DigitalExposome: quantifying impact of urban environment on wellbeing using sensor fusion and deep learning

Johnson, T. ORCID: 0000-0002-1702-0943, Kanjo, E. ORCID: 0000-0002-1720-0661 and Woodward, K. ORCID: 0000-0003-3302-1345, 2023. DigitalExposome: quantifying impact of urban environment on wellbeing using sensor fusion and deep learning. Computational Urban Science, 3 (1): 14. ISSN 2730-6852

[img] Text
1742161_Kanjo.pdf - Post-print
Full-text access embargoed until 20 March 2024.

Download (7MB)


The increasing level of air pollutants (e.g. particulates, noise and gases) within the atmosphere are impacting mental wellbeing. In this paper, we define the term 'DigitalExposome' as a conceptual framework that takes us closer towards understanding the relationship between environment, personal characteristics, behaviour and wellbeing using multimodal mobile sensing technology. Specifically, we simultaneously collected (for the first time) multi-sensor data including urban environmental factors (e.g. air pollution including: Particulate Matter (PM1), (PM2.5), (PM10), Oxidised, Reduced, Ammonia (NH3) and Noise, People Count in the vicinity), body reaction (physiological reactions including: EDA, HR, HRV, Body Temperature, BVP and movement) and individuals' perceived responses (e.g. self-reported valence) in urban settings. Our users followed a pre-specified urban path and collected the data using a comprehensive sensing edge device. The data is instantly fused, time-stamped and geo-tagged at the point of collection. A range of multivariate statistical analysis techniques have been applied including Principle Component Analysis, Regression and Spatial Visualisations to unravel the relationship between the variables. Results showed that Electrodermal Activity (EDA) and Heart Rate Variability (HRV) are noticeably impacted by the level of Particulate Matter in the environment. Furthermore, we adopted Convolutional Neural Network (CNN) to classify self-reported wellbeing from the multimodal dataset which achieved an f1-score of 0.76.

Item Type: Journal article
Publication Title: Computational Urban Science
Creators: Johnson, T., Kanjo, E. and Woodward, K.
Publisher: Springer
Date: December 2023
Volume: 3
Number: 1
ISSN: 2730-6852
Rights: Post-prints are subject to Springer Nature re-use terms
Divisions: Schools > School of Science and Technology
Record created by: Laura Ward
Date Added: 05 May 2023 15:30
Last Modified: 05 May 2023 15:30

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year