become eminent for the global welfare as well as the climate 

protection which can amplify environmental benefits. Therefore, sustainable finance has 

become of focus as it can effectively promote the channeling of required capital to CE 

production which is the only enduring solution for carbon reduction. On these grounds, 

institutional investors play a key role in mobilizing the capital flow and are already in control 

of some major investments in the field of solar and wind power generation. In addition, fossil 

fuel market risk also adversely affects industrial productivity4 and CE investments as an 

alternate source can significantly reduce the energy market risk for governments, businesses, 

and portfolio investors. However, green investments are exposed to both idiosyncratic and 

systematic risks that may hamper the capital flows to this sector. Hence, an in-depth analysis 

of their risk-return profile would be useful for market participants and helpful to remove any 

potential obstacles in front of sustainable development and environmental management. 

In light of the above discussion, it is apparent that relevant and timely information on the 

performance of CE assets is very important to investors in optimizing the risk-return 

performance of their climate protective portfolios.5 In fact, the requisite increase in climate 

protective investments impels both the authorities and investors to take effective decisions to 

promote the efficiency in green energy markets. However, as stated by Pham (2019) and Kuang 

(2021a), the CE sector displays heterogeneity which insinuates that its performance depends 

significantly on the sub-sectors, signifying the importance of active portfolio management at a 

 
3 Green investments – particularly CE investments, are environmentally friendly and sustainable. Hence, 

they are also considered as a part of sustainable assets (Cunha et al., 2020; Daugaard, 2020). 

4 Cunha et al. (2021) and Hong et al. (2022) state that natural disasters and geopolitical issues might 

have adverse shocks to energy markets, generating energy price volatility, which in turn lead to many 

negative impacts on industrial productivity. This situation consequently influences the level of 

investment risk in climate protective portfolios as well. 

5 Although sustainable investments have grown steadily in the recent years, yet global achievements are 

far from satisfying the goals set by the 2015 Paris Agreement or the UN Agenda of 2030. As indicated 

by Cunha et al. (2020), one of the main obstacles against the acceleration of sustainable investments is 

the lack of sufficient and efficacious information on the performance of these investments.  



disaggregate level. The majority of previous studies examine CE investments at an aggregate 

level which may disregard the unique properties of their sub-sectors. Therefore, a detailed 

analysis of CE assets at the disaggregate level may enhance the construction of optimal 

investment strategies which can help energy investors to make informed decisions. This 

motivates us to study risk-return dynamics of CE at the sub-sector level. Consequently, in this 

paper, we attempt to explore the risk-return characteristics of CE stocks at a disaggregate level, 

using a variety of portfolio metrics. We compare the performance of CE stocks to that of 

traditional sectors and investigate whether the risk-return dynamics changed during the 

pandemic. Relatedly, we ask two specific research questions: i) Do clean energy equities 

provide higher risk-adjusted returns than other sectors? ii) How has the COVID-19 pandemic 

altered the risk-return characteristics of these environmentally friendly investments? In order 

to address these questions, we focus on the NASDAX OMX Green Economy Index Family, 

which consists of companies in a spectrum of industries that are closely associated with 

sustainable development.  

This study makes several contributions to the existing literature. First, as stated earlier, most of 

the prior studies analyze the dynamics of CE equities at an aggregate level and do not 

distinguish between various CE sources. Even though there are a few recent studies focusing 

on the disaggregated CE stocks, these studies largely explore the connection between oil prices 

and CE sub-sectors (Pham, 2019; Tan et al., 2021; Usman, 2023). To the best of our knowledge, 

there is no study that comprehensively examines the univariate risk-return performance of CE 

equities at a disaggregated level. Therefore, our study fills this gap and adds to the body of 

knowledge by assessing the performance of individual CE sub-sectors. Second, we analyze 

whether the risk-return dynamics have altered during the pandemic. As known, the COVID-19 

pandemic has severely affected the demand and supply dynamics in the energy sector; however, 

its impact varies across the sector. While the demand for fossil fuels has fallen, the demand for 

clean energy has risen (Wan et al., 2021). As noted by scholars, “green development” is seen 

as the primary path to sustainability in the post-COVID era (Zhang et al., 2023; Madaleno et 

al., 2022). Accordingly, global clean energy investments have significantly grown and are 

expected to grow further in line with the net-zero pathway. Therefore, we contribute to the 

existing literature by exploring how the occurrence of one of the most severe pandemics in 

history changed the risk-return characteristics of sustainable assets. 

Third, unlike previous studies that compare the performance of CE stocks to a benchmark index 

and oil & gas companies, we compare the risk-return performance not only to the overall market 

and dirty stocks but also to a wide range of sectoral indexes. As suggested by Cunha et al. 

(2021), this can provide additional insights for a variety of stakeholders. Fourth, investigating 

the dynamics of CE equities at a disaggregate level provides us a broader picture which would 

be useful not only to investors who allocate capital in clean energy sectors but also to decision-

makers in terms of policy design. Net-zero requires substantial amount of clean energy 

investments and many countries have adapted policies to promote green investments. However, 

CE sectors are in various stages of development since the amount of invested capital greatly 

varies across them. Therefore, comprehending the risk-return characteristics of a diverse set of 

CE sectors can be useful for decision-makers to build an effective policy framework to support 

the growth of sustainable finance for a greener economy. Furthermore, deciphering the risk-

return relations of CE sectors can be eminent in ensuring the stability in clean energy market 

which can safeguard the long-lasting flow of capital to environmentally friendly projects. 

Hence, our findings can provide eminent benefits to policy makers in their efforts to develop 



an effective environmental management roadmap, accelerating the transition to clean energy 

sources along with insuring energy security.  

Our main findings underscore the heterogeneity across the green stocks in terms of risk-return 

characteristics. More specifically, certain sub-sectors, such as fuel cell and solar, possess higher 

risk than the others, whereas developer/operator index exhibits the lowest risk among the 

sustainable investments. Accordingly, our results emphasize that neglecting the sectoral 

properties may mask valuable information as CE sectors differ significantly in terms of risk-

return characteristics. In other words, examining CE stocks at a disaggregated sub-sector level 

can provide valuable insights for market participants about the performance of these green 

equities. In addition, by utilizing sub-sector analyses, clean energy investments can be 

prioritized for an efficient diversification of energy resources which can enhance the economic 

significance of the CE sector. In the context of the pandemic, the most recent research shows 

an increasing trend in investments in climate friendly projects; focusing on promoting green 

energy sources and technologies as well as improving clean energy efficiency (Madaleno et al., 

2022; Ye et al., 2022; Chen and Ma, 2022; Yearsley, 2020). In this regard, we further show that 

none of the CE equities outperform the benchmark index both during the full sample or pre-

COVID-19 periods, but they all significantly outperform the dirty assets. However, the COVID-

19 pandemic has changed the dynamics since the CE stocks provide much higher risk-adjusted 

returns in the wake of the pandemic. Particularly, energy management companies stand out as 

the best performing asset among all the sectors considered as they offer the highest risk-adjusted 

returns. 

The remainder of the paper is as follows. The next section summarizes the related literature. 

Section 3 explains the data and descriptive statistics. The adopted methodologies and related 

empirical results using various portfolio metrics, downside risk measures and CAPM-based 

metrics are presented in sections 4, 5 and 6 respectively. The final section concludes the paper. 

2. Literature Review 

The existing literature on CE can be divided into several strands. The first strand of the literature 

mostly focuses on the interactions between oil and green energy markets. More specifically, 

previous research puts the relationship between aggregate CE indexes and oil prices in the 

center and measures both return and volatility dynamics by utilizing various quantitative 

techniques (see among others, Henriques and Sadorsky, 2008; Kumar et al., 2012; Sadorsky, 

2012a; Managi and Okimoto, 2013; Reboredo, 2015; Ahmad et al., 2018; Ferrer et al., 2018; 

Maghyereh et al., 2019; Alkathery and Chaudhuri, 2021). These studies document significant 

return and volatility connectedness between oil prices and CE indexes. It is also worth noting 

that the aforementioned studies mainly use an aggregate CE index, particularly the WilderHill 

Clean Energy Index (ECO), and overlook unique characteristics within the CE investment 

universe. Apart from the oil-CE linkages, some recent studies also focus on the co-movements 

between CE stocks and other financial securities, including cryptocurrencies, non-ferrous 

metals and bonds (e.g., Nguyen et al., 2021a; Chen et al, 2022; Khalfaoui et al., 2022). 

The second strand of the literature examines the risk-return performance of CE stocks from the 

asset pricing perspective. For instance, using a variable beta model, Sadorsky (2012b) shows 

that higher sales growth (oil price returns) reduces (increases) systematic risk for renewable 

energy companies. In another research, Bohl et al. (2013) focus on the performance of German 



renewable energy stocks and find evidence of substantial systematic risk implied by a beta value 

of nearly two. They further report that these assets deliver significantly negative Carhart four-

factor alphas, suggesting that market participants should be wary of poor risk-return 

performance of German CE stocks. In a more recent study, Inchauspe et al. (2015) investigate 

the determinants and risk-return performance of the WilderHill New Energy Global Innovation 

Index (NEX), using a state-space asset pricing model. They show that the performance 

significantly depends on the time period; the index offers excess returns over risk-adjusted 

premium from 2003 to 2007, while it yielded negative active returns during the 2009–2013 

period. This strand of the literature also includes studies that focus on broader sustainability 

indexes. For example, Cunha et al. (2020) investigate the performance of regional Dow Jones 

Sustainability Indexes (DJSIs) and market benchmarks from 2013 to 2018. Their findings 

indicate superior risk-adjusted returns in certain regions and investors can reap the benefits of 

investing in those indexes. In another study, Cunha and Samanez (2013) analyze the 

performance of the Corporate Sustainability Index (ISE) of the Brazilian Mercantile, Futures 

and Stock Exchange (BM&FBOVESPA) from 2005 to 2010 and find that these investments 

did not achieve satisfactory performance during the sample period, even though they displayed 

some interesting features, such as increasing liquidity and low unsystematic risk. Overall, there 

is no consensus in the extant literature examining the risk-return performance of 

environmentally friendly investments since such studies report mixed results which could 

perhaps be attributed to the usage of different sample periods, indexes or research 

methodologies. 

Third strand of the literature is relatively new and investigates the dynamics of CE equities at 

a disaggregate level. Our paper mainly relates to this stream of the existing literature. There are 

relatively limited number of studies that consider heterogeneity within sustainable investments. 

Table 1 reports a summary of empirical studies that focus on CE stocks at disaggregate level. 

As can be seen, these studies mainly investigate the interlinkages between oil prices and CE 

equities using a battery of statistical methods. For example, Pham (2019) examines the linkages 

between CE sub-sector indexes and oil prices for the period from 2010 to 2018. The findings 

support stronger connectedness of biofuel and energy management equities with oil prices, 

whereas the connectedness is weaker for wind, geothermal and fuel cell stocks. In another 

study, Pham (2021) analyzes the dependence between green bonds and green equity sub-

sectors, including CE, green building, green transportation, and water. The findings imply that 

a portfolio of green bonds and green equities can provide diversification benefits for energy 

investors.  Comparing the portfolio performance of CE sub-sectors to those of equity market 

benchmark index and dirty energy stocks for the period between 2010 and 2021, Kuang (2021a) 

shows that CE equities underperform the benchmark market index but outperform dirty energy 

stocks. The findings also show evidence of significant variations within the CE sub-sectors. 

More specifically, investing in the developer/operator index might be more suitable for 

moderate risk-averse investors, whereas the fuel cells, wind, and solar indexes might be more 

attractive to investors with higher risk tolerance. Consequently, these studies highlight the 

diversity of the CE market as its sub-sectors display heterogeneity in terms of risk-return 

performance.  

[Insert Table 1 about here] 

The most recent strand of the relevant literature involves the impact of COVID-19 pandemic 

on green stocks. Wan et al. (2021) report improved returns for CE firms in comparison to fossil 



fuel companies during the coronavirus outbreak which they attribute to the increased investor 

attention in sustainable investments.  In a more recent study, Roy et al. (2022) find a positive 

relationship between idiosyncratic volatility (IVOL) and the excess returns of CE stocks from 

2011 to 2021. During the COVID-19 period, they fail to report any significant return-IVOL 

relation and show that the renewable energy equities display high-tech stocks-like features 

which they attribute to higher information asymmetry. Kuang et al. (2021b) suggest that the 

prices of CE stocks experience more substantial falls than global equity markets during the 

pandemic and adding these assets to an international equity portfolio might increase the 

downside risks. Liu et al. (2022) analyze the effects of uncertainties caused by the COVID-19 

pandemic on renewable energy stock returns and volatilities. They find that the impact of the 

pandemic on renewable energy stocks is more pronounced compared to the 2007–2009 global 

financial crisis.  

Overall, the literature review shows a lack of research on the risk-return profile of clean energy 

stocks as an investment vehicle. Prior studies mostly explore the relationship between various 

assets, predominantly crude oil, and renewable energy equities. The survey of the literature in 

Table 1 shows that, similar to our paper, Kuang (2021a) analyzes the risk-return characteristics 

of clean energy stocks at sub-sector level, however it examines their performance from a 

different angle by constructing hypothetical portfolios and comparing the performance of CE 

stocks only to oil & gas companies. Our paper is different from Kuang (2021a) in that we 

investigate risk-return profile of individual CE sub-sectors and compare their performance to a 

wide range of sectoral indexes. In addition, our sample covers the COVID-19 period, which 

allows us to explore how the performance changed during the pandemic. The COVID-19 as a 

health crisis has also reflected its catastrophic ramifications in the global economic activity, 

intensifying the systemic risk in financial markets. The most recent literature on the effects of 

the coronavirus crash accentuates its aggrandizing impact on the systematic risk of global 

financial markets (Abuzayed et al., 2021; Akhtaruzzaman et al., 2021; Bouri et al., 2020; 

Nguyen et al., 2021b; Rizwan et al., 2020). Therefore, we extend the relevant literature by 

assessing the wide range of CE and traditional sectors and updating the evidence regarding the 

impacts of the COVID-19 on environmentally friendly assets.   

3. Data and Descriptive Statistics 

We use the NASDAQ OMX Green Economy Index Family to investigate the risk-return 

characteristics of CE stocks.6 Following Cunha et al. (2021), we compare their performance to 

that of sector stock returns and benchmark equity index. As stated by Pham (2019), the 

NASDAQ OMX Green Economy Index Family is the most comprehensive renewable energy 

index since it tracks the performance of CE sub-sectors. Table 2 provides a detailed explanation 

of each stock index we used in our analyses. We retrieved the daily data are from the Refinitiv 

Datastream and the data period spans from 13 October 2010 to 31 December 2021.7 

[Insert Table 2 about here] 

 
6 The data and estimation codes are available upon request.  
7 NASDAQ OMX's Green Economy Sector indexes were launched on October 13, 2010. 

https://www.sciencedirect.com/science/article/pii/S031359262100059X#b4
https://www.sciencedirect.com/science/article/pii/S031359262100059X#b13
https://www.sciencedirect.com/science/article/pii/S031359262100059X#b35


Table 3 illustrates the descriptive statistics of the returns on each index for the full sample 

period, and pre-COVID-19 and COVID-19 period sub-samples.8 The pre-COVID-19 and 

COVID-19 periods span from 13 October 2010 to 10 March 2020 and from 11 March 2020 to 

31 December 2021, respectively. Among the CE group, FLC (BCL) have the highest (lowest) 

average return in the full sample, whereas TECH offers the highest mean return in the 

conventional sector group. OLG is the only sector that has negative returns, suggesting that 

green stocks may outperform fossil fuel stocks which is consistent with Wen et al. (2014). In 

terms of unconditional risk represented by standard deviations, FLC, followed by SLR, is the 

riskiest index. 

[Insert Table 3 about here] 

Comparing the summary statistics during the pre-COVID-19 and COVID-19 period, we 

observe that the average returns have significantly increased during the COVID-19, regardless 

of the market considered. FLC, followed by SLR, experienced the highest return increase in 

times of the global pandemic. This can be attributed to additional energy demand from hospitals 

during the COVID-19, particularly, solid oxide fuel cells played a key role in meeting the extra 

energy needs (Afroze et al., 2021) which explains the higher earnings for companies operating 

in this sector. However, we should also note that all the markets are riskier during the pandemic 

as evidenced by the higher standard deviations. Therefore, despite greater returns, portfolio 

diversification with green stocks might be harder requiring more information, which we will 

explore further in the following sections. 

Figure 2 plots the daily closing prices of the sub-sector CE indexes. It is clearly evident that 

green stocks are heterogenous in terms of their evolution over time, which is consistent with 

Pham (2019). While some indexes (e.g., DEV, GIT and EMN) tend to move together, some 

others (e.g., AMT, FLC and STR) display more distinct movements. The summary statistics 

presented in Table 3 also provide evidence of heterogeneity across CE stocks as they exhibit 

distinct features in terms of return, risk and distributional characteristics. 

[Insert Figure 2 about here] 

Figure 3 displays the cumulative returns and drawdown risk of both CE and other sector indexes 

throughout the full sample period.9 We included the NASDAQ Composite index in both graphs 

for comparison. Panel A shows that none of the CE indexes can outperform the composite 

index. The cumulative returns significantly increase after the pandemic even though all the 

indexes experienced short-lived declines when the World Health Organization (WHO) declared 

the COVID-19 a global pandemic in March 2020. FLC appears to be the most vulnerable index 

to drawdown risk. Panel B plots the time-varying risk-return dynamics of traditional sector 

indexes and reveals that TECH and HLT have the potential to outperform the composite index. 

OLG has the highest drawdown risk among all the indexes, particularly after the oil plunge in 

2014.  

 
8  We calculated the returns as Ri,t = (lnPi,t  - lnPi,t–1), where Ri,t denotes the return of index i on day t and 

Pi,t stands for the closing price of index i on day t. 

9 A drawdown simply refers to the largest loss potential an investor could experience and can be 

calculated as the difference between the highest peak and the subsequent lowest trough. 



[Insert Figure 3 about here] 

4. Portfolio Metrics 

We assess the performance in terms of risk-adjusted returns by using portfolio metrics. Sharpe’s 

measure is one of the most commonly used metrics by investors and portfolio managers and 

quantifies risk-adjusted returns as follows (Sharpe, 1966): 

𝑆ℎ𝑎𝑟𝑝𝑒 =
𝑅𝑖−𝑅𝑓

𝜎𝑖
           (1) 

where Ri stands for the annualized returns on the index i, Rf is the risk-free rate of return (1-

month US Treasury rate) and σi represents the annualized standard deviation. Although the 

Sharpe ratio is a useful metric, it has been highly criticized in the literature (e.g., Eling, 2008; 

Demiralay et al., 2022) because it assumes that asset returns are normally distributed. However, 

it is a stylized fact that asset returns do not follow a normal distribution. Besides, the Sharpe 

ratio treats all the volatility the same and does not allow us to distinguish between upside and 

downside volatility. To overcome these limitations, we also employ Omega (Keating and 

Shadwick, 2002) and Sortino (Sortino and van der Meer, 1991; Sortino and Price, 1994) 

metrics.  

Omega ratio is a relatively new portfolio ratio and does not require any distributional 

assumptions. It is defined as the ratio of probability weighted gains and losses:  

𝑂𝑚𝑒𝑔𝑎 =
1

𝑇
∑ max(0,𝑅𝑖,𝑡

+ )𝑇
𝑡=1

1

𝑇
∑ max(0,𝑅𝑖,𝑡

− )𝑇
𝑡=1

         (2) 

Sortino ratio is similar to Sharpe ratio and it measures the performance of an asset compared to 

a risk-free asset – the difference is that the Sortino ratio uses downside risk instead of standard 

deviations. Given that investors have a disproportionately large aversion to losses and the 

Sortino ratio only considers downside risk, it is viewed as a realistic measure in the literature 

(e.g., Benartzi and Thaler, 1995; Barberis et al., 2001).  

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 =
𝑅𝑖−𝑅𝑓

𝜎𝑖,𝑑𝑜𝑤𝑛𝑠𝑖𝑑𝑒
                      (3) 

where σi,downside represents the downside risk. 

The results from the portfolio metrics for the full sample period are presented in Panel A of 

Table 4. Sharpe, Omega and Sortino ratios are the highest for COM, TECH and IND, while 

some CE sectors, e.g., DEV and GIT, offer relatively modest risk-adjusted returns. Overall, the 

findings underscore our previous argument that CE sectors are heterogenous in terms of return 

performance. Although some green indexes, such as SLR, WND, DEV and GIT, outperform 

certain sector indexes, including BANK, TEL and OLG, they do not display high performance 

to beat the composite index.  

[Insert Table 4 about here] 

Panel B and C of Table 4 report the findings from the portfolio metrics for the pre-COVID-19 

and COVID-19 periods, respectively. The results indicate that the risk-adjusted returns 



substantially increase in the wake of the pandemic. For example, the Sharpe ratio of SLR is 

negative (-0.011) in the pre-COVID-19 period, while it is much higher (1.067) in the COVID-

19 period – it even outperforms all the traditional sectors, except for TECH and IND. Another 

interesting observation is that, considering the risk-adjusted return metrics, EMN outperforms 

all the sectors during the pandemic, which can be linked to increasing efforts for greener and 

sustainable economies. The pandemic has prompted individuals and businesses to mitigate the 

detrimental impacts of climate change. Energy management plays an important role in the path 

to a more sustainable future as the companies operating in this sector help reduce energy 

consumption by providing solutions that can be applied to multiple energy sources. The 

technologies developed in this sector, such as microturbines and appliances, can be utilized by 

many other energy sectors, including renewables, energy efficiency and even fossil fuels 

(Pham, 2019). 

Overall, our results show evidence of substantial risk-return variability across alternative 

energy sub-sectors, supporting the findings of Pham (2019) and Pham (2021). Therefore, 

benefits of investing in CE stocks vary depending on the sub-sector and such variations should 

not be overlooked by market participants who wish to add these assets to their portfolios. The 

results also indicate that although CE stocks underperform the composite index and several 

sectors in the full sample and pre-COVID-19 periods, they outperform dirty assets (OLG), 

which is in line with Kuang (2021a). As for the COVID-19 period, the portfolio metrics for all 

the indexes, except for HLT, significantly increase which can be linked to increased investor 

attention. However, we should also note that adding these sub-sectors to a portfolio may 

increase overall portfolio risk, as evidenced by higher standard deviations in the previous 

section. This corroborates the findings of Kuang (2021b) who reports that CE stocks are not 

safe-havens and may lead to higher portfolio risk in the wake of the pandemic. 

5. Downside Risk Measures 

Many techniques have been proposed to measure the risk of financial assets in the existing 

literature. The simplest risk measure is variance; however, there has been strong criticism 

against the use of variance as a risk metric because it penalizes upside risk as much as downside 

risk (Jin et al., 2006). Therefore, variance is not a realistic risk measure as financial market 

participants associate the risk only to losses (negative returns) or the returns below their target 

rate (Mamoghli and Daboussi, 2009). As stated by Estrada (2006) and Ang et al. (2006), there 

has been relatively little empirical work into downside risk even though the asymmetric 

treatment of risk has long been recognized by researchers (e.g., Roy, 1952). In this section, we 

analyze the downside risks of CE securities using various metrics, such as semi-variance, 

downside deviation and Value-at-Risk (VaR) models. 

One of the early downside risk measures, known as semi-deviation, was introduced by 

Markowitz (1959). It is calculated as the average squared deviation below the average returns 

and hence it factors in downside risk rather than upside risk when designing risk management 

strategies. It can be expressed as: 

𝜎𝑆𝐷 = √
1

𝑛
∑ (𝑅𝑖 − �̅�)2𝑛
𝑓𝑜𝑟𝑎𝑙𝑙𝑅𝑖≤�̅�

         (4) 

where �̅� represents the average returns, n is the total number of observations and 𝜎𝑆𝐷 stand for 

semi-deviation. 



Sortino and van der Meer (1991) and Sortino and Forsey (1996) argue that investors strive to 

achieve a minimum rate of return on their investments. They further state that the minimum 

return should be taken into account while calculating downside risk even if it is uncertain. In 

this regard, we also compute the downside risk metrics that consider the minimum target return 

as follows: 

𝜎𝐷 = √
1

𝑛
∑ 𝑚𝑖𝑛[(𝑅𝑖 − 𝑟𝑇), 0]2
𝑛
𝑖=1         (5) 

where 𝜎𝐷 represents downside deviation and 𝑟𝑇 is the target return.10 In a similar way, we can 

also calculate gain and loss deviations to better capture the asymmetry between upside and 

downside risk as given below: 

𝜎𝐺 = √
1

𝑛𝑢
∑ 𝑚𝑎𝑥[(𝑅𝑖 − 𝑟𝑇)]

2𝑛
𝑖=1          (6) 

𝜎𝐿 = √
1

𝑛𝑑
∑ 𝑚𝑖𝑛[(𝑅𝑖 − 𝑟𝑇)]2
𝑛
𝑖=1         (7) 

where 𝜎𝐺  and 𝜎𝐿 stand for gain deviation and loss deviation, respectively. 𝑛𝑢 (𝑛𝑑) represents 

the number of returns greater (less) than minimum acceptable return.  

Value-at-Risk (VaR), invented by JPMorgan in the 1980s, is the most widely used metric when 

measuring downside risks associated with financial assets. VaR quantifies the worst potential 

loss at a given confidence level. More specifically, 95% (99%) VaR represents the loss that is 

likely to be exceeded 5% (1%) of the time. In other words, it describes the quantile of the 

distribution of gains and losses – if p is the probability level, VaR corresponds to the c=1-p tail 

level (Jorion, 2001). Financial institutions are also required to use VaR as the market risk 

measure under Basel II and Basel III frameworks. However, VaR has been subjected to heavy 

criticisms although it has been widely used by portfolio managers and regulators. First and 

foremost, VaR completely ignores any loss beyond the confidence level (Yamai and Yoshiba, 

2005). In addition, it is not sub-additive, hence it penalizes diversification and does not consider 

risk reduction when forming portfolios (Harmantzis et al, 2006). Artzner (1997) introduced 

expected shortfall (ES), also known as conditional VaR (CVaR) or tail VaR, to overcome the 

limitations associated with VaR. ES can be defined as the conditional expectation of losses 

beyond the confidence level; specifically, it captures the losses beyond the VaR level. It is also 

shown to be sub-additive, which makes it a coherent risk measure.   

There are several methods of calculating VaR and ES, including non-parametric and parametric 

techniques. The first and simplest method is the historical VaR (HVaR, henceforth), which is a 

non-parametric method and calculates the losses by sorting the returns from the lowest to the 

highest value (Demiralay et al., 2022). It can be simply shown as: 

𝐻𝑉𝑎𝑅 = 𝑞0.95           (8) 

 
10 Following Riddles (2001), we calculated all the downside risk statistics that require target return by 

assuming the minimum acceptable rate is zero. In other words, any negative return is considered as 

undesirable.  



where 𝑞0.95 is the 95% empirical quantile of the negative returns. In a similar way, the historical 

ES (HES) can be computed by the negative value of the average returns below the quantile.  

As stated earlier, the historical risk measures defined above are non-parametric and do not 

require any specific distributional assumptions. However, parametric measures tend to be more 

powerful than non-parametric ones when estimating risks. Therefore, we also use two-moment 

and four-moment parametric VaR and ES measures to adequately compute downside risks. 

These measures allow us to estimate the shape of the distribution tails of the risk quantile. Two-

moment VaR, also called Gaussian VaR, can be written as: 

𝐺𝑉𝑎𝑅 = −�̅� − 𝑧𝑐 × 𝜎         (9) 

where �̅� is the average returns, zc is the c-quantile of the standard normal distribution and σ 

denotes the standard deviations of the returns. Similarly, two-moment parametric ES can be 

computed as: 

𝐺𝐸𝑆 = −�̅� −
1

𝑐
𝜑(𝑧𝑐) × 𝜎                   (10) 

where 𝜑 represents the Gaussian density function. 

The limitations of the two-moment risk measures have been well established in the existing 

literature. These measures assume that financial returns are normally distributed; however, the 

return distributions may exhibit fat tails and be leptokurtic (Bredin et al., 2017). For this reason, 

four-moment downside risk metrics can enable us to capture downside risks more accurately. 

Four-moment VaR (also known as Modified VaR) introduced by Favre and Galeano (2002), 

corrects two-moment VaR for excess kurtosis and skewness by using the Cornish–Fisher 

expansion (Cornish and Fisher, 1938). The Cornish-Fisher expansion approximates the quantile 

of the distribution as follows: 

𝑧𝑐𝑓 = 𝑧𝑐 +
1

6
(𝑧𝑐

2 − 1)𝑆 +
1

24
(𝑧𝑐

3 − 3𝑧𝑐)𝐾 −
1

36
(2𝑧𝑐

3 − 5𝑧𝑐)𝑆
2              (11) 

where S and K denote skewness and kurtosis, respectively. Accordingly, the four-moment 

modified VaR (MVaR) can be written as: 

𝑀𝑉𝑎𝑅 = −�̅� − 𝑧𝑐𝑓 × 𝜎                  (12) 

Similarly, modified ES (MES) can be defined as the expected value of all returns below the 

Cornish-Fisher quantile (Boudt et al., 2008). If the return series are normally distributed, then 

modified VaR (ES) collapses to Gaussian VaR (ES).  

Panel A of Table 5 presents downside risk measures for the full-sample period. The results 

suggest that FLC has the highest downside risk, regardless of the measure considered, except 

for the modified ES, which is in line with the findings of Pham (2019) and Zhou et al. (2021). 

When we focus on the modified ES, the riskiest asset is BCL followed by OLG.  All the 

measures indicate that DEV has the lowest risk, making it a suitable asset for investors to 

consider downside protection. The findings also provide evidence of variation across the CE 

sub-sectors in terms of downside risks. For instance, the modified ES of BCL is -0.077, while 

that of DEV is only -0.015, which shows that the downside risk of BCL is at least five times 

larger than DEV. As DEV involves with developing renewable investment projects, the 

substitution effect may play a role in investor sentiment, placing DEV equities as less risky 



green assets. The development and initialization of green energy production projects may 

induce a reduction in fossil fuel demand by providing a cost advantage and rise in market shares. 

We also observe that the ES metrics are generally higher than any other downside risk 

measures; therefore, using other metrics than ES tend to underestimate the risks. This is because 

simple downside risk measures, such as semi-deviation and downside deviation, only consider 

average returns or minimum acceptable returns. In addition, even though historical and 

modified VaR estimate the maximum risk of an asset with a degree of confidence, they discard 

the losses beyond the confidence level. Therefore, VaR does not fully capture the tail risk. This 

supports the findings of Chai and Zhou (2018) that the information provided by VaR may 

mislead investors and ES is a better risk management tool than VaR. 

[Insert Table 5 about here] 

Panel B and C in Table 5 report the downside risks for the pre-COVID-19 and COVID-19 

samples, respectively. At first glance, the results show that most of the risk statistics heighten 

during the COVID-19 period which is in line with previous research (e.g. Akhtaruzzaman et 

al., 2021; Bouri et al., 2020). Taking a closer look, we see that some CE sub-sectors have 

significantly higher downside risks in the aftermath of the global pandemic. For example, the 

modified ES of SLR (BCL) increases from 0.045 (0.057) during the pre-COVID-19 period to 

0.102 (0.115) after the pandemic in absolute terms. Even DEV that possesses the minimum risk 

experiences substantial surges in its downside risks; for instance, its semi deviation increases 

from 0.007 to 0.012. There are few exceptions though, taking GIT as an example, the modified 

ES of the index is lower in the COVID-19 sub-sample. Considering the other sectors, the results 

demonstrate that BANK and OLG appear to be the riskiest in both sub-samples. When we 

compare the riskiness of CE sub-sectors to other sectors, we notice that some CE sectors are 

riskier than the conventional sectors. Especially after the pandemic, downside risks of some CE 

sectors increase more than those of the other sectors. For instance, the modified risk metrics of 

BCL, SLR and FLC are higher than OLG and BANK during the COVID-19 pandemic, 

compared to the pre-COVID-19 period. This shows that certain CE sub-sectors have become 

riskier than traditional sectors after the pandemic.  

Overall, our results suggest that there is significant variation across CE stocks in terms of 

downside risk, which is consistent with our previous findings. We find that some green sub-

sectors, including BCL, SLR and FLC, are riskier than most of the traditional sectors, while 

some other CE stocks (e.g., DEV) exhibit lower downside risks. In addition, our results provide 

evidence of heightened risks for all the indexes during the pandemic; however, the increases in 

downside risk metrics of CE assets are generally higher than those of the conventional sectors. 

Our results are in parallel with Roy et al. (2022) who report higher volatility in CE markets 

after the pandemic. They link this to the substitution effect, as substantial volatility in the crude 

oil markets due to distorted supply chains create higher uncertainty for renewables, which in 

turn leads to higher risk premiums. Higher risks during the pandemic can also be attributed to 

investor attention. As stated by Wan et al. (2021), CE has gained a new momentum as a result 

of green recovery plans in times of the COVID-19, which directs financial market participants’ 

attention to these equities. This is consistent with the notion that investors’ decisions are 

attention-driven (Barber and Odean, 2008) and they can adapt to changing market conditions 

(Lo, 2012).  

6. CAPM-Based Metrics 

In this section, we compare the performance of CE and other sector indexes against the 

benchmark portfolio (i.e., NASDAQ Composite index). To do this, we use a single-factor 

https://www.sciencedirect.com/science/article/pii/S031359262100059X#b4
https://www.sciencedirect.com/science/article/pii/S031359262100059X#b4
https://www.sciencedirect.com/science/article/pii/S031359262100059X#b13


model, also known as the Capital Asset Pricing Model (CAPM), which allows us to have a set 

of useful measures related to excess returns and systematic risk. Although the CAPM has been 

widely criticized, it provides simple, yet powerful, predictions about how to estimate systematic 

risk (Fama and French, 2004). The CAPM was developed in the 1960s by Sharpe (1964), 

Treynor (1961), Lintner (1965a, b) and Mossin (1966). It is still commonly utilized in financial 

applications – e.g., measuring the systematic risk of individual stocks or portfolios, estimating 

the cost of capital and assessing the portfolio performance. 

We use the following regression equation to estimate the parameters in the CAPM: 

𝑅𝑖 − 𝑅𝑓 = 𝛼 + 𝛽 × (𝑅𝑚 − 𝑅𝑓)                                                                                                                   (13) 

where  

𝛼 = 𝑅𝑖 − 𝑅𝑓 − 𝛽 × (𝑅𝑚 − 𝑅𝑓)  

𝛽 =
𝐶𝑜𝑣(𝑅𝑖,𝑅𝑚)

𝑣𝑎𝑟(𝑅𝑚)
  

In the above equations; Ri represents the asset returns, Rf is the risk-free rate of return and Rm 

denotes the return on the market portfolio. α is the intercept of the regression equation and 

estimates the excess return and β measures the systematic risk. 𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑚) stands for the 

covariance between the index and the market portfolio, whereas 𝑣𝑎𝑟(𝑅𝑚) denotes the variance 

of the market portfolio. 

The assumption of symmetric beta is restrictive and may not fully capture the relationship 

between the risk and return. Ang et al. (2006) state that the regular beta does not reflect all risks, 

because investors treat downside risks and upside risks differently. In this study, we relax this 

assumption and compute asymmetric beta. Following Ang et al. (2006), we compute the upside 

beta (β+) and downside beta (β-) as follows: 

𝛽+ =
𝐶𝑜𝑣(𝑅𝑖,𝑅𝑚|𝑅𝑚>�̅�𝑚)

𝑣𝑎𝑟(𝑅𝑚|𝑅𝑚>�̅�𝑚)
          (14) 

𝛽− =
𝐶𝑜𝑣(𝑅𝑖,𝑅𝑚|𝑅𝑚<�̅�𝑚)

𝑣𝑎𝑟(𝑅𝑚|𝑅𝑚<�̅�𝑚)
          (15) 

where �̅�𝑚 is the average market return. The upside and downside beta are also called “bull 

beta” and “bear beta”, respectively. 

We also use other metrics derived from the single-factor model, including Treynor ratio and 

information ratio. Treynor ratio, also known as the “reward-to-volatility ratio”, is similar to the 

Sharpe ratio – however, it measures the performance using the systematic risk estimated by beta 

instead of using standard deviation of the asset. It is defined as follows: 

𝑇𝑟𝑒𝑦𝑛𝑜𝑟 =
𝑅𝑖−𝑅𝑓

𝛽𝑖
                    (16) 

Information ratio is another performance metric that compares returns of an asset or a portfolio 

to a benchmark. However, it considers active returns and tracking error while evaluating the 

performance. It can be written as: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑅𝑖−𝑅𝑚

𝜎(𝑅𝑖−𝑅𝑚)

                   (17) 



where 𝑅𝑖 − 𝑅𝑚 is the active premium and 𝜎(𝑅𝑖−𝑅𝑚)
 represents the tracking error (standard 

deviation of the active premium). 

Table 6 presents the CAPM-based statistics. Panel A documents the results for the full sample 

period and shows that the beta of FLC and SLR are higher than one; therefore, they are more 

volatile than the market portfolio. Another asset that is riskier than the benchmark is TECH 

with a beta value of 1.119. The systematic risk parameters of all the other indexes are lower 

than unity, suggesting that they are less volatile than the benchmark index. Considering the 

asymmetric beta, we observe that upside beta is lower than the downside beta in the majority 

of the cases. This shows that systematic risk mostly increases under bear market conditions. 

The downside beta of BCL and FLC are greater than one, whereas the upside beta of these two 

indexes are less than one, which recommend that the two sub-sectors become even riskier than 

the benchmark portfolio when the market conditions are adverse. On the other hand, the upside 

beta of SLR, GIT and TECH are greater than one, showing that these indexes covariate more 

with the market when the market is high. Therefore, they may also have a larger payoff when 

the return on the benchmark is high. Looking at the risk-adjusted statistics, DEV has the highest 

Treynor ratio among all the indexes studied; thus, it provides the highest return for given 

systematic risk. Comparing this with the traditional sectors, TECH and HLT have a lower 

Treynor ratio than DEV does; however, they outperform all the other indexes in terms of 

systematic risk-adjusted returns. Information ratio is all negative for CE indexes, highlighting 

that they cannot produce any excess return over the market portfolio. Hence, they significantly 

underperform the benchmark index.  

[Insert Table 6 about here] 

Panel B and C of Table 6 report the results for the pre-COVID-19 and COVID-19 periods, 

respectively. The sub-sample analysis shows that systematic risk of half of the CE indexes (i.e., 

BCL, SLR, GEO, FLC and DEV) increased during the pandemic. The other half of the green 

indexes (i.e., WND, STR, GIT, EMN and AMT) have lower systemic risks in the same period. 

As for the asymmetric beta, the results show that the majority of the CE indexes exhibit higher 

upside betas during the COVID-19, compared to the pre-pandemic period. Another interesting 

observation is that the variations in the systematic risk of green indexes are generally larger 

than those of the other sectors in the two sub-samples. For instance, the downside beta of BCL 

increases from 0.799 in the pre-pandemic period to 1.353 during the pandemic, while the 

highest increase in the downside beta in the other sector group is observed for FIN, increasing 

from 0.938 to only 0.993. This indicates that the COVID-19 has more pronounced impacts on 

renewable energy sectors than any other sector in terms of riskiness, which supports our 

previous findings. Focusing on the risk-adjusted returns, Treynor ratio analysis shows higher 

excess returns per unit of systematic risk in times of the COVID-19, except for DEV among all 

the sectors considered. Therefore, we can conclude that although green stocks are exposed to 

higher systematic risk compared to the pre-pandemic period, investors holding these assets earn 

at least higher than the risk-free rate during the pandemic. However, looking at the information 

ratio analysis, most of the indexes still cannot outperform the benchmark as only SLR, FLC, 

EMN and TECH can produce positive ratio in the COVID-19 sub-sample. Furthermore, 

considering Treynor ratio, EMN outperforms all the other indexes in the wake of the pandemic, 

which is consistent with our previous findings. The results also show that SLR displays an 

exceptional performance during the pandemic as its information ratio is the highest, implying 

that it generates the highest excess return over the benchmark. In short, investing in EMN, FLC 

and SLR companies during the COVID-19 could produce excess returns over the risk-free rate 

and the market portfolio.  



Overall, the results show that the CE indexes have an intermediate risk-return performance 

since most of them had an unsatisfactory performance in the pre-COVID-19 sub-sample. 

Nevertheless, some green sub-sectors, such as WND, DEV, GIT and EMN, could produce 

excess returns over the risk-free rate before the pandemic. When we focus on the COVID-19 

period, we observe that all the renewable energy indexes outperform the risk-free rate and some 

of these indexes even generate higher returns than the market portfolio. Moreover, the risk-

return performance significantly depends on the sub-sector – for instance, the full-sample 

results suggest that the upside (downside) beta ranges from 0.468 (0.562) to 1.082 (1.308) 

among the green sector group. This underscores the importance of sector-specific information; 

thus, the use of a broad CE index might mask this valuable information. Therefore, financial 

market participants should carefully consider the heterogeneity across the green sectors when 

designing portfolio strategies, as their risk-return performance is considerably sector-

dependent. Our results support those of Roy et al. (2022) who find evidence of significant 

variability in terms of CE stock betas. Interestingly, our findings contradict the results of 

Sadorsky (2012b) and Bohl et al. (2013) who report that CE stocks are twice as risky as the 

benchmark. In contrast, we find that the highest beta in the full (COVID-19) sample is 1.20 

(1.451) which belongs to FLC. This finding suggests that FLC (the riskiest CE sub-sector) is 

only approximately 20% (45%) riskier than the benchmark index in the full (COVID-19) 

sample period. The difference between our findings and the aforementioned studies, however, 

might be due to different time span and sectoral focus.  

7. Concluding Remarks 

Policy actions on climate change, increasing pressure from stakeholders to transition to a low-

carbon economy and deployment of new renewable energy technologies have led to exponential 

growth of CE sector. Concomitantly, the developments in the alternative energy have sparked 

investors’ interests in environmentally friendly financial instruments. Investors, traders and 

fund managers alike increasingly seek to align their values with their portfolio holdings. 

Therefore, green finance can convey the necessary means to attain a new world order with 

climate friendly practices. Green financial instruments can channel collective efforts to climate 

protective projects ensuring the development of an environmentally sustainable global 

economy.  Hence, alternative energy investments are essential for implementing effective 

environmental management practices to achieve the goal of environmental sustainability. In 

this context, CE equities help investors reduce their exposure to dirty assets and provide 

investment opportunities to diversify their portfolios. Relatedly, we aim to investigate the risk-

return characteristics of CE stock indexes and compare their performance with more 

conventional sector indexes. Following Pham (2019) and Kuang (2021a), we hypothesize that 

CE sector is too broad to be considered as a single sector and a one-size-fits-all strategy may 

mislead market participants when making investment decisions and designing risk management 

strategies. Therefore, our study offers a more comprehensive understanding about the CE sub-

sectors in terms of risk-return performance beyond the generic information provided by most 

previous studies that only focus on aggregate CE indexes.  

The results have important implications for investors, portfolio managers and policy makers. 

Particularly, our findings shed light on the risk-return nexus of CE sub-sectors, conveying 

relevant and timely information to environmental management decisions for an efficient 

allocation of green finance flows. First, comprehending the heterogeneity of CE sub-sectors 

can help investors and fund managers choose the asset that meet their expectations. For 

example, the EMN index can provide high risk-adjusted returns for investors who seek to 

protect their investments from the COVID-19 turbulence, whereas the DEV index could be 

more attractive to investors with moderate risk tolerance in general. Second, our results show 



that certain CE indexes, such as DEV and EMN can outperform fossil fuel investments, 

suggesting that a de-carbonization strategy using these assets can generate higher risk-adjusted 

returns. Finally, authorities should consider the distinctive features of CE sub-sectors when 

making policy decisions. For instance, some sub-sectors, such as SLR and FLC, have higher 

downside risk than other CE sub-sectors. Therefore, specific sub-sector attributes should be 

taken into account while designing policy interventions for the CE sector which would ensure 

the resiliency in reaching the goal of environmentally sustainable development.  

Although we use a broad range of performance metrics and analyze CE sub-sectors 

comprehensively, our research still has some limitations. First, we only evaluate the 

performance of the CE indexes listed in the NASDAQ Green Economy index family. Future 

studies could focus on a different dataset of CE indexes, such as MSCI Alternative energy 

indexes and compare the performance of these indexes. Second, we do not construct portfolios 

that consist of green equities and traditional benchmarks and/or sectors; however, a mixed 

portfolio analysis could provide valuable insights into the portfolio performance of sustainable 

investments. Third, although sector-level studies can provide useful information, future studies 

could also consider analyzing firm-level data. Lastly, the CAPM-based metrics could be 

extended by adding additional asset pricing factors in the regression, which could offer further 

implications in terms of risks and excess returns.  
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Table 1. Summary of studies that focus on clean energy equities at disaggregated level 

Authors Purpose Sample period CE sub-sectors considered Method Key results 

Pham (2019) Analysing the 

connectedness 

between sub-sector 

CE stocks and oil 

prices. 

13 October 

2010-21 August 

2018 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuel, Solar, Wind, 

Geothermal, Fuel cell, 

Developer/Operator, Energy 

storage, Smart grid, Green 

IT, Energy management, 

Advanced materials. 

Diebold and Yilmaz 

(2012, 2014) spillover 

index, Dynamic 

Conditional 

Correlations (DCC) 

model. 

The linkages between CE stocks and oil prices 

vary significantly across the sub-sectors. 

Biofuel and energy management stocks (wind, 

geothermal and fuel cell) are the most (least) 

connected to oil price. 

 

Kuang (2021) Optimal allocation 

within the clean 

energy stock market. 

15 October 

2010–07 May 

2021 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuel, Solar, Wind, 

Geothermal, Fuel cell, 

Developer/Operator, Energy 

storage, Smart grid, Green 

IT, Energy management, 

Advanced materials. 

Mean-variance and 

Mean-Conditional 

Value-at-Risk 

Optimizations. 

CE equities underperform the market index but 

outperform dirty stocks. The results provide 

evidence of heterogenous diversification 

benefits. The developers/ operators index 

offers the highest risk-adjusted returns for 

investors with moderate risk tolerance while 

the wind and energy storage indexes help 

reduce the tail risks of dirty stocks. 

Pham (2021) Examining the 

dependence structure 

between green bonds 

and CE stocks. 

August 2014–

August 2020 

Green building, Green 

transportation and Global 

water indexes. 

The connectedness 

framework of Diebold 

and Yılmaz 

(2014) and Baruník and 

Křehlík (2018). Cross-

quantilogram 

dependence. 

Green bonds and green equity are less (more) 

connected during normal (extreme) market 

conditions. The spillover effect between the 

two markets is generally short-lived and 

intensified during the pandemic.  

Tan et al. (2021) Quantifying risk 

spillovers between oil 

and CE equities. 

13 October 

2010–28 August 

2020 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuel, Solar, Wind, 

Geothermal, Fuel cell, 

Developer/Operator, Energy 

storage, Smart grid, Green 

IT, Energy management, 

Advanced materials. 

Diebold and Yilmaz 

(2012, 2014) spillover 

index model and VAR 

for VaR model. 

Risk spillovers are time-varying and moderate 

overall; however, the patterns of spillovers 

significantly depend on the sub-sector. CE 

equities transmit extreme downside risk to oil 

at higher magnitudes than the opposite impact. 

Hammoudeh et 

al. (2021) 

Investigating the 

causal relationships 

between the returns 

and volatility of oil 

13 October 

2010–8 

September 2020 

NASDAQ OMX Green 

Economy indexes: Solar, 

Wind, Geothermal, Fuel cell, 

Developer/Operator. 

Causality-in-quantiles. 

 

In terms of causality in returns, oil has a 

prediction power of the CE stocks in normal 

times, but not in extreme market conditions. 

The volatility analysis provides evidence of 

significant bi-directional causality in the low 



prices and five clean 

energy stock indexes. 

volatility regime. No bi-directional causality is 

detected during the COVID-19 pandemic.  

Zhou et al. (2021) Analysing volatility 

spillovers and risk 

spreads in renewable 

energy markets. 

18 October 

2010–31 

December 2019 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuels, Solar, Wind, 

Geothermal, Fuel Cell.  

Multivariate GARCH 

models and 

multidimensional 

analysis method. 

The fuel cell and solar indexes dominate the 

other indexes in the risk spread paths. A 

multidimensional perspective is useful for 

analysing the interactions in renewable energy 

markets because the spillover effects are more 

clearly evident when considering multiple 

markets. 

Sharma (2022) Examining risk 

spillovers between 

conventional and 

green finance. 

August 2011–

June 2021 

NASDAQ OMX Green 

Economy indexes: Solar, 

Wind, Global water, the 

NASDAQ Clean Edge Green 

Energy Index (CELS)/ 

The connectedness 

framework by Diebold 

and Yılmaz 

(2012) and Baruník and 

Křehlík (2018). 

There is bi-directional causality between 

conventional and green indexes in the long-

run. During the COVID-19 pandemic, the 

linkages between the two sets of markets 

intensified. Going green can provide investors 

reasonably good risk-adjusted returns.  

Ren and Lucey 

(2022) 

Exploring whether 

clean energy is a safe 

haven for 

cryptocurrencies. 

1 January 2018–

17 September 

2021 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuels, Fuel Cell, Renewable 

Energy, Geothermal, Solar, 

Wind.  

Multivariate GARCH 

models and the 

connectedness 

framework by Diebold 

and Yılmaz 

(2014). 

Although clean energy is not a direct hedge for 

cryptocurrencies, it is a weak safe haven for 

cryptocurrencies in extreme bearish markets. 

The connectedness is weak between clean 

energy and cryptocurrencies which suggests 

that clean energy can serve as a hedge and 

diversification tool for cryptocurrencies.  

Chen et al. (2022) Investigating the 

asymmetric impacts 

of non-ferrous metal 

price shocks on clean 

energy equities. 

13 October 

2010–23 June 

2021 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuel, Solar, Wind, 

Geothermal, Fuel cell, 

Developer/Operator, Energy 

storage, Smart grid, Green 

IT, Energy management, 

Advanced materials. 

Quantile-on-quantile 

regression and 

causality-in-quantiles. 

There is significant heterogeneity across CE 

sub-sectors in terms of reaction to shocks in 

non-ferrous metal prices. Nonferrous metals 

cannot act as safe havens for clean energy 

stock markets during turbulent times. 

Usman (2023) Testing the 

relationship between 

oil prices and CE 

stocks. 

13 October 

2010–30 June 

2022 

NASDAQ OMX Green 

Economy indexes: Bio/Clean 

Fuel, Solar, Wind, 

Geothermal, Fuel cell, 

Developer/Operator, Energy 

storage, Smart grid, Energy 

management, Advanced 

materials. 

Stochastic dominance 

tests. 

The decoupling hypothesis of clean energy 

stocks is supported as the correlation between 

clean energy stocks is lower when the oil 

market returns are extremely high. Overall, 

conventional energy stocks tend to co-move 

with oil shocks more than clean energy stocks.  

Notes: This table presents a summary of studies that focus on clean energy stocks at sub-sector level. 



Table 2. Index Details 

Group Index Symbol Description 

Bio/clean fuels NASDAQ OMX Bio/Clean Fuels Index BCL This index is designed to track companies that produce fuels from plant-based 

material for transportation 

Renewable energy NASDAQ OMX Solar Index SLR This index is designed to track companies that produce energy through solar power. 

 NASDAQ OMX Wind Index WND This index is designed to track companies that produce energy through wind power. 

 NASDAQ OMX Geothermal Index GEO This index is designed to track companies that produce energy through geothermal 

power. 

 NASDAQ OMX Fuel Cell Index FLC This index is designed to track companies that produce energy through fuel cells. 

 NASDAQ OMX Developer/Operator Index DEV This index is designed to track companies that develop and operate renewable 

energy projects such as solar and wind farms. 

Energy Efficiency NASDAQ OMX Energy Storage Index STR This index is designed to track companies that provide solutions to increase the 

ability of energy storage, such as batteries. 

 NASDAQ OMX Green IT Index GIT This index tracks companies that provide solutions that decrease energy 

consumption via IT solutions such as online collaboration, efficient data centers, 

computer networks, and virtualization software. 

 NASDAQ OMX Energy Management Index EMN This index tracks companies that provide solutions that decreases energy 

consumption with better energy management systems such as efficient motors, 

micro turbines, process controls, and appliances. 

Advanced material NASDAQ OMX Advanced Material Index AMT This index is designed to track companies that produce materials that enable 

renewable technologies or reduce dependencies for petroleum-based products. 

Benchmark NASDAQ Composite Index COM This index is a broad-based capitalization-weighted index of stocks listed on the 

NASDAQ stock exchange. 

Technology NASDAQ-100 Technology Sector Index TECH This index is designed to track the performance technology companies listed on the 

NASDAQ stock exchange. 

Financials NASDAQ Financial-100 Index FIN This index is designed to track the largest financial organizations listed on the 

NASDAQ stock exchange. 

Industrials NASDAQ Industrials Index IND This index contains securities of NASDAQ-listed companies not classified in one of 

the NASDAQ sector indexes, such as general industrials, aerospace/defense, food 

producers and chemicals.  

Banks NASDAQ Bank Index BANK This index contains common stocks of banks listed on the NASDAQ stock 

exchange. 

Healthcare NASDAQ Health Care Index HLT This index measures the performance of health care companies including health care 

providers, medical equipment, medical supplies, biotechnology, and 

pharmaceuticals. 

Telecommunications NASDAQ Telecommunications Index TEL This index is designed to track the performance of telecommunications companies 

listed on the NASDAQ stock exchange, including providers of fixed-line and 



mobile telephone services, and makers and distributors of high-technology 

communication products. 

Transportation NASDAQ Transportation Index TSP This index is designed to track the performance of transportation companies listed 

on the NASDAQ stock exchange, including delivery services, marine 

transportation, railroads, transportation services, trucking, and airlines. 

Oil & Gas NASDAQ US Smart Oil & Gas Index OLG This index is designed to provide exposure to US companies within the Oil & Gas 

sector. 

Source: NASDAQ and Pham (2019). 

Notes: This table presents the details of the indexes used in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Descriptive Statistics 

 
BCL SLR WND GEO FLC DEV STR GIT EMN AMT COM TECH FIN IND BANK HLT TEL TSP OLG 

Panel A. Full Sample Results 
                

 Mean 0.007 0.050 0.039 0.012 0.051 0.037 0.009 0.037 0.036 0.023 0.064 0.071 0.039 0.060 0.035 0.051 0.025 0.033 -0.001 

 Median 0.059 0.092 0.069 0.080 -0.047 0.067 0.059 0.079 0.059 0.069 0.115 0.129 0.092 0.121 0.063 0.136 0.082 0.091 0.026 

 Std. Dev. 1.816 2.085 1.658 1.664 3.334 1.027 1.479 1.465 1.489 1.492 1.224 1.447 1.335 1.184 1.640 1.385 1.299 1.411 1.914 

 Skewness -1.067 -0.456 -0.501 0.383 0.375 -1.603 -0.270 -0.413 -0.425 -0.539 -0.811 -0.578 -0.808 -0.842 -0.313 -0.524 -0.518 -0.472 -0.684 

 Kurtosis 16.366 9.108 7.622 16.411 8.273 32.967 6.639 12.458 13.562 9.414 13.953 11.002 17.462 11.561 12.301 7.230 10.779 11.267 12.635 

Panel B. Pre-COVID-19 Sample Results 
               

 Mean -0.005 0.016 0.035 0.004 0.010 0.033 -0.009 0.025 0.013 0.005 0.049 0.056 0.030 0.046 0.018 0.049 0.015 0.021 -0.030 

 Median 0.055 0.067 0.075 0.072 -0.075 0.067 0.043 0.079 0.051 0.070 0.093 0.116 0.090 0.100 0.067 0.137 0.080 0.084 0.032 

 Std. Dev. 1.516 1.788 1.552 1.345 2.938 0.872 1.332 1.375 1.376 1.396 1.093 1.284 1.148 1.064 1.321 1.305 1.225 1.286 1.606 

 Skewness -0.788 -0.210 -0.475 0.427 0.338 -0.596 -0.268 -0.605 -0.450 -0.388 -0.596 -0.480 -0.743 -0.647 -0.886 -0.450 -0.456 -0.515 -1.331 

 Kurtosis 12.406 5.287 7.136 22.666 9.608 7.177 6.211 10.335 8.316 7.811 7.491 5.834 10.815 7.866 11.805 5.224 7.288 5.899 16.648 

Panel C. COVID-19 Sample Results 
               

 Mean 0.068 0.225 0.064 0.051 0.262 0.060 0.100 0.100 0.154 0.118 0.138 0.146 0.089 0.127 0.122 0.064 0.077 0.094 0.152 

 Median 0.103 0.205 0.046 0.204 0.105 0.057 0.178 0.077 0.217 0.065 0.252 0.227 0.100 0.249 0.038 0.124 0.091 0.125 0.013 

 Std. Dev. 2.911 3.205 2.127 2.780 4.894 1.608 2.078 1.861 1.969 1.910 1.752 2.095 2.045 1.673 2.753 1.742 1.629 1.931 3.044 

 Skewness -1.071 -0.701 -0.529 0.225 0.273 -2.122 -0.313 -0.026 -0.433 -0.874 -1.039 -0.672 -0.758 -1.056 0.023 -0.659 -0.662 -0.403 -0.149 

 Kurtosis 10.690 7.563 6.962 6.570 4.515 30.895 5.130 13.579 17.188 10.242 14.836 11.287 14.108 11.415 6.327 9.358 14.943 13.863 5.523 

Notes: This table reports the summary statistics of the indexes. The full sample spans from 13 October 2010 to 31 December 2021. Pre-COVID-19 and COVID-19 periods are 

from 13 October 2010 to 10 March 2020 and from 11 March 2020 to 31 December 2021, respectively. 



Table 4. Portfolio Metrics 

 
BCL SLR WND GEO FLC DEV STR GIT EMN AMT COM TECH FIN IND BANK HLT TEL TSP OLG 

Panel A. Full Sample Results 
                

Sharpe -0.095 0.212 0.241 -0.032 -0.027 0.497 -0.032 0.286 0.261 0.120 0.764 0.698 0.361 0.735 0.197 0.491 0.193 0.252 -0.165 

Omega 1.011 1.070 1.068 1.021 1.045 1.113 1.017 1.079 1.073 1.046 1.166 1.150 1.094 1.158 1.065 1.107 1.058 1.068 0.999 

Sortino 0.005 0.033 0.033 0.010 0.023 0.049 0.008 0.035 0.034 0.022 0.071 0.068 0.040 0.068 0.029 0.051 0.026 0.032 -0.001 

Panel B. Pre-COVID-19 Sample Results 
               

Sharpe -0.181 -0.011 0.225 -0.072 -0.177 0.532 -0.216 0.173 0.029 -0.065 0.643 0.611 0.313 0.622 0.093 0.504 0.082 0.145 -0.417 

Omega 0.991 1.024 1.063 1.009 1.010 1.110 0.983 1.055 1.027 1.011 1.137 1.128 1.077 1.132 1.038 1.107 1.035 1.045 0.948 

Sortino -0.004 0.012 0.031 0.004 0.005 0.052 -0.009 0.025 0.013 0.005 0.061 0.060 0.035 0.060 0.018 0.052 0.017 0.022 -0.025 

Panel C. COVID-19 Sample Results 
               

Sharpe 0.131 1.067 0.315 0.066 0.554 0.473 0.652 0.773 1.277 0.927 1.291 1.093 0.564 1.225 0.534 0.457 0.662 0.674 0.621 

Omega 1.070 1.219 1.087 1.052 1.155 1.126 1.139 1.185 1.285 1.195 1.273 1.228 1.148 1.249 1.137 1.108 1.159 1.161 1.144 

Sortino 0.031 0.099 0.042 0.027 0.082 0.049 0.069 0.078 0.112 0.087 0.109 0.098 0.060 0.103 0.065 0.051 0.066 0.069 0.073 

Notes: This table reports the portfolio metrics, including annualized returns and standard deviations, Sharpe, Omega and Sortino portfolio measures. The full sample spans 

from 13 October 2010 to 31 December 2021. Pre-COVID-19 and COVID-19 periods are from 13 October 2010 to 10 March 2020 and from 11 March 2020 to 31 December 

2021, respectively. 

 

 

 

 

 

 



Table 5. Downside Risk Measures 

 
BCL SLR WND GEO FLC DEV STR GIT EMN AMT COM TECH FIN IND BANK HLT TEL TSP OLG 

Panel A. Full Sample Results 
                

Semi Dev. 0.014 0.015 0.012 0.012 0.023 0.008 0.011 0.011 0.011 0.011 0.009 0.011 0.010 0.009 0.012 0.010 0.010 0.010 0.014 

Gain Dev. 0.012 0.014 0.011 0.012 0.026 0.007 0.010 0.010 0.010 0.010 0.008 0.009 0.009 0.007 0.012 0.009 0.009 0.009 0.013 

Loss Dev. 0.015 0.016 0.012 0.013 0.022 0.009 0.011 0.012 0.012 0.012 0.010 0.012 0.011 0.010 0.013 0.011 0.010 0.011 0.015 

Downside 0.014 0.015 0.012 0.012 0.022 0.008 0.011 0.011 0.011 0.011 0.009 0.010 0.010 0.009 0.012 0.010 0.010 0.010 0.014 

HVaR -0.027 -0.034 -0.026 -0.025 -0.050 -0.015 -0.023 -0.022 -0.022 -0.023 -0.020 -0.023 -0.019 -0.019 -0.024 -0.023 -0.021 -0.022 -0.030 

HES -0.043 -0.049 -0.039 -0.040 -0.074 -0.024 -0.035 -0.036 -0.035 -0.036 -0.031 -0.035 -0.033 -0.030 -0.040 -0.033 -0.032 -0.034 -0.046 

GVaR -0.030 -0.034 -0.027 -0.027 -0.054 -0.017 -0.024 -0.024 -0.024 -0.024 -0.019 -0.023 -0.022 -0.019 -0.027 -0.022 -0.021 -0.023 -0.031 

GES -0.037 -0.042 -0.034 -0.034 -0.068 -0.021 -0.030 -0.030 -0.030 -0.031 -0.025 -0.029 -0.027 -0.024 -0.033 -0.028 -0.027 -0.029 -0.039 

MVaR -0.030 -0.034 -0.028 -0.021 -0.047 -0.015 -0.024 -0.023 -0.023 -0.025 -0.020 -0.023 -0.021 -0.020 -0.025 -0.023 -0.021 -0.022 -0.031 

MES -0.077 -0.065 -0.051 -0.021 -0.057 -0.015 -0.040 -0.043 -0.043 -0.049 -0.046 -0.048 -0.046 -0.045 -0.045 -0.042 -0.042 -0.045 -0.068 

Panel B. Pre-COVID-19 Sample Results 
               

Semi Dev. 0.011 0.013 0.011 0.010 0.020 0.007 0.010 0.010 0.010 0.010 0.008 0.010 0.009 0.008 0.010 0.010 0.009 0.010 0.012 

Gain Dev. 0.009 0.011 0.010 0.010 0.023 0.005 0.009 0.009 0.009 0.009 0.007 0.008 0.007 0.007 0.008 0.008 0.008 0.008 0.010 

Loss Dev. 0.012 0.013 0.012 0.010 0.020 0.007 0.010 0.011 0.010 0.011 0.009 0.010 0.009 0.009 0.010 0.010 0.010 0.010 0.013 

Downside 0.011 0.013 0.011 0.010 0.020 0.006 0.010 0.010 0.010 0.010 0.008 0.009 0.008 0.008 0.010 0.010 0.009 0.010 0.012 

HVaR -0.024 -0.031 -0.025 -0.020 -0.042 -0.014 -0.022 -0.022 -0.022 -0.022 -0.018 -0.022 -0.017 -0.018 -0.021 -0.022 -0.020 -0.021 -0.026 

HES -0.036 -0.042 -0.036 -0.032 -0.065 -0.021 -0.031 -0.034 -0.033 -0.034 -0.028 -0.031 -0.029 -0.027 -0.032 -0.031 -0.031 -0.031 -0.040 

GVaR -0.025 -0.029 -0.025 -0.022 -0.048 -0.014 -0.022 -0.022 -0.022 -0.023 -0.017 -0.021 -0.019 -0.017 -0.022 -0.021 -0.020 -0.021 -0.027 

GES -0.031 -0.037 -0.032 -0.028 -0.060 -0.018 -0.028 -0.028 -0.028 -0.029 -0.022 -0.026 -0.023 -0.021 -0.027 -0.026 -0.025 -0.026 -0.033 



MVaR -0.025 -0.030 -0.026 -0.015 -0.041 -0.015 -0.022 -0.023 -0.023 -0.023 -0.018 -0.022 -0.019 -0.018 -0.022 -0.022 -0.021 -0.022 -0.028 

MES -0.057 -0.045 -0.046 -0.015 -0.048 -0.027 -0.036 -0.047 -0.042 -0.041 -0.034 -0.036 -0.042 -0.034 -0.051 -0.035 -0.037 -0.037 -0.076 

Panel C. COVID-19 Sample Results 
               

Semi Dev. 0.022 0.024 0.016 0.019 0.033 0.012 0.015 0.013 0.014 0.014 0.013 0.016 0.015 0.013 0.019 0.013 0.012 0.014 0.022 

Gain Dev. 0.018 0.020 0.014 0.020 0.035 0.011 0.013 0.014 0.014 0.013 0.011 0.014 0.015 0.010 0.020 0.011 0.011 0.014 0.020 

Loss Dev. 0.024 0.025 0.016 0.019 0.030 0.014 0.015 0.015 0.016 0.015 0.016 0.017 0.017 0.015 0.020 0.013 0.014 0.016 0.021 

Downside 0.022 0.023 0.015 0.019 0.032 0.012 0.015 0.013 0.014 0.014 0.013 0.015 0.015 0.012 0.019 0.013 0.012 0.014 0.021 

HVaR -0.037 -0.050 -0.032 -0.044 -0.071 -0.020 -0.030 -0.022 -0.023 -0.026 -0.025 -0.034 -0.026 -0.025 -0.043 -0.026 -0.023 -0.024 -0.044 

HES -0.071 -0.075 -0.049 -0.061 -0.101 -0.038 -0.049 -0.045 -0.047 -0.045 -0.043 -0.052 -0.049 -0.042 -0.064 -0.039 -0.040 -0.046 -0.067 

GVaR -0.047 -0.050 -0.034 -0.045 -0.078 -0.026 -0.033 -0.030 -0.031 -0.030 -0.027 -0.033 -0.033 -0.026 -0.044 -0.028 -0.026 -0.031 -0.048 

GES -0.059 -0.064 -0.043 -0.057 -0.098 -0.033 -0.042 -0.037 -0.039 -0.038 -0.035 -0.042 -0.041 -0.033 -0.056 -0.035 -0.033 -0.039 -0.061 

MVaR -0.051 -0.054 -0.036 -0.041 -0.072 -0.025 -0.034 -0.026 -0.028 -0.032 -0.028 -0.033 -0.032 -0.028 -0.042 -0.029 -0.025 -0.029 -0.048 

MES -0.115 -0.102 -0.064 -0.057 -0.095 -0.069 -0.053 -0.033 -0.044 -0.070 -0.072 -0.073 -0.074 -0.067 -0.063 -0.059 -0.054 -0.053 -0.074 

Notes: This table shows downside risk measures. The full sample spans from 13 October 2010 to 31 December 2021. Pre-COVID-19 and COVID-19 periods are from 13 

October 2010 to 10 March 2020 and from 11 March 2020 to 31 December 2021, respectively. 

 

 

 

 

 

 

 



Table 6. CAPM-Based Metrics 

 
BCL SLR WND GEO FLC DEV STR GIT EMN AMT TECH FIN IND BANK HLT TEL TSP OLG 

Panel A. Full Sample Results 
               

Alpha -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 

Beta 0.815 1.188 0.516 0.617 1.200 0.452 0.758 0.960 0.885 0.819 1.119 0.874 0.934 0.864 0.944 0.885 0.874 0.966 

Beta+ 0.747 1.082 0.476 0.686 0.930 0.468 0.686 1.045 0.920 0.791 1.127 0.911 0.912 0.887 0.898 0.930 0.844 0.980 

Beta− 1.009 1.254 0.568 0.667 1.308 0.562 0.774 0.932 0.882 0.861 1.091 0.949 0.949 0.960 0.917 0.881 0.928 1.095 

R-squared 0.301 0.487 0.145 0.206 0.194 0.290 0.394 0.643 0.530 0.452 0.897 0.642 0.932 0.415 0.695 0.695 0.576 0.381 

A. Alpha -0.108 -0.062 0.015 -0.068 -0.062 0.021 -0.095 -0.058 -0.050 -0.070 -0.001 -0.040 0.000 -0.051 -0.022 -0.076 -0.056 -0.145 

Correlation 0.549 0.698 0.381 0.454 0.441 0.538 0.628 0.802 0.728 0.672 0.947 0.802 0.966 0.645 0.834 0.834 0.759 0.617 

Information -0.723 -0.328 -0.327 -0.637 -0.342 -0.388 -0.829 -0.591 -0.532 -0.673 0.152 -0.559 -0.205 -0.484 -0.333 -0.939 -0.623 -0.833 

Treynor -0.034 0.059 0.123 -0.014 -0.012 0.180 -0.010 0.069 0.070 0.035 0.143 0.088 0.148 0.060 0.115 0.045 0.065 -0.052 

Panel B. Pre-COVID-19 Sample Results 
              

Alpha 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 

Beta 0.677 1.121 0.534 0.536 1.074 0.365 0.806 1.002 0.946 0.859 1.105 0.872 0.938 0.890 0.991 0.945 0.911 1.010 

Beta+ 0.564 0.972 0.436 0.550 0.790 0.340 0.758 1.047 0.976 0.838 1.094 0.891 0.928 0.885 0.952 0.992 0.851 1.017 

Beta− 0.799 1.146 0.634 0.615 1.192 0.447 0.835 1.012 0.957 0.898 1.081 0.938 0.955 0.990 0.970 0.952 0.966 1.138 

R-squared 0.238 0.470 0.141 0.189 0.160 0.210 0.438 0.633 0.565 0.452 0.884 0.688 0.928 0.542 0.689 0.710 0.600 0.472 

A. Alpha -0.093 -0.094 0.020 -0.056 -0.102 0.037 -0.115 -0.058 -0.081 -0.089 0.005 -0.033 0.001 -0.064 0.001 -0.076 -0.058 -0.183 

Correlation 0.488 0.686 0.376 0.435 0.399 0.458 0.662 0.796 0.752 0.672 0.940 0.829 0.963 0.736 0.830 0.843 0.774 0.687 

Information -0.715 -0.554 -0.233 -0.611 -0.455 -0.231 -0.973 -0.561 -0.731 -0.761 0.180 -0.524 -0.141 -0.646 -0.062 -0.912 -0.631 -1.180 

Treynor -0.064 -0.003 0.104 -0.029 -0.077 0.202 -0.057 0.038 0.007 -0.017 0.113 0.066 0.112 0.022 0.105 0.017 0.033 -0.105 



Panel C. COVID-19 Sample Results 
              

Alpha -0.001 0.000 0.000 -0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 

Beta 1.091 1.320 0.479 0.780 1.451 0.626 0.661 0.876 0.761 0.738 1.148 0.880 0.927 0.810 0.849 0.764 0.800 0.874 

Beta+ 1.022 1.225 0.568 0.883 0.992 0.673 0.564 1.092 0.863 0.734 1.177 0.978 0.878 0.936 0.845 0.881 0.882 0.956 

Beta− 1.353 1.444 0.468 0.713 1.425 0.745 0.692 0.820 0.805 0.836 1.095 0.993 0.935 0.963 0.837 0.798 0.907 1.096 

R-squared 0.432 0.521 0.156 0.242 0.270 0.465 0.310 0.680 0.458 0.458 0.923 0.569 0.942 0.266 0.730 0.676 0.527 0.253 

A. Alpha -0.190 0.114 -0.007 -0.135 0.168 -0.067 0.021 -0.052 0.130 0.040 -0.031 -0.080 -0.003 0.025 -0.128 -0.070 -0.041 0.080 

Correlation 0.657 0.722 0.394 0.492 0.520 0.682 0.557 0.825 0.677 0.677 0.961 0.754 0.971 0.515 0.854 0.822 0.726 0.503 

Information -0.858 0.507 -0.740 -0.851 0.106 -1.119 -0.498 -0.768 0.168 -0.334 0.043 -0.818 -0.503 -0.333 -1.559 -1.169 -0.700 -0.142 

Treynor 0.055 0.411 0.222 0.037 0.297 0.193 0.326 0.261 0.525 0.381 0.317 0.208 0.351 0.289 0.149 0.224 0.259 0.343 

Notes: This table reports CAPM-based metrics. The full sample spans from 13 October 2010 to 31 December 2021. Pre-COVID-19 and COVID-19 periods are from 13 October 

2010 to 10 March 2020 and from 11 March 2020 to 31 December 2021, respectively. 



Figure 1. Total Installed Power Capacity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



         Figure 2. Closing Prices of the Clean Energy Indexes 
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Figure 3. Index Performance 

 

 

 

 

 

  


