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This paper investigates the development of an intelligent system method to address completely locked-in-
syndrome (CLIS) that is caused by some illnesses such as Amyotrophic Lateral Sclerosis (ALS) as the most 
predominant type of Motor Neuron Disease (MND). In the last stages of ALS and despite the limitations 
in body movements, patients however will have a fully functional brain and cognitive capabilities and 
able to feel pain but fail to communicate. This paper aims to address the CLIS problem by utilizing EEG 
signals that human brain generates when thinking about a specific feeling or imagination as a way to 
communicate. The aim is to develop a low-cost and affordable system for patients to use to communicate 
with carers and family members. In this paper, the novel implementation of the ASPS (Automated Sensor 
and Signal Processing Selection) approach for feature extraction of EEG is presented to select the most 
suitable Sensory Characteristic Features (SCFs) to detect human thoughts and imaginations. Artificial 
Neural Networks (ANN) are used to verify the results. The findings show that EEG signals are able to 
capture imagination information that can be used as a means of communication; and the ASPS approach 
allows the selection of the most important features for reliable communication. This paper explains the 
implementation and validation of ASPS approach in brain signal classification for bespoke arrangement. 
Hence, future work will present the results of relatively high number of volunteers, sensors and signal 
processing methods.

© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Brain Computer Interface (BCI) applications provide the means 
for people especially with physical disabilities to communicate 
with others through brain signals [1–3]. People with various phys-
ical disabilities and MND (ALS) may lose the ability to move their 
muscles including in some cases their eyes. However, these dis-
abilities often do not affect other cognitive brain functions such 
as thinking and imagining [4]. Hence, patients in advanced stages 
of MND may produce spontaneous electrical signals with their 
thought process. Study reveals that people with such disabilities 
have emotions and feelings that can be recognisable through brain 
signals [5–7]. EEG is a technique obtaining continuous brain wave 
patterns and becoming one of the most advantageous systems over 
other available techniques in terms of temporal resolution, inva-
siveness, portability and cost [8,9]. EEG contributes in both medical 
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diagnosis and biomedical engineering research field in many ways 
[10] and therefore, greatly supports BCI advancements. People with 
ALS can communicate through limited number of technological 
arrangements, among them eye activity-based (for example, eye 
gaze), and cognitive activity-based (for example, P300 BCI) sys-
tems are commonly used [11]. From a comparison study between 
those two systems for ALS patient, [11] found that BCI is most con-
trollable and comfortable system. Some patients feel eye-tracking 
is a stressful system due to frequent eye movements, prolonged 
eye focus to a particular direction and wearing head mounted eye 
tracking interface. Moreover, the controllable command is not fea-
sible to use in sleeping posture. On the other hand, there is no 
such restriction for BCI and it is easier with minimum temporal 
demand. Among steps in BCI development, feature extraction and 
selection are significantly performed to measure the major struc-
tural components within the signal [12] and these are essential for 
brain signal classification performance [13].

Several brain signal processing techniques have been used for 
feature extraction to transform the signals into time and/or fre-
ess article under the CC BY-NC-ND license (http://
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quency domain. Among them, Fast Fourier Transform (FFT) which 
extracts the characteristics features from frequency domain, is 
widely used techniques [14–19]. Choosing the best feature extrac-
tion method appropriate for a particular application remains a con-
tinuing challenge [20,21]. Rather, it is more target oriented based 
on the functionality of ultimate application. Researchers mostly 
choose separate techniques for feature extraction and optimisation 
among potential choices which consume time and effort. A novel 
concept named ASPS has been introduced by [22] to address the 
dilemma in terms of sensory signals and achieved an intense so-
lution for extracting and selecting feature automatically. The ap-
proach is developed on the basis of Taguchi’s orthogonal arrays 
and initially implemented on condition monitoring of machining 
process. In this research work, we aim to apply and determine the 
capability of novel ASPS approach in the field of EEG based sensor 
signals to extract relevant features for recognising imaginations.

Another step is brain signal analysis is based on extracted fea-
tures which enables brain signals to be operated as control com-
mands for further applications [20,23]. Making a choice of clas-
sifier among diverse range of classification and regression algo-
rithms is another challenge since it is dependent on the nature 
of sensory signals and classifiers. Some prevailing classifiers in-
clude, support vector machine, Naïve Bayes classifier, KNN, ANN 
etc. which achieve impressive performance in brain signal classi-
fication [24,25]. Among numerous classifiers, ANN such as Feed 
forward neural network (FFNN) or Multi-layer perceptron (MLP) 
[13,26] and LVQ [27,28] have been adequate for specific purposes.

The focus of this study is on the selection of the most suit-
able sensor characteristic features (SCFs) that allows identifying 
the thoughts and to be linked to a specific computer action or 
related to answering a specific question. The ultimate aim of the 
study is to discover the sensor locations, signal components and 
analysis methods that will be optimal for a low-cost communica-
tion system for patients. The ASPS approach helps to extract the 
optimised features and verify the results to recognise the imag-
inations from EEG brain signals using ANN. This research work 
contributes to the state-of-the-art in brain signal processing field 
in three ways: 1) a demonstration of ASPS approach applied for 
3 sensors EEG-based brain signals with bespoke experiment; and 
2) an integration of other signal processing techniques that work 
for time and frequency domains together; and 3) an implementa-
tion of extracting sensitive features to recognise the imagination 
accurately. This paper intentionally simplifies the number of sen-
sors and signal processing methods to explain the method in de-
tail. Future work will include the full capabilities of the approach, 
but will depend on this paper to explain the detailed steps of the 
methodology for the readers.

This paper is organised as follows: Section 2 reviews the litera-
ture of relative brain signal processing methods, Section 3 outlines 
the experimental methodology for implementing ASPS approach in 
brain signals, Section 4 discusses the analysis of results with verifi-
cation and Section 5 concludes with novel accomplishment of ASPS 
approach and scope of further study.

2. Related work

BCI development attracts significant attentions to assist the 
people with physical limitations. Significant applications based on 
brain signals have been evolved in various domains, inter alia emo-
tion detection [5,6,29–33], speech translation [34,35], text conver-
sion [36]. A research work presented in [37] infers that there is a 
high demand for developing BCI for specific applications such as 
direct personal communication, private conversation and general 
computer use. The reference presented 28 patients with locked-in 
syndrome; one of the outcomes from that research indicates that 
96% individuals use EEG signals for such applications.
2

Fig. 1. A schematic diagram of an EEG system.

EEG signals are widely classified into five categories depending 
on their characteristics frequency band: delta (δ, frequency range 
0–4 Hz), theta (θ , frequency range 4–8 Hz), alpha (α, frequency 
range 8–12 Hz), beta (β , frequency range 12–30 Hz), and gamma 
(γ , frequency range 30–100 Hz); where the power in each band is 
modulated by the subject’s physical behaviours, feelings and men-
tal states [38,39]. EEG directly measures brain’s electrical activi-
ties with few milliseconds’ temporal resolution. Certain electrodes 
(see Fig. 1) are placed across the scalp to determine the ampli-
tude of electrical impulses between presynaptic and postsynaptic 
neurons. With the advancement of technology, emergency EEG sys-
tem (eEEG) and wireless microEEG systems are designed by [40]
and [41] respectively which are able to extract the brain waves 
rapidly in emergency departments or in ICU for patients’ care and 
EEG laboratory. Using EEG hyperscanning device, brain signals can 
be captured simultaneously from multiple subjects which are also 
useful for non-verbal communication [42].

After EEG acquisition, brain signals are processed, analysed 
and classified using several methods and algorithms towards spe-
cific applications development [23,43,44]. In the field of feature 
extraction and selection, time and/or frequency and space-time-
frequency domain analysis can extract signal characteristics with 
various accuracy [45,46,3]. For the development of Brain Com-
puter Interface BCI, reference [23] presents some of the potential 
methods for feature extraction and selection namely: FFT, Short 
Term Fourier Transform, Auto Regressive Model Wavelet Transform 
(WT), Wavelet Packet Decomposition, Common Spatial Pattern etc. 
Among them, a few studies compared between multiple techniques 
though there is no one can be said as appropriate for all pur-
poses since every technique has pros and cons depending on some 
parameters. To address the proper choice of signal processing tech-
nique depending on desired purpose [22] innovated ASPS approach 
as a novel idea which minimises experimental work, time and cost. 
The ASPS approach is theoretically simple and convenient to ap-
ply for useful information extraction from multiple sensory signals. 
Later other novel accomplishments have been executed using ASPS 
approach undertaken by [47–49] to efficiently determine the key 
features as well as the sensor in terms of condition monitoring of 
gearbox, tool and water leakage detection system respectively. The 
rationales for using ASPS here are:

I. It is a systematic and compact approach of signal processing 
method where implementation of an algorithm can take over 
the whole process automatically rather than separate applica-
tion of multiple methods.

II. It eventually determines the best suitable signal processing 
technique along with associated features.

III. A feasible method since it reduces cost, minimises time, mod-
erates methodological steps and optimises the internal com-
plexity.

IV. A novel implementation in terms of brain signal processing 
system.
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Fig. 2. The concept of reading thoughts for computer interface using the ASPS approach.
Machine learning with both supervised and unsupervised tech-
niques have been applied for brain signal classification in last 
two decades. Machine learning, a subclass of artificial intelligence 
that confers various algorithms and statistical models, and trains 
computer to perform certain tasks autonomously [50]. EEG classi-
fication experiments with certain number of selected sensors are 
conducted in the state of the art along with numerous algorithms 
as well as potential architectures.

In literature, reference [27] classified four types of body move-
ment tasks by experimenting with Learning vector quantisation 
(LVQ). In the experiment, EEG signals are collected for 17 sen-
sors based on single trial data. Authors investigated the time and 
frequency components for before and after reaction stimulus for 
each task and their model can classify the movements with more 
than 70% accuracy. EEG signals are clustered by [28] using LVQ for 
five mental tasks of three subjects and attained diverse range of 
accuracy depending on datasets and subjects. Authors employed 
maximum entropy method with frequency analysis and examined 
the availability of features within alpha and beta frequency band. 
[51] conducted an experiment using six sensors-based EEG sig-
nals for five mental tasks initially with one subject. Three different 
signal processing methods, namely: Principal component analysis 
(PCA), FFT and WT, are separately applied for extracting features 
and each case of extracted features is applied through Back propa-
gation neural network and support vector machine algorithms for 
signal recognition. Mental tasks are classified for various combi-
nation of signal processing technique and classification algorithm. 
The best performance of 84% accuracy is obtained by combining 
wavelet transformation-based features and support vector machine 
algorithm. Research with motor imagery classifications are exem-
plified many neural network algorithm and high performance can 
be achieved by ANN. Reference [26] conduct motor-imagery classi-
fication with multiple classifiers where MLP outperforms with 90% 
accuracy and lower training time over SVM, KNN, Random For-
est, Naïve Bayes and Logistic regression. Comparing MLP and LVQ, 
[52,53] found that LVQ and MLP perform well for high dimensional 
and lower dimensional inputs respectively. Some studies are re-
viewed by [23,43] where other deep learning algorithms such as 
Recurrent neural network (RNN), Long short-term memory (LSTM), 
Convolutional neural network (CNN) achieve relatively reasonable 
accuracy [54–57] in terms of large dataset, time-series prediction 
or image processing. However, both MLP and LVQ techniques have 
comparable sensitivity in terms of smaller size of training data and 
MLP is a faster training process. Therefore, this research uses FFNN 
and LVQ algorithm to enhance the performance in relation to sim-
plicity, rapidness and use of minimal computation resources.

From the literature review considerable research has been
working on EEG signal processing for feature extraction and selec-
tion to achieve accurate signal classification. The selection of signal 
3

Fig. 3. A volunteer wearing the EEG cap.

processing techniques is challenging to separately consider one 
or more techniques. There is little research found on considering 
combinational signal processing techniques within a standalone 
method. To address this difficult situation, we are aiming to in-
vestigate the ability of the ASPS to discriminate between multiple 
different mental imagery.

3. The methodology

The methodology includes bespoke experimental work com-
bined with the ASPS approach and the implementation of FFNN 
and LVQ neural networks in order to classify mental imagery and 
compare different ANN model performances.

Fig. 2 presents the key concept of the suggested methodology. 
The participant will be asked to think about a specific imagina-
tion that is captured via a sensory signal or more. Then the ASPS 
approach will be used to analyse the data to extract sensory char-
acteristic features (SCFs) that then will help to categorise the imag-
inations and select the correlated SCF which can potentially be 
linked to a specific response or computer action.

3.1. Signal acquisition

EEG signal acquisition was processed by international 10–20 
EEG [58] electrode placement system as shown in Fig. 3 where 
3 sensory signals were selected with three random yet distant 
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Fig. 4. Selected sensor names and locations (side and top view).

Fig. 5. Raw signals of 5 imaginations from one volunteer.
brain locations. Fig. 4 shows the selected sensor names and corre-
sponding EEG cap location. The purpose of selecting three different 
brain locations is to explore the differential effects of signals from 
distant electrodes as they sample the activities of brain regions 
associated with different functions [38,59]. Consistent data are col-
lected for 5 heterogeneous imaginations (see Table 1) with two 
subjects (one man and one woman) and two repetition of the ex-
periments (A and B). A recorded audio stream was used for inviting 
various imaginations one after the other where each imagination 
had two parts: first, relaxation and then, a specific mental task 
of imagination. Fig. 5(a) illustrates the raw signals of relax and 
mental task for 5 imaginations which are plotted in Fig. 5(b) with 
grayscale map. Imaginations were arranged based on the variety 
of mental tasks that includes motor imagery, mental calculation, 
imagination of an object, smell, and motion with sensing the envi-
ronment. The TMSi system is used for EEG recording with sampling 
frequency 2 kHz. After recording we extracted a combined relax-
ation and imagination signal for further analysis.
4

3.2. Signal processing using the ASPS approach

It is necessary to discover the intrinsic characteristics of sensory 
signals that represent the generated thoughts, if at all possible, 
through feature extraction technique that has high dependency on 
the desired goal. Exemplary, but limited in number, signal pro-
cessing methods are selected in this work to test and explain the 
algorithm to enable the low-cost implementation via affordable 
microprocessor boards and to enable the reader to understand the 
suggested method. Using linear analysis in frequency and time-
frequency domains a number of methods can be used for feature 
extraction of EEG signals [17]. We applied novel ASPS approach 
[22] to address the challenges in terms of brain sensory signals 
and examine whether the method is able to achieve an effective 
solution for extracting and selecting feature automatically.

The ASPS approach uses the “Black box” concept [22,60] where 
the relationship between the input and output parameters or vari-
ables is obtained to determine the status of the system (the black 
box). The ASPS approach has been adopted in this research work 
as a ‘Delta feature’, �, for measuring sensitive EEG SCFs. The delta 
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Table 1
List of imaginations that the volunteers are invited to imagine.

Number Description Imagination

1 Imagine an African Elephant

2 Imagine kicking a football with left foot

3 Calculate of 2 × 2 in your mind

4 Smelling a rotten egg

5 Imagine walking on a warm sandy beach

Table 2
List of statistical functions used for this example.

Index Definition Equation

1 Mean E1 = 1
n �n

i=1xi

2 STD E2 =
√

�n
i=1(xi−E1)2

N

3 Variance E3 =
∑n

i=1(xi−E1)2

N
4 Max E4 = max(xi)

feature, � can be obtained from the changes between relax and 
mental tasks (imaginations) as a part of the potential brain signals’ 
frame. As such, higher differential will indicate more sensitive fea-
tures with respect to a specific sensor. Delta feature values with 
all selected sensors are used to construct a matrix named the 
Association Matrix (ASM). Taguchi’s orthogonal array can also be 
implemented within ASPS approach for determining the feature 
sensitivity and reducing the number of experimental works needed 
for the implementation of full factorial experimental testing [22].

In this work, three sensors simultaneously received the brain 
activity from subject’s head with distant electrode positions (see 
Fig. 4). Four statistical functions have been considered (see Table 2) 
which are applied on both time domain and frequency domain 
(FFT output) of mental tasks and relax signals. The statistical func-
tions are mean, standard deviation, variance and maximum.

There is no such number of features that can be said to be 
sufficient; rather it depends on the number which can charac-
terise the required status effectively. For example when consid-
ering other methods in literature, reference [61] extracted three 
features and classified cursor movements with best accuracy at 
88.75%. To detect obstructive sleep apnea from EEG signals, ref-
erence [62] considered 4 features and achieved 98% success using 
SVM classifier. For 5 categories of emotion classification [30] used 
6 statistical functions as features and achieved accuracy at 95% 
with back propagation neural network. In this paper, the number 
of features selected are reduced to ensure a low-cost microproces-
sor board can be used to develop the product to be affordable to 
patients and their families. And also to simplify the method for 
the reader to enable the full understanding of the methodology, 
see Fig. 6.

Raw data is a time domain signal and FFT output contains all 
the decomposed frequency components of the raw signals where 
5

Fig. 6. The flowchart of methodology of the ASPS approach.

the relative strengths (i.e., magnitude) are measured. The signifi-
cant part of FFT output is partitioned into two equal parts and the 
above-mentioned statistical functions are measured for each part. 
FFT output is calculated using Fast Fourier Transformation where 
the frequency space (X(k)) is transformed from the configuration 
space (x(n)) as presented in equations (1) and (2).

X (k) =
N−1∑
n=0

x (n) · e− j2πkn
N ; (1)

x (n) = 1

N

N−1∑
n=0

X(k) · e− j2πkn
N ; (2)

where, j = √−1, N = length of x(n).
From the successive signals of relax and mental imagination 

task, normalised features are arranged for each imagination. The 
two segments of FFT (relax vs imagination) with four statistical 
functions generate eight values; and time domain signals with four 
features produce a total 12 values. The delta feature values are cal-
culated from the difference between mental task features and relax 
features, which are organised in a matrix named the Association 
matrix (ASM), see Fig. 6. The ASM combines all time domain and 
frequency domain features. Therefore, the resultant sensory charac-
teristics features represent sensitivity in an arranged format within 
the ASM. For n number of EEG sensors and m number of signal 
processing techniques including time domain and frequency do-
main, the ASM can be mathematically expressed as in equation 
(3):

ASM =

⎡
⎢⎢⎣

f11 f12 f13 . . . f1m

f21 f21 f21 . . . f2m

. . . . . . . . . . . . . . .

fn1 fn2 fn3 . . . fnm

⎤
⎥⎥⎦ = fxy

where 1 ≤ x ≤ n and 1 ≤ y ≤ m; (3)
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Fig. 7. Block diagram of the ASPS approach originally presented in [22]; which has been adopted for the brain signals application.
where f i j is the SCF of the ith sensor and jth signal processing 
method.

As a result, an ASM can be created where each element of f i j
represents the dependency coefficient. Fig. 6 shows the flowchart 
for the methodology of ASPS approach which is followed in this 
research. The concept of the ASPS approach can utilise more sig-
nal processing techniques for creating the Association matrix. The 
extracted features from the ASM are required to verify the perfor-
mance for recognising imaginations. The block diagram of ASPS ap-
proach in brain signal experiment is illustrated with Fig. 7. In this 
experimental work, we processed the total 12 delta features on 
each imagination for two subjects with two experiments and ver-
ified the selected features in further steps. As described in Fig. 7, 
the sensors and the signal processing methods are used to extract 
SCFs (Sensory Characteristic Features) and arranged in a 3D matrix, 
Fig. 7(c). The change in value between relax status and imagina-
tions status (�) is used to construct the Association Matrix (ASM), 
Fig. 7(d). Then sensitive SCFs from the ASM are ranked and the 
most sensitive ones are selected, Fig. 7(e). However, it is worth 
mentioning that unlike previous applications of the ASPS approach, 
this unique application requires unique patterns of SCFs change 
(from relax to imagination), to identify a unique status. Hence, in-
sensitive features could still be a valid indication to characterise a 
specific status or imagination. Then AI systems such as neural net-
works (Fig. 7(f)) will be used to test the viability of the data in 
recognising the imaginations, Fig. 7(g). Fig. 8 presents an example 
of the time domain and frequency domain feature extraction from 
the raw EEG data. Further analysis will be described in the follow-
ing sections.

3.3. Verification of ASPS approach to recognise the imagination

All delta (�) features are applied as ANN inputs for classify-
ing the imaginations to evaluate the feature performance which 
are obtained via the ASPS approach. Two types of supervised ANN, 
namely Feed forward neural network (FFNN) and learning vec-
tor quantisation (LVQ), are utilised with several ANN architectures, 
datasets as well as train-test combinations to inspect the variabil-
ity of the classifier’s performances.
6

We evaluated both ANN performance by average percentage ac-
curacy based on the number of predicted values match with actual 
values (equation (4)). Each model architecture executed for 100 
times to investigate the best and average performance which are 
summarised into result section.

Classification accuracy = Number of correct predictions

Number of total predictions
× 100%

(4)

4. Result and discussion

A total of 12 delta features are used from time and frequency 
domain analysis using the ASPS approach, aiming to recognise 
imaginations based on bespoke experiments. The delta features are 
given as inputs for the FFNN and LVQ models to investigate the 
performance of imaginations recognition.

4.1. Feature extraction and selection using the ASPS approach

The ASPS produced delta features of four statistical functions 
are applied into time domain and two segments of frequency do-
main according to Fig. 8. According to brain waves theory, the relax 
state most likely represents alpha wave. Whereas, various men-
tal tasks go through the presentation of beta and gamma waves 
[14]. The wave amplitude and frequency of each category con-
tain distinct characteristics. So, the state of the relax mind can 
obviously be differentiated from the brain state with certain imag-
ination. The features of imagination and relax brain signals are 
expected to be dissimilar, and the degree of variety can be re-
vealed by analysing delta values towards finding the sensitive fea-
tures. A precise analysis is performed between features sensitivity 
with individual sensor for each imagination. The influential char-
acteristics of delta features are depicted in a heatmap (see Fig. 9) 
with colour representation of sensitivity. The analysis steps are: 
1) observing the combination of delta feature values for individual 
imagination, 2) comparing imaginations with each other, 3) anal-
ogising ASMs between two subjects. The first step is to discover 
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Fig. 8. An example of feature extraction steps.

Fig. 9. Heatmap of imaginations with selected features.
the change in feature values and the availability of a unique com-
bination of features within an imagination. From the analysis it is 
noticeable that, the uniqueness of features combination allows dif-
ferent values between lowest and highest sensitivity. The second 
analysis step is vital for inspecting the ability of features to differ-
entiate an individual imagination. As seen in Fig. 9, there are two 
major findings: firstly, the statistical function named variance (SCF 
7 and 11) of FFT conveys a significant alteration with rest of the 
delta features; and secondly, the individual sensor shows the dis-
tinctive behaviours for each imagination. A prominent difference 
between sensors is notable for imagination 3 and 5. Imagination 
7

1 and 4 are distinguished with respect to feature number 11. On 
the other hand, imagination 2 is contrary compared to imagination 
1 and 4. Therefore, they make a unique combination of features 
for each imagination. Yet, a little resemblance is noticed between 
imagination 1 & 4; and 3 & 5. Considering them, we prepared two 
additional separate datasets for verification where the 2nd dataset 
contains imagination 2, 3, 4 and 5. And the 3rd dataset includes 
imagination 2, 4 and 5.

Therefore, all 12 delta features are selected since the selection 
of only high sensitivity features (both positive and negative) is in-
sufficient to recognise an imagination among the five imaginations. 
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Fig. 10. The Association matrix (ASM) with all imagination for subject 1 (a) and 2 (b).
Also, the likelihood of a comparable pattern for any two/three 
imaginations becomes higher which in turn reduces the imagi-
nation’s identity characteristics. Fig. 10 displays the 3rd analysis 
step which produces the mapping of all five imaginations (Experi-
ment A) between two subjects. In Fig. 10, almost identical patterns 
of imaginations are shown between the two subjects. Imagina-
tions 1, 2 and 4 have consistent combinations for both subjects. 
For imagination 3, and sensors number 2 and 3 show close sen-
sitivity patterns. However, sensor 2 differs within ±0.5 between 
subjects and it has lower sensitivity than sensor 1 in both cases. 
For imagination 5 both subjects have identical levels between sen-
sor 2 and 3. For sensor 1 of imagination 3 and 5, SCF number 
7 and 11 have opposite combinations between subjects though 
both SCFs, making a unique combination in either case. Therefore, 
most of the features are found common which can characterise the 
imagination 3 and 5.

4.2. Performance of classifiers

The verification part is designed and implemented with few 
steps according to Fig. 11. ANN is evaluated with three datasets 
where, 1st, 2nd and 3rd datasets are prepared with the features 
of 5, 4 and 3 imaginations respectively. The 1st dataset contains all 
five imaginations, based on the analysis of the 2nd and 3rd datasets. 
The 2nd dataset includes imagination 2, 3, 4 and 5. The 3rd dataset 
is consisted of imagination 2, 4 and 5. Different train-test com-
binations are designed to check the performance of datasets and 
ANN architectures, see Fig. 11. FFNN is one of the oldest and most 
widely used ANN. It enables an effective computational model for 
medical diagnosis where one or more hidden layers are organised 
to train a model from a set of labelled input data and desired out-
put labels are produced by processing numerous artificial neurons 
[63]. LVQ is another type of ANN and suitable for multiclass clas-
sification. It consists of a competitive layer followed by a linear 
layer and suitable for multiclass classification [64]. Models are ex-
8

perimented with diverse neuron numbers (1 to 100) for one layer 
and 4 combinations of neurons for two layers.

The two types of ANN, FFNN and LVQ are used as classifiers 
to verify the extracted and selected delta features using the ASPS 
approach. ANN architectures were experimented with using vari-
ous combinations; firstly, considering the number of hidden layers 
and number of neurons in each layer; secondly considering dif-
ferent combination of training and test data from two subjects 
and finally, three different combinations of imagination datasets. 
Six ANN architectures with different combinations of hidden lay-
ers and number of neurons in hidden layers are shown in Table 3. 
Four different train-test models are considered based on different 
combinations of training and test data from two subjects. These 
models are presented in Fig. 11 and each model is executed us-
ing six ANN architecture resulting in 24 different combinations of 
model and ANN architecture. Each of these 24 combinations are 
run with 5, 4 and 3 imaginations as described in the previous sec-
tion, respectively. All ANN were executed for 100 times to observe 
the best and average performances for each case. The best per-
formances for all models are summarised in Fig. 12, where the 
performance of recognising imagination is plotted based on train-
test models.

Fig. 12(a) and (b) present the performances of models for be-
spoke experiments where both training and testing data belong 
to the same person. The result for recognising five imaginations 
varies with subjects; highest performance is achieved 80% using 
LVQ and FFNN with 1 hidden layer for subject 1, whereas subject 
2 attains 100% using the same architecture for five imaginations. 
Both LVQ and FFNN (1 hidden layer) are very adequate to obtain 
100% accuracy in terms of 2nd and 3rd datasets for both models. 
On the other hand, Fig. 12(c) and (d) present the performance of 
models which are trained with one person and tested with both 
persons. In these cases, five and four imaginations are recognised 
with maximum accuracy using LVQ of 80% and 87.5% respectively. 
A common perception for all instances is found that any model 
can recognise 3 imaginations with 100% accuracy. Another finding 
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Fig. 11. The design of the verification steps suing neural networks.

Table 3
ANN model architectures for commands classification.

Layer 
architecture 
index

ANN 
type

Number of 
commands for 
classification

Number of 
neurons in layer 1

Number of 
neurons in 
layer 2

Number 
of models 
run

1 LVQ 5, 4, 3 N, N = 1,2, . . . 100 N/A 100
2 FFNN 5, 4, 3 N, N = 1,2, . . . 100 N/A 100
3 FFNN 5, 4, 3 36 36 100
4 FFNN 5, 4, 3 36 72 100
5 FFNN 5, 4, 3 72 36 100
6 FFNN 5, 4, 3 72 72 100
is that FFNN with two hidden layers mostly attain lower perfor-
mances (5 imaginations =< 80%, 4 imaginations =< 75%) which 
indicates that the ANN architectures with one hidden layer are 
well equipped for ASPS approach verification in terms of this EEG 
signals experiment.

Considering all models with 100 runs, an average ANN perfor-
mance for 5, 4 and 3 imagination recognition are plotted in Fig. 13. 
The box and whisker plot clearly shows that 3-imaginations 
has average accuracy between 72–100%. 4-imaginations and 5-
imaginations attain an average accuracy of up to 77% and 67.40% 
respectively. An investigation for the average performance devia-
tion between four train-test models is illustrated with Fig. 14. The 
outputs are influenced by the quality of imagination made by the 
subject. For example, the overall achievement shows better with 
all imaginations while the ANN are trained by subject 2. Similar 
agreement is investigated between different models and dataset 
performances, suggesting further that the ASPS approach has the 
capability to extract the necessary brain signal features towards 
BCI developments.

According to similar classifiers’ performance in brain signal pro-
cessing, some research studies demonstrate divergent ranges of 
9

performance. For example, [30] achieved 31–86% accuracy for five 
mental tasks classification using LVQ. With similar experiment 
using Back propagation neural networks and SVM [51] attained 
64–84% accuracy. The performance mainly fluctuates for the ex-
tent of experiment, datasets, and classifiers. In this research, overall 
best performance of our bespoke experiments achieved accuracy 
of 80–100% for recognising five imaginations using both FFNN and 
LVQ classifiers.

5. Conclusion and future work

Patients with Completely Locked-in-Syndrome (CLIS) due to ac-
cidents, brain damage, MND (ALS) do not have a method of com-
munication with the outside world other than thoughts. Brain 
computer interface (BCI) can be used to address this problem, 
where brain signals can be converted into control and screen 
commands. Numerous techniques with both traditional and novel 
methods have been tested in regard to brain signal processing, 
nevertheless research in this area, as always, is demanding towards 
the development of a more effective system. This paper addresses 
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Fig. 12. Best classification accuracy of four models for all ANN architecture.
Fig. 13. The average performance of 3 datasets for all models.

this issue by presenting a novel method towards a low-cost and 
affordable BCI system via using of thoughts and imaginations.

This paper has proved that the ASPS approach, which had been 
used in other applications before, is a powerful feature extrac-
tion method for recognising various imaginations. The difference 
between previous studies and this research is that a certain com-
bination of high-low sensitive features can be extracted through 
ASPS approach which are able to classify the imagination. Previ-
ous studies used only highly sensitive features to detect machinery 
fault. To reduce the cost of a future system based on our method, 
10
this paper uses 3 sensors and limited number of features. This 
proposed method is designed and tested for individual subject as 
bespoke experiment and later two subjects are tested from train-
ing by one of the subjects’ data to observe the capability of the 
method at this stage. It will motivate the study to be generalised to 
broader population. Sensitive features are obtained through time-
domain and frequency domain (FFT) analysis using the ASPS ap-
proach as it allows multiple signal processing techniques to be 
integrated, reducing any extra experimental work, time, and cost. 
The verification by two different types of ANN (LVQ and FFNN) 
for the proposed method attained accuracy between 80 and 100% 
to recognise five imaginations. For four imaginations this research 
has achieved success rate between 87.5 and 100%. A 100% accu-
racy has been obtained when recognising 3 imaginations. Hence, 
this system should enable three types of commands of a keyboard 
to allow communication (e.g. arrow up, arrow low and select). This 
work shows that recording EEG signals with a combination of relax 
and mental tasks will allow the extraction of sensitive delta fea-
tures and using the ASPS approach, sensitive and unique features 
can be efficiently identified with uniqueness that will enormously 
influence BCI systems for classifying brain signals. This would al-
low complex communication of feelings and needs via thoughts.

The paper aimed to explain the methodology in detail using 
a simplified example to presents the capability of the ASPS ap-
proach for BCI. Future work will present the results of relatively 
high number of volunteers, sensors and signal processing methods 
to statistically quantify the benefits and best location of sensors.
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Fig. 14. The average performance comparison for subject-wise training and imaginations.
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