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Abstract— It is anticipated that the backbone of Smart Cities concerning automation and networking 

will be formed by Unmanned Aerial Vehicles in the imminent future. Therefore, our research focuses 

on developing advanced microcontrollers embedded with Artificial Intelligence techniques for self-

governing Unmanned Aerial Vehicles. The main objective of this research was to enable full 

automation for the execution of flight paths with non-trivial sequences that will be performed with 

centimetre-level accuracy. Also, by utilising dynamic flight plans and trajectories, we aim to secure 

autonomous aviation based on norms, with control loops and fundamental constraints. More 

specifically, we evolved a novel algorithmic technique for trajectory optimisation, which deploys a 

modification to the A* search algorithm, implemented by the Haversine formula and enhances 

accuracy using Vincenty’s formula. Furthermore, realistic values for trajectory optimisation and 

obstacle avoidance were found through the implementation of a simulative investigation. The 

outcomes of our methodology indicate that the safety constraints associated with the integration of 

Unmanned Aerial Vehicles in the urban environment can be significantly mitigated. Consequently, 

their effectiveness will be increased in realising their diverse operations and capabilities. 

Index Terms— Unmanned aerial vehicles, air traffic control, air transportation, Smart vehicles, 

aircraft navigation, Internet of Things, Autonomous 

INTRODUCTION 

AVS are a prerequisite for the technological advancement of the mobility arena in smart cities. The 

future evolution of sixth-generation (6G) wireless networks is a source of significant excitement in 

the upcoming intelligent ecosystems, especially in intelligent transportation within urban 

environments. The ultimate objective of 6G is to enable efficient connectivity for massive-scale 

Internet of Things (IoT) networking. Therefore, the take-off for flying intercity vehicles is desirable 

with recent advances in lithium-ion batteries. 

Developing innovative transportation solutions to address traffic problems is paramount for 

constructing sustainable smart cities. In conjunction with the IoT network system, the near-ground 

transportation infrastructure has become inextricably linked with the creation of smart cities [1]. As 

the name implies, smart cities are structured atop more intelligent data. It is a significant challenge 

because data is frequently an afterthought when creating new processes and opportunities. 

Therefore, using the right building blocks from the outset is vital, aligned with clear and compelling 

guidelines about best practices. To achieve scale, we need standards to qualify how we view and 

measure the world around us and how this data informs our decision-making processes. 

Current transportation systems utilise ground-level, waterborne, high-altitude, and underground 

spaces, such as rapid transit systems, which are the most efficient in densely urbanised 

environments. Although, the immediate ground solution for transportation seems to be more 

suitable as the cost for the development will be low, in contradiction to an underground 

infrastructure, which requires a multimillion budget to be constructed. There are many advantages 

to using air mobility in urban environments, such as flexibility in transportation as discrete paths 



could be followed. However, to securely integrate this transportation system into the existing 

mobility landscape, we must consider several aspects and overcome obstacles hindering growth. 

Automated driving strategies have been advocated as significant advancements to ensure safe air 

transportation [2]. Safety is paramount, considering that aviation will levitate above residential areas. 

In this regard, safety integrity must place high targets throughout the development and use cycle. 

Considering the lack of comprehensive literature on safe ground-based aviation for UAVs, this study 

aims to set a milestone for activating the infrastructure that will integrate UAVs into future smart 

cities. 

Therefore, we study the problems that arise during unmanned air traffic systems and aim to 

approach their solution through this research work. Our main goal will be to propose the 

development of software integrated into the intelligent system of the UAV that will launch and 

control the drone, which will simulate the flying vehicle, considering the actual situation on the 

ground. The objectives of the software will be to solve the following main tasks: 

1. Automatic routing on actual terrain from one point to another, considering no-fly zones along the 

shortest route 

2. Automatic linking of the map to the actual position of the operator using the GPS/GLONASS 

receiver 

3. Calculation of the trajectory of the drone and the control signals necessary for its control 

4. Two-way communication with the drone to transmit traffic control signals along the route with an 

adjustment based on tracking its position in real-time 

The perspective of this project is that it consists of a blueprint of a small part of a more extensive 

system. We envision the system building paths according to the no-flight zones and extending to a 

3D space with multiple echelons. It will also be able to simulate a flight of an actual transport and 

work with various simulations simultaneously. Hence, it could be tested by creating randomly 

generated simulated UAVs with random destinations. The program will sort out the paths depending 

on their length and approximate time of approaching a specific point on the track and choose the 

echelon they are flying through [3]. In addition, it will monitor and correct the routes of many UAVs 

in real-time to ensure the safety of their passengers. 

A. Related Works 

Automated guided UAVs are currently being implemented in huge areas, such as rescue and 

adaptation of exploration platforms, due to their inherent characteristics of flexible mobility and 

simple deployment [4], [5]. In addition, multiple UAVs can create an automated network of guided 

vehicles that can be used to collect data and communicate with remote receivers. However, there 

are still some key challenges that need to be addressed. For example, they are based on battery 

capacity, limiting transmission distance. In addition, the communication quality of an individual 

vehicle is not guaranteed, as the transmission power is limited [6], [7]. 

Nevertheless, UAVs, also generally regarded as drones, have been envisioned as a promising 

technology in recent years [8]. Ground-controlled UAVs are considered aerial users with access to 

the cellular network from the sky. In addition, UAVs can be used as flight base stations or relays to 

assist wireless communications. They can receive data from the ground and transmit it to remote 

base stations to overcome transmission distance limitations [9]. The paper’s authors [10] proposed 

utilising a swarm of UAVs to acquire data from the WSN network [11] whenever the base station is 



nonfunctional. In addition, they studied the correlation between the parameters of the network, 

considering the constraint of avoiding collisions between the UAVs. 

Charging the batteries of UAVs through Energy and Data Dispensers (EDD) devices was combined by 

addressing the assignment of the bandwidth and redefining the tridimensionality trajectory. 

However, connecting to EDDs is not yet in the plans, and the capacity may be limited as the dwell 

time in the recharging areas available for the UAV is limited. Therefore, it will be paramount for the 

UAVs to define an optimal movement trajectory between the EDDs. Based on the energy 

consumption, the research work [12] presented a novel approach to jointly optimise the 3D flight 

path and data collection schedule of a fixed-wing UAV for secure and energy-efficient data collection 

under an interception attack. The article [13], based on a mathematically oriented approach, 

presented a UAV object delivery scenario, where in the presence of multiple no-fly zones, a UAV 

starts from the departure point, collects the objects from ground users, and finally delivers the 

collected objects to the destination [14]. 

Determining the trajectory in real-time is one of the gaps that our research fulfils, based on the 

aforementioned related works. Also, the numerical results demonstrate the superiority of the 

proposed algorithm as the new proposed methodology outperforms the accuracy results for the 

current literature. Furthermore, in the example with the moving target for landing yields compared 

to the original A* algorithm and the bidirectional version, the computation time is reduced by 

77.02% and 70.52%, respectively. Also, it is shown that the improved algorithm A* length is longer to 

generate the trajectory satisfying kinematic constraints. 

B. Novelty 

Prevailing risk-based methods elaborate the plan of UAVs trajectory on graph search algorithms such 

as the Dijkstra algorithm [15], heuristic A* algorithm [16], genetic algorithm [17], probabilistic 

roadmaps, and rapidly exploring random Trees. In addition, the ant colony optimisation algorithm 

[18] has an acceptable performance in UAV path planning problems. However, traditional algorithms 

do not consider a path’s risk as encapsulating the distance in the heuristic function. Therefore, to 

address the limitations in the literature, as mentioned earlier, we aim to contribute by eliminating 

the risks in the current route planning for UAVs. Thus, we are focusing on modifying the A* 

algorithmic technique by elaborating on the haversine formula and Vincenty’s formula. The novelty 

is the approach that accurately evaluates automated guided UAV trajectories. 

C. Contribution 

The proposed model’s main contribution is the trajectory optimisation based on the modification we 

applied to the A* algorithmic technique by utilising the haversine formula and Vincenty’s formula. 

Also, the comprehensive risk assessment implementation incorporates evaluation standards and 

sensitivity analysis on risk coefficients to quantify multiple risks, mainly in urban environments. The 

comparison with five modified A* algorithmic techniques consequent the optimisation in the 

trajectory planning considering several aspects such as cost-effective path in terms of time and risk 

limitation. 

LITERATURE REVIEW 

Recent research has focused on exploiting traffic congestion solutions and relieving pressure on the 

city’s existingtransportation networks, using near-ground spaces to be used by flying cars. Therefore, 

engineers and researchers elaborate on the infrastructure development that will enable 

transportation and the unoccupied near-ground spaces [19]. However, there have not been any 



approaches regarding the flying car safety system and the infrastructure of the air routes or the 

taxiways, connecting runways with aprons and hangars to the ground.  

Governments have developed air traffic systems to ensure the safety of integrating UAVs into the 

urban environment. Unmanned Aircraft Systems Traffic Management (UTM) was deployed in the US 

[20]. U-Space was in Europe. The Urban Traffic Management of Unmanned Aircraft Systems (uTM-

UAS) in Singapore [21] and the UAV Operation and Management (UOM) in China. The authors of the 

research work [22] have presented the efforts taken by the Federal Aviation Administration (FAA) 

and the National Aeronautics and Space Administration (NASA) to develop a traffic management 

system for unmanned aircraft. It was mandatory, as the safe integration of unmanned aerial vehicle 

systems into the national airspace system of the United States has been a top priority for the FAA for 

several years. A comparison analysis was applied between the FAA Universal Transverse Mercator 

and the Concept of Operations for EuRopean UTM Systems (CORUS) project based on U-space and 

presented during the IEEE 39th Digital Avionics Systems Conference (DASC) [23].  

Hitherto, there have been some research approaches exploring flying car infrastructure. For example, 

in [24], the authors studied the required legislation and policies to enable the sustainability of flying 

cars. More specifically, they elaborate on safety, navigation, and infrastructure. Also, recently, [25] 

contributed to the research on the same topic by analysing urban flying car scenarios and utilising an 

agent-based approach with various traffic conditions. Throughout [26], the authors studied the 

requirements for ensuring adequate law enforcement systems to ensure mandatory collision 

avoidance technology systems for reducing accidents to flying car passengers and people on the 

ground.  

As the electric cars market continues to rise, hydrogen fuel cells which constitute an alternative type 

of vehicular fuel, come to the fore [27]. Moreover, hydrogen is the only fuel that could enable 

vertical take-off. Thus, according to Urban Aeronautics’ founder, it will be the only viable way to 

allow the low-orbit hovering framework [28]. Alternatively, researchers exploit ways to reduce 

transportation energy consumption for ground vehicles. For instance, in [29], the authors had 

incorporated innovative panels between the wheels for energy metering purposes, intending to 

control fuel efficiency intelligently.  

Leonhard Euler initially set the conjectures on spheroidal trigonometry [30] in 1755. While, Vincenty 

devised the algorithmic technique in [31] to computationally enable the solutions given by Legendre 

[32], Oriani [33], Bessel [34] and Helmert [35]. The research framework [16] focuses on integrating 

Helmert’s methods into the current edge computing systems, achieving more efficiency in his results 

than Vincenty.  

Recently, technological advancements allowed the highest level of energy density [36]. A wide range 

of composites, polymers, elastomers and vinyl, which are non-metallic materials and thus are lighter 

[37], enable the rise of autonomous control systems [38]. Therefore, mechanical and manufacturing 

engineering facilitates the efficient development of flying cars [39]. The primary motivation to date 

was the increased transportation issues, especially in urban environments and global economic 

growth. The objective of vertical take-off and landing operation mode and autonomous piloting for 

flying cars is to provide secure and sustainable transportation services for people and freights [40]. 

Furthermore, renewable energy sources [41] and autonomous piloting techniques [42] will be more 

efficient in intelligent urban ecosystems.  

The need to solve the traffic problem in today’s busy cities has accelerated the construction of a new 

transport system in smart cities. Therefore, start-up technology companies and those already 



established in the automotive and aircraft manufacturing sector have thoroughly elaborated on the 

design of effective flying car technologies. Hence, various flying cars are currently being 

manufactured and tested to be ready for mass production. The article [43] presented the effects of 

altitude and distance between aerial nodes on the recovery probability and verified them with 

simulations. In addition, the authors presented their testbed and preliminary experimental work 

showing promising results for aerial networks.  

PROBLEM FORMULATION  

Edsger Dijkstra 1959 introduced an algorithmic technique that can calculate the shortest path and is 

fundamental to solving path routing problems [44]. Briefly, through iterations, the algorithm chooses 

the nearest unselected vertices to an initially given vertex. After that, however, the path through the 

selected nodes should reach the destination. Several algorithm modifications have been applied 

since the initial approach; thus, we deployed an A* search algorithm reformation. The main goal of 

implementing the steps is to determine the least total value of the cost to travel along with the 

nodes. For example, the cost might be defined as the distance, time, or amount of data flow.  

A. A* Search Algorithm 

Navigation systems are generally outperformed by algorithms that can process graphical routes 

toward optimising the implementation process. The A* search algorithm constitutes one of the 

essential solutions for determining the optimal trajectory corresponding to the shortest path within 

any network [45]. Mathematically oriented A* aims to obtain the optimal route that minimises (1). 

𝑓(𝑥)=𝑐(𝑥)+ℎ(𝑥) 

(1) 

Where 𝑥 denotes the nodes, 𝑐(𝑥) the cost starts from the initial node and ℎ(𝑥) denotes the problem-

specific heuristic function that computes the narrowest path in terms of cost along the selected 

route. Since the heuristic function ℎ(𝑥) is admissible, it ensures that the algorithmic technique 

generates the least-cost route. In addition, the heuristic function is called consistent if it satisfies (2) 

for every node with coordinates (𝑥,𝑦). 

ℎ(𝑥)≤𝑑(𝑥,𝑦)+ℎ(𝑦) 

(2) 

Where the d(x,y) denotes the Euclidian distance from the node, as mentioned earlier. Hence, due to 

the consistent heuristic function h(x) the A* search algorithm determines the optimal path without 

processing any node more than once. The algorithm has the eligibility to conclude a solution if it 

exists on infinite graphs that satisfy (3) for the threshold ε. 

𝑑(𝑥,𝑦)>𝜀>0 

(3) 

From the threshold ε, we set the admissibility criterion, which assurances to compute the optimal 

trajectory and examine all the other equally notable trails. Nonetheless, to decrease the time 

complexity, which is 𝒪(𝑏𝑑) (where the function 𝒪 computes the upper bound of the time required to 

execute all the algorithmic steps, 𝑏 called branching factor denotes the number of assigns per node 

and the exponent 𝑑 denotes the lowest total cost of the optimal path), with the same efficiency we 

diminish the admissibility criterion by modifying the threshold to (ε+1). Moreover, applying dynamic 

weighting on heuristic function as implemented in (4). 



ℎ′(𝑥)=[ε .w(𝑥)+1]ℎ(𝑥), 

(4) 

Where w(𝑥) is the weight function (5). 

w(𝑥)={1−𝑑(𝑥)𝑛,𝑖𝑓 𝑑(𝑥)≤𝑛0, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 

(5) 

Where the function 𝑑(𝑥) denotes the depth of the search for 𝑥 nodes, and 𝑛 indicates the total cost 

of the optimal path. Hence, the heuristic function ℎ′(𝑥) is optimised following the condition of (6). 

|ℎ′(𝑥)−ℎ(𝑥)|=𝒪(log(ℎ′(𝑥))) 

(6) 

B. Haversine Formula 

By utilising (7) called haversine formula (let 𝜑=𝑑𝑟⁄ be the angle between two points on a sphere, 

where 𝑑 denotes the distance between the points and 𝑟 denotes the radius of the sphere) from the 

mathematical firmament and with the longitudes represented by 𝑦 and latitudes denoted by 𝑥 given, 

we achieve the calculation of the optimal circle distance on Earth’s surface by (9). The formula for 

applying Haversine to the distance calculation can also be represented by either arctangent or 

spherical low of cosine [46]. According to the roughly spherical shape of the Earth, spherical 

trigonometry was a prerequisite to accomplishing navigation tasks. Thus, we utilised the haversine 

formula, which can define the shortest distance between any two points on the surface of a sphere. 

Determines the long distance of the circle by giving the longitudes and latitudes of the two points 

[47]. Let the central angle 𝜑 between any two points on a sphere defined by (8) where 𝑙 is the 

distance between the two points along a great circle of the sphere and 𝑟 is the radius of the sphere 

[48]. 

ℎ𝑎𝑣(𝜑)=sin2(𝜑2) 

(7) 

𝜑=𝑙𝑟 

(8) 

𝑑=2𝑅sin−1(sin2(𝑥2−𝑥12)+cos(𝑥1)cos(𝑥2)sin2(𝑦2−𝑦12)) 

(9) 

The haversine formula allows the ℎ𝑎𝑣(𝜑) to be calculated directly from the latitude 𝜗 and longitude 

𝜆 of the two points as can be seen from (11). 

ℎ𝑎𝑣(𝜑)=ℎ𝑎𝑣(𝜗2−𝜗1)+ cos(𝜗1)cos(𝜗2)ℎ𝑎𝑣(𝜆2−𝜆1) 

(10) 

Where 𝜗1, 𝜗2 are the latitude of the first and second point, respectively and 𝜆1, 𝜆2 are the 

longitudes of the same points. 



However, the haversine formula cannot evaluate the actual distance with accuracy (𝑒𝑟𝑟𝑜𝑟=±0.5%) 

due to the irregularly ellipsoid shape of the Earth. Therefore, we have developed Vincenty’s 

formulae which consider the ellipticity of the Earth and thus generate more accurate results. 

C. Vincenty Formulae 

Thaddeus Vincenty, in 1975 presented two iterative methods to solve the direct and inverse 

problem of geodesics for distances on the ellipsoidal model of the Earth [31]. The methods assume 

that the figure of the Earth is an oblate spheroid and hence are more accurate than methods that 

assume a spherical Earth, such as great-circle distance. The direct method calculates the location of 

a given distance point and azimuth from another point. The inverse method computes the 

geographical distance and azimuth between two given points [49]. They have been widely used in 

geodesy because they are accurate within 0.5 mm on the Earth’s ellipsoid. Mathematically the 

geodesic problems are formed as follows: 

1. Direct: Given 𝐴(𝜑1,𝜆1), 𝑎1 and 𝑠, we would like to calculate 𝐵(𝜑2,𝜆2) and 𝑎2 

2. Inverse: Given 𝐴(𝜑1,𝜆1) and 𝐵(𝜑2,𝜆2), we would like to calculate 𝑎1, 𝑎2 and 𝑠 

For the direct problem, which is to determine the endpoint 𝐵(𝜑2,𝜆2) and the corresponding azimuth, 

𝑎2 from a starting point 𝐴(𝜑1,𝜆1) with azimuth 𝑎1. We initially calculate the values given by the 

equations (11) - (16). The geodesic problem is illustrated in Fig. 1, which depicts the starting point 𝐴 

at latitude 𝜑1, longitude 𝜆1 and azimuth 𝑎1 respectively the point 𝐵 has latitude 𝜑2 longitude 𝜆2 

and azimuth 𝑎2. The ellipsoidal distance between the two endpoints called geodesic is denoted by 𝑠. 

𝑈1,2=tan−1[(1−𝑓)tan𝜑1,2] (11) 

𝜎1=tan−1(tan𝑈1cos𝑎1) (12) 

𝑎=sin−1(cos𝑈1sin𝑎1) (13) 

 

𝑢=√cos2𝑥(𝑥2−𝑦2𝑦2) (14) 

𝐴=1+𝑢2214{212+𝑢2[−768+𝑢2(320−175𝑢2)]} (15) 

𝐵=𝑢2210{28+𝑢2[−27+𝑢2(74−47𝑢2)]} (16) 

Afterwards, by (20), which is the initial angular separation between the points, we apply iteration on 

(18) - (20) until 𝜎 to present sufficient accuracy. 

𝜎0=𝑠𝑦𝐴 (17) 

𝜎=𝜎0+Δ𝜎 (18) 

2𝜎𝑚=2𝜎1+𝜎 (19) 

Δ𝜎=𝐵sin𝜎{cos(2𝜎𝑚)+𝐵4(cos𝜎[−1+2cos2(2𝜎𝑚)]−𝐵6cos(2𝜎𝑚)(−3+4sin2𝜎)[−3+4cos2(2𝜎𝑚)])} (20) 

Hence, we evaluate the endpoint (𝜑2,𝜆2) and the corresponding azimuth, 𝑎2. 

Concerning the inverse problem, we need to calculate the azimuths a1, a2 and the connecting 

geodesic s. Initially, given points A(φ1,λ1) and B(φ2,λ2) we compute, using (11), the reduced latitude 

on an auxiliary sphere denoted by U1 and U2 and we apply iteration on (21) - (25) until λ converges 

to the required degree of accuracy (≈0.6mm). 



𝜎=cos−1(sin𝑈1sin𝑈2+cos𝑈1cos𝑈2cos𝜆)⟺sin2𝜎=(cos𝑈2sin𝜆)2+(cos𝑈1sin𝑈2+cos𝑈2sin𝑈1cos𝜆)2 

(21) 

𝑎=sin−1(cos𝑈1cos𝑈2sin𝜆sin𝜎) (22) 

𝐶=𝑓16cos2𝑎[4+𝑓(4−3cos2𝑎)] (23) 

𝜎𝑚=12cos−1(cos𝜎cos2𝑎−2sin𝑈1sin𝑈2cos2𝑎) (24) 

𝜆=𝜆0+(1−𝐶)𝑓sin𝑎{𝜎+𝐶sin𝜎[cos(2𝜎𝑚)+𝐶cos𝜎(−1+2cos2(2𝜎𝑚))]} (25) 

Where 𝜆0 is the initial value of 𝜆. Hence, after the required iterations, we compute (14) - (16) and 

(20), from which we can calculate the azimuths 𝑎1, 𝑎2 and the connecting geodesic 𝑠 using (26) - 

(28). For (27) and (28) the comma separates the cartographical coordinates as we calculate the 

cartographical azimuth, also called grid azimuth. It is commonly used in triangulation and azimuth 

identification, especially in radar applications. 

TABLE I. GLOSSARY OF 

NOTATIONS Symbol  

Quantity  

𝑥,𝑦  major and minor 

semiaxes of the 

ellipsoid  

𝜆1,𝜆2  longitude of the 

points  

𝜑1,𝜑2  latitude of the points  

𝑓=(𝑥−𝑦)𝑥⁄  flattening of the 

ellipsoid  

𝜑  geodetic latitude  

𝑈1,𝑈2  reduced latitudes on 

an auxiliary sphere  

𝑎1,𝑎2  azimuths of the 

geodesic  

𝑎  equatorial azimuth  

𝜆  the difference in 

longitude on an 

auxiliary sphere  

𝑠  ellipsoidal distance 

between the two 

points  

𝜎  the angular distance 

between points  

𝜎1  the angular distance 

between the point 



and the equator  

𝜎𝑚  the angular distance 

between the midpoint 

and the equator  

𝑤  waypoints  

𝑂  centre of the obstacle  

𝒪  the angle from the 

connection of the 

UAV and obstacle 

centre to the 

geography north  

𝒟  direction angle  

𝜙  course angle of the 

UAV  

𝑅𝑈𝐴𝑉  radius of UAV  

𝑅𝑜𝑏𝑠  the maximum radius 

that obstacle can 

have  

𝑙  distance between the 

two points along a 

great circle of the 

sphere  

𝑟  radius of the sphere  

𝜔  the angle between 

the position vector 

𝐴𝑂      and the 

vector of the UAV’s 

current location to 

the next waypoint  

 

𝑠=𝑦𝐴(𝑠−Δ𝜎) (26) 

𝑎1=tan−12(cos𝑈2sin𝜆,cos𝑈1sin𝑈2−cos𝑈2sin𝑈1cos𝜆) (27) 

12tan𝑎2=cos𝑈1sin𝜆,cos𝑈1sin𝑈2cos𝜆−cos𝑈2sin𝑈1 (28) 



 

Fig. 1. Illustration of the geodesic problem 

Every notation used within equations (11) - (28) is indicated in TABLE I. 

PROPOSED SYSTEM ARCHITECTURE 

The proposed system architecture utilises drones’ current mass production technology to simulate 

large-scale UAVs that serve near-ground transportation in intelligent urban ecosystems. Hence it will 

significantly contribute to smart cities’ ultimate goal: to improve inhabitants’ quality of life as traffic 

congestion will be resolved or transmitted to the ethers. Based on the last statement, we intend to 

contribute by studying the problem that arises during the operation of unmanned air traffic systems. 

Our approach aims to resolve several main tasks: avoidance of no-fly zones, computation of the 

optimal trajectory, and integration with the UAVs to transmit traffic control signals along the 

trajectory. 

A. Preliminaries 

The software of the route calculation module and, more specifically, for the visualisation procedure 

of the terrain map is required to integrate Google maps, Yandex maps or similar satellite maps with 

a resolution of about 15 meters per pixel. The program’s functionality allows displaying the 

coordinates of the obstacles in the form of latitude/longitude. Initially, we should set the marks for 

the beginning and end of the route on a map that displays an area of at least 1𝑘𝑚2. Avoidance of 

restricted areas mapped in the polygon will be applied on the trajectory of the airmobile vehicle. 

Hence the optimal route will be calculated and displayed, considering the approach to the no-fly 

zones no closer than 20 m, which should differ from the shortest possible route by no more than 15 

m. 

We can process the information transmitted from the airmobile vehicle via the reverse channel 

through the management system on the ground, including latitude, longitude, altitude, azimuth, and 

roll speed. Also, we can determine the operator’s position in real-time by the GPS/GLONASS receiver 

signal. Therefore, regular two-way communication between the system management and the 

airmobile app integrated into the UAV system is a prerequisite for the communication channel. In 

addition, the transmission speed must be sufficient to control and respond to deviations from the 

route reliably. 

B. System Design 

The system is made for GPS-driven drones to levitate around the user-made custom “Red zones” or 

no-flight zones. Therefore, constructing a path from the drone’s current position to the destination 

is feasible. The path can only be constructed when both the status and the destination point are 

present—several points consisting of the path located in an invisible grid and connected by straight 



lines. When the path has been created, the data of the GPS locations of the path points will be sent 

to the drone using a Wi-Fi chip. Once the drone receives the signal, it obtains the locations of the 

path points in a stack and follows the path. Each time the drone gets close enough to the point, the 

point location will be popped. However, due to the inaccuracy of the GPS receiver in the drone, the 

path will only be followed approximately, and when the drone gets close enough (1-2 meters to the 

point), the point will be counted as completed, and the drone will fly to the next point. 

The GPS signal is received by the Arduino-supporting chip connected to the GY-NEO6MV2 receiver 

connected to the antenna. The main chip is Node MCU, which has built-in Wi-Fi and allows one to 

connect to the computer or use multiple chips to create a network. This project is used to transmit 

data from the stationary chip connected to the PC to another chip inside the drone. The connection 

is 5V to 5V, RX to TX and Ground to Ground. 

C. Algorithmic Implementation 

This subsection illustrates a part of the algorithmic procedure used to implement the proposed 

system. The algorithms include explanations for readability reasons. First, the program calculates the 

next closest point from the currently searched marker to finish using spherical trigonometry. Then, 

the cycle repeats until the step distance between the checked marker and the finish is reached. 

Every time the process counts, one marker is added to the Path_markers array, as presented in 

Algorithm 1. 

The Grid Marker is used to build the grid and calculate the path around the obstacle. Next, we must 

acquire a physical copy of the object and assign it to that variable by utilising the new operator. 

Double and float data types represent a Real number; a double data type is more precise than a float. 

A double variable can provide precision up to 15 to 16 decimal points compared to float accuracy of 

6 to 7 decimal digits. Also, double conversion Constant = 0.0111” is used to convert kilometres into 

Latitude and Longitude later. The difference between Longitudes and Latitudes of extreme points is 

denoted as 𝑑𝜑 and 𝑑𝜆, respectively—the angle 𝜗 stores the azimuth from start to finish. The float 

step = 0.0001” defines both the step of the straight line and the distance between neighbouring 

points on the grid in coordinate units. Store the step values of every new point during the straight 

path check. Finally, we calculate the new location represented by the Longitude and Latitude of the 

point on the map. The location class is provided by the library Unfolding_Maps, which is a library to 

create interactive maps and geo-visualisations in Processing and Java. 

Algorithm 1.  



Input: 𝜆1,𝜆2,𝜑1,𝜑2  

Output: Shortest Path  

// This loop (from the next line until the end of 

the code) is repeated as many times as needed 

until the distance becomes smaller or equal to 

the conversion constant  

1: while s>𝑐1, 𝜎>𝑐2 do  

 

//Difference between Longitudes 𝑑𝜆 and 

Latitudes 𝑑𝜑 of extreme points  

2: 𝑑𝜆= 𝜆2−𝜆1  

3: 𝑑𝜑= 𝜑2−𝜑1  

 

// 𝜗 Stores Azimuth from Start to Finish  

4: 𝜗=tan−1(𝑑𝜑𝑑𝜆⁄)  

 

// If 𝑑𝜑<0 and 𝑑𝜆>0 then change the sign of 𝜗  

5: if 𝑑𝜑<0 and 𝑑𝜆>0 then  

6: −𝜗⟵𝜗  

7: end if  

 

// if 𝑑𝜑>0 and 𝑑𝜆<0 then change the sign of 𝜗  

8: if 𝑑𝜑>0 and 𝑑𝜆<0 then  

9: −𝜗⟵𝜗  

10: end if  

 

//Float step = 0.0001”. This defines both the 

step of the straight line and the distance 

between neighboring points on the grid (in 

coordinate units).  

//Store the step values of every new point 

during the straight path check  

11: 𝜑𝑠⟵10−4sin𝜗  



 

// 𝑓𝑎: Latitude step converted to float  

12: 𝑓𝑎⟵𝜑𝑠  

13: 𝜆𝑠⟵10−4cos𝜗  

 

// 𝑓𝑜: Longitude step converted to float  

14: 𝑓𝑜⟵𝜆𝑠  

 

//If 𝑑𝜑 is negative, change the sign of 𝑓𝑎 (so it 

will always be positive)  

15: if 𝑑𝜑<0 then  

16: 𝑓𝑎⟵−𝑓𝑎  

17: end if  

 

// If 𝑑𝜆 is negative, change the sign of fo (so it 

will always be positive)  

18: if 𝑑𝜆>0 then  

19: 𝑓𝑜⟵−𝑓𝑜  

20: end if  

 

//Calculate the new location. Location generally 

used to represent Longitude and Latitude of the 

point on the map  

21: 𝜑𝑛𝑒𝑤⟵𝜑+𝑓𝑎  

22: 𝜆𝑛𝑒𝑤⟵𝜆+𝑓𝑜  

23: end while  

 

Algorithm 2 was applied to avoid obstacles, as the path of the UAV will be predetermined, and collision 

avoidance is a prerequisite along the trajectory. 

Algorithm 2.  



 

1: Set 𝑊={𝑤𝑖|𝑖=1,2,…,𝑛}, 𝒪𝑐𝑒𝑛𝑡𝑟𝑒,𝒪𝑟𝑎𝑑𝑖𝑢𝑠  

 

//If the UAV is in the initial phase, it tracks the 

waypoints  

2: for 𝑖=1 to 𝑛 do  

 

//Calculate the fluctuation of obstacle’s center 

based on the distance, as a product of speed and 

time 𝑑=𝑣𝑡  

3: 𝑂⟵𝑂+𝑣𝑡  

 

// Compute the Euclidean distance from the 

coordinates of the UAV to obstacle’s centre  

4: (𝐴𝑂      )2=(𝑥𝐴−𝑥𝑜)2+(𝑦𝐴−𝑦𝑜)2  

 

// We calculate the angle obtained by the line 

that connects the UAV and obstacle center to 

the geography north  

5: 𝒪=tan−1[(𝑦𝐴−𝑦𝑜)(𝑥𝐴−𝑥𝑜)⁄]  

 

//Obtain the direction angle  

6: 𝒟⟵𝒪−𝜙  

 

//If the Euclidian distance from line 4 is less or 

equal to UAV’s radius and the sin of the 

direction angle less than the quotient 

𝑅𝑜𝑏𝑠𝑅𝑈𝐴𝑉⁄ then the UAV pass to the second 

phase and operates the circular path’s maneuver 

clockwise. Alternatively, it tracks the circular 

path anti-clockwise.  

7: if |𝐴𝑂      |≤𝑅𝑈𝐴𝑉 and sin𝒟<𝑅𝑜𝑏𝑠𝑅𝑈𝐴𝑉⁄ 

then  

8: circular maneuver clockwise  

9: else  



10: circular maneuver anti-clockwise  

11: end if  

 

//Compute the angle between the position 

vector 𝐴𝑂      and the vector of the UAV’s 

current location to the next waypoint  

12: 𝜔⟵tan−1[𝑤𝑖+1𝑥−𝑥𝐴𝑤𝑖+1𝑦−𝑦𝐴]−𝒪  

 

// If 𝜔>90°, the avoidance of the obstacle is 

successful.  

Alternatively, the UAV continues with the initial 

phase of its trajectory.  

13: if 𝜔>90° or |𝐴𝑂      |≤𝑅𝑈𝐴𝑉  

14: 𝑖⟵𝑖+1  

15: end if  

16: end for  

 

We initially set the waypoints 𝑤𝑖 and the prerequisite data to interpret the obstacle, which is the 

centre and the maximum radius that the obstacle could have denoted as 𝒪centre,𝒪radius. 𝒟 is the 

angle of the direction and varies within the interval [−180°,180°]. It is defined as the difference 

between the angle of the line that links the UAV and the center of the obstacle with the north line 

denoted by 𝒪, and 𝜙, the angle of UAV’s trajectory. As presented in Fig. 2, where we illustrate the 

detection of the obstacle and the trajectory that the UAV follow to avoid it, 𝑅𝑈𝐴𝑉 and 𝑅𝑜𝑏𝑠 are the 

radius of the UAV and the maximum potential radius of the obstacle, respectively. 

 

Fig. 3 is the visual illustration of the algorithmic technique. C is the current location; D is the 

destination, and orange and red squares denote the obstacle nodes. The forward search starts from 

C. Grey points are undiscovered. Firstly, the neighbors of the currently searched points of C are 

found. They are marked purple. Each of these points is now added to a queue and will appear one by 

one in the order they were found. In our case, the order is: top, bottom, left, right, upper-left, upper-



right, lower-left, lower-right. In addition, those markers now have a state “Frontier”. Finally, the 

“Undiscovered” neighbours of the second searched point are found and added to the queue.  

The point itself became “Discovered” and has a value of 1. This value shows the distance from the 

starting point and will be used later to find the shortest path. When the first “members” of the 

queue are processed, the picture will look like this. Notice that the diagonal movements are valued 

as √2. Following the same algorithm, we expect to get the final image. The algorithm stops when one 

of the currently checked points appears to be the destination. After that, the path is built following 

the points with the lowest value. The lowest value shows that the point took the least steps to reach 

the destination. Searching starts from the Current position (the first point is added). Then the 

neighbouring points are added to the queue and the presence of Destination point among them is 

checked. Only the points with state “Undiscovered” are becoming frontiers.  

For diagonal movements, the distance is set as static root_2. The X and Y check determines which 

point is oblique and which is not. If X and Y are changed regarding the starting point, it is diagonal. 

Also, if the distance to the point is already known and the new length is less, it means that to the 

checked point, there is a shorter way, and hence a further distance should be applied. This cycle is 

repeated either until no “Frontiers” are left or until the destination is reached. When the goal is 

found, the next stage comes. It builds the path according to the lowest distance-price parameter of 

the next step. The path starts from the destination and goes back to the Current location. The 

system checks for two parameters: The lowest distance price (it might have several points with the 

same d-p) and the closeness of the point to the start. It chooses the one closer to the start between 

two points with the same grid distance. This way, the path is more likely to be shorter. One is added 

to the final array of Path_markers when every point is checked.  

Fig. 3. Visualising parts of the Algorithmic Technique  

PERFORMANCE ASSESSMENT  

According to the testing depicted in Fig. 4, the test for a common straight path showed an 

acceptable result. The second test for a standard red zone avoidance also presents an acceptable 

result, but the path went for two unnecessary points near the current point. Finally, the test for 

double red zone avoidance in the pic. 3 presents an acceptable result, and the test for a difficult path 

is also acceptable. 

 

 

TABLE II illustrates in visual presentation the expected and the actual output of the system, including 

the corresponding efficiency of the program. System validation presents high accuracy for red zone 



avoidance even if complicated manoeuvres are required. As shown, the accuracy tends to be 100% 

for straight-line paths, 96% and 95% for more demanding trajectories.  

An experimental path planning comparison between A*, improved A* bidirectional A*, lining 

smoothed A* and lining A* through simulations applied on C++ and MATLAB generated the data 

presented in TABLE III. The data obtained for computation time, path length, and max and min pitch 

angle are depicted in Fig. 5, Fig. 6 and Fig. 7. As can be seen from the outcomes, the computation 

time of the Improved A*, Lining Smoothed A* and Lining A* is the same 6.785 sec. However, 

between these three modifications of A*, the Improved case presents the longest path due to the 

trajectory’s reconfiguring to avoid the red zones. 

 

 

The results indicate that compared with the actual A* algorithm and the bidirectional version, the 

computation time is reduced by 77.02% and 70.52%, respectively. Also, it is shown that the length of 

the improved A* algorithm is longer to generate the trajectory of kinematic constraint satisfaction. 



 

We infer from the max and min pitch angle chart that only the enhanced, lining, and smoothed lining 

A* algorithms satisfy the pitch angle constraint. Consequently, it indicated better performance by 

the improved lining and smoothed lining A* algorithms. 

 

 

 



Relying on the results, we plan to focus our future orientation on non-GPS regions like mountains, 

deserts, and beaches, for which the network’s availability is limited. Therefore, we will thoroughly 

elaborate on automated guided vehicle communications and networks. This field of research has 

attracted extensive attention and has broad prospects in the wireless transmission area, especially in 

areas with limited network access. More specifically, we will study an automated guided unmanned 

aerial vehicle communication scenario in which a group of automated guided vehicles will form a 

virtual antenna array and communicate with different unmanned aerial vehicles. These will be based 

on distributed collaborative beamforming.  

Simulation Paradigm  

We have implemented a scenario in MATLAB Simulink using a moving target for landing. As seen in 

Fig. 8, we have a UAV levitate on the y-axis 500𝑚 above the ground with a speed 𝑢=267.3𝑚/𝑠. 

Directly opposite we have a Jammer at 0.89𝑘𝑚 and at the ground level the target for landing is 

moving away from it through a high-rise buildings area. The moment that we are investigating is 

0.75𝑘𝑚 away from the UAV. We consider the area 0.16𝑚2 from the origin as the tower block with a 

Clutter Gamma −26 𝑑𝐵, thus, the UAV cannot land within this area. The jamming signal is correlated 

with a specific direction. Although, due to the white noise nature of the jammer, the received 

jamming signal dominates the entire Doppler band. 

 

Different stages of simulation generate the results that we present below. Initially, Fig. 9 displays 

how the signal obtained at the antenna array is predominated by the clutter return. Since the UAV is 

levitating approximately 500𝑚 above ground level the clutter returns from the surface and starts at 

that high. 

 



We evaluated the proposed algorithmic technique through simulations for a rectilinear moving 

target. The target was operating discrete speed cases. In addition, we implemented the process for a 

circular trajectory moving target with a variety of minimum turning radii. In each scenario, the UAV 

was initialised at an altitude of 500𝑚. The main objective was the avoidance of obstacles during the 

procedure of approaching the moving target for landing. Thus, the proposed algorithmic technique 

was deployed to configure the relative position between the UAV and the target considering the 

real-time range and the bearing angle. The centre of the new circular path could also be determined 

if the predicted range between the UAV and the moving target couldn’t meet the requirements. The 

second proposed algorithm was applied for planning the transition path between circular paths that 

constrain the turning radius of the UAV. Hence, we generated the waypoints that meet the flight 

ability. We also formulated an observation angle as an evaluation index. Therefore, this series of 

simulations andevaluation index comparisons verify the effectiveness of the proposed algorithms.  

TABLE IV presents the statistical results obtained from Fig. 10, which displays the return at the 

output of the Adaptive Displaced Phase Center Array (ADPCA) pulse canceller for a uniform linear 

array, clearly showing the target’s range at approximately 500𝑚. Also, we have been filtered out the 

simplest form of jamming that is a barrage jammer. It is an intense, continuous white noise directed 

toward the UAV’s radar receiver. 

 

Depicting the clutter as a function of angle and Doppler shift shows that the clutter return looks like 

a diagonal line in the angle-Doppler environment, called clutter ridge. Findings show that the 

received jammer signal is a white noise spread over the entire Doppler range at 60o.  

In addition, we generated a deep null along the clutter ridge as well as in the direction of the jammer. 

It is based on the Adaptive displaced phase centre array canceller weights. We modelled through 

MATLAB Simulink a monostatic radar with a moving target and a static jammer that transmits 

jamming signals through free space to the radar. A six-element uniform linear antenna array with 

back-aperture elements then receives the reflected pulse from the target and interferes with the 

jammer. The output of a clutter simulator is also added to the received signal before it is processed. 

After adding noise, the signal is stored in a data repository. The repository is processed by the 

adaptive shifted centre phase block canceller to the target’s estimated range, azimuth angle, and 

doppler shift. Therefore, the canceller is scanning multiple ranges, azimuth angles, and doppler shifts 

as the target’s velocity and position are unknown.  

CONCLUSION & DISCUSSION  



This research has presented a comprehensive study on the upcoming near-ground air mobility in 

Smart Cities. We have focused on developing a system that could efficiently enable the correction 

and determination of the trajectory for UAVs. It was implemented by modifying the A* algorithmic 

technique and elaborating Haversine and Vincenty’s formulas. Consequently, tests have shown that 

the program works effectively even in difficult situations like the last tests. Most of the functionality 

required has been introduced into the system and functions as intended by the technical 

specifications. However, the system could be improved by the ability to change the step of the grid 

using the GUI. Also, instead of the drone, we could create a drone simulation, which could be 

displayed on the interface and move in real-time. Also, the positions of the red zones could be saved 

into the file and loaded back into the system. The simulation paradigm proves that the proposed 

algorithmic technique functions efficiently. Elaborating on the scenario of landing on a moving target 

and avoiding obstacles has added more significance to our research approach. Results and outcomes 

from the testing cases demonstrate that the current method outperforms current state-of-the-art 

methodologies for fully autonomous UAVs. By accurately determining their trajectory, their 

effectiveness will be increased in realising their diverse operations and capabilities in the Smart 

Cities ecosystem.  

The embodiment of UAVs within complex dynamic environments such as Smart Cities with which 

they will interact in real-time for various operations conceals unknown obstacles. Current computing 

technological systems cannot define the critical path by identifying barriers. Therefore, the above 

vehicles can also self-locate the obstacles and determine the optimal trajectory. Hence, it is 

necessary to allow essential operations to be performed autonomously on UAVs by activating IoT 

communication for data acquisition. The required data can be obtained from sensors or Global 

Positioning Systems (GPS), which will be vital for achieving efficiency in crucial operations. The rise 

and the imminent autonomy control levels are illustrated in Fig. 11. UAVs can perform vertical take-

off and landing, trajectory pre-planning, real-time data dissemination etc. However, it is paramount 

to enable their ability to execute AI-based operations to detect the environment and computing in 

IoT network systems in the optimal trajectory. 

 

FUTURE ORIENTATION  

We are planning to formulate an automated guided unmanned aerial vehicle communication with a 

multi-objective optimisation problem to maximise the total transmission rate simultaneously, 

minimise the total repositioning time of automated guided vehicles and minimise the total motion 

energy consumptions by optimising the locations, current innervation weights and moving speeds, 

as well as the sequence for communicating with different vehicles. Based on the mathematical 

firmament, we will elaborate on the multi-objective antlion optimisation algorithm with Chebyshev 

chaos-opposition-based learning solution initialisation and hybrid solution update method. 
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