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Optimizing systemic redundancy of traffic sensor networks while
maintaining resilience: New evidence from using graph learning

Junqing Tang1,2, Shufen Wei1, , Xiaowei Li3, Duo Li4, Senior Member IEEE

Abstract – The optimization of systemic redundancy by minimizing the sensor quantity can improve the efficiency of sensor
networks and save costs. However, from the perspective of risk management, this redundancy reduction can also bring a significant
loss in the overall network resilience because the less the systemic redundancy is, the fewer backup components in the network when
shocks hit and, therefore, the less overall resilience. In this paper, we investigate this intractable dilemma and attempt to pinpoint
the tradeoff point for a city-scale automatic number plate recognition (ANPR) system in Cambridge, UK. By developing a two-stage
graph deep learning (GDL) model, we first optimize the layout of the ANPR system to reduce redundancy and find its efficiency
profile. Next, we study what effects this redundancy reduction can bring to the overall resilience, as the overall observability drops
with the reduction in the number of sensors and find an optimal balance. The results show that our approach can effectively optimize
the system’s redundancy by using only 47% of the original sensors to reconstruct the full picture with a mean absolute error (MAE)
of only 11.18 and a root mean square error (RMSE) of 19.49; most importantly, the overall system resilience is maintained at 70%
in the meantime. This paper provides an alternative perspective for dealing with the well-known ‘efficiency-resilience’ dilemma and
offers new evidence to enable better decision and policy making for city managers and planners in local authorities.

Index Terms—Resilience; Sensor network; Optimization; Graph learning; ANPR

I. INTRODUCTION

D IGITAL tools have been widely deployed in various
smart city initiatives, such as smart grids and Internet of

things (IoT) devices, to improve their operational efficiency,
resource allocation, infrastructure management, and more [1].
In the transportation sector, digital technologies and tools
have brought novel opportunities, offering new solutions to
conventional traffic-related challenges [2]. Among them, one
traffic sensing technology, namely the camera-based traffic
monitoring technology, has been particularly popular in many
countries and has been widely utilized to manage urban
mobility and city planning.

For city-scale traffic monitoring, traffic sensors are normally
implemented as fixed sensor arrays, forming a networked
large-scale traffic monitoring system [3]. Some representative
examples of camera-based traffic sensors include automatic
number plate recognition (ANPR) sensors for determining ve-
hicle identities, vehicle presence sensors (FLIR TrafiCam) for
managing traffic flows at signalized junctions, and dual-vision
thermal traffic cameras (ITS-Series Dual AID) for automatic
incident detection. As a sensing technology associated with
considerable cost, geographical layout optmization for sensor
networks has long been an eye-catching research topic. Schol-
ars have attempted to develop multiple approaches for tackling
redundancy optimization in sensing networks to minimize the
required sensor quantity and improve their overall efficiency.
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Network-wide observability plays an indispensable role in
evaluating the effectiveness of a deployed sensor set, which
depicts its power to capture vehicle fleets and the vehicle
movements, i.e., how well the sensor network can perform in
terms of traffic monitoring [4], [5]. With the rapid development
of machine learning methods, this growing trend in sensor
layout optimization become even more popular in recent years.

Parallel to layout optimization and efficiency improvement,
one particular issue is also attracting scholars’ attention: that
is, the network resilience against component failures [6]. In
resilience engineering theory, a system’s resilience against
disruptions can be enhanced by improving its capability to
cope with component failures, where a certain level of sys-
temic redundancy is a must [7], [8]. In other words, systemic
redundancy is a prerequisite and plays a determinant role in
maintaining system resilience. This leads to the well-known
dilemma of balancing system efficiency (reducing redundancy)
and system resilience (maintaining redundancy). For each side
of this ‘leverage’, a considerable number of previous studies
have been dedicated to investigating the issue in a unilat-
eral fashion. However, little exploration has been performed
regarding finding the aforementioned tradeoffs between op-
timizing the systemic redundancy of sensor networks while
simultaneously maintaining their resilience.

To fill this gap, we devise a two-stage graph deep learn-
ing (GDL) model consisting of self-attention graph pooling
(SAGPool) and a graph convolutional neural network (GCNN)
to perform node selection and estimation. Taking a city-
scale ANPR sensing network from Cambridge, UK, as an
illustrative example, we first quantitatively demonstrate the
capability of this developed model in terms of optimizing
redundant sensors in an array. The model is then compared
with other approaches, and its sensitivity and comparative
merits are also verified. Two error measures are adopted,
namely, the mean absolute error (MAE) and the root mean
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square error (RMSE). Next, after optimizing the redundancy,
we assess the system’s resilience in each optimization scenario
and subsequently investigate the optimal tradeoff between
efficiency and resilience. The main contributions of this paper
can be summarized as follows.

• This study offers a novel ANPR sensing network solution
in terms of systemic redundancy optimization, which pro-
vides new evidence for better understanding this spatial
optimization problem.

• We develop a two-stage GDL model and introduce graph
pooling and convolutional networks in the model con-
struction process, thereby enriching the available toolbox
for scholars and practitioners. To the best of our knowl-
edge, this is the first study to apply graph pooling with
respect to the systemic optimization of ANPR sensing
networks.

• This paper provides insights for balancing efficiency
and resilience when managing traffic monitoring sensors;
these insights can be generalized and applied to many
other networks, such as sensor networks, if given the
appropriate context.

II. LITERATURE REVIEW

A. GDL in transportation

Convolutional neural networks (CNNs) successfully lever-
age the properties of image-like data on Euclidean do-
mains [9]. Many studies have been conducted to apply CNNs
to capture the spatial features of traffic networks [10], [11].
CNN-based models are suitable for solving the problems that
involve modeling the Euclidean correlations among different
regions [12], [13]. These studies converted traffic networks to
regular grids because the CNNs can only process Euclidean-
structured data. Nevertheless, time series on road networks are
continuous sequences distributed over a topology graph, which
are typical representatives of non-Euclidean-structured data.
To fill this gap, attempts have been made to extend convolution
and pooling layers in the non-Euclidean domain [14], [15].
These graph convolution and pooling layers are also known
as graph neural network (GNN) layers.

Graph convolution layers have been widely used to process
graph data in the field of transportation. In [16], a temporal
graph convolutional network (TGCN) combining recurrent
neural networks (RNNs) [17] and graph convolutional net-
works (GCNs) [18] was proposed for traffic prediction. [19]
considered the traffic flow as a diffusion process on a directed
graph and developed a diffusion-based convolutional RNN
(DCRNN) for traffic forecasting. [20] developed a spatiotem-
poral GCN (STGCN) that uses GCNs and gated CNNs for
capturing spatial and temporal features, respectively. More
recently, several studies introduced attention mechanisms to
learn data-dependent graphs. In [21], an attention-based spa-
tialtemporal GCN (ASTGCN) was presented, in which an
attention mechanism was employed to extract the dynamic
spatial-temporal correlations in traffic data. [22] proposed an
attention-based spatiotemporal graph attention network (AST-
GAT) for segment-level traffic speed prediction. The authors
adopted multiheaded graph attention networks (GATs) [23]

and attention-based RNNs to learn spatial and temporal de-
pendencies, respectively.

Fewer studies have considered graph pooling than for
graph convolution. Earlier studies utilized either graph topolo-
gies [24] or node features [25] to generate a reduced graph
representations. Recently, several hierarchical graph pooling
methods have been proposed [26], [27]. These methods allow
graph convolution layers to attain scaled-down graphs after
performing pooling in an end-to-end fashion. However, the
differentiable pooling (DiffPool) method [27] has a quadratic
storage complexity, and its number of its parameters is de-
pendent on the number of nodes. Although the gPool [14]
and top-K pooling [26] methods possess decreased the model
complexity, neither method considers graph topology. [28]
proposed a self-attention graph pooling (SAGPool) method
to address these issues. By employing a graph convolution
layer to compute self-attention scores, the result of SAGPool
is based on both node features and graph topology. The only
trainable parameter of SAGPool is the weight matrix of the
employed graph convolution layer. Currently, graph pooling
layers are mainly used for learning coarse graph embeddings
to facilitate graph classification [29]. Few attempts have been
made to introduce graph pooling techniques in the field of
transportation research.

B. System optimization
This section summarizes recent works in the field of sys-

tem optimization. In [30], the deployment problem of edge
servers (ESs) deployment problem was optimized by a many-
objective evolutionary algorithm. A clustering algorithm was
adopted to initialize the populations of the many-objective
evolutionary algorithm, which was then used to optimize
the proposed many-objective deployment model to achieve
a tradeoff between conflicting objectives. A many-objective
optimization model was built by [31] to address the multidepot
and heterogeneous-vehicle capacitated arc routing problem
(CARP). Then, a memetic algorithm was proposed on the basis
of TwoArch2 (MATA) to optimize the constructed model. In
[32], the authors developed a service pricing-based two-stage
incentive algorithm (STIA) to tackle the problems regarding
the insufficiency of participating nodes and their low willing-
ness to participate. The study by Mou et al. [33] presented
the energy-efficient distributed permutation flow-shop inverse
scheduling problem (EEDPFISP) to minimize the processing
time adjustment and energy consumption. An effective col-
laborative algorithm with hybrid initialization approaches and
cooperative search operators were designed to solve the EEDP-
FISP model. To address the redeployment issue of pavement
distress detection models, the authors in [34] proposed a CNN-
based cross-scene TL pipeline, which combines the advantages
of model transfer and data transfer. In [35], two novel and
reliable static random-access memory (SRAM) cells were
proposed with enhanced self-recoverability from single-node
upsets (SNUs) and double-node upsets (DNUs). [36] presented
a novel multicriteria group decision making (MCGDM) ap-
proach based on intuitionistic fuzzy sets (IFSs) and the VIKOR
method for assessing the capacity of COVID-19 medical waste
(CWM) recycling channels.
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C. ANPR systems and ANPR data

ANPR or automatic license plate recognition (ALPR), lever-
ages image processing technologies to capture images of
vehicles and extract the numbers from the plates in these
images, and then translates the information into a machine-
readable format [37], [38]. Many models and algorithms
have been developed to improve the recognition accuracy and
enhance the overall robustness of systems against the complex
environments, such as those with dirty and blurred plates [39],
poor lighting [40], low-resolution images [41], and duplicated
plates [42]. The multidimensional information provided by
ANPR data can insightfully be used to reconstruct vehicle
movements and, thus, to unravel vehicle mobility patterns [43].
ANPR data can also be leveraged to estimate origin-destination
(OD) characteristics [44]. For instance, by extracting flow
information from ANPR data, [45] devised a 3D CNN ap-
proach to reveal high-dimensional correlations between the
local vehicle patterns and OD flows. In addition, some scholars
have used ANPR data as benchmarks to comparatively assess
the performance of other data collection methods in terms
of travel time estimation [46] and combined them with other
techniques, such as clustering methods, to identify commuting
patterns [47]. In general, ANPR data are considered very
useful and informative in transportation studies and have been
widely applied in many research topics.

Based on the aforementioned literature survey, the main
research gaps can be summarized as follows. (1) It is necessary
to further explore and develop effective models for optimizing
systemic redundancy in fixed ANPR sensor arrays; in par-
ticular, graph learning has not been applied in such topics.
(2) The resilience of the city-level ANPR sensor networks
is of importance for urban management, such as vehicle
mobility monitoring and security surveillance by the police
force. However, this topic is relatively underdeveloped in the
literature. Most importantly, (3) studies on balancing efficiency
and resilience in urban transportation infrastructure could
potentially provide meaningful insights for sustainable and
resource-friendly management during planning and design.
Nevertheless, this topic is also scarce in the literature and
thus needs to be further explored, especially for ANPR traffic
sensing networks.

III. METHODOLOGY

A. Problem formulation

In the proposed graph learning framework, we model a road
network with N sensors as an undirected graph, G = (V,A),
where V is a set of vertices corresponding to observa-
tions from N sensors, and the weighted adjacency matrix
A ∈RN×N depicts the connectivity between the vertices. The
adjacency matrix A is computed based on the distances among
the sensors in the road network:

Aij =

exp

(
−dist(si, sj)

σ2

)
, if exp

(
−dist(si, sj)

σ2

)
≥ ε

0, otherwise.
(1)

where Aij represents the edge weight between sensor si and
sensor sj , which is decided by their Euclidean spatial distance
dist(si, sj), and σ2 and ε are the user-controlled parameters
that control the distribution and sparsity of the matrix. σ2 and
ε are set as 10 and 0.5 respectively, which are the same as
those in [20], [48].

This study focuses on optimizing a city-scale traffic sensing
network, which involves two subproblems: 1) selecting the
most representative K sensors from the original N (K < N )
sensors, and 2) estimating the most likely traffic measurements
at all N sensors based on the observations from the selected
K sensors. These two subproblems can be formulated by

VT
fslc(·)−−−−→ idx (2)

V ′
t

fest(·)−−−−→ V̂t (3)

where VT ∈RN×T denotes the observations from N sensors
and the past T time steps; idx represents the indices of
the selected K sensors; Vt ∈RK×1 denotes the observations
obtained from the selected K sensors at time step t; and
V̂t ∈RN×1 represents the estimated traffic measurements at
all N sensors at time step t. The proposed framework aims
to learn a selection function fslc(.) and an estimation function
fest(.).

B. Sensor selection model

To identify the optimal subset of sensors, we propose a
SAGPool-based sensor selection model. SAGPool considers
both node features and graph topology and learns the pooling
procedure in a self-attention manner. Attention mechanisms
allow us to focus more on important features and less on
unimportant features. Self-attention, also known as intra-
attention, is a particular attention mechanism that allows the
input features to be the criteria for the attention module itself
[49]. As illustrated in Fig. 1, the SAGPool utilizes a GCN to
compute the self-attention score Z ∈RN×1:

Z = D−1/2AID−1/2XW pool (4)

AI = A+ I (5)

Dii =
∑
j

AI
ij (6)

where AI is the adjacency matrix with added self-loops; I is
the identity matrix; D is the degree matrix of AI ; X ∈RN×F

denotes the features of the graph with N nodes and F
dimensional features; and W pool is a layer-specific trainable
weight matrix.

Following this, the top K nodes are selected based on the
obtained self-attention score Z:

idx = top-rank(Z,K) (7)

K = rN (8)
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Fig. 1: Illustration of the SAGPool method.

Zmask = Z idx (9)

where the pooling ratio r ∈ (0, 1] is a hyperparameter that
determines the number of nodes to keep; top − rank() is a
function that returns the indices of the top K values; idx is an
indexing operation; and Zmask is the feature attention mask.

The reduced feature matrix Xout ∈RK×F is obtained via
the operation denoted as masking in Fig. 1:

Xout = X idx,: ⊙ tanh(Zmask) (10)

where X idx,: is the rowwise (i.e. nodewise) indexed feature
matrix; tanh() is the tanh activation function; and ⊙ is the
broadcasted elementwise product.

The architecture of the proposed node selection model is
shown in Fig. 2. The model input is a single graph defined by
a node feature matrix Xslc of shape (N,T ) and an adjacency
matrix A of shape (N,N ), where T is the length of the training
time series. This single graph is passed to a SAGPool layer:

hpool, idx = SAGPool(Xslc, A) (11)

where hpool ∈RK×T is the output of the SAGPool layer;
and idx denotes the indices of the K nodes selected in the
SAGPool process.

We design an unpooling layer to perform the inverse opera-
tion of the SAGPool layer and restore the graph to its original
structure. The layerwise propagation rule of the unpooling
layer can be described as:

hunpool = distribute(zero, hpool, idx) (12)

where hunpool ∈RN×T is the output of the unpooling
layer; zero ∈RN×T is a matrix in which all of the entries
are zero; and distribute() is a function that distributes the
row vectors in hpool into a zero matrix according to their
corresponding indices stored in idx. In hunpool, the row
vectors with indices in idx are updated by the row vectors
in hpool, while the other row vectors remain zero.

Then, the unpooled feature matrix hunpool is cut into
T slices of shape (N ,1), {hunpool

1 , ..., hunpool
t , ..., hunpool

T },
which are passed to a fully connected (FC) layer with N units:

hfc
t = FC(hunpool

t ) (13)

where hfc
t is the tth output of the FC layer. Note that we apply

transpose operations to the inputs and outputs of the FC layer
to meet the input shape requirement of the layer and restore
the shape of the feature matrix, respectively.

Finally, we concatenate all the outputs of the FC layer and
obtain the output of the node selection model, yslc ∈RN×T .
Note that yslc is only used for model training. The main
purpose of the selection model is to locate a subset of
nodes (i.e., idx from the SAGPool layer) that minimizes the
difference between yslc and the real observations.

C. Estimation model

The estimation model aims to estimate traffic measurements
at all N sensors given the information from the selected
K sensors. Fig. 3 illustrates the proposed estimation model,
which is a simple 2-layer neural network. At each time step
t, an input feature matrix Xest

t ∈RN×1 is built, in which the
row vectors without indices in idx are filled with zeros. The
input graph is processed by a GCN layer with 1 channel:

hgcn
t = GCN(Xest

t , A) (14)

where hgcn
t ∈RN×1 is the output of the GCN layer.

Then, an FC layer is added to generate the estimated traffic
measurements at time step t:

yestt = FC(hest
t ) (15)

where yest
t ∈RN×1 is the output of the FC layer. It is worth

noting that we keep the structure of the estimation model as
parameter-economical as possible. One can always introduce
more complex network structures to further improve model
performance.
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Fig. 2: Architecture of the nodel selection model. The input is passed to a SAGPool layer, and an unpooling layer performs
the inverse operation; then, the unpooled features are fed to an FC layer; finally, all the FC outputs are concatenated.

Fig. 3: Architecture of the estimation model. The input graph is processed by a GCN layer with 1 channel, which is followed
by an FC layer that is used to generate the estimation output.

D. Resilience assessment metric

For networked systems, the overall resilience can be eval-
uated using the systemic performance loss, known as the
‘resilience curve’. The ‘failure-recovery’ process illustrated in
the Fig. 4 is a typical resilience curve [50]. In this study, the
key performance indicator (KPI) on the y-axis is selected as
the overall observability of the ANPR system; it depicts how
many vehicles can be successfully captured by the total ANPR
sensors. Thus, the higher the observability is, the better the
performance of the ANPR system.

Fig. 4: An illustrative example of the resilience curve paradigm. In
this case, the post-event performance level is lower than the

pre-event level, which demonstrates an insufficient post-event
recovery. Modified based on [51]

.

We adopt the well-applied resilience quantification metric
proposed by [51] in this paper. The reason for doing so
is twofold: (1) it has an intuitive value range, [0, 1], which

facilitates comparative analyses in the later stage, and (2) it
exhibits excellent effectiveness and simplicity, as the metric
features wide applications in various infrastructure systems
and use cases. The metric is defined as follows.

RI =

∫ t1

t0
AP (t)dt∫ t1

t0
NP (t)dt

(16)

where t1 is the total time period of one disturbance event in
the system, AP (t) is the actual level of performance at time
t considering the impact from the disturbance, and NP (t) is
the normal or expected level of performance at time t, which
by default is normally at 100%, indicating a fully functioning
system.

IV. SPECIFICATIONS AND DATA

A. Study area

The selected study area is Cambridge (the county town of
Cambridgeshire, UK), which is located approximately 80km
north of London. The datasets contain detailed trip chain
information derived from the ANPR sensors which can be
found at Cambridgeshire Insight Open Data. There are 96
camera sensors deployed within the study area with labeled
IDs ranging from 1 to 96. However, due to severe missing
entries and discontinuous recordings, 90 sensors are available
for this study. Fig. 5 shows the geographic layout of the
study area and the locations of the ANPR sensors. Vehicle
data were collected from June 11th to 17th, 2017 (7 days
from Sunday to the following Saturday). All camera sensors
recorded continuously from 00:00:00 to 23:59:00 throughout
the day to capture all recognizable vehicles and their trips
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based on the temporal trajectory stamps within the area.
Vehicle IDs and sensor IDs were also specifically recorded.

B. Experimental setup

In this study, the 5-weekday data obtained from 12/06/2017
to 16/06/2017 are collected and divided into two subsets.
The data from the first three days are used as the training
dataset, and the rest of the data are used as the testing dataset.
The training and testing datasets are separately normalized
to [-1,1] using Z Score normalization. In the testing dataset,
only the observations from the selected nodes are kept. After
performing estimation, the estimated values are denormalized
and then used for evaluation.

The selection model is trained using the Adam opti-
mizer [53] to minimize the MAE. The learning rate is set
to 1 × 10−3. Note that the input of the selection model is a
single graph including all the training time series; therefore,
no validation dataset is used. The estimation model is trained
using the Adam optimizer (learning rate=1×10−3) to minimize
the RMSE. 30% of the training dataset is selected as the
validation dataset. Early stopping is used on the validation
dataset, and the batch size is set to 32.

V. RESULTS AND DISCUSSION

The analysis workflow first completes the redundancy op-
timization process and assesses the model performance using
error indicators. After that, we quantify the systemic resilience
for each optimization outcome and then locate the tradeoff
point between these two. Note that the systemic resilience is
calculated based on the redundancy optimization outcomes,
forming a constrained failure simulation in resilience analysis.
In other words, which sensors will be removed from the
network (or masked in this case) to evaluate the resilience are
already determined by the optimization process beforehand.

A. Optimization outcomes

To review the network redundancy by applying the devel-
oped two-stage GDL model, sensors are gradually masked in
10% increments from 100% (i.e., all 90 unmasked sensors
in total) to only 10% (i.e., only 9 unmasked sensors). Fig. 6
shows the geographical changes of the sensor network from
100% to 70% mask rates in the optimization results. As the
number of masked sensors increases, it is clear that those
redundant sensors concentrate on the periphery of the city.
At 90% coverage (i.e., 10% of the sensors are masked),
the two most distant sensors at the northwest corner and
several sensors on the west side of the M11 motorway are all
masked. By increasing the number of masked sensors to 70%,
most of the sensors along M11 are masked (i.e., identified
as system redundancies by the model), which indicates that
the main traffic flow characteristics at those sensors along the
motorway can be mostly represented by just several sensors,
which is intuitive for conventionally interpreting the flow on
the motorway without signal control having more consistent
patterns. Fig. 7 shows the results obtained for coverage rates
from 60% to 10%. Here, the layout of those masked sensors

gradually percolates from the periphery to the central area.
In the case with 10% coverage, only nine sensors remain in
the network; this is apparently not an efficient outcome for
learning the full knowledge of the vehicle movements in the
city.

B. Estimation errors

Fig. 8 shows the selection and estimation errors induced by
the developed model under two error indicators as the number
of unmasked sensors drops (i.e., the MAE and RMSE); a clear
increasing trend can be observed. The errors derived from the
selection stage are higher than those from the estimation stage.
Before 60%, the selection error increases more rapidly than
the estimation error. Taking the estimation error as a reference,
the error trend starts to become steeper after 50% (Fig. 8(a)).
At 40%, the error reaches approximately 14 according to
the MAE indication, meaning that approximately 14 vehicles
would be over/underestimated from each sensor recording
on average, and this number reaches its highest level of
approximately 18 at 10% coverage, indicating that the model
performance is unreliable below 40% of the unmasked rate. A
similar tendency can also be observed using the RMSE as the
indicator.

To verify the accuracy of the model estimation process
before it becomes unreliable at 40%, we further analyze the
discrepancy between the ground-truth data and the estimated
results for all sensors during two typical weekday peak-hour
periods under the 50% mask rate. Fig. 9 illustrates the former
by comparing the model estimations with the ground-truth
vehicle counts provided by all 90 sensors at 8am (morning
peak hour, subplot (a)) and 5 pm (evening peak hour, subplot
(b)) on 15/06/2017 (Thursday). The first observation is that the
overall pattern for these 90 sensors is quite similar during both
morning and evening peak hours, while some sensors have
larger fluctuations in terms of the number of captured vehicles,
such as ID 35 and 65. In terms of the estimation accuracy, both
subplots demonstrate fairly good estimation accuracy (with a
discrepancy of approximately 9 vehicles per sensor on average,
which is comparatively acceptable). However, we can also
identify larger discrepancies at certain sensors, such as ID 8
and 41. A similar pattern can also be observed for the evening
peak hour.

C. Sensitivity and model comparison

To test the model sensitivity and further validate the model
performance, we compare the developed model with five
different combinations of benchmarks, namely, two models for
the selection stage and three models for the estimation stage.
This combination yields six types of models in total, which
can be elaborated as follows.

1) Model 0: This is our developed model, which has
the SAGPool submodel for the selection and the one-
channel GCN for the estimation. Model 0 is compared
with the other five models to test its sensitivity and
superiority.

2) Model 1: This model has the SAGPool submodel for
the selection process but has an eight-channel GCN
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Fig. 5: The study area and overview of the ANPR sensors (The base road map can be downloaded from OpenStreetMap. The
location data of the ANPR sensors can be downloaded from [52]).

(a) 100%

(d) 70%

(b) 90%

(c) 80%

Fig. 6: Changes in geographical layout with descending mask rates from 100% to 70%.

before the final one-channel GCN for the estimation
step to view the performance achieved under a variant
model complexity when extracting underlying feature
representations.

3) Model 2: This model still has the SAGPool submodel
for selection but contains a diffusion graph convolutional
network (DGCN) layer for estimation purposes. The
implementation method of the DGCN is directly adopted
from [54].

4) Model 3: This model changes the selection component
from SAGPool to a TopKPool model. The estimation
model remains the same as that of Model 0. The
implementation of the TopKPool model is based on [14].

5) Model 4: This model combines TopKPool with the
selection model from Model 1.

6) Model 5: This model combines TopKPool with the
selection model from Model 2.

Table I presents the error results yielded by the six models
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(a) 60%

(d) 30%

(b) 50%

(e) 20%

(c) 40%

(f) 10%

Fig. 7: Further testings results regarding the optimization effect
with descending mask rates from 60% to just 10%.
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Fig. 8: Comparison of the estimation errors between the model estimations and the groud-truth vehicle counts. Note: “c”
represents the accuracy of the selection results, and “e” indicates the accuracy of the estimation results.

on the testing set for both the selection and estimation stages
under a 50% mask rate. It is clear that Model 0 outperforms
the other five comparative models in both the selection and
estimation stages. Model 2 obtains the second-best estimation
results, with an MAE of 9.95 and an RMSE 17.71. In contrast,
Model 4 is associated with the highest errors of all (Model
1 also has close values), with a selection error of 16.54
and an estimation error of 11.12 in terms of the MAE.
The comparison between Models 0 and 1 indicates that the
developed Model 0 has higher efficiency, as adding more GCN
channels in the estimation stage does not improve the overall
accuracy but instead harms it.

Fig. 10 shows the performance achieved by our model
with different hyperparameters. Note that the default hyper-
parameters of the proposed model are as follows: number of
GCN channels = 1, SAGPool activation = tanh and kernel
initializer = glorot uniform. A 50% mask rate is utilized
for the benchmark test. It is observed that the model with

TABLE I: Errors from all comparative models

Selection stage Estimation stage
MAE RMSE MAE RMSE

Model 0 14.97 28.41 9.84 17.45
Model 1 14.97 28.41 11.08 20.76
Model 2 14.97 28.41 9.95 17.71
Model 3 16.54 28.86 10.02 18.10
Model 4 16.54 28.86 11.12 20.87
Model 5 16.54 28.86 10.07 18.87

the default settings yields the best performance. One possible
reason behind this is that with the increase in the number of
channels, the model may learn irrelevant features (even noise
and random fluctuations) from the training data, which de-
creases the generalization of the model (i.e., the model’s ability
to react to new data), and results in the model overfitting.
Simply increasing the number of GCN channels worsens the
model performance. The SAGPool module with tanh activation
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Fig. 9: Comparison between the ground-truth counts and the estimated counts for all 90 sensors at the 50% of masked rate
on 15/06/2017 during the morning and evening peak hours.

fits our case better than the SAGPool module with the sigmoid
function. Implementing kernel initializers, which are used to
statistically initialize the weights in the model, produces better
estimation results.

D. Resilience analysis and tradeoff identification

Masking sensors from the network can inevitably cause
an overall observability loss, which further deteriorates the
systemic resilience of the network in terms of its monitoring
capability. As mentioned above at the beginning of the Section
V, the resilience analyses here are constrained simulations
with predetermined masked sensors based on the optimization
outcome in the previous stage. Given this prerequisite, we can
only apply simulations to obtain the removal sequence; i.e.,
only two types of removal scenarios are applicable for the
predetermined removed sensors in each simulation iteration:
being preferentially ordered or randomly selected (note: thus,
other types of removal, such as localized removal due to
natural hazards, are not applicable in this study). For example,
under a given mask rate of 90%, which 10% of sensors will
be removed are already determined by the optimization out-
come, and the resilience analysis simulates these two removal
sequences for those 10% masked sensors.

Fig. 11 shows the simulation results obtained under each
mask rate, and two prominent features can be observed. First,
the ordered removal process demonstrates a smoother curve
than random removal under all mask rates, as the former re-
moves sensors by following the individual observability values
in descending order. The curves of the random removals are

fuzzier, forming a more regular triangle shape in each curve.
Second, in terms of the overall tendencies of all curves, the
difference between these two types of removals is trivial, and
this is confirmed by the calculated resilience indices: subplots
(b) and (d) demonstrate two rather similar decreasing lines
for the resilience indices. A numerical check also confirms
that these two scenarios yield basically the same results, with
minor discrepancies after two decimal places. Regarding the
sensors to be removed being predetermined by the redundancy
optimization results, the removal sequences of the masked
sensors (either ordered or random) do not significantly alter
the total performance loss.

Given that the main purpose of the proposed model is to
reduce the number of redundant sensors in the array to save
costs in the total design and planning budget, the target of the
optimization process here is to reduce the sensor quantity as
much as possible (i.e., to maximize the cost savings) while
maintaining a good level of systemic resilience. After obtain-
ing the outcomes of both optimization and resilience tests, the
dilemma problem here becomes a simple linear programming
issue, which can be solved graphically. Fig. 12 depicts the
solution profiles of this linear programming problem with both
the MAE and RMSE indicators. The optimal location is at
the intersection, where the unmasked rate is 0.47 (meaning
that 53% of the total sensors can be masked as redundancies)
and the resilience is 0.7 (i.e., 70% of resilience capacity)
with an MAE of 11.18. This result is of great interest, as
it indicates that by applying the proposed GDL model, this
particular ANPR sensor network can be optimized by remov-
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Fig. 10: Hyperparameter test results obtained under a 50% mask rate. Default hyperparameters: number of GCN channels =
1, SAGPool activation function = tanh and kernel initializer = glorot uniform.
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Fig. 11: Resilience assessment under deliberate (a, b) and random (c, d) ordered scenarios. Note that subplots (a) and (c) are
resilience curves while (b) and (d) are calculated resilience indices.

ing approximately 47 sensors in total while still maintaining
a relatively high level of resilience and a moderate estimation
error level; this can potentially save significant costs for this
city-scale ANPR scheme in Cambridge. To demonstrate, as
claimed by [55], the annual cost of London’s 1666 ANPR
sensors is approximately 5.9m GBP, which leads to a rough
estimation of 3541 GBP per sensor per year for the ANPR
management budget. In this case, removing approximately 47
sensors represents a total budget reduction of approximately
166k GBP for Cambridge’s ANPR scheme.

VI. CONCLUSIONS

This paper investigates the problem of optimizing systemic
redundancy while maintaining the resilience in sensor net-
works. Taking the city-scale ANPR system in Cambridge, UK,
as an illustrative example, we demonstrate that this problem
can be effectively approached with a graphical solution. The
main conclusions can be summarized as follows.

• We develop a novel two-stage GDL model that takes
both node features and graph topology into account to

achieve an optimal subset of nodes. The estimation results
are acceptable at both the systemic and individual levels,
indicating that the developed model is an effective tool
for optimizing the systemic redundancy in this case study.

• In the model comparison and sensitivity analysis, our
model outperforms all five comparative models with an
MAE of only 9 vehicles during the estimation stage; it
demonstrates excellent performance in terms of feature
reconstruction in this geographical optimization problem.

• We find the tradeoff point at which only 47% of the
total sensors are used while still maintaining the overall
systemic resilience at the 70% level with an acceptable
estimation error, indicating a great reduction in sys-
temic redundancy while still maintaining fairly strong
robustness against the risk of performance loss, and this
outcome could potentially yield significant cost savings
for ANPR schemes.

We also acknowledge two limitations of this study. First,
due to the data availability issue, we only use one week of
ANPR data. Second, this study only used one ANPR case



IEEE SYSTEMS JOURNAL 11

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Resilience
MAE_e

Unmasked cameras

R
es

ilie
nc

e

4

6

8

10

12

14

16

18

M
AE

(M
ea

n
Ab

so
lu

te
Er

ro
r)

(X=0.47, Y=0.70,Y=11.20)

(a) (b) 

Low cost High cost

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Resilience
RMSE_e

Unmasked cameras

R
es

ilie
nc

e

(X=0.47,Y=0.70,Y=19.46)

10

12

14

16

18

20

22

24

26

28

30

R
M

SE
(R

oo
tM

ea
n

Sq
ua

re
Er

ro
r)

Ordered removals Random removals

Fig. 12: Efficiency vs. resilience under ordered and random removals.

study. For the case study, other cities should be tested. Our
future work will focus on addressing these two limitations.
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