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Abstract: The last decade saw the emergence of highly autonomous, flexible, re-configurable Cyber-
Physical Systems. Research in this domain has been enhanced by the use of high-fidelity simulations,
including Digital Twins, which are virtual representations connected to real assets. Digital Twins
have been used for process supervision, prediction, or interaction with physical assets. Interaction
with Digital Twins is enhanced by Virtual Reality and Augmented Reality, and Industry 5.0-focused
research is evolving with the involvement of the human aspect in Digital Twins. This paper aims to
review recent research on Human-Centric Digital Twins (HCDTs) and their enabling technologies. A
systematic literature review is performed using the VOSviewer keyword mapping technique. Current
technologies such as motion sensors, biological sensors, computational intelligence, simulation, and
visualization tools are studied for the development of HCDTs in promising application areas. Domain-
specific frameworks and guidelines are formed for different HCDT applications that highlight the
workflow and desired outcomes, such as the training of AI models, the optimization of ergonomics,
the security policy, task allocation, etc. A guideline and comparative analysis for the effective
development of HCDTs are created based on the criteria of Machine Learning requirements, sensors,
interfaces, and Human Digital Twin inputs.

Keywords: Digital Twin; human-centric; Industry 5.0; literature review; human-robot collaboration;
artificial intelligence

1. Introduction

Industry has a constant need to evolve, innovate, and adopt technological advances in
order to meet the challenges of the future in a competitive environment. Broadly in litera-
ture, historical industrial progress is divided into epochs called “Industrial Revolutions”,
characterized by major technological paradigm shifts [1]. In light of the digital revolution
and exponential growth in computational power, information and data processing capabili-
ties, smart sensors, and computational intelligence, the focus of Industry 4.0 is to leverage
emerging technologies to interconnect smart Cyber-Physical Systems (CPS) to enable mass
customization in robust, flexible Smart Factories. A synergistic paradigm of emerging
technologies is recently developing, which includes leveraging multi-physics simulations
to create Digital Twins (DT) of physical systems. DTs use immersive technologies such
as Virtual Reality (VR) and Augmented Reality (AR) to explore and interact with virtual
objects and use collaborative robots for safe, intuitive Human-Robot Interaction (HRI),
especially by utilizing advances in artificial intelligence. There is an increasing realization
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that in addition to technological aspirations, government, and industry should move to-
wards a value-driven future where the focus is on human well-being, sustainability, and
resilience under Industry 5.0 [2].

1.1. Cyber-Physical Systems and Digital Twins

In the context of Industry 4.0, certain enabling technologies such as distributed com-
puting, sensor networks, big data, and the Internet of Things (IoT) have found increasing
application in manufacturing settings to achieve reliability, flexibility, increased automation,
and better performance [3]. Due to advances in computational intelligence, increasing data
bandwidth and processing capability, and widespread use of sensors, it has become possible to
create highly autonomous virtual replicas of CPS with advanced decision-making capabilities.
These highly autonomous virtual replicas are known as Digital Twins. The term ‘Digital Twin’
is popularized by NASA in the context of flying vehicles [4]. Many definitions of DTs have
been proposed in the literature. The definition proposed by AIAA [5] is “a set of virtual infor-
mation constructs that mimic the structure, context, and behavior of an individual/unique
physical asset, or a group of physical assets, are dynamically updated with data from their
physical twins throughout their life cycles and inform decisions that realize value”.

Although the concept of DTs originated in the aerospace industry, they can now be
used for the digital representation of any complex system [6]. DTs have been employed in
many traditional manufacturing areas, including metallurgy, machining, grinding, and hole
punching [7]. Functionally, DTs are used for supervision, interaction, and prediction of assets,
often exploiting artificial intelligence and immersive user experiences, for example using
Extended Reality (XR) [8]. Furthermore, Digital Twin technology is also finding increasing
use by industry leaders, for example in the power production sector by British Petroleum for
monitoring oil and gas facilities and General Electric for monitoring turbines [9].

This increasing interest of investigators in digitization originated a number of opportu-
nities to explore the emerging phenomena of DTs for CPS to meet the requirements of smart
manufacturing. Computer simulations with Multi-physics modeling can be employed to
create DTs of real machines with a bi-directional data flow between the physical and virtual
systems. Such DTs can be utilized for rapid testing, optimization, and deployment for
flexible manufacturing using Cyber-Physical Production Systems.

1.2. Human Robot Collaboration

Industrial robots driven by Programmable Logical Controllers executing fixed sets
of instructions have become a staple of automation and mass production in advanced
factories. Most such industrial robots are entirely separated from human workers through
safety fencing or large distances. Such industrial setups require high degrees of automation
with few human operators. Increasingly, there is a trend towards reintroducing human
workers to the factory floor to work side-by-side with collaborative robots (Cobots). The
coexistence of humans and robots leverages human creativity and general intelligence,
as well as robot precision and repeatability and highly increased perception due to rapid
developments in artificial intelligence technologies. Emerging avenues in Human-Robot
Collaboration (HRC) focus on human centricity, where a symbiotic relationship between
humans and robots is envisioned and human performance and perception can be enhanced
by using exoskeletons, cognitive ability, co-intelligence, mixed reality, and Brain-Computer
Interface (BCI) [10].

There can be an array of possible hazards during HRC stemming from the design of
the industrial process, malfunction of the control system of the robot, the robot charac-
teristics (such as speed, force, end-effectors, etc.), or mental stress to the operator during
collaboration [11]. The strategies employed to ensure safe human-robot collaboration
include limiting tool center point (TCP) velocity, limiting robot power and force, collision
detection and avoidance, protective stop functions, and ergonomic design of the robot as
well as the working space [12].
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1.3. Human-Centric Digital Twins

Human centricity is an important hallmark of “Industry 5.0”, which is envisioned
to be a value-based industrial revolution with a focus on human well-being, sustainabil-
ity, flexibility, and efficiency [13]. The challenge of improving human well-being and
reducing harmful emissions in smart manufacturing requires structural changes, and may
even necessitate transformation to a post-growth economy in high-income countries [14].
This comes with the realization that the objective of automation is not the elimination of
labor altogether but to leverage the creativity, objective thinking, dexterity, and decision-
making power of humans alongside the repeatability, accuracy, and convenience of using
robots for repetitive, labor-intensive, tedious tasks and tasks that may be hazardous for
humans [15]. This gives rise to the idea of Operator 5.0 [16], where human perception,
cognition, and interaction capabilities are enhanced by a range of enabling technologies, as
shown in Figure 1, with the aim of using these strengths to achieve sustainable development
with a focus on social well-being and robustness in the face of unexpected challenges.

Figure 1. Symbiotic human-machine relationship in the Industry 5.0 [17].

In order to better integrate humans in CPS, the concept of Human Digital Twins is
finding increasing popularity in order to better monitor, evaluate, and optimize human
performance, ergonomics, and well-being [18]. The development of Human Digital Twins
involves the deployment of a model of humans using sensor data that provides insight into
their behavior and attributes, which may include their physical, physiological, cognitive,
and emotional states [19]. Although DTs of machines have found broad use in industry, the
use of DTs and parallel societies for human-centric social computing is still a developing
research topic [20]. Research on human intent recognition is also motivated by the aim
of developing symbiotic collaboration between robots and humans so as to distinguish
between accidental contact and active collaboration and develop an intuitive and help-
ful cobot motion control strategy [21]. Creating a symbiotic human-robot collaboration
system requires the use of dynamic monitoring of humans and resources using smart
sensors, active collision avoidance, dynamic planning, and context-aware adaptive robot
control [22].

The main purpose of this study is to present state-of-the-art research conducted on
Human-Centric Digital Twins, their enabling technologies, and implementation frame-
works for different industrial applications. Firstly, the recent literature in the domain of
HCDTs, how it evolved over the years, and areas for future research are discussed using
a detailed literature review. Secondly, enabling technologies used by various researchers
and engineers in the past and those having potential in the future are discussed. Finally,
different applications of HCDT technology along with implementation frameworks are
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presented, and general guidelines are discussed for the development of HCDTs, as shown
in Figure 2.

Figure 2. Methodology & Structure.

2. Review Methodology

A comprehensive literature review is conducted in this study, where relevant research
studies are exported into a digital library, assessed, and screened for any relevance and
duplication. The research articles considered in this study were published between the
period of 2012 and 2022 and exported from Google Scholar, Science Direct, and Scopus.
These databases are selected as they contain the latest full-text peer-reviewed articles and
advanced search options and cover the largest content of published research papers. The
keywords used to perform a keywords-based search method are as follows: “Digital Twin”
AND (“Human-Centric” OR “Human Centered” OR “Human Robot Collaboration” OR
“Industry 4.0” OR “Human Robot Interaction” OR “Human Digital Twin” OR “Human-
Centered Design” OR “Industry 5.0”).

In the second phase, a graph-based search method is used to find additional relevant
papers, where key papers identified from our initial search are used as seeds. For the
selection of key papers, the number of citations of the publications was considered, and
some of the most highly cited articles included in this review (Table 1) are used as seed
papers. Citation analysis tools (inciteful (https://inciteful.xyz/ (accessed on 12 January
2023)) and Litmaps (https://www.litmaps.com/ (accessed on 15 January 2023))) are utilized
to create citation network graphs (Figure 3), and related papers are explored and added to
the database using the network graph.

Using this search method, first, 237 research publications are screened by studying the
abstracts. Relevant papers are imported into the digital library, created using Mendeley
software, and further assessed for duplication and redundancies. Only those papers are
selected where the human element of DTs is an important consideration in the research
work. Finally, the final literature volume of 119 latest publications from 2016 to 2022 is
included in this review.

https://inciteful.xyz/
https://www.litmaps.com/
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Figure 3. Citation Network Graph.

Table 1. Most cited articles in this review.

S# Citations Authors Title Year Journal

1 158

Lihui Wang, Robert X. Gao, József
Váncza, Jörg Krüger, Xi Vincent
Wang, Sotiris Makris, George
Chryssolouris

Symbiotic human-robot
collaborative assembly 2019 CIRP Annals

2 144 S. Nahavandi Industry 5.0—A
Human-Centric Solution 2019 Sustainability

3 155
Kai Ding, Felix T. S. Chan, Zhang
Xudong, Guanghui Zhou, Fuqiang
Zhang

Defining a Digital Twin-based
Cyber-Physical Production
System for autonomous
manufacturing in smart shop
floors

2019
International Journal
of Production
Research

4 130
Koenraad Bruynseels, Filippo
Santoni de Sio, Jeroen van den
Hoven

Digital Twins in Health Care :
Ethical Implications of an
Emerging Engineering
Paradigm

2018 Frontiers in Genetics

5 82
Nikolaos Nikolakis, Kosmas
Alexopoulos, Evangelos Xanthakis,
George Chryssolouris

The digital twin
implementation for linking
the virtual representation of
human-based production
tasks to their physical
counterpart in the
factory-floor

2019

International Journal
of Computer
Integrated
Manufacturing

6 74 P. Aivaliotis, Konstantinos
Georgoulias, George Chryssolouris

The use of Digital Twin for
predictive maintenance in
manufacturing

2019

International Journal
of Computer
Integrated
Manufacturing

7 74 Ali Ahmad Malik, Arne Bilberg
Digital twins of human robot
collaboration in a production
setting

2018 Procedia
Manufacturing

8 73

Azfar Khalid, Pierre T. Kirisci,
Zeashan Hameed Khan, Zied
Ghrairi, Klaus-Dieter Thoben,
Jürgen Pannek

Security framework for
industrial collaborative
robotic cyber-physical
systems

2018 Computers in
Industry
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2.1. Keyword Mapping and Bibliometric Analysis

A keywords co-occurrence map of selected publications is obtained using bibliometric
analysis in VOSViewer [23] and shown in Figure 4. The main keywords are represented
by circles and labels; colors represent keyword clusters, and the number of occurrences is
shown by circle size. The distance between keywords shows how closely they are linked.
The larger distance between two keywords shows that the correlation between the two
words is weak, while the smaller distance shows a strong correlation. Figure 4 represents
the main keywords in selected literature such as ‘human-robot interaction’, ‘virtual reality’,
‘industry 4.0’, ‘artificial intelligence, and ‘cyber-physical systems’ from different clusters
that are closely related to ‘Digital Twin’. The number of occurrences of each keyword and
linking strength are also shown in Table 2.

Figure 4. Keyword Co-occurrence Network Map.

Figure 5 highlights only the cluster of keywords related to ‘human centricity’ and
‘human centered design’. It shows that selected recent literature has discussed human
centricity in DTs, but it is not emphasized in all articles, as Digital Twin literature has
not considered human participation in previous years. The same trend is also shown in
Table 2, where the keyword ‘digital twin’ has the highest overall link strength of 88 and the
keywords ‘human-centricity’ and ‘human-centered design’ have a combined link strength
of 12, showing a weak correlation as they occur only six times.
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Figure 5. Human-centricity Co-occurrence Network Map.

Table 2. Keywords.

id Keyword Occurrences Link Strength

1 digital twin 49 89
2 human-robot collaboration 25 52
3 artificial intelligence 15 37
4 industry 4.0 12 31
5 simulation 15 28
6 augmented reality 9 27
7 cyber-physical system 9 24
8 virtual reality 16 23
9 assembly 8 20
10 manufacturing 7 19
11 reinforcement learning 11 18
12 human-robot interaction 8 16
13 robotics 5 16
14 cobot 5 14
15 ergonomics 5 13
16 mixed reality 6 13
17 deep learning 4 12
18 safety 6 12
19 smart factory 4 12
20 smart manufacturing 5 10
21 internet of things 3 9
22 collision avoidance 3 8
23 human-centricity 3 7
24 sustainability 2 7
25 human-centered design 3 6
26 predictive maintenance 2 6
27 industry 5.0 3 5
28 robot 2 5
29 brain-computer interface 2 4
30 digital transformation 2 4
31 finite element analysis 3 4
32 operator 4.0 2 4
33 safety training 2 4
34 personalized medicine 2 3
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2.2. Related Reviews

In the last two years, a number of review articles on DT-related themes have been
published, with their focus and outcome summarized in Table 3. Kunz et al. [24] suggested
that nearly all papers “neglect the human factor”. Hosamo et al. [23] concluded that
Occupant Centric Building Design is “least developed”. A review of Digital-Twin driven
smart manufacturing by Lu et al. found that even though DTs for people can increase
understanding of well-being and improve working conditions and training programs, over
95% of DTs are developed for manufacturing assets or factories, not for humans [25]. These
review papers highlight the need for human-centricity in their respective domains. Based
on the literature review, key enabling technologies and application domains for HCDTs are
identified and discussed in the subsequent sections.

Table 3. Summary of previously published Review Papers on Digital Twins.

Ref. Year Focus Outcome

[26] 2021 VR/AR solutions in HRC Challenges for AR/VR solutions are identified, especially with respect to calibra-
tion and tracking of objects

[27] 2022 DTs in Manufacturing, classified by publication
type, year, country, manufacturing sector

Classified literature by simulation method, and attributes of the physical and
digital layers (such as optimization, monitoring, control, etc)

[23] 2022 DTs in Construction and Facility Management Building Information Management (BIM) is a more developed and applied concept
in construction. Research on the integration of BIM and IoT in a DT framework is
further behind

[24] 2022 Augmented Reality in Digital Twins Identified that AR is used for information visualization, guidance and control in
DTs, mostly in areas of Manufacturing, Training, and Construction

[28] 2022 DTs in Process Industry focusing on challenges
and barriers in adoptions, as well as enablers

System integration challenges, data, and IP security, performance issues in real-
time data exchange and organizational issues, are highlighted as major barriers

[29] 2021 Classification of DT literature in safety domain A framework for assessment of the capability of DTs to improve safety.
[19] 2022 Defining Human Digital Twins (HDTs), identify-

ing their attributes and use cases
Attributes of HDTs include physical, physiological, perceptual, cognitive and
emotional attributes. HDTs are commonly used in health industry and product
design and validation.

3. Enabling Technologies

A number of technical challenges exist in the implementation of HCDTs. This paper
discusses the key technologies that can be used for the development of HCDTs and im-
plemented by different researchers and engineers in the literature for different industrial
applications, including Human-Robot Interaction (HRI). The following sections focus on
sensing technologies, computational intelligence techniques involving artificial intelligence,
optimization and control systems, multiple simulations, and visualization tools. In the end,
a generic framework for HCDT is also presented that incorporates the discussed enabling
technologies.

3.1. Human-Focused Sensors

To create HCDT-driven CPS, sensors can be deployed to collect digital data from
humans and other physical systems, which are further integrated with different modeling
and simulation tools to support the whole DT framework. Many mature solutions have
been developed to collect data from physical systems, such as data collection from Cobots.
However, data collection from humans is still in progress. Various human motion tracking
sensors developed in recent decades are able to provide accurate results. However, gaze
tracking [30], facial temperature, and other unobtrusive and miniaturized psychological
and physiological data sensors are continuously evolving, making sensing the mental status
of humans still a point of contention [31]

For accurate human skeletal tracking and joint monitoring, optical and non-optical
sensing devices were used by researchers. Optical marker-based devices, comprising active
and passive markers, such as Optitrack (https://optitrack.com/ (accessed on 12 December
2022)) and VICON (https://www.vicon.com/ (accessed on 12 December 2022)), are widely
used for human motion tracking. On the other hand, optical marker-less technology and
video-based human motion tracking devices, including RGB-D cameras [32,33], infrared

https://optitrack.com/
https://www.vicon.com/
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cameras [34,35], and Kinect [36–39], are also extensively used in literature. Non-optical
tracking devices include wearable inertial and magnetic measurement units (IMUs) [40],
and magnetometers have been used in the past to track human movements, trajectory, and
position while collaborating with cobots. Mechanical motion capture systems are also used
when direct measurement of human motion is essential [41].

Different biological sensors are also being used to measure the physiological data of
humans to monitor human behavior during human-robot collaboration [42]. Physiologi-
cal sensors, such as Electrooculogram (EOG) [43], Electrocardiogram (ECG) [44], Electroen-
cephalogram (EEG) [45], Magnetoencephalogram (MEG) [46], and EMG [47], capture signals
generated from the human body and can infer important information. Lately, these signals
have been broadly used in HRC systems to predict the intention of human operators [46].

Sensors are also required to collect and transmit data on various environmental
parameters such as airflow, humidity, light, noise, temperature, and others. This data
is then used to create an accurate digital representation of the physical environment, which
can be used for simulations, analysis, and decision-making with regard to human comfort
and well-being. For example, sensors can be used to monitor the air quality in a building,
which can help identify potential health hazards or optimize the operation of HVAC
systems in buildings, leading to improved comfort and energy savings.

3.2. Computational Intelligence

Artificial intelligence and machine learning are central to realizing the promise of
HCDTs. In the context of path and motion planning for robotics systems, model-based
control systems are still widely used despite being challenged by data-driven approaches.
Model-based control theory can offer advantages such as explainability and performance
and safety guarantees [48], which are still lacking in AI-based methods. Developing trust
in autonomous systems is an active research area that will be central to achieving symbiotic
human-robot collaboration.

3.2.1. Computer Vision

Creating a high-fidelity Human Digital Twin may involve recognition of human facial
features, expressions, poses, gestures, and so on. Deep Neural Networks and Computer
Vision are being used extensively in literature for this purpose. Yi et al. [32] use RGB-D
sensors for posture estimation using CNN. Dimitropoulous et al. [33] also employed an
array of technologies to enable an AI system to safely and ergonomically interact with
human operators. The AI system uses convolutional neural networks with RGBD sensors
and real-life as well as virtually generated imagery as training data to perform object
recognition as well as human pose estimation. Machine-learning based computer vision
has been widely used in the literature for safe Human-Robot Collaboration [49,50].

3.2.2. Classification Methods

Supervised learning-based classification techniques such as Convolutional Neural
Networks (CNNs), Long Short-term Memory (LSTMs), Hidden Markov Model (HMM),
and Spiking Neural Networks (SNN) have been used in the literature for motion and intent
detection and prediction in HRC [51–53]. Yi et al. demonstrated 3D human pose estimation
using six inertial sensors and a deep neural network, using data fusion by combining a
data-driven and motion-driven approach [40]. Supervised learning is also used to classify
EEG signals in Brain-Computer Interface.

The use of BCI in HMI is still in its early stages. Dmytriyev et al. demonstrated the
use of BCI based on EEG signals in a collaborative assembly setting, where the operator
looks at monitor screens in order to issue commands to the robot controller [54]. Signal
classification (unsupervised learning) has also been used in BCI applications; for example, a
blink detection algorithm is used by [55] in the context of a collaborative assembly with the
aid of an Augmented Reality (AR) device. Machine learning can also be used to improve
the capabilities of robot sensors and actuators, which further enhances human-machine
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interaction. Jin et al. developed a soft-robotic sensory gripper that uses an SVM-based
machine learning algorithm for object recognition through tactile feedback [56].

3.2.3. Reinforcement Learning

In Reinforcement Learning (RL) algorithms, agents learn their control policies through
unsupervised learning without the need for vast amounts of training data. Deep Reinforce-
ment techniques leverage deep neural networks in combination with RL algorithms such as
Q-Learning to solve complex problems and have been shown to surpass human performance
in many situations [57]. Reinforcement learning has found widespread use in localization
and mapping [58], motion planning [59,60], and in the context of decision-making in human-
centric applications [61–63] as further described in the applications sections.

3.2.4. Optimization Techniques

Increasingly data-intensive artificial intelligence methods are being used for compu-
tational intelligence. However, a number of optimization techniques, such as simulated
annealing [64], ant colony optimization [65], Genetic Algorithms [66], have also been used
in DT literature, as described in subsequent sections. Kennel-Maushart et al. [67] use
Newton’s Method to optimize the solution of the inverse kinematics problem to enhance
teleoperation performance via mixed reality for multi-robot systems.

3.3. Simulation Tools

For the development of a DT, different simulation tools and packages are required
to create an interaction between physical objects and their virtual twins. Many free and
commercial simulation environments are available that can be used in the design of DT for
HRI, which will be discussed briefly in this section. However, the selection of a specific
simulation tool is entirely dependent on the DT application.

3.3.1. Numerical Analysis Tools

Finite Element Analysis (FEA) is often necessary for multiphysics simulations of physi-
cal assets involving structural analysis, fluid flow, or thermal loads. Finite Element Analysis
tools, such as ANSYS [68,69], COMSOL [66], and ABAQUS [70], have been frequently used
to create DTs for biomedical applications and physical assets for which health/condition
monitoring is desired [71,72] FEM-based high-fidelity physics simulations are generally
computationally costly. Reduced-Order Models based on FEM Simulations can be a useful
tool to deploy DTs at scale for complex systems [72], for which commercially available
software such as ANSYS Twin Builder (https://www.ansys.com/products/digital-twin/
ansys-twin-builder accessed on 14 December 2022) are becoming increasingly popular [73].
As a high-level numerical computing platform, MATLAB is used in a number of studies
involving DTs in the medical domain [70,74,75], as further discussed in the applications.

3.3.2. Robotics Simulation Tools

Robotics simulators allow developers and researchers to design, test, and evaluate
robotic systems in virtual environments. Gazebo is one of the most commonly used simula-
tors in the context of HCDT literature [60,65,76,77]. It is an open-source simulator that can
be integrated with ROS/ROS2. Robot Operating System (ROS) is one of the most widely
used platforms used by robotics researchers for a broad domain of applications, including
motion planning, control, sensing, localization, and mapping [78]. For robotics manipu-
lation and planning tasks, Gazebo is often used with the MoveIt framework [79], which
provides state-of-the-art algorithms for motion planning, collision checking, kinematics,
control, and visualization of manipulators. MATLAB/Simulink also provides toolboxes for
robotics simulations, such as the Robotics System Toolbox. It can be used in co-simulation
settings with other tools such as ROS or game engines such as Unity. Andaluz et al. [80]
described a co-simulation scenario involving teleoperation and autonomous control of
a robotic arm where Windows Inter-process Communication (IPC) was used to commu-

https://www.ansys.com/products/digital-twin/ansys-twin-builder
https://www.ansys.com/products/digital-twin/ansys-twin-builder
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nicate between MATLAB and Unity. Other commonly used robotics simulators include
CoppeliaSim [81], and NVIDIA Isaac Sim [82].

3.3.3. Game Physics Engines

Game development applications and physics engines developed for the gaming indus-
try are valuable tools for the development and simulation of DTs [83]. The most commonly
used physics engine in the gaming industry is NVIDIA’s PhysX, which is used by Unity
and Unreal Engine, the two most popular game development platforms. In recent years,
these have widely been used in the development of DTs. For example, Kuts et al. [84] imple-
mented a custom C# script in the Unity game engine to develop a controller for the DT of a
Motoman GP8 industrial robot created using Autodesk 3ds Max and Autodesk Maya. Other
works that employ game engines are discussed in subsequent sections [30,63,77,85–88]

3.4. Data Visualization and Interaction

Different 3D visualization and rendering software is used by researchers for design
visualization as per the requirements of the application area. In immersive user experiences,
AR/VR technologies offer new possibilities. The visualization tools and technologies that
can be used with DTs are briefly discussed in this section.

3.4.1. Photorealistic Rendering

The creation of virtual models in DTs begins with 3D modeling tools, which can be
further used by simulation tools. Some of the tools used in the cited literature include
Blender [89], Autodesk 3ds Max [68,90], CATIA [91] and Siemens NX [92]. In addition, the
ability of these tools to create photorealistic rendered images can be used to create training
data for ML algorithms and to provide a better realistic user experience for the design and
inspection of DTs. In many cases, this is done by exporting the models into platforms such
as NVIDIA Omniverse [93], Unity [26], and Unreal Engine [86].

3.4.2. Immersive User Experience

The use of DTs creates opportunities to create a rich immersive user experience through,
for example, the use of virtual reality, augmented reality, and mixed reality. In augmented
reality, virtual objects are superimposed on real images, using a Head Mounted Display
(HMD) such as Microsoft Hololens, by using sensors and trackers along with handheld or
fixed displays, and AR development tools such as AR Toolkit [94], Microft Mixed Reality
Toolkit [24], and PTC Vuforia [92,95]. Mixed Reality (MR) allows for co-existence and
interactivity between the physical and the virtual environment [96], which can be used,
for example, for intuitive, user-friendly teleoperation of robotic manipulators [97]. In
design and manufacturing, AR systems have found widespread applications in training
and guiding operators in areas such as operations, maintenance, and quality assurance;
however, user acceptance is limited by challenges such as cost, complexity, weight, data
security, and privacy issues in AR systems [98]. Interactivity in VR/AR may not be limited
to handheld controllers with improvements in gesture tracking through computer vision.
For example, Ref. [99] used four monochrome cameras mounted on a VR HMD (Oculus
Quest VR) for accurate detection of hand motion, which may be used for a more immersive
interactive experience.

Human cognitive ability can be enhanced by employing not just a visual relay of
information to the operator through a mixed reality approach as required, but also through
haptic feedback and auditory cues and communication. Advances in speech recognition,
text-to-speech, and turn-based conversational systems can potentially enhance human-
robot interaction. However, there are still major challenges since conversational systems
are trained using specific human-human corpora, and their generic practical utility in
human-robot interaction remains unproven [100]. With increasingly sophisticated Large
Language Models (LLMs) such as Open-AI’s ChatGPT, it becomes foreseeable for rich
impromptu human-machine interaction in industrial settings to be carried out via two-way
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text and voice communication through a fusion of technologies such as Task and Motion
Planning, Vision, Language, and Control in Robotics [101].

3.5. Data Management and System Integration

In a Human-Centric Digital Twin, there is interconnectivity between humans, robots
(or miscellaneous machines), the environment, and their DTs in the physical and virtual
domains. In the implementation of Digital Twins, a wide range of tools and technologies for
data management, including data transmission from devices and sensors, data storage, and
data fusion, have been used. Industrial IoT platforms such as Siemens MindSphere and GE
Predix are gaining popularity for system integration in DTs [102], especially for conventional
infrastructure management. In Human-Centric Digital Twins, the cited literature uses more
research-oriented tools and standards, such as ROSBridge [79,86,94], MQTT [32], and MTCon-
nect [87] for communication. ROSBridge is a WebSocket server that allows web browsers
to talk to ROS. MQTT (Message Queuing Telemetry Transport) is a lightweight machine-to-
machine messaging protocol. MTConnect is an open-source standard that provides a semantic
vocabulary for manufacturing equipment. System integration to ensure a seamless, secure
flow of data to represent physical infrastructure, especially for legacy systems, remains an
important challenge in the deployment of DTs [28].

A generic framework for HCDTs is presented in Figure 6, in which many of the devices
and methods that may be employed are listed. A virtual model of the environment can be cre-
ated using CAD models or by reconstruction using image-based or 3D point-based modeling
approaches [103]. The design and selection of sensors, computational tools, simulation tools,
data visualization tools, and data management tools in the integrated system are carried out
according to the specific requirements of the HCDT based on the application area.

Figure 6. Enabling Technologies and framework of Human-Centric Digital Twins in Industry 5.0.

4. Application Domains

Digital Twin Technology has recently been applied in a range of industries and scenar-
ios, including Smart City construction [104], monitoring and optimization of physical assets
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including machine tools, vehicles, machinery, mechanical structures, and materials [27–29].
Here, we have identified and placed particular emphasis on key application domains where
human-centricity is of paramount importance.

4.1. Ergonomics and Safety

In Smart Factories, as humans and collaborative robots begin to share workspaces
without borders, it is necessary to ensure human safety and optimize ergonomics during
such interactions. Cobots are designed to be intrinsically safe due to speed, force, and torque
limits and design considerations. Additionally, there is extensive literature, guidelines,
and standards dealing with risk assessment and safety requirements for human-robot
interaction [105]. Havard et al. [106] created a DT involving the co-simulation of a CPPS
using Dassault Digital Factory Suite and Unity 3D for an assembly operation using a UR10
cobot. The Digital Twin was employed to carry out a safety and ergonomics assessment in
VR. Agnusdei et al. [29] provide a framework to assess the capability of a DT to improve
safety based on three criteria. The first relates to data acquisition, where real-time data
acquisition is heavily favored. The second criterion relates to data processing. DTs use
statistical methods, multi-physics modeling, or artificial intelligence-based methods for
data processing. And the third criterion is about the source of risk, which can be the
machine, the human, or human-machine interaction.

In HRC safety, collision avoidance is an important challenge, commonly addressed in
literature [107]. A range of techniques are employed in literature where DTs are employed
for safe contactless interaction with human operators. In ref. [36], an Oculus Rift HMD and
Kinect sensor are used by a collision avoidance control algorithm. Liu et al. [37] employ a
novel deep reinforcement learning algorithm, IRDDPG, to allow a Cobot to reach a target
state while minimizing the risk of collision with a human hand, modeled as a bounding
box using a Kinect V2 depth camera. In numerous studies, DTs have been leveraged to
optimize ergonomics in a manufacturing setting. Greco et al. used a DT simulation in
Siemens Tecnomatix Jack and optical motion capture using Microsoft Kinect (R) and an
indigenously developed wearable motion capture system to monitor and optimize the
ergonomics during a manufacturing task by evaluating and minimizing operational health
and safety-related risk factor metrics [38].

Choi et al. [39] created a DT of an HRC scenario with a human operator and a UR3
cobot using DL algorithms applied to 3D point cloud data from two Azure Kinect depth
sensors and conveyed Safety and Task information to the human operator using a Mixed
Reality HMD (Microsoft HoloLens 2). Table 4 presents a brief summary of related literature.
A generic layout for HCDTs for ergonomics and safety is shown in Figure 7. The framework
aims to enhance human well-being and safety by monitoring biological sensor data and
creating a human intent model, which can be used by machine intelligence to optimize
ergonomics and safety.

Table 4. Applications in Ergonomics and Safety.

Ref. Year Tools Proposed Idea

[108] 2016 Custom GUI A custom software, “Human-Industrial-Robot-Interaction-Tool” HIRIT was developed for safety evaluation
on HRC, using depth sensors for human motion capture and Genetic Algorithm for safety distance estimate

[32] 2022 CNN
Motion Capture

Human pose estimation using RGBD Camera is used for human localization and collision avoidance in
HRC

[85] 2021 OpenSim
Unity

Ergonomic analysis of pick-and-place task using motion capture, biological sensors and a musculoskeletal
human model

[109] 2021 ROS Ergonomic Analysis and dynamic scheduling in an HRC scenario with a personalized Human Digital Twin
with motion analysis and a skin surface

[76] 2022 ROS Gazebo
Open Dynamics En-
gine

Implementing an Actor-Critic based Reinforcement Learning algorithm to ensure collision-free HRC

[110] 2022 Siemens Jack
Unity

Ergonomic human-centered design of a tractor dashboard using VR simulations in Unity, ergonomics
analysis in Siemens Jack, incorporating analysis of human motion and physiological sensor data
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Figure 7. Generic framework for HCDT for safety and ergonomics.

4.2. Training and Testing of Robotics Systems

Digital Twins have found a lot of utility in the training and testing of robotics systems.
Training supervised machine learning algorithms is highly data intensive. DTs can provide
a high-fidelity virtual environment to generate a vast amount of test data to viably train
an ML model and transfer it to the physical system/robot. NVIDIA has demonstrated
this capability using its newly launched platform, NVIDIA Omniverse, with industrial
partners such as Pepsi and Amazon to create DTs of warehouses and distribution centers
for training AI models [111], as shown in Figure 8.

(a) Omniverse Digital Twin (b) Amazon Warehouse

(c) Digital Twin for training Vision Models (d) Warehouse Management

Figure 8. Nvidia Omniverse based DTs for Amazon and Pepsi [111].
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Mania et al. employed photorealistic simulations rendered in a game engine (Unreal
Engine 4) to increase the performance of the perception system of a mobile robot by
comparing its detection results with an expected result that is acquired through physics
simulations in the virtual environment [86]. Table 5 presents a brief summary of related
literature.

Table 5. Applications in Training of Robotics systems.

Ref. Year Tools Proposed Idea

[89] 2021 CNN
CAD/Blender

Learning to recognize the orientation of arbitrarily placed plastic parts using CNN based ML model trained
via a DT generated training set training

[86] 2020 ROS
Unreal Engine 4

Improving Robot Perception by comparing real visual sensor data to expected data generated by photore-
alistic virtual model

[112] 2022 MATLAB Using a DT for CNN, pose estimation, and transfer to Yumi Cobot for imitation and teleoperation
[65] 2019 Python

ROS Gazebo
Using Ant Colony Optimization to train a robot to reach target states while avoiding obstacles, validated
in the DT before transferring to real robot

[87] 2022 Unity
ROS

VR based control and robot programming Cobot for a pick and place task and its DT using ROS, Unity,
and MTConnect.

[88] 2022 Unity
HoloLens

Ad-hoc Robot Navigation and safety visualization in HRC using AR, hand gesture control and an Android
application

[77] 2021 ROS, Gazebo,
MoveIt, Unity

VR based ad-hoc DT-enabled cobot control in pick and place tasks validated by a user study

[30] 2021 Unity
HoloLens

In a DT-enable HRC scenario, using DL (Retina-Net) for object recognition; eye tracking and hand gestures,
voice commands to control the system and a DT for visualization through HoloLens

[62] 2021 Siemens Tecnomatix Used a DT of a PLC controlled Cobot for Deep Q-Networks (DQN) training to develop the capability of
dynamic robust scheduling in a manufacturing setting

[63] 2021 Unity
TensorFlow

Reinforcement Learning training using TensorFlow utilizing a DT of Robotic arm for pick and place task

[59] 2022 V-REP
ROS

Using Deep Reinforcement Learning to train robot policy using DT for grasping operations in the context
of assembly

[60] 2021 ROS Gazebo An architecture for reinforcement training in ROS on a DT, followed by transfer to real is discussed with
the help of case studies on a Fanuc Industrial Robot and fleet management of mobile robots

[95] 2022 Vuforia
Unity

Implementing multi-robot collaborative teleoperation using AR and DT, using Reinforcement Learning for
robot motion planning.

A generic framework for using HCDTs for training and testing of robotics systems is
shown in Figure 9. Here, the intent is to realize the aim of a symbiotic human-robot relation-
ship, by training a deep learning or deep reinforcement learning algorithm using human
and machine data fed into the DT, which includes predicting human intent and creating a
machine policy to assist the human in a flexible intuitive collaborative environment.

4.3. User Training and Education

VR/AR technologies are already widely used in training and teaching [113] in educa-
tional, industrial, and military applications. The use of AR/VR headsets enables operators
in process industries to get a better understanding of the process, for remote assistance
and operator training [28]. Um et al. showed that the distribution of computing power
allows for image recognition or various detection algorithms to be used seamlessly with
Microsoft Hololens to guide the operator in a production setting. DTs have also been used
in enhanced surgical training, where the use of DTs with haptic feedback is reported to
increase accuracy and reduce cognitive load on surgeons [114].

In light of the COVID-19 pandemic and subsequent travel restrictions, there is increased
recognition of the utility of AR as a distance learning and remote assistance tool in education
and industry. For example, a case study [115] from PTC Vuforia highlighted how local field
engineers from Rockwell Automation used AR as a remote assistance tool to get virtual
support from senior engineers who could not be present due to travel restrictions for the
installation of specialized equipment. In VR-based training, the use of artificial intelligence
and optimization methods has shown to be effective tools for adaptive, customized training
based on the user’s cognitive and physiological abilities [116]. Unity and C# were used
by ref. [117] in a VR-based training with turn-based dialog for adaptive de-escalation training.
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Figure 9. Generic framework for Robotics System Training.

In ref. [94], an AR Headset (Microsoft HoloLens) is used to receive input from ROS
through the Rosbridge communication package to enhance the user’s experience and per-
ception. VR/AR-based training with DTs is receiving a lot of interest in a wide range of
industries, such as construction [118,119], mining [120]. Using immersive virtual simula-
tions, the safety perception of HRC in construction workers is tested and enhanced in [121].
Matsas et al. [122] created a virtual training and testing environment using 3D graphics
generated in 3ds Max in a gaming engine (Unity 3D). Using a VR HMD, user evaluations
of safety techniques adopted by the HRC AI are carried out and analyzed. Wang et al. [35]
used a combination of an industrial camera, a VR HMD, and Unity for the assessment of
Welder behavior in a teleoperation setting with a UR5 Cobot.

In the context of user training and education, the literature shows that immersive
technologies, audio-visual feedback, and the use of artificial intelligence with Digital Twin
technology are central to achieving adaptive, intuitive, and customized user assistance and
training experiences.

4.4. Product and Process Design, Validation and Testing

The prospect of using DTs in combination with immersive technologies such as virtual
reality and augmented reality (VR/AR) can be utilized to enhance and enrich the process
and product design in manufacturing settings. Malik et al. [123] leveraged DTs and
virtual reality for HRC design and planning. The proposed architecture uses bi-directional
information sharing between the physical and virtual robots and a human operator using
TCP/IP communication, and motion capture technology. In the VR environment, assisted
by a virtual assistant (chatbot), designers will have the ability to manipulate objects and
study the HRC design from the perspective of visibility, reach, and ergonomics to optimize
cycle times and safety. The framework proposed by the authors is shown in Figure 10.
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Figure 10. VR enhanced Digital Twin framework for HRC design [123].

Kousi et al. [79] employed ROS Gazebo, MoveIt, and Lanner Witness Simulation in an
automotive assembly case study, where a DT-based system was used to generate alternative
configurations for the assembly process with a dual-arm mobile robot and human operators
and validate the system’s performance. Wang et al. present a framework for Human-Robot
Collaborative Assembly using DTs that proposes a data fusion and visualization service to
process information coming from human-centric as well as robot sensors [124]. The data is
subsequently processed and used to generate events, schedule tasks, and run the robot’s
control service. Table 6 presents a brief summary of related literature.

Table 6. Applications in Design, Validation, and Testing.

Ref. Year Tools Proposed Idea

[125] 2018 Siemens Tecnomatix Using a DT in an HRC assembly scenario to optimize workstation layout by analyzing collision, placement,
human reach and vision in the virtual environment

[126] 2019 Camunda BPM,
Java, XML3D

In a factory floor setting, analysis of human motion and action categorization (such as walking, picking,
screwing); subsequent transfer to virtual environment for process optimization, and cycle time and
ergonomics evaluation

[127] 2021 Siemens Tecnomatix Tested, analyzed and optimized a collaborative assembly case study for safety, cycle time, and productivity
using a DT with a UR5 cobot

[128] 2019 Unity
HoloLens

Using AR and DT in CNC machining operations for visualization and communication (voice/gesture
commands)

[66] 2022 COMSOL Multi-
physics

DT of an Optical Fiber Drawing Process is used for real-time monitoring and evaluation (using DL
algorithms) of process parameters and quality control

[129] 2019 Siemens Tecnomatix Process planning and configuration for manufacturing of an impeller using industrial robots, machine
tools, and an AGV in a with a DT based Cyber-Physical Production System (CPPS)

[130] 2021 VINCENT
Unity

Creating a DT of a proANT 436 AGV visualized in a projection system using Unity for material flow
simulation in a virtual logistic system

[64] 2022 GAMS HRC Assembly Line Balancing Problem (ALBP) is simulated using General Algebraic Modeling System
(GAMS) Software, Simulated Annealing and Mixed-Integer linear programming (MILP)

[90] 2019 Unity, Visual C#, Au-
todesk 3ds Max

Implementing a DT of an Intelligent Workshop created using 3ds Max and Unity with real-time synchro-
nization for monitoring and digitization

[131] 2021 AI, Deep-Q Net-
work, GA

Implementation of a reinforcement learning based scheduler for dynamic production scheduling in a smart
factory with real machine and operation sensor data
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Table 6. Cont.

Ref. Year Tools Proposed Idea

[61] 2022 Openpose
DDPG

Using Deep Reinforcement Learning (DDPG) for motion planning with Openpose and Semantic Segmenta-
tion for human intent and task prediction in a collaborative assembly-commissioning with an automotive
generator as a case study

[132] 2021 D-DDPG Presented a DT-based HRC assembly framework integrating all kinds of data from digital twin spaces.
Double deep deterministic policy gradient (D-DDPG) is applied to optimize HRC strategy and action
sequence

[133] 2022 Siemens Tecnomatix,
CAM NX

Human-centered design of DT-assisted collaborative shoe polishing, simulated on Tecnomatix, using a
novel polishing tool controlled by CAM NX on a UR5 robot

[134] 2021 Java Implementing a DT-driven smart manufacturing workshop to optimize mass customization for increased
flexibility

The literature shows that DTs have been leveraged within this application domain to
optimize cycle time, enhance workstation layout, ergonomics, and flexibility, and carry out
dynamic scheduling, line balancing, and process planning.

4.5. Security of Cyber-Physical Systems

Security and reliability are important issues in DTs, more so in HCDTs. Humans may
be involved in the planning and execution of the attack and may also be the target of an
anthropocentric CPS (ACPS). In the context of a Collaborative Robotic Cyber-Physical
System (CRCPS), Khalid et al. present an assessment of attack types, possible effects,
and severity and present a framework, shown in Figure 11, for a secure CRCPS based on
authentication and data integrity checks and an independent module to compare real-time
sensor data to a pre-stored specifications library and report any discrepancies [135].

Figure 11. Framework for Human-Robot CPS under Cyber-attack [135].

Security becomes even more central in mission-critical applications such as robotic
surgery. Laaki et al. investigate the challenges of latency and security in teleoperated
robotic surgery over mobile networks [136]. The authors used an HTC Vive HMD with a
haptic feedback controller and a DT created in Unity3D with a 4G mobile connection routed
through a VPN server, secured via password protection and biometric authentication, and
highlighted security issues such as protection of intellectual property rights, protection of
data, and denial-of-service attacks.

Digital Twins and their enabling technologies can themselves be used for enhancing
security. Deitz et al. set out the formal requirements of a security framework that employs
DT simulations to detect, analyze, and handle security incidents [137]. Blockchain technol-
ogy can be utilized to ensure the reliability and security of Digital Twin data for CPS [138].
A brief description of some other works in this area is shown in Table 7.
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Table 7. Applications in Security of Cyber-Physical systems.

Ref. Year Proposed Idea

[137] 2020 Sets out formal requirements of a security framework that employs DT-based simulations to detect, analyze, and handle
security incidents

[138] 2022 Demonstrates the use of blockchain technology to ensure reliability and security of DT data for CPS
[139] 2022 A parallel metaverse is envisioned that leverages Blockchain technology to ensure data reliability.

4.6. Rehabilitation, Well-Being and Health Management

In the medical domain, Human Digital Twin technology has found more maturity and
acceptance. Medical Digital Twins (MDTs) have been used in many areas, including pul-
monology [140], orthopedics [91], and hepatology [75]. In a recently publicized campaign,
the National Football League (NFL), in partnership with Amazon AWS is working towards
creating a ’Digital Athlete’ with the aim of improving player health and safety [141]. This
may further increase public interest in MDTs.

MDTs may involve using clinical imaging techniques to develop patient-specific
solutions, for example for the human tongue [73], tibia [69], and aortic walls [70]. Table 8
presents a brief description of these and other related works.

Table 8. Applications in Rehab, Well-being and Health Management.

Ref. Year Tools Proposed Idea

[140] 2021 CNN, Oculus MR MR based Surgery training and analysis for Video-Assisted Thoracoscopic Surgery (VATS) using patient
CT image for mesh generation, visual rendering, and haptic feedback

[91] 2021 CATIA, PCA Using patient-specific DTs developed via CT scans by comparing the real ankle of patients to the DT via
machine Learning, the tibiotalar joint axis is identified

[75] 2019 MATLAB, ROM Patient Specific computational model of human liver anatomy was created using Reduced Order Modelling
and Statistical Shape Analysis, solved using Sparse Subspace Learning coupled with an FE Solver

[73] 2021 ANSYS Twin
Builder

Creating patient-specific FE model of human tongue, and its ML-based reduced order model for simulate
nonlinear behavior of tongue.

[69] 2021 3D Slicer, Simple-
ware, ANSYS

Patient-specific FE model of tibial fracture based on 3D X-Ray imagery to assess stress distribution and
fracture risk under different possible interventions

[70] 2018 MATLAB, Tensor-
Flow, ABAQUS

Stress distribution on aortic walls using Neural Network trained using FEM, where Aorta shape encoding
uses PCA applied on real patient geometries

[68] 2023 ANSYS
3ds Max

Quasi-static and dynamic analysis for biomechanical simulation of accidental scenarios during HRC using
FEM

[74] 2020 MATLAB Used machine learning classifiers and statistical tools to model athlete performance

The use of DTs in medicine is not without challenges or apprehensions. Data-driven
patient-specific medical care can potentially lead to segmentation and discrimination, with
an increased need to ensure privacy and transparency in data usage [142].

Figure 12 illustrates a generic layout for healthcare applications. Patient-specific DTs
are generated using information from sources such as medical imaging, biological sensor
data, and medical informatics. Analysis and dagnostic data based on the DT is relayed to
healthcare professionals, where DT-enabling technologies may aid healthcare professionals
in training and enhancing robotic surgery through sensory and haptic feedback.
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Figure 12. Generic framework for DTs in healthcare.

5. Discussion

Cyber-physical systems with synergistic human-machine interaction, aided by Human-
Centric Digital Twins are slowly making their mark in multiple application domains.
Regarding the human element in Digital Twin applications, the utility of different sensors,
Human Digital Twin inputs, feedback mechanisms, and prevalent types of machine learning
algorithms in the identified application domains are shown in Table 9. The utility is ranked
as low, medium, or high and displayed graphically.

Table 9. Guidelines for enabling technologies in application domains.

Legend: High Utility: Medium Utility: Low Utility:

Ergonomics Robotics User Design Security Health
& Safety Training Training & Validation of CPS & Well-Being

Sensors
Biological Sensors
Visual & Motion
Direct Input

HDT Inputs

Pose
Hand Gesture
Facial Expression
Gaze
Motion Prediction
Language (NLP)
BCI

Machine Learning
Requirements

Optimization
Deep Learning
Reinforcement Learning

Feedback and Interface
Audio
Visual
Haptic

As shown in the table, in order to optimize ergonomics and safety in industrial
settings, biological and visual sensor data is often used for pose and motion recognition by
adopting deep learning and relating safety-critical information back to the human operator.
Human supervisory control and intervention are necessary to ensure real-time safety during
operation or to assess and optimize different offline scenarios. For training and testing
robotic systems, Sim2Real technology can include the human element by generating virtual
training data for deep learning models and testing agent policies using reinforcement
learning (RL) techniques in an environment with a digital human created with the aid of
human sensor data, for example using visual and motion sensors. This can additionally be
aided by human intervention through the use of behavior cloning (BC) methods in RL.

The use of HCDTs with VR/AR may be leveraged to create a personalized and adap-
tive user learning and collaborative experience. The audio-visual interface and direct input
devices play a central role in this application, which may be aided by artificial intelligence
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by leveraging Large Language Models (LLM) or for adaptive learning. The supervisors
of the training regime should have access to intervene as required. Visual and motion
sensors are central to process design applications. HCDTs, using optimization techniques
and deep learning, can optimize cycle time, enhance workstation layout, ergonomics, and
flexibility, and carry out dynamic scheduling, line balancing, and process planning. An
immersive visual interface can be very beneficial for human designers to interact with the
DT for process monitoring and assessment.

In security applications, biometric and facial recognition, motion sensing, and the
use of data security techniques, including blockchain technology, are central. Here, deep
learning techniques can be leveraged to provide safeguards against the numerous types of
cyberattacks. Human intervention is required only in the event of any detected security
breach or threat. HCDTs already have a lot of acceptance in medical applications, where
DTs of patients are created using medical imaging and biological sensors, which can be
subjected to deep learning algorithms or FEA analysis. These are used by doctors who can
train and operate with the aid of immersive sensory feedback, including haptic feedback
and robotic assistance.

6. Conclusions

In this research work, a state-of-the-art literature review on Human-Centric Digital
Twins (HCDTs) and their enabling technologies is conducted. A key shortcoming observed
in current DT literature is that the focus is almost entirely on the physical assets of a CPS and
not on human operators. In the coming years, an increasingly ambitious and sophisticated
industry and process-specific DTs may address this shortcoming by developing HCDTs.
A generic framework is proposed to underline the enabling technologies, such as human-
focused sensors and computer vision, that can be used for the creation of HCDTs. The
enabling technologies for this purpose have received considerable individual attention.
For example, AI-driven algorithms for a range of problems such as object recognition
and collision avoidance or using DTs for monitoring and supervision of physical assets,
etc., have reached some degree of maturity. However, there is a lack of literature on how
all these enabling technologies are utilized together in a synergistic manner to enhance
human-machine interaction in industrial settings.

We identified six key application areas for DTs with strong human involvement, which
are ergonomics and safety, training and testing of robotics systems, user training and
education, product and process design, validation and testing, security of cyber-physical
systems, and finally rehabilitation, well-being, and health management. Implementation
frameworks for the selected domains highlight the workflow and desired outcomes (such
as optimization of ergonomics, security policy, task allocation, etc). It has been found that
the use of HCDTs in literature on the security of CPS is currently underdeveloped and
merits further exploration. DTs are being extensively used to train robotic systems by
simulation and data generation in a virtual environment. These can be further enriched by
including more human-focused sensor data to enable synergistic, intuitive collaboration.
The development of increasingly specialized modeling tools and the ubiquitous spread
of artificial intelligence can transform this expert-driven paradigm towards becoming
user-driven. Over time, the use of HCDTs is expected to considerably expand owing to the
immense interest shown by researchers and industry.
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