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Abstract—In the last decade, MIMO spatial multiplexing and distributed beamforming play a significant role in improving data
throughput through cooperative transmission. It has been widely used in wireless communication, especially in 6G. However, the
distributed uplink beamforming is still an open problem in highly dynamic environments. However, the proposed 6G technology
represents the further integration of deep learning and wireless communication. In this paper, we propose Argute Distributed Uplink
Beamforming (ArguteDUB), which uses a feedback algorithm with an offline-trained deep learning model to implement highly dynamic
distributed uplink beamforming for the Internet of Vehicles (IoV) in 6G. Specifically, each vehicle enables the base station (BS)/access
point (AP) to separate different channel state information (CSI) by inserting orthogonal sequences into the sending data. The BS
adopts deep learning to filter the noise and predict the beamforming weight to achieve phase synchronization. Unlike traditional
distributed uplink beamforming, ArguteDUB can be adapted to the highly dynamic time-varying channels. The simple network structure
ensures the fast response of ArguteDUB. In addition, we make ArguteDUB Orthogonal Frequency Division Multiplexing (OFDM)
compatible so that it can be easily deployed in 6G networks. Our evaluation shows that ArguteDUB has an signal-to-noise ratio (SNR)
gain of about 5dB to 5.3dB over the single vehicle transmission mode.
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1 INTRODUCTION

INTERNET of Vehicles (IoV) is a network constructed
by communications among intelligent vehicles, which

has prospects on solving traffic congestion, vehicle acci-
dents, and many other problems. As one of the main tech-
niques in 6G, distributed uplink beamforming performs as
a collaborative data transfer scheme, which can improve
data throughput in IoV. Unlike the traditional one-to-one
transmission mode in IoV, such multi-vehicle cooperative
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Portugal (E-mail: joeljr@ieee.org).

distributed transmission mode can deal with noise interfer-
ences and insufficient transmission distance. It is a technol-
ogy that a group of vehicles can emulate an antenna array by
transmitting a common message to the intended base station
(BS) [2]. Here, we start to use distributed beamforming in-
stead of distributed uplink beamforming. All the distributed
beamforming mentioned below is uplink. To build an effi-
cient distributed beamforming for 6G-based IoV, the main
challenge is how to coordinate the signals from each node so
that the transmission reaches the desired destination at the
same phase and time. Fortunately, in the context of 6G and
smart hardware, we are able to incorporate deep learning
techniques to come up with further solutions.

The basic principle of distributed beamforming is to
improve the transmission efficiency of signals by super-
imposing signals to synthesize signals with higher signal-
to-noise ratio (SNR). Unlike MIMO technology, which en-
hances channel bandwidth through multiple channels, the
goal of distributed beamforming is to improve the power
of effective signals through the collaboration of multiple
channels, thereby resisting noise interference and increasing
transmission distance. It is well known that a received signal
can be considered as a composite signal of an effective signal
and noise signal. If we add N signals in this way, since the
effective signals are the same, their correlation is 1, and their
power can be increased by N2 times. For noise signals, since
noise signals are random signals, they can be considered un-
correlated, and the power after superimposing is N times,
so the SNR can theoretically be increased by 10 logN dB.
The significance of this collaborative transmission system is
that it can help low-power transmitters transmit signals to
a greater distance and resist stronger noise interference. It
is of great importance in high noise environments and field



2

Fig. 1. Two types of distributed beamforming algorithm.

exploration and rescue scenarios.
Generally, the distributed beamforming algorithm can

be divided into open-loop and closed-loop, as shown in
Figure 1. The open-loop algorithm performs as local coordi-
nation among vehicles and calculates the additional phase
shift caused by antenna distribution through the acquired
position information. After obtaining geometric information
and achieving phase synchronization among local vehicles,
the open-loop algorithm transforms the problem into a
conventional beamforming problem for the antenna array
[3]. The advantage is that the direction of the beamforming
can be controlled arbitrarily to meet the corresponding
requirements. The closed-loop algorithm is also known as
the feedback algorithm [4], [5], [6], which aims to help
each vehicle adjust its phase using feedback information
from the BS. This type of algorithm does not need extra
information interactions, such as relevant position or phase
information. Compared with the closed-loop algorithm, the
open-loop algorithm requires abundant interactions among
vehicles. Specifically, the relative positions of each vehicle
should be accurately located at each timestamp. The phase
of oscillator among vehicles should also be synced, which
is a wiener process and impractical in the highly dynamic
environment of IoV. Thus, our proposed system adopts the
closed-loop algorithm to realize distributed beamforming
in highly dynamic environments, which greatly reduces the
amount of data interaction among vehicles.

Recent closed-loop researches designed algorithms
based on bit feedback to tell the vehicle the next phase
adjustment direction [6], [7]. Since bit feedback algorithms
are based on continuous phase adjustment, the iterative
strategy of continuous positive and negative feedback has
been designed to solve the convergence rate problem. Bit
feedback algorithms perform well in a static environment.
However, high noise and highly dynamic will seriously
affect their performance. Due to the rapid change of chan-
nel information, the iteration process of the bit feedback
algorithm is difficult to keep up with the change of the
channel, which leads to serious interference in the direction
selection of each phase iteration. Thus, the existing closed-
loop algorithms do not work correctly in the low SNR and
highly dynamic channel, which we will demonstrate with
experiments in Sec.6.

In this paper, we propose a novel closed-loop method
based on deep learning called Argute Distributed Uplink
Beamforming (ArguteDUB), as shown in Figure 3. Argut-
eDUB works by inserting orthogonal sequences in the
transmit data. Similar to the function of the pilot, these
inserted sequences can help to extract the desired phase

offset. However, they also have different emphasis. The or-
thogonal sequence adopted in this paper has the advantage
of separating the channels of multiple transmitters effec-
tively, and utilizing the information to calculate and predict
the beamforming weights. Unlike traditional pilot design,
which prioritizes frequency offset correction and channel
estimation in one-to-one transmission, this sequence design
focuses on a multi-to-one transmission scenario, aiming to
obtain the beamforming weights more accurately with fewer
iterations. Next, the BS uses the deep learning strategy to
filter noise and predict the beamforming weight of each
vehicle then feedback it back. Generally speaking, the time
series prediction task requires us to predict the next m time
slots through the known n time slots of the current se-
quence. However, the prediction accuracy of BS and further
transmission can be greatly degraded due to the influence
of channel noise. In particular, if the wrong beamform-
ing weights are used for transmission, the superposition
of multiple waves with different phases will degrade the
gain highly. In severe cases, the superposition of peaks
and valleys will weaken the amplitude of the signal and
not only fail to achieve gain, but also seriously affect the
data transmission. To reduce the effect of noise and ensure
prediction accuracy, ArguteDUB preprocesses the received
information before prediction.

To sum up, our contributions are as follows:
1) We present the design of ArguteDUB, which uses deep

learning based closed-loop algorithm that can filter the
noise carried in the raw phase offset information and pre-
dict the beamforming weights well. ArguteDUB achieves
uplink bandwidth scaling in a highly dynamic and noisy
environment that is beyond the reach of existing works.

2) We make ArguteDUB OFDM compatible and propose
interpolation algorithm to improve the efficiency of data
processing.

3) We build a simulation of a multi-vehicle cooperative
transmission system. The result shows that under a
highly dynamic environment, ArguteDUB has an SNR
gain of about 5dB to 5.3dB over the single vehicle trans-
mission mode.

2 PROBLEM STATEMENT

In this section, we present the relevant problem statement
for this paper. We show our channel model followed with
problem formulation.

The phase offset of each signal received by the BS is
mainly due to two points: the difference phase of each
vehicle’s local oscillator, and the channel response between
different vehicles and the BS. Thus, we consider a cluster
of N cooperating vehicles which want to send the same
message to a distant destination. Then, the received signal
at the BS in the i-th timeslot can be expressed as:

y[i] =
∑N
n=1

√
PTn

an[i]e
j(ψn[i]+γn[i]+φn[i])xn[i] + w[i], (1)

where x[i] represents the transmitted signal. anejψn repre-
sents amplitude gain from the n-th vehicle; γn is the phase
offset from vehicle n to the BS; ejφn is the beamforming
weight we need to control; and w[i] is an Additive White
Gaussian Noise (AWGN) at the distant BS. We assume that
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Fig. 2. Distributed cooperative transmission system contains three parts: the join part, the transmission part, and the exit part. ArguteDUB focuses
on the transmission part.

Fig. 3. ArguteDUB consists of three main parts: Data Preprocessing,
Weight Prediction and Weight Feedback.

each vehicle uses a unit of transmitted power (e.g., PTn
= 1),

and transmitted signal can be set at a constant value during
training stage (e.g., x[i] = 1).

Assume that two signals carry the same information
with different AWGN. If these two signals can be aligned
and superimposed, then since the correlation of the real
signal is 1, the superimposed amplitude doubles and the
power becomes a squared multiple, while the noise power is
simply summed. Therefore, we want all transmitted signals
to be aligned so that a higher SNR signal can be received at
the BS. Thus, to achieve distributed beamforming, we need
to adjust the beamforming weight ejφn to synchronize each
vehicle phase, in other words, to maximize the receive signal
strength (RSS), which can be expressed as:

RSS[i] =
∣∣∣∑N

n=1an[i]e
j(ψn[i]+γn[i]+φn[i]) + w[i]

∣∣∣ . (2)

Because of the special nature of distributed beamforming
that the addition of two signals with a small phase offset can
also increase RSS, as long as the phases between vehicles
remain in a relatively aligned state, despite the existence of
multiple fading paths, the RSS will eventually increase.

ArguteDUB is the system we present for the transmis-
sion part as shown in Figure 2. Thus, ArguteDUB needs to
solve the following problems:
1) Noise and Doppler Shift on phase synchronization.
2) Information delay problem caused by feedback algo-

rithm.
3) The trade-off between prediction accuracy and latency.

3 RAW DATA ACQUISITION

In this section, we first show how we obtained the raw phase
offset information. Next, we give our analysis, and finally
we discuss the limitations of the raw phase offset to show
the importance of weight prediction.

3.1 Phase Offset Extraction

Unlike previous closed-loop methods, we want to get the
beamforming weight in constant time. Our key insight is
to extract the phase offset information via differential mea-
surement, by sending orthogonal data to separate different
channels. Using orthogonal sequence on different vehicles,
the BS can extract each vehicle’s raw phase offset informa-
tion from the receiving signal.

There are many options for orthogonal sequences such as
discrete Fourier transform (DFT). It is important to note that
the length of the sequence we choose should be greater than
the number of vehicles so that the sequence is orthogonal
to each other. Assume that we use DFT to generate the
sequence and we have N vehicles in the system, and L
represent the length of the sequence, the set of the sequence
can be written as a matrix:

X =
[
a1 a2 · · · aN

]
, (3)

where an, n ∈ {1, 2, · · · , N} are orthogonal vectors of
length L and aHn an = L. We send orthogonal sequences
through different vehicles, according to Equation 1, the
matrix form of observed signal at the BS can be expressed
as follows:

y = Xh + w, (4)

where h is an N ×1 channel complex vector which contains
the phase offset information arg(h) and w ∼ CN (0, NwI)
is AWGN. Thus, We can use the least square estimation
method to estimate our channel vector from the receiving
signal:

ĥ =
(
XHX

)−1
XHy. (5)

Obviously, the rank of X is N , so that for every vehicle, we
can compute the inner product of the corresponding rows of



4

Fig. 4. We tested the effect of sequence length on the estimation accu-
racy under different SNR conditions. Note that we use 12 independent
vehicles, and the length of the sequence increases from 12 to 112.

the matrix
(
XHX

)−1
XH to obtain the corresponding CSI.

Note that aHn an = L, thus we have
(
XHX

)
= LI and

ĥn =
1

L
aHn y, (6)

where ĥn represents each channel response. Therefore, it
can be noted that each vehicle can obtain the corresponding
beamforming weight independently. More importantly, un-
like the previous closed-loop algorithm, the BS can separate
the information of each vehicle from the received data, and
it will not be difficult to determine the direction of phase
iteration due to the entry and exit of vehicles as in the
previous algorithm.

3.2 Raw Data Limitation

For the problem of parameter estimation, Cramer-Rao [8]
establishes a lower bound for the variance of any unbiased
estimator:

Cr = −
1

E
[
∂2 lnP (y|h)

∂h2

] =
1

L
NwI. (7)

By calculating the lower bound of the variance of the unbi-
ased estimation, we can know the bound of the covariance
for each vehicle:

V ar
(
ĥn

)
≥
(
Nw

(
XHX

)−1)
n,n

=
Nw
L
. (8)

In Figure 4, we can easily find the impact of noise on
the extract phase offset data. As the length of the sequence
increases, the improvement in accuracy decreases. Although
the variance of parameter estimation is inversely propor-
tional to the length of the sequence, we cannot reduce the
impact of noise by simply increasing L. The increase of
sequence length is accompanied by the change of transmis-
sion time. Because the channel changes dynamically during
transmission, the increase of transmission time will affect
the system performance. Most importantly, the packet size
is finite. Therefore, we need to further process the phase
offset data to reduce the effect of noise.

TABLE 1
PERFORMANCE OF DENOISING ALGORITHMS

Method Bias (Euclidean Distance)

Origin Data 39.80

Savitzky Golay 33.38

Kalman 31.25

Movemean 29.86

Our Method (Deep Learning) 7.36

4 NOISE FILTERING AND WEIGHT PREDICTION

In the last section, we showed limitation of raw phase offset
data. Since the raw data is extracted from the previous
round, it is not wise to apply the weight information of
the previous round to the next directly. Here, we use the
prediction method to predict the weights of the next few
rounds of beamforming to improve the accuracy.

Currently, there are many feasible time series prediction
methods, most of which are good at predicting the next
value of a sequence x based on its previous value. [9],
[10], [11], [12]. However, we need to predict the next value
of sequence x through sequence y with noise, and these
methods are either complicated to calculate or not highly
accurate. There is no doubt that training on an unprocessed
dataset will cause a series of problems such as overfitting,
leading to inaccurate testing results [13]. Therefore, we con-
sider performing rapid denoising processing on the original
dataset before making predictions. Figure 5 presents the
data processing flow in ArguteDUB to show that how the
system works.

4.1 Noise Filtering
The time series denoising methods have been extensively
researched in recent times. Traditional methods, such as Sav-
itzky Golay filtering and Kalman filtering, typically employ
filters to achieve their objectives. However, these traditional
filtering methods have numerous limitations and are unable
to learn the underlying features in the data effectively. With
the development of neural networks, the implementation
of denoising through deep learning algorithms has become
more prevalent and has gained popularity in many fields.
These methods have several advantages compared to tradi-
tional methods, including:
1) Improved accuracy: Deep learning algorithms are able

to capture complex and non-linear relationships in data,
resulting in higher accuracy in denoising compared to
traditional methods.

2) Automated feature selection: Deep learning algorithms
are capable of automatically selecting relevant features in
the data, making the process more efficient and effective
than traditional methods, which relies on manual feature
selection.

3) Robustness to outliers: Deep learning algorithms are
able to handle outliers in the data, leading to improved
robustness compared to traditional methods, which can
be sensitive to outliers.
Table 1 illustrates the performance difference between

the deep learning algorithm utilized in this study and tradi-
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Fig. 5. Illustration of data processing flow in ArguteDUB. In the noise filtering part, we convert the sequence data into 2D images, and use the
simplified DnCNN to do noise reduction on the image data, and finally restore the denoised image to the sequence data. Next, we perform
sequence prediction through Temporal Convolutional Network (TCN) and feedback the weight to each vehicle.

tional methods (using time series data generated from 400
iterations), and it can be observed that the deep learning
algorithm significantly improves denoising performance,
enabling subsequent algorithms to make better predictions
with its help.

The algorithm presented in this paper was inspired
by image denoising algorithms. In the aspect of image
processing, the network structure based on Convolutional
Neural Networks (CNN) has been continuously optimized
and improved and has a very good performance [14], [15].
What’s more, image noise reduction is particularly promi-
nent. Therefore, we considered transforming the time series
with noise into 2D images and realized a fast noise reduction
algorithm by using the excellent performance of CNN with
adjustment in computational complexity.

4.1.1 Convert Time Series to 2D Images

In this paper, we use Gramian Angular Summation Field
(GASF) [16] to convert the time series to 2D images. GASF
encodes time series by mapping time series from Cartesian
coordinate to polar coordinate to generate Gramian matrix.
In the Gramian matrix, each element is the cosine of the
summation of angles. The advantage of GASF is that the
temporal relationship is well preserved, and the calculation
is simple. Also, it is realizable to restore a 2D image to a
sequence. More importantly, processing time series through
GASF has a more stable and excellent performance than
processing time series directly.

Before GASF, we need to normalize the data. In Sec.3, we
obtained the estimates of each channel response ĥn through
least-squares estimation. We focus on the phase offset of the
channel, and rescale it in the interval [0, 1] by:

gn[i] =
angle(ĥn[i]) + π

2π
. (9)

Thus we can represent the rescaled time series Gn in polar
coordinates by encoding the value as the angular cosine
with the equation below:

φ = arccos (gn[i]) ,−1 ≤ gn[i] ≤ 1, gn[i] ∈ Gn, (10)

where we use the time stamp as the radius. Next, GASF is
defined as follow:

Fig. 6. Illustration of the proposed encoding map of Gramian Angular
Summation Fields. In this example we use 120 time slots build the
image.

GASF = [cos (φi + φj)]

= Gn
′ ·Gn −

√
I −Gn2

′
·
√
I −Gn2. (11)

Figure 6 shows how to convert a time series to 2D images
on GASF. Because the mapping functions of [0, 1] rescaled
time series are bijections. The main diagonal of GASF, i.e.
{GASFii} = {cos (2φi)} allows us to precisely reconstruct
the original time series by

cos(φ) =

√
cos(2φ) + 1

2
φ ∈

[
0,
π

2

]
. (12)

4.1.2 Simplified DnCNN (SDnCNN)
In terms of image noise reduction, there are many dif-
ferent networks, such as Block-matching and 3D filtering
(BM3D) [17], Learned Simultaneous Sparse Coding (LSSC)
[18], Non-local Centralized Sparse Representation (NCSR)
[19], Weighted Nuclear Norm Minimization (WNNM) [20]
and Denoising Convolutional Neural Network (DnCNN)
[21]. Among them, DnCNN is the most classic. As for the
goal we want to achieve, under the condition of achieving a
certain accuracy, what we pursue is a lower computational
complexity to reduce the computational pressure on the
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Fig. 7. Illustration of the architecture of the DnCNN. Conv represents
the convolution layer, which enables automatic extraction of features.
BN represents the batch normalization layer, which is used to avoid the
vanishing gradient problem. ReLU is an activation function commonly
used in neural networks.

base station, to achieve more efficient and rapid prediction
to follow up the changes of the channel.

Figure 7 illustrates the architecture of the DnCNN.
DnCNN introduces the residual learning strategy, which can
solve the problem of performance degradation to improve
performance. Currently, DnCNN is used for suppressing
Gaussian noise in images, which can be expressed as:

Py = Px + Pw, (13)

where Py represents the noisy image which is the sum of
the clean image Px and noise Pw. For DnCNN, the goal
is to recover clean image Px from a noisy observation Py .
DnCNN adopts the residual learning formulation to train a
residual mappingR(Py) ≈ Pw. The averaged mean squared
error between the desired residual images and estimated
ones is chosen to be the loss function:

`(Θ) =
1

2M

M∑
i=1

∥∥R (Pyi;Θ)− (Pyi − Pxi)∥∥2F , (14)

where Θ = {W, b} is the parameter of the network, includ-
ing the weight W and offset b;

{(
Pyi, Pxi

)}M
i=1

represents
M noisy-clean training image pairs. The loss will be small
enough after training, and correspondingly,R

(
Pyi;Θ

)
will

be closer to Pw, then we will have:

Py −R(Py;Θ) ≈ Px. (15)

In this paper, we choose to generate a 2D image every 25
time slots, which has the size of 25 × 25 × 3. The reason
why we choose 25 timeslots is to ensure that the image
is small enough so that the base station can process the
response in a short time. Due to the random nature of
dynamic channels, time slots with long time intervals are
not highly correlated with each other. Therefore, using more
time slots is not helpful for the results. The original DnCNN
is mainly used to suppress Gaussian noise in images, which
usually requires processing larger size images. For our task,
although the channel noise is Gaussian noise, the columns
and rows of the image are correlated after being transformed
by GASF. Therefore, the noise of the image does not conform
to the Gaussian distribution. Moreover, since the size of
the image we process is limited, we need to simplify the
network to improve the computational efficiency. Thus, we
adjust the network structure according to the characteristics
of the images.

4.1.2.1 Kernel Size: The convolution layer is mainly
used for automatic features extraction and increasing the
number of convolution kernels can often extract more fea-
tures. Note that if a data point in the sequence is biased, then
after converted to the corresponding GASF image, the row
and column in which it is located will be affected accord-
ingly. To enable the network to learn such a relationship, we
use the following configuration. The first convolution layer
uses a convolution kernel of size 3× 3× 1× 32, and the last
convolution kernel of size 3× 3× 32× 1. For the remaining
layers, we use convolution kernels of size 3× 3× 32× 32.

4.1.2.2 Training Set and Test Set: For the dataset,
we simulate 12 different vehicles to conduct 10000 times
of transmission to generate corresponding 2D images (4800
pieces in total) for training, and test on 3 different vehicles
(1200 pieces in total). In terms of transmission parameters,
we chose the maximum Doppler shift around 100Hz-300Hz
to simulate the dynamic change of the channel and adopted
the standard parameters to set the data packet. The specific
parameters are listed in Sec.6.

4.1.2.3 Depth: In general, the performance of the
deep neural network is better than that of the shallow neural
network. However, when the number of layers reaches a
certain level, the performance becomes saturated. As the
depth of the network increases, the performance does not
improve much, while the training time increases dramati-
cally and also causes a longer predicting time. After training
the network with different depths when the batch size is
15 and the epoch is 200, we compare the performance of
each network. Table 2 shows the performance with different
depth of the neural network. According to the observation,
although the accuracy of the training set increases with the
depth of the network, the improvement on the test set is
not significant after the depth is 6. Moreover, we can find
that the training time increases faster as the depth. To better
trade-off the performance and efficiency, we determined the
depth of the network to be 6.

After simplifying, adjusting, and training the network,
we combined the network with GASF to preprocess the
sequence. We use the sliding window method to process
the sequence, and the step of the sliding window can be
dynamically adjusted between 1 and k (depends on the
prediction step) to match the data processing speed of the
base station. When the processing speed of the base station
is fast enough, we can appropriately shorten the step size
to increase the coincidence degree between windows, to im-
prove the accuracy by processing a certain data point several
times. Correspondingly, if the base station processing speed
is not enough, we will reduce the step size to reduce the
processing times so that the base station can respond quickly
when predicting beamforming weight.

Figure 8 shows how the sequence is preprocessed during
the operation of the system. We can see that the noise
distribution of the sequence with noise is very obvious after
it is converted into a GASF image. If the value on the
main diagonal has an obvious deviation, the color on the
corresponding row and column will also have a relatively
obvious deviation. After being processed by Simplified
DnCNN (SDnCNN), the corresponding noise is significantly
decreased, and the processed image is more similar to the
target image. Next, by restoring the corresponding sequence
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TABLE 2
NETWORK PERFORMANCE WITH DIFFERENT DEPTHS

Depth Training Time/Batch [µs] Train Acc Train Loss Test Acc Test Loss
4 220 0.8866 0.0125 0.8639 0.0171
5 250 0.9188 0.0072 0.8821 0.0140
6 290 0.9422 0.0039 0.8972 0.0114
7 340 0.9529 0.0026 0.9005 0.0105

Fig. 8. Illustration of how the sequence is preprocessed. As the sliding
window moves, the sequence is progressively optimized, resulting in
cleaner data for prediction.

with the value on the main diagonal, we can observe that the
processed result is very close to the ideal value.

4.2 Sequence Prediction with TCN

After getting clear sequence data, we need to make a se-
quence prediction. At present, there are many time series
prediction methods like recurrent neural networks (RNN)
or long-term short-term memory (LSTM). Despite the many
advantages of RNN (i.e. architectures based on RNN), there
are two limitations that restrict their applicability in reality.
One is the inherent sequential nature in which later time
steps must wait for their predecessors to finish during
the training and evaluation process, thus eliminating par-
allelization of the training and evaluation procedure. The
other is that as the sequence length grows, RNN become
more focused on the local context and are sensitive to the
order of words in recent sentences, but ignore the order of
words in long-term context. Although LSTM have improved
RNN in terms of long-term memory, the limitation of non-
parallelizable training remains an issue. In this study, we
adopt Temporal Convolutional Networks (TCN) [22] as our
method of choice due to its several benefits. Unlike RNN
or LSTM, TCN offers parallel processing of time series,
instead of the sequential processing implemented by RNN.
Furthermore, TCN boasts a stable gradient, mitigating the

Fig. 9. The architecture of TCN in this paper, which mainly uses causal
convolution and dilated convolution. The input of TCN is 25 steps of
time slots phase offset data of each vehicle after filtering the noise and
it’s output is the next 5 prediction steps of phase offset of each vehicles.

potential issues of gradient disappearance and explosion.
Additionally, TCN exhibits a low memory footprint and
reduces the computational demands on the base station.

Simply speaking, TCN is a variant of CNN, which takes
the entire time series as input through convolution and can
control different output lengths. TCN mainly realizes the
learning of time series features through causal convolution
and dilated convolution. Causal convolution means that the
value at the time of t of the upper layer only depends on
the value at the time of t of the next layer and the value
before it. Thus, it is a strict time constraint model. Dilated
convolution allows the convolution input to have interval
sampling so that the convolution network can obtain a large
receptive field with fewer layers. Figure 9 shows the TCN
structure used in this paper. It has 5 layers for convolution,
with sampling intervals of 1, 2, 4, 8. The input of TCN has
the length of 25, which are previous 25 time slots phase
offset data of each vehicle after filtering the noise and it’s
output is the next 10 prediction steps of phase offset of each
vehicles.

5 OFDM COMPATIBILITY

Our goal is to extend ArguteDUB to 6G-based IoV applica-
tions. The recent 6G new radio (NR) cellular networks adopt
sophisticated wireless transmission technologies to enhance
the network capacity and can, thus, offer high data rates
to IoV applications [23]. As one of the key technologies,
Orthogonal Frequency Division Multiplexing (OFDM) has
been widely used in various scenarios [24], [25], [26]. The
main advantage of OFDM over single-carrier schemes is its
ability to cope with severe channel conditions without com-
plex equalization filters. Therefore, combining with OFDM
can let ArguteDUB be well used in the 6G network, and at
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the same time, it can take advantage of OFDM to increase
the transmission bandwidth.

5.1 Orthogonal Sequence Insertion
In the OFDM system, we need to choose the appropriate
pilot structure to realize the very important functions such
as channel estimation [27]. For the block-type pilot, the
pilot signal is continuous in the frequency domain, which
is suitable for the case that the channel is slow-changing.
Block-type pilot can be used for channel estimation by
decision feedback. As for comb-type pilot, the pilots are
inserted at regular frequency intervals and are continuous
in the time domain. Therefore, comb-type pilot is more
able to deal with the rapid transformation of time-varying
channels. Comb-type pilot can estimate the channel of each
subcarrier by interpolation. In this paper, we choose to use
comb-type pilot to better deal with highly dynamic time-
varying channels.

The adoption of orthogonal sequence in this paper aims
to facilitate the acquisition of beamforming weights of var-
ious parts of the OFDM resource block. Due to its special
design, it cannot be applied in scenarios with similar specific
requirements as other pilot designs like pilot designs in
MIMO. To ensure the design’s universality, a portion of
the original data segment is used to accomplish this task,
allowing for compatibility in various scenarios. Thus, after
determining the pilot structure, we need to consider how to
place the orthogonal sequence into it. Simply, we can select
a subset of subcarriers to place orthogonal sequences like
comb-type pilot. After the beamforming weight is predicted
by the base station, the weight on subcarriers without or-
thogonal sequence can be calculated by interpolation.

Further, we need to consider the effect of time-varying
channels. In a communication system using phase modu-
lation, such as QPSK or QAM, the Doppler Effect causes a
change in the phase of the received signal, leading to a rota-
tion of the constellation points on the constellation diagram.
The rate of rotation is proportional to the Doppler frequency
shift, and it can cause significant degradation in the signal-
to-noise ratio of the received signal. The same effect applies
to subcarriers within an OFDM resource block. If a subcar-
rier adopts the same beamforming weight, since a subcarrier
occupies a period of transmission time, the Doppler effect
of this time will affect the subcarrier. Therefore, we need
to divide the weight of the subcarrier into a more fine-
grained manner to better combat the Doppler effect in high
dynamic environments. In order to improve the accuracy
and maintain a certain RB size, we can consider dividing
the beamforming weight inside RB. We divide RB into N
segments in the time domain, and the subcarrier weight
in each segment is determined by the weight predicted by
internal orthogonal sequences and interpolation.

5.2 Interpolation
Figure 10 shows the illustration of an OFDM RB. Even in
the case of insufficient base station processing speed, we
can greatly reduce the amount of computation by using
interpolation. Specifically, we only need to select some se-
quences for weight prediction. Due to the continuity of time
domain and frequency domain, we can use interpolation to

Fig. 10. In an OFDM Resource Block (RB), we can select some se-
quences for weight prediction and complete them by interpolation.

approximate and complete the values of all subcarriers in
each weight area. It is worth noting that the selection of
key points is particularly critical when doing interpolation.
Although the change of angle is a continuous process, since
the angle changes in a cycle within a range [−π, π], the
direct interpolation of two key points is likely to get wrong
results, while the correct interpolation should be carried out
after several cycles of a certain section. Therefore, how to
determine the number of cycles is very important. When
selecting key points, we need to select several adjacent
points as a combination and determine the number of cycles
between combinations through the slope of internal points.
Of course, using this method is less accurate, but it can
greatly reduce the computation of the base station, ensuring
that it can continuously give feedback to each target.

Many different interpolation strategies can be employed
to extend the orthogonal sequence subcarrier channel
weights to the rest of the subcarriers, including linear inter-
polation, second order interpolation, low-pass interpolation,
spline cubic interpolation, and time domain interpolation.
In fact, the low-pass interpolation algorithm was adopted
in our experiments. Research has shown that low-pass in-
terpolation has a significant advantage in combating multi-
Doppler frequency shifts and has good results with comb-
like insertion methods [28].

6 EVALUATION

6.1 Simulation Environments and Parameter Settings

In this section, we provide numerical simulation results to
verify the performance of the designed ArguteDUB. We
consider a multi-vehicle cooperative transmission mode in
a suburban high-speed environment. The choice of channel
model is one of our concerns. Multipath fading channels are
defined by a combination of multipath delay and maximum
puller frequency. Three different multipath fading models
(EPA, EVA, and ETU) are defined in the 3GPP standard.
In this paper, we use ETU with a high Doppler shift (100-
300Hz) as our simulation environment.

After determining the channel model, we consider the
design of the simulation experiment combined with 6G.
The system parameters shown in Table 3 are used in the
simulations and comb type pilots are placed at all OFDM
symbols on a subset of 200 equispaced subcarriers.
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TABLE 3
PARAMETERS AND SYSTEM SETUP OF SIMULATION

Parameter Value
Number of Tx antennas 4

Number of Vehicles 5
Number of Rx antennas 64

Bandwidth 20MHz
Number of subcarriers 1200

Number of pilot 200
Sample rate 30.72MHz
Bandwidth 20MHz

Number of subcarriers 1200
Size of FFT 2048

Channel parameter ETU
Modulation QPSK

Encoding Convolutional code
Maximum Doppler shift 10-300Hz

TABLE 4
COMPLEXITY OF NEURAL NETWORKS

Network Params FLOPS

Denoising Network (sDnCNN) 132995 166.12M

Prediction Network (TCN) 139393 3.74M

We use an experiment to show why previous distributed
beamforming algorithms are not applicable to the high dy-
namic case. Since the previous algorithms are not applicable
in the highly dynamic environments, we use single-vehicle
transmission as our baseline and our analysis is based
on different measurement studies. First, we compare the
performance of different algorithms. Also, we compare the
performance of the interpolation-assisted prediction method
with the full prediction method. Next, we collect received
data and show the performance of different algorithms
on BER and FER. In addition, we compare the SNR gain
of different methods. To compare the experimental results
analytically, we show the SNR gain defined as the SNR
achieved by ArguteDUB minus the SNR achieved by the
baseline. In the end, we discuss the influence of the number
of vehicles on the multi-vehicle cooperative transmission
mode. The summary of the evaluation of ArguteDUB and
the key findings are as follows:
• ArguteDUB can successfully overcome the impact of

the highly dynamic environment.
• ArguteDUB can predict the change of the channel

change accurately, in which 90% deviations are no more
than 1, 70% deviations are no more than 0.5.

• ArguteDUB can improve the SNR by 5-5.3dB with dif-
ferent types of algorithms in our simulation conditions.

• ArguteDUB can improve performance as the number of
participants increases within limits.

6.2 Analysis of Network Complexity and Latency
The hardware platform used in this experiment is as follows:
• CPU: Intel Core i7-8700k (3.7 GHz)
• GPU: NVIDIA GeForce GTX 1070 (6.5 TFLOPS)

Fig. 11. Comparison the proposed and previous algorithms with time-
varying channels. Both Xie [7] and Hybrid [6] can not work well in the
highly dynamic environment.

• Memory: 16G (2400 MHz)
The parameters and computational volume of the denoising
network and the prediction network used in this paper are
shown in Table 4. The parameters of the two networks are
basically the same, but the computational volume required
by the denoising network is much larger than that of the
prediction network due to its high input data dimension,
however, they are both at the level of MFLOPs. According
to the theoretical calculation of GPU computing power
and network complexity, the denoising and prediction time
required for data corresponding to an orthogonal sequence
is approximately 260µs. However, due to factors such as
memory access and data exchange, the actual measured
time is around 300µs. For an OFDM resource block, the
time required ranges from 1.2ms to 600ms, depending on
the degree of interpolation employed. Additionally, due to
the presence of prediction algorithms, the data computed
in each iteration can provide weighting data for subsequent
rounds of information exchange.

In general, the OFDM resource block duration can range
from a few microseconds to several milliseconds, depending
on the frequency band and the system bandwidth. The
time interval between OFDM resource blocks is known
as the inter-block time, and it is typically in the range
of a few microseconds to several milliseconds. Therefore,
under the current experimental platform with a single entry-
level GPU, the system is capable of providing the required
computational power for normal operation with interpo-
lation methods. Typically, on the server side, the huge
computational power is provided by a cluster of multiple
professional GPUs, which can completely handle the task
with hundreds of times improvement.

6.3 Performance Compared with Previous Works

We compare the performance of different algorithms and
demonstrate that the previous algorithms do not work in
a highly dynamic environment. Figure 11 shows the RSS
of each algorithm at under different Doppler shifts. All
algorithms work well at low Doppler shift of 50 Hz. As
the Doppler shift increases, the drawbacks of the previous
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Fig. 12. SDnCNN results. After the network processing, such noise is
mostly eliminated, but can’t deal well with some places where the noise
is very serious.

algorithms start to appear. The improvement in RSS is
not significant because the update rate of the bit feedback
does not catch up with the rate of change of the time-
varying channel. When the Doppler shift reaches 200 Hz,
the previous algorithm does not work properly. However,
our method works well because we do rich feedback with
prediction.

We have noticed that under low Doppler frequency shift
conditions, the traditional method obtains a slightly higher
signal intensity compared to the method proposed in this
paper, due to the fact that it receives less interference in low
Doppler frequency shift, and its iteration speed can surpass
the rate of change of time-varying channels, thus yielding
good results. Conversely, in this situation, the operation of
the prediction network in the proposed method is unneces-
sary, which results in redundant computations that would
affect accuracy. Nevertheless, in order to ensure uniformity
in testing, the prediction module was still retained. How-
ever, the proposed method in this paper has the advantage
of ensuring high signal strength from the beginning of the
transmission without requiring a large number of iterations,
thus saving a significant amount of time.

6.4 Performance of Prediction and Interpolation
ArguteDUB’s key algorithmic component is to find an ap-
propriate beamforming weight utilizing prediction. There-
fore, the prediction accuracy determines the performance
of our system. Here, we will show the accuracy of the
prediction algorithm for Angle prediction and the loss of
accuracy after using interpolation for velocity optimization.
Figure 12 shows the difference between the image processed
by SDnCNN and the image generated by the ideal value. We
can see that since the noise of the original image associates
rows and columns, after the network processing this noise is
mostly eliminated, but unsmooth transitions can still be seen
at the edges of each pixel. In addition, in some cases, such
as the red circle in the figure, SDnCNN could not handle
this situation well because the values of the original image
deviate significantly from the ideal values and there are
no good pixels around as a reference. This mostly happens
when there is a significant deviation in the continuous part
of the sequence. Due to the construction of the GASF matrix,
there are large deviations in the whole block of pixels, which
makes it difficult for the network to capture the correct
information from it.

Fig. 13. Angular offset with different method. Since a large number of
points are calculated through interpolation, if there is a certain phase
error in the value of sampling points, it will lead to a series of points with
phase error.

Figure 13 shows the difference between the Angle values
obtained in different ways and the ideal values. We can see
that the Angular offset distribution of the full prediction
method is relatively concentrated, 70% of the values are less
than 0.5 from the accurate value, and 90% of the values are
less than 1. But as for the interpolation strategy, 50% of the
value less than 0.25, which is a good performance, but the
other 50% is greater than 1, which cause bad performance.

6.5 SNR Improvement

To further understand distributed beamforming spatial mul-
tiplexing gains, we analyze the SNR gain received from the
base station. By comparing with single-vehicle transmission
mode, we obtain the gain of multi-vehicle transmission
mode when SNR = 0dB. Figure 16 shows the SNR gain
with different transmission mode. About 90% of the values
are between 5dB and 5.3dB. It can be found that there
is a gap of about 1dB between the interpolation and the
ideal prediction, while the performance of the full predictive
mode and the ideal prediction mode is closer. The Maximum
Doppler Shift has some influence on the SNR gain, but
the experiment shows that the effect is not obvious. This
confirms that ArguteDUB has a significant SNR gain effect.

6.6 Performance of Transmission

We first compare the bit error rates of different algorithms
in different environments. Note that we uniformly selected
the 5-vehicle cooperative transmission mode for the test,
and the single-vehicle transmission mode was taken as the
baseline.

6.6.1 Performance Under Different SNR
First of all, we are concerned about the effectiveness of the
multi-vehicle cooperative transmission model. The easiest
way to do this is to measure the bit error rate (BER) and
frame error rate (FER) of data transmission. We measure
the effect of different SNR on BER when the Maximum
Doppler Shift is 200Hz. We compared the single-vehicle
transmission mode(baseline) with the full prediction mode
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(a) BER (b) FER

Fig. 14. BER and FER under different SNR. Here we use 200Hz as Maximum Doppler Shift.

(a) SNR=-2.5dB (b) SNR=0dB

(c) SNR=2.5dB (d) SNR=5dB

Fig. 15. BER with different Maximum Doppler Shift in the range of 100Hz to 300Hz.

and the interpolation prediction mode. Figure 14 shows
the performance of the different algorithms. Although the
interpolation prediction mode generates many phase errors,
it can still improve transmission efficiency. A lesson can
be drawn from this: although misalignment of phases in
distributed beamforming can have a negative performance
impact, the system can have a high tolerance for this.

Furthermore, we can find that the full predictive mode
has a very good performance. However, this requires the
hardware to be able to perform high-speed computation.
The general base station without optimization is difficult to
achieve this performance. At the same time, the interpola-
tion prediction mode is more reasonable. By losing some
precision in exchange for a significant reduction in compu-

tational complexity, real deployment can be achieved. In the
previous subsection, we analyzed the interpolation method
with significant Angular offset, but it can still improve
performance over the baseline. Moreover, by adding inter-
polation sampling points, its performance can be further
improved, depending on the actual computational efficiency
of the BS.

6.6.2 Performance Under Different Maximum Doppler Shift
We also investigate the effect of the Maximum Doppler
Shift on the performance of different algorithms. With the
increase of Maximum Doppler Shift, the performance of
the algorithm decreases differently. Among them, the in-
terpolation strategy is the most sensitive to Doppler shift.
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Fig. 16. SNR gain over the baseline with different Maximum Doppler Shift.

(a) Ideal-Pred (b) ArguteDUB

Fig. 17. The performance under different number of vehicles.

When the Maximum Doppler Shift is 100 Hz, the inter-
polation strategy can maintain the same performance as
the full prediction mode. However, with the increase of
the Maximum Doppler shift, its performance is seriously
affected especially when the Maximum Doppler Shift is
around 150Hz to 200Hz. The reason is that with the increase
of Doppler Shift, the degree of phase change in RB increases,
and the decrease of prediction performance leads to the
increase of sampling point error of the interpolation strategy.

6.7 Number of Vehicles

We discuss the effect under the different number of vehicles
participating in the ArguteDUB. More does not necessar-
ily mean better, which involves the following factors: the
more vehicles we have, the longer orthogonal sequences
we should use, making it more time to transmit a packet;
each vehicle’s transmission will be affected by the noise, it
is impossible to perfectly predict the beamforming weight.

Thus, no matter how many vehicles carry out the coopera-
tive system, there will still be errors.

We select 2 to 10 vehicles to form different cooperative
systems for transmission tests. Figure 17 shows the trans-
mission BER under different numbers of vehicles. Regard-
less of ideal prediction and truly prediction, we can find that
BER decreases obviously within the range of 2 to 6 vehicles,
which proves that appropriately increasing the participants
can improve transmission efficiency. However, when the
number is greater than 7, such improvement is obsolete.
Moreover, in some high SNR situations, the transmission
efficiency of the system is reduced.

7 RELATED WORK

Our work presents a unique direction where we present a
feasible scheme of highly dynamic beamforming. Our work
is closely related to multiple avenues as follows:
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7.1 6G Intelligent

In recent years, with the development of deep learning
and intelligent hardware, the combination of wireless and
Artificial Intelligence (AI) is a major research of 6G. AI helps
many subjects solve problems that are difficult to deal with
traditional methods. For example, in 6G vehicle network,
deep learning makes autonomous driving distance control
under more efficiency [29]. Also, it can realize intelligent
signal detection methods for OFDM systems in 6G [30].

7.2 Closed-loop Distributed Beamforming

R. Mudumbai [5], S.Song [31], et al. proposed different forms
of base-station based feedback algorithms, but they had
different limitations. Among them, R. Mudumbai proposed
a one-bit feedback control method [5] to simplify feedback
information and save control mechanisms. In this context,
other authors also discuss the influence of Gaussian white
noise on the one-bit feedback algorithm and analyze that the
performance stability of the algorithm is insufficient [32]. In
terms of the algorithm of S.Song [31], the algorithm makes
more effective use of one-bit feedback information and
improves the convergence speed. However, the algorithm
shows the instability of performance and cannot guarantee
a relatively fast convergence speed every time. To over-
come the instability of the algorithm, subsequent researchers
proposed a hybrid algorithm by using continuous positive
and negative feedback to improve the performance of the
traditional closed-loop feedback algorithm [7]. However,
the algorithm is easy to be disturbed by noise, which
leads to poor performance, and it is difficult to achieve a
good effect in the environment of multipath fading. Also,
although the algorithm can adapt to lower dynamic time-
varying channels, the performance will highly degrade or
even fail in a highly dynamic environment. The advantage
of ArguteDUB is that it can deal well with the interference
of time-varying channels, noise, and multipath fading. More
importantly, ArguteDUB can support the dynamic entry and
exit of vehicles, which makes our system more flexible and
adaptable to more complex scenarios.

7.3 Cooperative Transmission

Cooperative transmission is widely used in various fields of
wireless communication like Internet of Things(IoT), Cellu-
lar Networks, satellite communication systems, and etc [33],
[34], [35], [36] to concentrate energy and improve transmis-
sion distance and performance. We propose a cooperative
transmission system based on IoV to improve the efficiency
of uplink transmission using distributed beamforming.

8 CONCLUSION AND FUTURE WORK

We present a novel distributed beamforming framework
to deal with highly dynamic time-varying channels in 6G-
based IoV, named as ArguteDUB. It is composed of GASF
domain and deep learning methods, which can predict the
beamforming weight well and achieve the gain of SNR.
Furthermore, we present the design and simulation of
ArguteDUB combined with OFDM to optimize the band-
width. We believe this work paves a way forward for highly

dynamic distributed beamforming-based wireless commu-
nications and networking especially in 6G-based IoV. To
further improve our work in the future, some possible future
directions are listed below.
1) Feedback efficiency: ArguteDUB uses the help of deep

learning, which to some extent requires specialized hard-
ware support. There might have some challenges when
deploying the system on existing base stations directly.
How to reduce the amount of calculation and improve
the accuracy of prediction are future works.

2) Design of real environment experiment: The simulation
experiment cannot fully simulate the real environment.
In the real environment, the channel changes and noise
interference will be more complicated. How to achieve
the accuracy of the algorithm in the real environment is
the next step that needs attention.

3) Protocol design: While focusing on how to achieve co-
operative transmission, we should also consider the in-
teraction process of the whole system. We need to design
a set of protocols to achieve flexible vehicle participation
and exit ArguteDUB, which can achieve flexible system
interaction.

4) Transfer to more scenarios: In addition to realizing the
cooperative transmission between vehicles, we can also
take a long-term view and apply the system to different
high-speed environments, such as the cooperative com-
munication of mobile devices on high-speed trains using
6G.
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