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ABSTRACT: COVID-19 survival data presents a special situation where not only the time-to-event period 

is short, but also the two events or outcome types, death and release from hospital, are mutually exclusive, 

leading to two cause-specific hazard ratios (csHRd and csHRr). The eventual mortality/release outcome is also 

analyzed by logistic regression to obtain odds-ratio (OR). We have the following three empirical observations:(1) 

The magnitude of OR is an upper limit of the csHRd: | log(OR) | ≥ | log(csHRd)|. This relationship between OR 

and HR might be understood from the definition of the two quantities; (2) csHRd and csHRr point in opposite 

directions: log(csHRd)· log(csHRr) < 0; This relation is a direct consequence of the nature of the two events; and 

(3) there is a tendency for a reciprocal relation between csHRd and csHRr: csHRd ∼ 1/csHRr. Though an 

approximate reciprocal trend between the two hazard ratios is in indication that the same factor causing faster 

death also lead to slow recovery by a similar mechanism, and vice versa, a quantitative relation between csHRd 

and csHRr in this context is not obvious. These results may help future analyses of data from COVID-19 or other 

similar diseases, in particular if the deceased patients are lacking, whereas surviving patients are abundant.
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Introduction

Survival analysis studies the longitudinal event data. Regression in survival analysis in-

vestigates whether a factor contributes to the hazard (rate of risks) of the event under study.

The hazard ratio (HR) is the ratio of two hazards, one with the factor taking the at-risk value

(e.g. smoking) and another without (e.g. not-smoking). Since hazard and HR describes the

instantaneous risk, or rate of event occurrence (e.g. death from a specific disease), it is a very

different concept from the life-long risk of having that event (Sutradhar and Austin, 2018). As

a result, regression in survival analysis (e.g. Cox regression) is different from the static case-

versus-control regression analysis (e.g. logistic regression). Take the following two statements

as example: “smoking makes lung cancer patients die faster” and “smoking makes a person

more likely to die from lung caner than a non-smoker”; the first would be a conclusion from a

survival analysis, whereas the second from a case-control type of analysis.

The COVID-19 pandemic since 2020 (Zhou et al., 2020; Huang et al., 2020; Xu et al., 2020)

provides a unique longitudinal event data. First of all, a COVID-19 patient admitted to a

hospital sees his/her outcome relatively quickly: either the patient survived or does not in

a matter of days. As a result, there are very few right-censored data where the outcome is

still unknown at the time of data collection. Of course, there exist chronic or long COVID-19

survivors who are not completely cured (Carfi et al., 2020; Rubin, 2020; Crook et al., 2021;

Mehandru and Merad, 2022; Davis et al., 2023), but they are unlikely to die from COVID-19

in the future.

The second feature of COVID-19 longitudinal event data is that the two events, death and

release from the hospital, are not the traditional “competing risk” events (Austin et al., 2016;

Austin and Fine, 2017). Although not strictly defined as such, competing risks events are

often two unfavorable events with one occurring before the occurrence of another. In COVID-

19 data, the event of being released from hospital is a favorite event, and a description of them

in principle should not be connected to words like “risk” or “hazard”. A higher HR for the
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event of releasing from hospital implies a faster recover, thus a factor that contributes to this 

higher HR actually provide protection. A better name to describe death and release event 

pairs could just be “competing events” without using the word “risk”.

Also, in the COVID-19 data, the event of death and the event of released from hospital are 

mutually exclusive. Although organ transplant and death can be mutually exclusive when the 

organ involved is (e.g.) heart, transplant of many other types of organ is an event that preceed, 

and may have an impact on, death. Even in the case of heart transplant, survival after the 

operation is not completely guaranteed. Regardless of these detail, factors affecting transplant 

timing are basically external, whereas those affecting mortality without a transplant are mostly 

internal. Our COVID-19 death/release mutually exclusive event pair does not have a 

correspondence in death/organ-transplant pairs.

As first proposed in (Kalbfleisch and Prentice, 1980) (see also, e.g., (Pintilie, 2007; Austin et 

al., 2016)), given the the event time (T, K) where T is the time to event (or to censoring), K=1,2 

for two event types (we may understand that k = 0 means right-censored), the cause-specific 

hazard function can be defined as:

hcs
K(t, x) = lim

∆t→0

P rob(t ≤ T < t + ∆t, K|T ≥ t, x) 
∆t

, K =1,2 (1)

K=1=death

where K for event type (1 or 2), and conditioning T ≥ t means the function is defined before the 

occurring of either event, and x is a covariate. Eq.(1) is the per unit time probability that only 

event-K occurs. When K=1 events are considered (e.g., death), K=2 events (e.g. release) are 

converted to right-censored (which is essentially equivalent to K=0), and hcs is

K=2=rel

specified; and vice versa similarly when K=2 events are the focused events (e.g. release), death 

events are right censored, resulting in hcs (Kalbfleisch and Prentice, 1980). On

the surface, converting the other not-considered event as right-cencored sample may seem to 

violate a basic assumption of survival analysis, i.e., the non-informative censoring. But this 

definition of hazard is better suited to studying of the effect of covariate (Lau et al., 2009; Austin 

et al., 2016) and it is very convenient to apply as standard programs can be used.

When studing the impact of the effect of a covariate x, we assume an exponential contri-

bution from x on the baseline hazard in Eq.(1) (Cox proportional hazard model), i.e.

hcs
K(t, x) = hcs

K(t, x = 0)eβx (2)
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We study the two cause-specific hazard ratios (HRs), one for time-to-death (treating release 

event as right-censored) and another for time-to-release (then treating death event as right-

censored):

hcs
death(x = 1)

hcs
death(x = 0)

csHRdeath = 

csHRrel =
hcs
rel(x = 1)

hcs
rel(x = 0)

(3)

where x is the independent binary factor (for continuous factor, the definition is similar, with 

two hazards evaluated at x-levels differing by 1 unit), and the time dependency is supposedly 

canceled. The question we ask: what is the relationship between the two cause-specific hazard 

ratios, csHRk=death and csHRk=rel? Intuitively, if a factor value leads to faster death, the same 

factor may lead to slow recovery, and vice versa. In other words, a larger csHRk=death may imply 

a smaller csHRk=rel. Our working hypothesis is that csHRk=death ≈ 1/csHRk=rel, which is also 

hypothesized to be approximately equal to the odds-ratio from a logistic regression analysis.

If the event time is not long, as is the case for COVID-19 patients, at certain fixed time all 

samples will have one of the two events (death and release) occurred. Odds ratio (OR) for binary 

variable x is defined as:

ORdeath =
Ndeath(x = 1)/Nrel(x = 1) 
Ndeath(x = 0)/Nrel(x = 0) (4)

where Ndeath(x = 1) is the number of deceased patients with x = 1, Nrel(x = 1) is the number of 

released patients with x = 1, etc. The subscript “death” can be dropped because it is understood 

that we are interested in how the presence of a x value contribtes to the death. For continuous 

variable x, x = 0 and x = 1 is replaced by a unit change of the variable value x = x0 and x = x0 + 

1, averaged over all x0. OR is not defined in the survival analysis, but is intrinsically related to 

the HR. A possible relationship between OR and HR is another hypothesis.

We will use a survival data of n = 450 COVID-19 test our working hypotheses. Previously 

we asked the question on whether the two survival analyses and one logistic regression can all 

identify a risk factor (Cetin et al., 2021a). Here we are asking more quantitative questions 

concerning these analyses.
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Data

The COVID-19 patients dataset (n=450) used in this study was collected from the Tokat 

State Hospital. Electronic medical records, including patient demographics, clinical mani-

festation, comorbidities, laboratory tests results were collected. According to the severity 

and outcomes of the patients, they were divided into two groups: deceased/nonsurviving, re-

leased/survived severe groups. Clinical and laboratory data were comparable among the two 

groups. Ministry of Health permission and the ethics committee of Tokat GaziOsmanPasa Uni-

versity Ethics committee permission was obtained with the number 83116987/360 on March 

4, 2021.

Besides age and gender, we selected these 18 laboratory testing measurements at the time 

of hospital admission in the survival analysis n value is the number of samples with measure-

ment value): (from the complete blood count panel) white blood cell (WBC) count (n=432), 

neutrophil (NEU) count (n=383), lymphocyte (LYM) count (n=382), hemoglobin (HGB)

(n=432), platelet (PLT) (n=432), mean corpuscle volume (MCV) (n=432), mean platelet 

volume (MPV) (n=430); (from metabolic panel) glucose (n=449), alanine adinotransferase 

(ALT) (n=435), aspartate aminotrasferase (AST) (n=429), blood urea nitrogen (urea or BUN)

(n=436), creatine (n=436), calcium (n=393), potassium (n=433), sodium (n=435); (others) 

ferritin-1 (FER1) (n=407), d-dimer (n=390), and lactate dehydrogenase (LDH) (n=316). The 

NLR (neutrophil/lymphocyte ratio) and PLR (platelet/lymphocyte ratio) are derived quanti-

ties. There are other test measurements, either only available for fewer number of patients, 

or due to other reasons, that are not included in the analysis.

Method

The single-variable Cox regression in Eq.(2) can be extended to multivariate context, and the 

cause-specific log hazard ratio is defined as:

log K(t)

hcs
K,base(t)

= log
hcs
K,basehcs (t)e

∑
iβixi

hcs
K,base(t)

= ∑

i

βK,ixi, K = 1(death), 2(release) (5)

The left-hand side of Eq.(5) contains time t whereas the right-hand side does not, which is the 

proportional hazard assumption, that the time-dependent part is canceled. i is the index for
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factors (the index i on the left hand size of Eq.(5) is implied). From Eq(5), it can be seen that 

csHRdeath = eβK=1,i , csHRrelease = eβK=2,i , i.e., HR is an exponential function of the regression 

coefficient β. In practice, cause-specific Cox regression is carried out by labeling event=2 as 

right-censored event=0 when focusing on event=1, and vice versa when focusing on event=2.

The R (https://www.r-project.org/) statistical package survive (Therneau and Grambsch, 

2010) is used in the analysis. The coxph is used for Cox regression, cox.zph is used for 

testing proportional hazard assumption, based on Schoenfeld residual method (Grambsch and 

Therneau, 1994).

Results

Summary statistics: Of the n=450 samples, 353 (78%) are released from the hospital, 

97 (22%) were deceased, with a deceased/released ratio of 27.5%. There is no right-censored 

patients in this collection. A 57.6% of patients are male, and this proportion is slightly lower 

for the released group (56.1%), as compared to the deceased group (62.9%). The mean/median 

age of all patients is 59.7/66, and the mean/median age for the released group is much younger 

(55.8/60) than that for the deceased group (74.1/75).

Table 1 provides a summary statistics of all 18 factors, for all patients, released group, and 

deceased group. Both mean and median value are listed. The following variables do not seem 

to follow a normal distribution ferritin-1, d-dimer, glucose, ALT, AST, urea, creatine, LDH, 

NEU, and perhaps LYM and PLT. These can either be due to a long-tail in the distribution 

(there are few samples with extreme large values compared to the mean/median) or perhaps 

due to a potentially log-normal distribution (then the variable is better logarithm transformed), 

such as ferritin-1.

As a consequence of potential violation of normal distribution, for the test result between the 

levels for the released and deceased groups, we present both t-test p-values and Wilcoxon test p-

values in Table 1. A striking observation of the result in Table 1 is that all factors are 

significantly different between the released and the deceased group. The deceased patients 

exhibit distinct level of many factors and form a cluster by itself. We have noticed this already in 

(Cetin et al., 2021a; Ulgen et al., 2021, 2022).
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The mean/median time to either dead or release events is 10.3/8, the mean/median of time

to release is 9.5/8, and that of time to death is 13.2/11. In other words, the time-to-death tends

to be 2-3 days longer than the time-to-release. For both time-to-release and time-to-death, the

logarithm-transformed time follows a normal distribution better than the non-log-transformed

time. Though not included in this data, we also observed that ICU surviving patients have

a hospitalization stay time longer than those of non-ICU surviving patients, and shorter than

those of ICU-deceased patients (Cetin et al., 2021b).

Overview of the survival analysis and logistic regression analysis results: Large

number of analysis run results are included in Tables 2,3,4. Table 3 contains factors in a

metabolic panel, Table 4 are factors in a complete blood count panel, and Table 2 lists the

rest. The first column is the result from single-factor Cox regression survival analysis using

death as event of interest and release as right-censored event. The second column is the Cox

regression results by switching the two events. The listed results include the cause-specific

hazard ratio (csHR) and its 95% confident interval (CI), and the p-value for testing csHR

equal to 1. The third column is the logistic regression result comparing the dead and release

samples, where the results include odds-ratio (OR) and its 95% CI, and p-value for testing

OR=1.

We also run the same group of analysis on log-transformed factor values, if that factor better

follows a normal distribution after log transformation. Then, we run the same set of analysis,

when the factor value is continuous, for binarized factors with optimally chosen threshold

values. Both these runs will be discussed in detail later. The reason for running large number

of analyses is not for “fishing expedition” in order to have a better chance to find statistically

significant results, but to test the robustness of the results. Therefore, we do not do a multiple

testing correction.

The proportional hazard ratio assumption is tested by the Schoenfeld residual method in

implemented in the R function “cox.zph” in the “survival” package (Grambsch and Therneau,

1994). The test result sometimes depends on if the independent variable is log-transformed

or not. We found that the proportional hazard ratio assumption is not rejected for time-to-

death events, and mostly not rejected (at 0.01 level) for time-to-release events, except for age

(pv=0.0014), (log)d-dimer (pv=3E-6), and (log)ALT (pv=5E-5).
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We mark those p-values that are smaller the 0.005 in Tables 2,3,4. The reason to use 0.005

instead of 0.01 or 0.05 is explained in (Ioannidis, 2018; Colquhoun, 2017), and the practice

of always adding a level when using the word “significant” is proposed in (Wasserstein et al.,

2019); see also (Li et al., 2021)). Strikingly, almost all factors significantly (at 0.005 level)

influence the rate of event of COVID-19 patients, and are significantly different between the

deceased and survived group.

Relationship between HRd and HRr for continuous factors: Another striking ob-

servation is the relationship between the two cause-specific hazard ratios. Denote csHRd for

csHR of the event of death from COVID-19 and csHRr for csHR of the event of COVID-19

patient releasing from hospital. it can be easily seen from Table 2,3,4 that if csHRd > 1, the

corresponding csHRr < 1, and vice versa. A simple mathematical expression of this fact is:

log(csHRd) · log(csHRr) < 0 (6)

The only exception is the factor of gender. But the 95%CI is so large to have both < 1 and

> 1 values, it should not really be considered as an exception. The opposite direction of csHRd

and csHRr is understandable: a risk factor for faster death in a deceased patient would also

make a surviving patient recover longer.

Table 2,3,4 seem to also show that the larger csHRd, and smaller csHRr, and vice versa. In

order to check if there is a numerical relationship between csHRd and csHRr, we plot 1/HRr

as function of csHRd in Fig.1. The line csHRd × csHRr = 1 is marked by the slope=1 line in

Fig.1. There are many factors clustered near the csHRd=csHRr=1 point and a close-up plot

is shown separately. A factor is labeled in red if p-values for both csHR is significantly (at

level 0.001) different from 1, and in blue if one or both csHR is not significant. Our working

hypothesis can be written as a reciprocal relation between csHRd and csHRr:

csHRd · csHRr ≈ 1 (7)

Extension of the relationship between HRd and HRr in a multivariate context:

One may wonder whether the approximate reciprocal relationship between HRd and HRr for a

variable when other variables are also used in a multiple cause-specific Cox regression. Because

adding more variables in a multiple regression often leads to unpredictable outcome due to
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collinearity between variables, and due to overfitting when the variable-per-sample ratio is

too high, we investigate a simple situation: we run a three-variable Cox regression with the

variable of interest, plus gender and age co-variates.

Table 5 shows the cause-specific hazard ratio of 18 continuous factors (log-transformed if

necessary) conditional on gender and age, for either time-to-death or time-to-release. Without

exception, if one of the csHRd or csHRr is larger than 1, the other is smaller than 1. The product

of the two hazard ratios are close to 1 except for log(urea), log(creatine), and log(LYM). The

urea and creatine factors are highly correlated, and both are significantly correlated with

lymphocyte.

Relationship between hazard (rate) ratio and odds (risk) ratio: As emphasized in

(Sutradhar and Austin, 2018), survival analysis estimates the relative rates (of risk) whereas

case-control type of analysis such as logistic regression estimates the relative (static or cu-

mulative) risks. Table 2,3,4 show that OR seems to have a larger magnitude than csHRd.

Fig.2 shows y=OR as a function of x= csHRd. Unlike Fig.1 where dots are scattered near the

slope=1 line, in Fig.2, dots systematically deviates from the diagonal line. In fact, if a factor

is a risk (OR > 1 and csHRd > 1), we have OR > csHRd, and if a factor is a protection (OR

< 1 and csHRd < 1), then OR < csHRd. We can summarize these into a working hypothesis:

| log(OR)| ≥ |log(csHRd)| (8)

Eq.(8) might be proved in a simple approximation as follows: the risk function F (t) is

known to be related to hazard rate function h(t):

F (t) = 1− e−
∫ t

0
h(t′)dt′ . (9)

Therefore, the odds-ratio is (the subscript 1,2 refers to two states in a binary variable or a

two numerical level of a continuous factor with one unit difference, and not refers to the two

competing-risks):

OR =

F1(t)
1−F1(t)

F2(t)
1−F2(t)

=

1−e−
∫ t
0 h1(t

′)dt′

e−
∫ t
0 h1(t

′)dt′

1−e
−

∫ t
0 h(t

′)dt′

e
−

∫ t
0 h2(t

′)dt′

(10)

In the proportional hazard assumption, h1(t) = α1h0(t), h2(t) = α2h0(t), where h0(t) is a
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baseline hazard function, and denote
∫ t

0
h0(t

′)dt as H0(t), Eq.(10) becomes

OR = e(α1−α2)H0(t)
1− e−α1H0(t)

1− e−α2H0(t)
≈ e(α1−α2)H0(t)

α1

α2







≥ HR if HR = α1/α2 ≥ 1

≤ HR if HR = α1/α2 ≤ 1
(11)

One approach in getting the approximation in Eq.(11) is the Taylor expansion assuming small

H0(t) (Stare, 2016).

Relationship between csHRd and csHRr for binarized continuous factors: The

HR for continuous factors measures the ratio of two hazard rates when the unit of the factor

increases by one. Therefore, when one unit change is negligible compared to the possible range,

HR can be very close to 1. In order to see the true impact of a continuous variable, we discretize

continuous factors into levels. Although one can choose three levels for below-normal, normal,

and above-normal, the normal range of a factor may not be universally accepted.

We use binary levels (higher and lower than a threshold) where the threshold value is a com-

promise between two selections: the first threshold is chosen to maximize the Youden index

(Youden, 1950), which is simply the sum of sensitivity and specificity (minus 1). The second

threshold is chosen by providing the population prevalence of cases (which is set at 10%), which

in turn gives weight to samples in the dataset (see, https://www.medcalc.org/manual/roc-

curves.php and (Zweig and Campbell, 1993)). Both thresholds are obtained from the med-

calc.org program. The final threshold is a geometric mean of the Youden-based threshold and

that after considering the 10% population case prevalence. The resulting threshold values

for all factor (except for age, neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, where

the thresholds are more intuitively selected) are given in Tables 2,3, 4. The resulting csHRd

and csHRr have larger magnitude than the corresponding continuous value, because the “unit

change” is much larger.

In order to study the numerical relationship between csHRd and csHRr for binarized factors,

we examine other possible threshold values beyond that determined by the medcalc program

and plot csHRd (red) and 1/csHRd (blue) as a function of threshold value, for 19 test measure-

ments, in Fig.3. The 95% confidence interval (CI) of csHRd or 1/csHRr is marked with dash

vertical lines. If the discretized factor is not significant at a corresponding threshold, red dots

turn pink and blue dots turn light-blue. We also mark normal ranges of blood tests from two
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different sources (as grey horizontal lines) and the threshold used in Table 1 (as downward ar-

row in grey). We consistently found the 95% CI of csHRd and 1/csHRr overlap with each other

at the chosen (optimal) threshold value. In other words, when a reasonable threshold value

is used to convert a continuous factor to a binary factor, and running two survival analyses

results in a roughly reciprocal relationship between the two cause-specific hazard ratios.

Relationship between csHRd and OR for binarized continuous factors: Similar

to Fig.2 where we show the scatter plot for cause-specific hazard ratio for time-to-death (x-

axis) and logistic regression odds-ratio (y-axis), Fig.4 shows the similar scatter plot for the

discretized factors. The 95% CI for both are shown by horizontal and vertical segments. All

points in the first quadrant are above the diagonal line, and those in the third quadrant below

the diagonal line. Therefore, | log(OR)| ≥ | log(csHRd)| is true for all binarized factors.

Effect of log-transformation of factor values: Remember the meaning of HR for

continuous variable is the ratio of two hazards evaluated at two factor values differing by one

unit: x1 = c, x2 = c + 1. The dependence on c is supposed to be averaged out. If the factor

is log-transformed, the two evaluation points are log(x1) = c′, log(x2) = c′ + 1, or x2 is x1

multiplied by a constant 2.718. Not only this one-unit change is much larger, but also, the

change in the original scale x2 − x1 = ec
′+1 − ec

′

= 1.718 · ec
′

depends on c′. Table 2,3,4 show

that csHRd or csHRr are dramatically larger (in magnitude) than the un-logged factors. The

effect of log-transformation on p-value is unclear, though in our examples, the test becomes

more significant after the factor being log-transformed.

The concept of hazard ratio has been cautioned in (Hernán, 2010). In particular, the

instantaneous incident rate for an event to occur may depend on the time, and HR is only an

average over the potential time dependence. Our attempt to binarize a continuous factor or

log-transform a factor illustrates a similar problem. If HR not only depends on the one-unit-

change step, but also depends on which level this step is made, and depends on whether the

step is in additive scale or multiplicative scale, then the average may not capture the whole

spectrum of the behavior of hazard in its full range.
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Discussion

The COVID-19 time-to-event data is unique not only the two events, mortality and dis-

charge, are mutually exclusive, but also a susceptible factor might be behind faster death and

slower release at the same time. Even though csHR and OR, i.e., instantaneous risk and cu-

mulative risk, are not theoretically proven to always point to the same direction, in our data,

they do. If we consider heart transplant and other open-heart operations as events that may

have saved a patient’s life, thus are mutually exclusive with mortality, we can not say that the

factors causing a longer waiting time until operation are the same ones causing a faster death

without these operation. For this reason, we have the basis for the reciprocal cause-specific

hazard (csHR) ratios hypothesis which can only be examined in data similar to COVID-19,

but not in other survival data just because two events are mutually exclusive.

Besides cause-specific competing risk survival analysis proposed in (Kalbfleisch and Pren-

tice, 1980), there is another subdistribution hazard proposed in (Fine and Gray, 1999):

hsd
K (t) = lim

∆t→0

Prob(t ≤ T < t+∆t,K|(T ≥ t) ∪ (T < t ∩K 6= k))

∆t
, K =1,2 (12)

where ∪ (logical OR) means two groups of samples are considered in the calculation of hazard

(hsd): one is those who has not yet experienced the type-1 event at time t (e.g. still alive), and

another is those who has already experienced the type-2 event (e.g. released) before time t.

Why already released samples are still considered in the calculation for hazard (rate of risk) for

death is not explained, and hsd does not have a good interpretation (Austin and Fine, 2017).

The reason that subdistribution hazard (Fine-Gray model) is still used is due to the fact that

its hazard ratio (sdHR) always preserves the direction (larger or smaller than 1) in odds-ratio.

The csHR does not have such a general proof for direction preserving. However, as seen in this

paper, sdHR and OR are in the same direction without exception in our data. On the other

hand, sdHR has its own problems (Lesko and Lau, 2017; Allison, 2018; Putter et al., 2020;

Austin et al., 2021).

The possible links between the two csHR’s have at least two consequences. The first is

on hospitalization stay time. If a patient has certain condition (e.g., high glucose or hyper-

glycemia), the larger-than-1 csHRd implies that the patient has a higher death-rate than those

with normal glucose level (remember again that although csHR and OR can not be proven
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to be in the same direction in theory, in practice such as our data, the two are pointing in 

the same direction); on the other hand, the larger-than-1 csHRr value indicates the 

patients have a higher chance to be released. Therefore, whether hyperglycemia increases the 

hospital stay time or not depends on whether the patient survives or not. The hospital stay 

time is of interest because of the number of hospital beds is limited, and there is a need for 

bed management (Roimi et al., 2021).

If a factor/condition causes the severity of a COVID-19 patient, intuitively we would con-

clude that patients with the condition will stay in hospital longer. In reality, if the disease is 

too severe, the patient will stay in hospital shorter, because the patient succumbed to death 

faster. Among the deceased patients, we would expect the co-existence of short and long stays, 

while less diverging in stay time for discharged patients. Indeed, though mean of log(stay time) 

between the deceased and released groups is not significantly different (t-test p-value= 0.15, 

though Wilcoxon test p-value is 0.00034), the variances are very different (F-test p-value= 

1.1E-8).

The second consequence that two csHRs might be related is that if we focus on time-

to-release events, we could collect much more samples simply because more patients being 

recovered/released than deceased. In a sense, this strategy examines which factor delays the 

recovering time in surviving patients. Larger sample sizes would help to detect more subtle 

causing factors. This strategy will become more relevant if life-saving drugs for COVID-19 are 

developed and nobody or almost nobody die from the disease. Even in that future event, we 

still have in possession surviving patients.

The fact that OR > csHRd if OR > 1 (and OR < csHRd if OR < 1) for both continuous 

factors and their discretized version, seem to be a consequence of the definition of the two 

quantities. Although one may use this result to obtain an upper limit of csHRd, the result in 

Table 2,3,4 seems to indicate that the bound is not tight. In that case, if OR ≫ csHRd, OR 

will not be very useful in estimating the csHRd value.

As discussed thoroughly in the literature that we can not always assume csHR (unlike 

subdistribution HR) is in the same direction as OR (Lau et al., 2009; Austin et al., 2016). 

In other words, csHR > 1 does not universally imply OR > 1. Individual csHR also can 

not determine the cumulative incidence function caused by multiple risks (Latouche et al.,
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2013). However, our results in Tables 2,3,4 show that OR and csHRd are always in the same

direction (both larger than 1, or, both smaller than 1), indicating the difference between a

theoretical possibility and reality. Drawing cumulative incidence function is also not a goal in

our analysis. Considering all these, we consider the use of csHR better fitted for COVID-19

death/release survival data, than the subdistribution HR. In fact, we doubt subdistribution

HR can be applied to this situation at all, because of the exclusive nature of the two events.

In conclusion, we draw attention to the connection between the two types of mutually

exclusive events, mortality and discharge, in COVID-19 survival data. We also made three

observations from COVID-19 data: the opposite direction between the two csHRs log(HRd) ·

log(HRr) < 0, approximately reciprocal link between them HRd ·HRr ≈ 1, and odds-ratio as

an upper limit of HRd: | log(csHRd) | ≤ | log(OR) |.
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factor mean/median t/Wilcoxon

all released deceased p-value long-tail

FER1 497.2/206 1096.3/930 314.8/123.6 2.6E-17/1.6E-24 yes

d-dimer 1.12/0.51 2.32/2.54 0.73/0.38 5.7E-18/4.9E-23 yes

glucose 139.8/113.2 196.6/174.5 124.4/106 5.7E-10/1.3E-18 yes

ALT 63.8/26.7 150/29 39/26 0.0045/0.088 yes

AST 112.4/31.1 376/51.9 35.4/29 0.0016/5.5E-10 yes

urea 57.9/34.4 132.5/106.5 36.5/30.4 2.4E-19/1.9E-37 yes

calcium 8.6/8.7 7/7/7.7 8.9/8.9 1.7E-30/5.8E-30

creatine 1.3/0.8 2.5/2.1 0.91/0.74 2.2E-14/4.8E-25 yes

LDH 472.6/297.1 912.4/512.5 291.9/257.6 0.0004/7.8E-25 yes

potassium 4.4/4.3 4.8/4.7 4.3/4.3 3.8E-5/7.8E-5

sodium 140.6/140 143.7/143.1 139.7/139.8 4.4E-7/1.8E-8

WBC 9/7 15.7/14.3 7.1/6.4 2.4E-17/3E-28

NEU 7.2/4.9 14.3/13 5/4.1 5.8E-19/1.4E-31 yes

LYM 1.4/1.2 0.79/0.58 1.6/1.4 2.1E-14/1E-22

HGB 12/12.1 10.4/10.2 12.5/12.6 2.2E-14/1.6E-15

PLT 87.4/87.9 89.9/90.6 86.7/87.2 0.00015/1E-5

MCV 238.5/221 192.8/184 251.7/237 2.8E-e/2.4E-7

MPV 10.3/10.1 11.3/11.1 10/9.9 7.2E-14/1.6E-16

Table 1: Summary statistics of the used factors: mean/median value for all samples, released samples, and

deceased samples; t and Wilcoxon test p-values for comparing between released and deceased samples; and

whether the factor is better modeled by a log-normal distribution.
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factor csHRd (95% CI) pvd csHRr (95% CI) pvr OR (95% CI) pv(LR)

age 1.052 (1.033, 1.072) 9e-8 0.973 (0.968, 0.978 ) 3.5e-26 1.076 (1.054, 1.099) 9.4e-12

≥70 3.705 (2.259, 6.078) 2.1e-7 0.461 (0.368, 0.577) 1.4e-11 7.69 (4.51, 13.09) 6e-14

gender 1.048 (0.689, 1.594) 0.83 1.381 (1.118, 1.706) 0.0028 0.754 (0.475, 1.197) 0.23

FER1 1.0007 (1.0004, 1.001) 3.1e-7 0.9987 (0.9984, 0.999) 3.1e-18 1.002 (1.001, 1.002) 4.3e-19

log(FER1) 1.703 (1.395, 2.077) 1.6e-7 0.645 (0.6, 0.693) 2.6e-33 3.108 (2.402, 4.022) 6.5e-18

>782.9 2.66 (1.751, 4.039) 4.5e-6 0.26 (0.182, 0.371) 1.1e-13 10.88 (6.35, 18.64) 3.5e-18

d-dimer 1.558 (1.356, 1.789) 3.6e-10 0.561 (0.486, 0.647) 2.1e-15 2.501 (2.051, 3.049) 1.3e-19

log(dd) 1.938 (1.552, 2.419) 5.2e-9 0.571 (0.517, 0.632) 1e-27 3.347 (2.545, 4.402) 5.4e-18

> 1.36 3.259 (2.11, 5.034) 1e-7 0.319 (0.232, 0.439) 2.2e-12 10.17 (6.007, 17.220) 6e-18

LDH 1.0001 (1, 1.0002) 0.03 0.997 (0.996, 0.998) 8.6e-10 1.008 (1.006, 1.01) 4.4e-13

log(LDH) 1.884 (1.574, 2.254) 4.7e-12 0.298 (0.214, 0.415) 7.1e-13 35.22 (14.89, 83.30) 5.1e-16

> 406.5 4.975 ( 3.152, 7.852 ) 5.5e-12 0.235 ( 0.154, 0.36 ) 2.3e-11 21.15 (11.37, 39.35) 5.6e-22

Table 2: Results from two cause-specific survival analyses and logistic regression analysis with a single factor:

gender, age, FER1, d-dimer, and LDH. The csHRd (95%CI) is the cause-specific hazard-ratio for time-to-death

event and its 95% confidence interval; pvd is the corresponding p-value; csHRr and pvr are hazard ratio and

p-value for time-to-release event; OR(95% CI) and pv(LR) are odds-ratio (and its 95% confidence interval)

and p-value from logistic regression. P-values smaller than 0.005 are shown in boldface. All similar results for

log-transformed factor value and discretized (binarized) factors are also shown, where the threshold used to

discretization are given in the first column.
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factor HRd(95%CI) pvd HRr(95%CI) pvr OR(95%CI) pv(LR)

glucose 1.004 (1.002,1.005) 1.3e-06 0.994 (0.992,0.996) 2.5e-08 1.013 (1.009,1.016) 1.8e-12

(log)glucose 2.976 (2.027,4.371) 2.7e-08 0.44 (0.335,0.577) 3.1e-09 11.34 (6.13,20.98) 1e-14

>167.9 3.49 (2.327,5.237) 1.5e-09 0.385 (0.277,0.535) 1.3e-08 9.25 (5.5,15.54) 4.5e-17

ALT 1.0004 (1, 1.0008) 0.044 0.997 (0.995, 0.999) 0.0018 1.007 (1.003, 1.01) 3.8e-05

log(ALT) 1.27 (1.09, 1.479) 0.0021 0.895 (0.809, 0.989) 0.03 1.444 (1.161, 1.797) 0.00099

> 157.6 3.7 (2.23, 6.15) 4.4e-07 0.222 (0.092, 0.537) 0.00084 16.22 (5.88, 44.79) 7.5e-08

AST 1.0002 (1, 1.0004) 0.016 0.994 (0.99, 0.998) 0.0024 1.02 (1.011, 1.028) 2.5e-06

log(AST) 1.418 (1.265, 1.589) 1.8e-09 0.705 (0.604, 0.823) 1e-05 3.26 (2.29, 4.65) 6.9e-11

> 88.59 3.63 (2.3, 5.728) 3.1e-08 0.371 (0.213, 0.646) 0.00046 8.99 (4.4, 18.35) 1.6e-09

urea 1.008 (1.006, 1.01) 6.6e-21 0.985 (0.981, 0.989) 6.9e-14 1.043 (1.034, 1.053) 1.5e-20

log(urea) 3.398 (2.671, 4.323) 2.3e-23 0.505 (0.431, 0.591) 2.6e-17 22.35 (12.3, 40.6) 2.1e-24

> 64.8 9.82 (5.93, 16.26) 7.2e-19 0.205 (0.138, 0.304) 3.5e-15 47.44 (25.08, 89.72) 1.7e-32

calcium 0.501 (0.412, 0.608) 3.1e-12 1.875 (1.637, 2.147) 1.1e-19 0.107 (0.066, 0.173) 6.3e-20

> 7.9 0.231 (0.151, 0.352) 9.6e-12 4.816 (3.143, 7.38) 5.2e-13 0.049 (0.027, 0.089) 2.8e-23

creatine 1.34 (1.242, 1.446) 5.3e-14 0.675 (0.585, 0.779) 6.7e-08 2.663 (2.078, 3.414) 1.1e-14

log(CRE) 2.679 (2.143, 3.349) 5e-18 0.622 (0.527, 0.735) 2e-08 8.65 (5.51, 13.61) 8.9e-21

> 1.38 6.051 (3.987, 9.184) 2.7e-17 0.236 (0.153, 0.364) 6.3e-11 25.53 (14.03, 46.45) 2.8e-26

potassium 1.457 (1.204, 1.763) 0.00011 0.73 (0.631, 0.843) 1.9e-05 2.499 (1.808, 3.455) 3e-08

> 5.03 2.756 (1.813, 4.191) 2.1e-06 0.326 (0.215, 0.495) 1.4e-07 8.02 (4.47, 14.37) 2.7e-12

sodium 1.111 (1.075, 1.149) 5.8e-10 0.957 (0.936, 0.978) 8.7e-05 1.2 (1.14, 1.27) 1.3e-10

> 145.5 3.327 (2.194, 5.045) 1.5e-08 0.266 (0.161, 0.44) 2.4e-07 12.41 (6.49, 23.73) 2.6e-14

Table 3: Similar to Table 2 but for factors measured by a metabolic panel blood test.
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factor csHRd (95% CI) pvd csHRr (95% CI) pvr OR (95% CI) pv(LR)

WBC 1.08 (1.06, 1.1) 3.2e-15 0.869 (0.841, 0.897) 4.7e-18 1.368 (1.279, 1.464) 6.7e-20

log(WBC) 3.996 (2.827, 5.648) 4.3e-15 0.352 (0.284, 0.437) 3.4e-21 28.2 (14.24, 55.84) 9.6e-22

>11.99 5.056 (3.306, 7.732) 7.7e-14 0.217 (0.145, 0.324) 8.8e-14 22.02 (12.35, 39.25) 1e-25

NEU 1.085 (1.064, 1.105) 5.2e-17 0.85 (0.819, 0.882) 1.3e-17 1.421 (1.316, 1.533) 1.9e-19

log(NEU) 3.77 (2.775, 5.131) 2.5e-17 0.402 (0.337, 0.48) 5.9e-24 21.52 (11.31, 40.92) 8.2e-21

>9.07 6.35 (3.975, 10.15) 1.1e-14 0.238 (0.162, 0.35) 2.7e-13 24.21 (13.31, 44.05) 1.7e-25

LYM 0.243 (0.157, 0.375) 1.8e-10 1.18 (1.082, 1.286) 0.00017 0.124 (0.0709, 0.2167) 2.3e-13

log(LYM) 0.35 (0.276, 0.442) 2.1e-18 1.73 (1.461, 2.05) 2.1e-10 0.095 (0.0555, 0.1626) 9.3e-18

>0.636 0.232 (0.152, 0.354) 1.2e-11 4.669 (2.895, 7.529) 2.6e-10 0.052 (0.0275, 0.0972) 3.8e-20

HGB 0.856 (0.781, 0.938) 0.00085 1.253 (1.192, 1.318) 1.5e-18 0.615 (0.542, 0.697) 3.6e-14

>9.67 0.605 (0.397, 0.923) 0.02 3.698 (2.544, 5.374) 7.1e-12 0.145 (0.084, 0.251) 5.1e-12

PLT 0.9968 (0.995, 0.9986) 0.00064 1.0004 (0.9996, 1.0012) 0.33 0.994 (0.991, 0.996) 1.9e-6

log(PLT) 0.74 (0.5908, 0.927) 0.0088 1.336 (1.109, 1.609) 0.0023 0.27 (0.168, 0.434) 6.1e-8

>99.58 0.695 (0.411, 1.175) 0.17 3.341 (1.915, 5.831) 2.2e-5 0.166 (0.0785, 0.35) 2.5e-6

MCV 1.048 (1.012, 1.085) 0.0093 0.96 (0.943, 0.976) 2e-6 1.085 (1.044, 1.128) 3.8e-5

>92.52 2.179 (1.433, 3.313) 0.00027 0.582 (0.426, 0.795) 0.00066 3.547 (2.112, 5.955) 1.7e-6

MPV 1.322 (1.181, 1.48) 1.2e-6 0.764 (0.701, 0.832) 8.8e-10 2.326 (1.876, 2.884) 1.5e-14

>11.22 2.45 (1.629, 3.685) 1.7e-5 0.381 (0.272, 0.533) 1.8e-8 6.959 (4.131, 11.722) 3e-13

NEU/LYM 1.023 (1.0179, 1.028) 5.7e-20 0.908 (0.886, 0.931) 3.4e-14 1.219 (1.166, 1.274) 1.6e-18

log(NLR) 2.721 (2.234, 3.315) 2.5e-23 0.556 (0.496, 0.624) 1.4e-23 10.471 (6.406, 17.115) 7.4e-21

> 9 10.54 (5.95, 18.69) 7.3e-16 0.182 (0.121, 0.272) 1.3e-16 51.64 (26.04, 102.42) 1.5e-29

PLT/LYM 1.0003 (1.0002, 1.0004) 1.8e-5 0.998 (0.997, 0.999) 3.6e-6 1.004 (1.0026, 1.0054) 1.5e-8

log(PLR) 1.871 (1.472, 2.377) 3.1e-7 0.82 (0.721, 0.934) 0.0027 2.41 (1.70, 3.42) 7.9e-7

>330 3.698 (2.417, 5.656) 1.6e-9 0.43 (0.3, 0.616) 4.1e-6 6.77 (3.93, 11.68) 6.2e-12

Table 4: Similar to Table 2 but for factors measured by a complete blood count panel test.
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factor csHRd csHRr csHRd· csHRr

log(FER1) 1.62 0.68 1.10

log(d-dimer) 1.60 0.78 1.25

log(glucose) 2.82 0.65 1.84

log(ALT) 1.29 0.90 1.16

log(AST) 1.38 0.73 1.01

log(urea) 3.11 0.66 2.04

calcium 0.51 1.60 0.82

log(creatine) 2.52 0.80 2.03

log(LDH) 1.77 0.40 0.71

potassium 1.39 0.77 1.07

sodium 1.10 0.95 1.04

log(WBC) 3.39 0.40 1.35

log(NEU) 3.33 0.47 1.55

log(LYM) 0.39 1.28 0.50

HGB 0.91 1.26 1.15

MCV 1.03 0.97 1.00

log(PLT) 0.79 1.21 0.95

MPV 1.30 0.82 1.07

Table 5: Cause-specific hazard ratio with dead as the event (csHRd) and that with release as the event (csHRr),

conditional on gender and age covariates. The last column shows the product of the two hazard ratios.
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Figure 1: The x-axis is the cause-specific hazard ratio csHRd for death event, and y-axis is reciprocal of the hazard 

ratio for the release event (1/HRr), for the 18 blood test measurements as well as age and gender. The diagonal 

line indicates the exact relationship csHRd=1/csHRr. A factor is in red if its p-values (for testing csHRd and 

csHRr=1) are both smaller than 0.001; in blue if both p-values are larger than 0.001; and light-blue if one of the 

two p-values is smaller than 0.001. Because there are many factors having HR close to 1, the right subplot 

presents a close-up near csHRd=csHRr=1.
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Figure 2: The x-axis is the cause-specific hazard ratio csHRd for death event, and the y-axis the odds-ratio

(OR) from logistic regression, for 20 factors. The right subplot presents a close-up near csHRd=OR=1.
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Figure 3: The csHRd (red) and 1/csHRr (blue) for binarized 18 blood test measurements as a function of the

threshold used to discretize these factors. The 95% CI of csHRd or 1/csHRr are shown in dashed vertical lines.

If the discretized factor’s csHR is not significant (at 0.01 level) by the survival analysis, its color turns from red

(blue) to pink(light-blue). The threshold used in Table 1 is shown as a downward arrow. The two horizontal

lines represent the normal range of these blood test results (from two different sources), and horizontal dash

line is csHR=1.
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Figure 4: Similar to Fig.2, but for discretized/binarized factors: the x-axis is the cause-specific hazard ratio

csHRd for death event, and the y-axis the odds-ratio (OR) from logistic regression.
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