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ABSTRACT 24 

The preterm infant microbiota is dominated by Enterobacteriaceae (Escherichia, Klebsiella 25 

or Enterobacter spp.), Enterococcus and Staphylococcus spp. Recent work has 26 

demonstrated the development of this microbiota is predictable and driven by simple 27 

microbe–microbe interactions. Because of their systemic immaturity, including an 28 

underdeveloped immune system, preterm infants are susceptible to a range of infections. 29 

Numerous retrospective studies have examined the association of the preterm gut 30 

microbiota with diseases such as necrotizing enterocolitis (NEC), early-onset sepsis and 31 

late-onset sepsis. To date, no single bacterium has been associated with infection in these 32 

infants, but a Klebsiella/Enterococcus-dominated faecal microbiota is associated with an 33 

increased risk of developing NEC. Staphylococci aid and enterococci inhibit 34 

establishment/maintenance of gastrointestinal Klebsiella populations in preterm infants, 35 

though the mechanisms underlying these interactions are poorly understood. Klebsiella spp. 36 

recovered from healthy and sick preterm infants display similar antimicrobial resistance and 37 

virulence profiles, giving no clues as to why some infants develop potentially life-threatening 38 

diseases while others do not. The identification of cytotoxin-producing Klebsiella oxytoca 39 

sensu lato in the gut microbiota of some preterm infants has led to the suggestion that these 40 

bacteria may contribute to NEC in a subset of neonates. This mini review highlights current 41 

knowledge on Klebsiella spp. contributing to the preterm gut microbiota and provides 42 

insights into areas of research that warrant further attention. 43 

  44 
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The genus Klebsiella 45 

As of February 2023, the genus Klebsiella (family Enterobacteriaceae) encompassed 13 46 

species of bacteria with validly published names and one species with a non-valid name. 47 

Raoultella spp. are also considered part of the genus Klebsiella (Figure 1) [1,2]. Klebsiella 48 

pneumoniae, Klebsiella oxytoca and Klebsiella aerogenes (formerly Enterobacter aerogenes 49 

[3]) have received most attention from a clinical perspective, with K. pneumoniae responsible 50 

for up to 15 % of healthcare-associated infections and increasing levels of antimicrobial 51 

resistance being reported for all species [4–7]. Klebsiella spp. are found in the environment, 52 

and contribute to the commensal gut microbiota of humans and animals. Gut colonization 53 

with Klebsiella spp. contributes to extraintestinal infections in the immunocompromised and 54 

clinically vulnerable [7]. K. oxytoca and K. aerogenes, and to a lesser extent Raoultella spp., 55 

represent emerging pathogens [4–6]. 56 

 57 

In recent years, the adoption of whole-genome sequencing in taxonomic, clinical and 58 

epidemiological studies has led to an increased understanding of the genetic diversity of 59 

Klebsiella spp. (Figure 1). K. pneumoniae has a diverse population structure, representing a 60 

complex of five species [K. pneumoniae, K. quasipneumoniae (subsp. quasipneumoniae and 61 

similipneumoniae), “K. quasivariicola”, K. africana, K. variicola (subsp. tropica and variicola)] 62 

[7]. The K. oxytoca complex comprises several distinct phylogroups (Ko) defined based on 63 

differences in blaOXY sequences [K. michiganensis (Ko1, Ko5), K. oxytoca (Ko2), K. 64 

spallanzanii (Ko3), K. pasteurii (Ko4), K. grimontii (Ko6), K. huaxiensis (Ko8) and three 65 

unnamed novel species] [4]. The contribution of K. oxytoca to human clinical infections has 66 

likely been over-estimated, with K. michiganensis more prevalent based on retrospective 67 

analyses of publicly available genome data [4,8]. 68 

 69 

Preterm infants 70 

Preterm describes infants born prematurely [i.e. <37 weeks gestational age (GA)], and they 71 

are often of low birth weight (LBW; <2.5 kg). Approximately 11 % of global live births are 72 

preterm, and account for a third of all neonate deaths [9]. Intestinal colonization of preterm 73 

infants occurs in neonatal intensive care units (NICUs), with empiric antibiotics administered 74 

to most, but not all, preterm infants in the first days of life to cover possible early-onset 75 

infection from birth contributing to the development of a gut microbiota dominated by 76 

Enterobacteriaceae, Enterococcus and Staphylococcus spp. [10,11]. Between 1 and 10 % of 77 

preterm infants harbour Klebsiella spp. in their faecal microbiota [12], but this proportion can 78 

be much higher depending on geographical location [10,13]. Colonization with these, and 79 

other opportunistic pathogens, along with an unstable microbiome and systemic 80 

developmental immaturity (especially with respect to immune and gastrointestinal functions) 81 
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contribute to nosocomial infections such as early-onset sepsis (EOS; < 72 h after birth), late-82 

onset sepsis (LOS; ≥ 72 h after birth), necrotizing enterocolitis (NEC; infection and 83 

inflammation of the small and large intestines that can progress to necrosis, sepsis and 84 

death) in this patient group [12]. Infants born at <32 weeks GA and of very low birth weight 85 

(VLBW; <1.5 kg) are particularly susceptible to infection. A recent study in China (Sina-86 

Northern Neonatal Network) looked at the incidence of LOS in 6,639 VLBW infants admitted 87 

to 35 different NICUs over a 3-year period. From the LOS cases recorded, 456/1,511 (30 %) 88 

positive cultures were obtained from blood: among these K. pneumoniae was the bacterium 89 

most often associated with LOS (147/456, 32 %) [14]. However, it is clear from other 90 

retrospective studies that the proportion of preterm infections that K. pneumoniae contributes 91 

to (between 9 and 76 %; summarizing data for sepsis, which includes EOS and LOS; 92 

Supplementary Table 1) depends on geographical location. 93 

In this review we aim to summarize the current understanding of Klebsiella spp. in relation to 94 

preterm infants and other information regarding Klebsiella that may be relevant to these 95 

neonates, and to highlight the need for further research to unravel the role(s) of Klebsiella 96 

spp. in this patient population. 97 

 98 

Retrospective studies 99 

What do we know or understand about Klebsiella spp. and their interactions with preterm 100 

infants? The answer is very little. This is largely because there has, until recently, been very 101 

little interest in or focus on these bacteria in this patient group. Curation of a PubMed and 102 

Web Of Science search for original research articles published in the last 5–10 years using 103 

the terms “Klebsiella” and “preterm infants” reveals many available scientific articles are 104 

retrospective/observational studies (Supplementary Table 1) [15–50]. Most of these studies 105 

do not focus on Klebsiella spp. specifically, instead they include information on a range of 106 

bacteria, predominantly ESKAPE pathogens (Enterococcus faecium, Staphylococcus 107 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, 108 

Enterobacter spp.), that are known to be associated with nosocomial infections, antimicrobial 109 

resistance and/or preterm infants and different neonatal health outcomes. The overriding 110 

message is that Klebsiella spp., along with a range of other opportunistic pathogens, 111 

contribute to disease in preterm populations globally. No single bacterium has been linked to 112 

preterm-associated infections. However, faecal microbiotas dominated by Klebsiella, or 113 

Klebsiella and Enterococcus spp. have been described as two of six preterm gut community 114 

types, with the latter type more commonly associated with a NEC diagnosis [10]. 115 

 116 

While retrospective studies are relatively inexpensive to run and allow consideration of 117 

multiple outcomes, with outcome data already available, they are not without disadvantages. 118 
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They do not provide a true understanding of the relationship between preterm infants and 119 

different bacterial groups, including Klebsiella spp. It is often not possible to link time of 120 

exposure of a preterm infant to a specific bacterium to subsequent infection, and high 121 

numbers of patients are required to detect rare associations. Differences in definitions of 122 

disease state and inclusion criteria also influence study outcomes [10]. Significant biases 123 

may be introduced to retrospective studies based on culture medium and/or cultivation 124 

environment selected: many of the documented studies have relied on clinical 125 

microbiological data generated using a broad range of microbiological cultivation techniques 126 

known to pick up easily cultivated microbes or predominant clinical isolates. To investigate 127 

the association/role of Klebsiella spp. with preterm infant health outcomes, study design 128 

should include specific focus on Klebsiella, whether that be using appropriate cultivation 129 

methods [Klebsiella-specific agar(s) and/or culture conditions] or molecular tools and 130 

analyses focused on Klebsiella-specific genetic targets. In addition, such research should 131 

involve as wide a range of preterm infants as possible and a range of sample types, not 132 

simply those preterm infants with specific clinical outcomes/conditions which necessitate 133 

sampling (e.g. blood, sputum, stool) for clinical microbiology aimed at informing subsequent 134 

therapeutic regimes and identifying/monitoring outbreaks. 135 

 136 

Klebsiella spp. and the preterm infant gut microbiota 137 

The younger their GA, the more underdeveloped are the organs and immune system of 138 

preterm infants. However, as the immune system of full-term infants is also immature at 139 

birth, the immaturity of preterm infants’ other systems (including intestinal motility and 140 

secretions, digestion, absorption, mucosal surfaces, barrier function and circulatory 141 

regulation) also contributes to their increased susceptibility to neonatal infections [51]. 142 

 143 

Increased exposure to maternal cytokines (e.g. TNF-α, IL-1, IL-6 and IL-8) can have 144 

immunomodulatory effects on preterm infants [9,52]. It has been proposed that these may 145 

contribute to protection of VLBW infants against infection and the acceleration of lung 146 

maturation [53]. Although the preterm immune system is underdeveloped, the gut of these 147 

neonates is highly immunoreactive and has an exaggerated pro-inflammatory response in 148 

NEC [51,54]. The lipopolysaccharide receptor TLR-4 contributes to normal development of 149 

the small intestine, but in preterm infants its expression is increased compared with full term 150 

infants; its in vivo activity can be inhibited by amniotic fluid and breast milk, and reduced by 151 

sodium butyrate [54]. TLR-4 of preterm infants is activated in utero and by Gram-negative 152 

members of the preterm gut microbiota (Enterobacteriaceae, including Klebsiella spp.): its 153 

activation leads to recruitment of pro-inflammatory T helper 17 cells and release of pro-154 

inflammatory cytokines (IL-17, IL-22), eventually leading to erythrocyte death, mucosal injury 155 
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and translocation of bacteria to the microvasculature underlying the intestinal epithelium [54]. 156 

TLR-4 activation also mediates loss of enteric glia, resulting in impaired intestinal motility 157 

and hyperinflammation [54]. The cytokine IL-8, which mediates migration and activation of 158 

neutrophils to sites of inflammation, is produced by intestinal epithelial cells, and can 159 

contribute to necrosis in the preterm gut [51]. 160 

 161 

The differential exposure of preterm and full-term infants to antibiotic therapy, microbiological 162 

and environmental components, immune status and hospital stay influence neonatal 163 

microbiome development in these infant groups [55]. Several recent studies have 164 

investigated the gut microbiota of preterm infants, in some cases focusing on specific 165 

neonatal clinical outcomes (Supplementary Table 1) and in other cases considering diet 166 

[synbiotics, prebiotics, probiotics or different milks (breast milk, fortified breast milk, formula 167 

milks)] or therapeutic regimes targeting improved clinical outcomes [56–61]. 168 

 169 

Ho et al. [62] used 16S rRNA gene amplicon sequencing to characterize the faecal 170 

microbiota of VLBW infants (n = 45; GA 28 ± 2 weeks; birth weight 1126 ± 208 g) in a NICU 171 

(South Florida and Tampa General Hospital, USA) during the first month of life, sampling 172 

each infant at ≤2 weeks, 3 weeks and 4 weeks postnatally. Proteobacteria (46 % of total 173 

microbiota, mostly Gammaproteobacteria) and Firmicutes (41 %, mostly Bacilli) 174 

predominated initial samples (≤2 weeks). Actinobacteria and Bacteroidetes were minor 175 

components of the gut microbiota of this study cohort. Relative abundance of 176 

Gammaproteobacteria increased throughout the study: from 42.5 % (≤2 weeks) to 69.7 % (3 177 

weeks) to 75.5 % (1 month). However, there was wide interindividual variation in carriage of 178 

Gammaproteobacteria in neonates initially (0–90 %), with two clusters defined based on 179 

Gammaproteobacteria abundance (cluster 1, 2.1 ± 5.9 %, n = 20 infants; cluster 2, 79.2 ± 180 

21.6, n = 24 infants). Cluster 1 infants were more likely to have been delivered by 181 

Caesarean section and had lower birth weight than cluster 2 infants, and seemingly had 182 

delayed establishment of Gammaproteobacteria (in terms of abundance) compared to 183 

cluster 2. Klebsiella was the most abundant genus observed in the gut microbiota of cluster 184 

2 infants, with a single amplicon sequence variant dominating. A subsequent publication 185 

from the same authors examined the relationship between faecal Gammaproteobacteria and 186 

faecal calprotectin (a biomarker for mucosal inflammation) in this study cohort [63]. While 187 

they again discussed two subgroups of the cohort (clusters 1 and 2), their distinction of 188 

clusters was different – based on Klebsiella [63] rather than Gammaproteobacteria 189 

abundance [62] [with three infants moving from cluster 2 [62] to cluster 1 [63]]. Faecal 190 

calprotectin levels were significantly correlated with Klebsiella abundance (r = 0.207, 191 

P<0.05), with cluster 1 having lower faecal calprotectin than cluster 2 (148 vs 226 µg/g stool 192 
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at ≤2 weeks postnatally, P<0.05). Correlation does not equate with causation or mechanistic 193 

understanding of associations. Therefore, the question arises as to whether mucosal 194 

inflammation influences Klebsiella colonization, or vice versa. 195 

 196 

Two recent studies characterized the faecal microbiota of preterm infants during the first 4–6 197 

weeks of life to determine early microbiota development [13,64]. Heida et al. [64] 198 

demonstrated an initial abundance of Staphylococcus spp., which transitioned to an 199 

Enterobacteriaceae-dominated microbiota during the first month postnatally in a weight-200 

associated manner. Delivery mode was shown to influence the initial gut microbiota, with 201 

Escherichia and Bacteroides spp. more common in the faeces of vaginally-delivered infants. 202 

Klebsiella spp. were a common/normal member of the developing neonatal microbiota [64]. 203 

Rao et al. [13] collected faecal samples from 178 preterm infants fortnightly during the first 6 204 

weeks of life (at 1, 14, 28 and 42 days), together with near daily sampling from 13 of the 205 

cohort. Similar to other studies [10,64], initial dominance of the faecal microbiota with 206 

staphylococci was seen, with subsequent transition to a Klebsiella-, Enterococcus- or 207 

Escherichia-dominated microbiota with age. By using a scalable multi-kingdom absolute 208 

abundance quantification method, ecological modelling and in vitro/in vivo validations, Rao 209 

et al. [13] were able to demonstrate the predictability of assemblage of the preterm 210 

microbiota, driven by simple microbe–microbe interactions. Establishment of Klebsiella spp. 211 

in the gut was facilitated by Staphylococcus spp., with klebsiella suppressing growth of 212 

staphylococci. Klebsiella spp. were inhibited by enterococci. The factors produced by 213 

staphylococci and enterococci that influence the growth of Klebsiella spp. warrant further 214 

attention. Rao et al. [13] also demonstrated that reliance on relative abundance data in 215 

microbiota profiling studies can skew findings, potentially masking microbial dynamics 216 

(especially Klebsiella and Escherichia ‘blooms’ commonly associated with pre-disease states 217 

in preterm infants). In addition, they highlighted that correlation analysis in no way predicted 218 

the dynamics or ecological processes underlying development of the preterm gut microbiota. 219 

These findings have implications for the wider microbiome research community. 220 

 221 

Seki et al. [65] examined multiple data points of extremely preterm neonates (<28 weeks 222 

GA) related to the gut microbiota–immune–brain axis. This observational study included 53 223 

infants (n = 15 diagnosed with severe brain injury; n = 38 had no/mild brain injury), with 224 

magnetic resonance imaging scans (brain development), peripheral blood samples (immune 225 

markers) and regular stool samples (gut microbiota; day 3, day 7 and fortnightly samples 226 

week 2 to week 12 after birth) analysed. Klebsiella spp. contributed to the gut microbiota of 227 

extremely preterm neonates, together with nine other genera described as prevalent (found 228 

at ≥105 cells in at least 1/5 faecal samples). Klebsiella spp. were less abundant in early stool 229 
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samples (days 3 and 7) of neonates with severe brain injury, but more abundant (1.7 times 230 

higher) at 4 and 6 weeks of age compared to neonates with no/mild brain injury. Elevated 231 

Klebsiella abundance was associated with white-matter injury, as were a number of immune-232 

related components in peripheral blood (C-reactive protein, specific T-cell populations, and 233 

several cytokines/chemokines) [65]. Mechanistic studies are required to unravel the 234 

relevance of these associations with preterm infant health. 235 

 236 

Olm et al. [66] investigated the gut microbiota associated with NEC, using shotgun 237 

metagenomic analysis of biobanked faecal samples of NEC patients and matched controls. 238 

UniFrac analysis of microbiota data did not show distinct clustering of NEC and control 239 

neonates. However, K. pneumoniae was enriched in samples from infants subsequently 240 

diagnosed with NEC, detected in 52 % of pre-NEC samples compared with 23 % of control 241 

samples. When bacterial replication rates (iRep values) were considered rather than relative 242 

abundances from metagenomic data, significantly higher replication rates (total microbiota) 243 

were seen in pre-NEC samples compared to controls. Machine learning-informed analyses 244 

of metagenomic data identified four aspects of the preterm gut microbiome that differed 245 

between pre-NEC and control samples: iRep value (total microbiota), Klebsiella spp., 246 

secondary metabolite clusters and fimbriae that could elicit a TLR4-mediated pro-247 

inflammatory response [66]. Similar to Rao et al. [13], these authors highlighted reliance of 248 

relative abundance data (without consideration of measures such as iRep) could lead to 249 

misleading interpretation of study findings. 250 

 251 

Diet, Klebsiella spp. and the preterm infant microbiota 252 

Diet-related differences in the faecal microbiota of preterm infants have been observed. 253 

Pärnänen et al. [67] found several ESKAPE organisms (including K. pneumoniae), as well as 254 

K. oxytoca and Clostridioides difficile, enriched in the faecal microbiota of formula-fed infants 255 

compared to breast-fed or fortified human-milk-fed infants. A study focused on feeding 256 

intolerance and the gut microbiota of preterm infants suggested that the relative diversity of 257 

the gut microbiota significantly decreased in association with a diagnosis of feeding 258 

intolerance [68]. A Klebsiella-dominant faecal microbiota was observed for the feeding-259 

intolerance group when this intolerance was diagnosed (stool collected within 24 h of 260 

diagnosis), although this may partially reflect the reduced diversity of the microbiota (i.e. loss 261 

of species richness rather than an increased abundance of Klebsiella spp.) [68]. However, it 262 

should be noted that Klebsiella spp. are lactose-fermenting bacteria – increased abundance 263 

of these bacteria in feeding-intolerant preterm infants may be due to microbial catabolism of 264 

lactose included in some enteral feeds. 265 

 266 
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Virulence of Klebsiella spp. and cytotoxicity 267 

We investigated Klebsiella populations associated with the faecal microbiota in a UK preterm 268 

cohort (n = 109, <37 weeks GA) [12]. Microbiota profiling (amplicon-based) demonstrated 269 

38.5 % of infants harboured Enterobacteriaceae in their first available stool sample after 270 

birth. Cultivation work recovered Enterobacteriaceae from 42.2 % of the same faecal 271 

samples. Multiple species of Enterobacteriaceae were harboured by some infants, while 272 

others appeared to have a single predominant species (based on colony morphology and 273 

biochemical data from distinctive colony types) [12]. Most infants harbouring lactose-274 

fermenting Enterobacteriaceae (i.e. Klebsiella, Escherichia and Enterobacter spp.) were 275 

healthy preterm infants (n = 23), three had a NEC diagnosis during their stay in NICU, there 276 

were eight cases of suspected sepsis, one infant had an eye infection and one had an 277 

operation (gastroschisis). No common Klebsiella strains were found among the infants in the 278 

cohort, with virulence- and antimicrobial-associated differences observed among genome 279 

sequences of isolates from each infant, even when they shared sequence, capsule and/or 280 

O-antigen types. Eight K. pneumoniae, three K. grimontii, two K. michiganensis and one K. 281 

quasipneumoniae strains were isolated. Faecal Klebsiella isolates (from both healthy and 282 

sick infants) were able to reside, persist and potentially replicate in macrophages, 283 

suggesting they could all evade the host immune system and had the potential to cause 284 

opportunistic infections [12]. Preterm infants receive a range of iron supplements (blood 285 

transfusions, parenteral feeding, oral) while in NICUs during the first weeks of life. All 286 

Klebsiella strains recovered from healthy and sick infants produced siderophores (iron 287 

scavengers) in vitro, demonstrating no difference in the colonization or virulence potential of 288 

these bacteria [12]. Consequently, much research is required to determine the interactions 289 

between neonate and Klebsiella spp. that lead to disease in some preterm infants. 290 

 291 

Tilimycin (TM) and tilivalline (TV) are cytotoxic pyrrolobenzodiazepine metabolites (Figure 292 

1). TM, a DNA-damaging agent, is encoded by a biosynthetic gene cluster (BGC) in the 293 

genomes of some strains of species belonging to the K. oxytoca complex (specifically K. 294 

oxytoca, K. michiganensis, K. grimontii and K. pasteurii); TM spontaneously reacts with 295 

indole to form TV, which targets tubulin and disrupts the spindle apparatus of eukaryotic 296 

cells [8,69]. These metabolites are causative agents of antibiotic-associated haemorrhagic 297 

colitis (AAHC; diffuse mucosal oedema, haemorrhagic erosions, bloody diarrhoea), with 298 

disease caused by the overgrowth of cytotoxin-producing strains secondary to the use of 299 

antibiotics [70,71]. A recent study in mice has demonstrated the DNA-alkylating metabolite 300 

TM causes the accumulation of mutations in cycling intestinal stem cells within weeks of a 301 

single K. oxytoca overgrowth, driving somatic changes that could hypothetically contribute to 302 
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disease susceptibility in some preterm infants who are subject to transient ‘blooms’ of TM-303 

producing bacteria in their gut [72]. We have identified strains of K. grimontii in the faecal 304 

microbiota of preterm infants that encode the BGC, along with metagenome-assembled 305 

genomes of K. michiganensis and K. oxytoca recovered from faecal samples of preterm 306 

infants [8,12]. Around the same time as our study [8], using a m-hydroxybenzoate agar that 307 

selects for K. oxytoca-related bacteria over other Klebsiella spp., Paveglio et al. [73] 308 

recovered strains from preterm infants (<32 weeks GA) with NEC that could produce both 309 

TM and TV (confirmed by mass spectrometry analysis and apoptosis assays). They 310 

identified the strains as cytotoxin-producing K. oxytoca based on 16S rRNA, pehX (a marker 311 

for K. oxytoca sensu lato) and npsAB (non-ribosomal peptide synthetase genes A and B 312 

essential for the synthesis of TM) gene sequence analyses, but they were in fact strains of 313 

K. grimontii and K. pasteurii based on reanalysis of their multilocus sequence data [8]. They 314 

then used frozen stool samples from NEC and non-NEC matched controls to isolate K. 315 

oxytoca from the gut microbiota. Cytotoxin-producing K. oxytoca was isolated from 6/10 and 316 

4/5 of the NEC and non-NEC infants, respectively, with 4/10 and 1/5 harbouring cytotoxin-317 

negative strains of the bacterium. Interestingly, the relative abundance of K. oxytoca from 318 

16S rRNA gene-based amplicon profiling from these infants’ faecal samples differentiated 319 

NEC infants harbouring nspAB-positive K. oxytoca (high relative abundance of K. oxytoca) 320 

from all other infants (NEC patients with toxin-negative K. oxytoca and control infants, low 321 

abundance) [73]. Furthermore, the presentation of NEC symptoms was different for patients 322 

in accordance with the timing of high abundance of K. oxytoca relative to NEC onset (high K. 323 

oxytoca abundance ‘prior to’ versus ‘near or shortly after’ onset). This may reflect differences 324 

in antibiotic treatment regimens (course duration and proximity to NEC onset) used for these 325 

cases given the known association of AAHC with antibiotic administration. 326 

 327 

As mentioned above, preterm infants are given empiric antibiotics in the first days to weeks 328 

of life, and – similar to AAHC – blood in the stool and intestinal necrosis are hallmarks of 329 

NEC. The finding of cytotoxin-producing strains of the K. oxytoca complex in the faeces of 330 

preterm infants has led to the suggestion that these bacteria could contribute to NEC in a 331 

proportion of preterm infants [8,73]. Healthy infants (weeks 0–8 of life) in an Austrian cohort 332 

had a carriage rate of K. oxytoca sensu lato of 49–73 %, with PCR-based assays leading to 333 

higher rates of detection than cultivation work; approximately 50 % of recovered isolates 334 

were cytotoxic, though it was noted that not all npsAB-positive strains produced cytotoxin as 335 

assessed by MTT and chemical analyses [74]. A recent study examined a published 336 

metagenomic dataset [75] derived from 829 faecal samples from 571 full-term infants born in 337 

the UK for the presence of K. oxytoca complex bacteria [72]. At days 7 and 21 of life, 76/504 338 

(15 %) and 74/325 (23 %) samples, respectively, harboured toxigenic Klebsiella spp. Of the 339 
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complex-positive samples, 46/76 encoded the minimal til locus (BGC) at day 7 (in order of 340 

species prevalence: K. grimontii, n = 34/37; K. michiganensis, n = 4/25; K. oxytoca, n = 6/11; 341 

K. pasteurii, n = 2/3), with prevalence of each BGC-positive species increasing between 342 

days 7 and 21 of life (from 9.1 to 12.6 %, n = 41/74). Across all BGC-positive samples, the 343 

relative abundance of BGC-encoding bacteria was high (range 0.92–94.1 %, median 12.6 344 

%) [72]. No robust data are available for the gut carriage of K. oxytoca sensu lato (cytotoxic 345 

or otherwise) by preterm infants. Therefore, it is clear the association of cytotoxin-producing 346 

Klebsiella spp. with diseases affecting preterm infants is complex and warrants further study. 347 

Adoption of the real-time PCR assay for npsAB genes [76], with a sensitivity of 15 cfu/ml of 348 

sample, for the detection of potential cytotoxin-producing bacteria in the faeces of preterm 349 

infants would allow us to better define the relationship between these pathogens and the 350 

presentation of NEC in this cohort. In addition, it is clear that refined molecular-based 351 

identification [whole genome (15), shotgun metagenomic [12] or rpoB gene [77] sequencing] 352 

should be adopted to accurately identify members of the K. oxytoca complex in the gut 353 

microbiota of preterm infants and to correctly identify clinically relevant isolates. 354 

 355 

TM can inhibit growth of Lactobacillus, Bacteroides, Fusobacterium, Proteus and 356 

Bifidobacterium spp., members of the commensal gut microbiota [69,78]. In the UK, probiotic 357 

interventions in neonates most frequently involve feeding Bifidobacterium and Lactobacillus-358 

containing multi-strain preparations [57]. Whether TM inhibits and/or influences intestinal 359 

colonization with probiotic bacteria remains to be studied. It has been hypothesized that TM 360 

confers cytotoxin-producing strains with a competitive advantage over other gut bacteria 361 

when in the presence of an appropriate carbon source (e.g. glucose). Support for this 362 

suggestion comes from a study done with in vitro systems inoculated with human faeces that 363 

showed TM (1–170 µM) exerted broad-spectrum activity against a range of Gram-positive 364 

and Gram-negative gut bacteria [79]. In mice TM caused reductions in the species richness 365 

and evenness of the murine gut microbiota, driving compositional changes [79]. In addition, 366 

and of great concern with respect to the global and preterm burden of antimicrobial 367 

resistance in ESKAPE pathogens, TM directly contributed to de novo mutations in the 368 

genomes of Escherichia coli and K. pneumoniae strains that led to their resistance to 369 

rifampicin and nalidixic acid; a strain of Pseudomonas aeruginosa also acquired a resistance 370 

determinant associated with rifampicin upon exposure to TM [79]. No antibacterial effect has 371 

been demonstrated for TV to date, either in pure or mixed culture or the murine microbiota 372 

[79]. 373 

 374 

Perspectives 375 
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• Klebsiella spp. are often part of the normal gut microbiota of preterm infants, and 376 

sometimes contribute to infectious diseases affecting this patient population. 377 

• The current literature is dominated by retrospective studies. Shotgun metagenomic 378 

and cultivation-based studies of the preterm faecal microbiota have shown Klebsiella 379 

spp. contributing to infections in preterm infants are phenotypically and genotypically 380 

diverse. 381 

• There is an urgent need for mechanistic studies focusing on host–Klebsiella 382 

interactions to determine why only some preterm infants develop infections caused 383 

by these bacteria. In addition, there is a need for Klebsiella–microbiota studies to 384 

elucidate the mechanisms contributing to establishment and maintenance of 385 

Klebsiella populations in the preterm infant gut microbiota. 386 

 387 
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 614 

 615 

Figure 1. The K. pneumoniae species complex and the K. oxytoca complex. The 616 

phylogenetic tree shows the genus Raoultella is intermixed with the genus Klebsiella. Strains 617 

of some species of the K. oxytoca complex (shown in bold text) can produce the cytotoxic 618 

pyrrolobenzodiazepine metabolite tilimycin (TM), which spontaneously reacts with indole to 619 

form tilivalline (TV) (discussed later in the text); TM and TV are causative agents of 620 

antibiotic-associated haemorrhagic colitis [69]. The tree, rooted at K. aerogenes, was 621 

created from an alignment of 338 core protein sequences using PhyloPhlAn3 [80] and 622 

visualized using iToL v6 [81]. Scale bar, average number of amino acid substitutions per 623 

position. 624 
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