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Abstract—Due to the built-in parallelism of quantum comput-
ing, there is an unexplored potential for some complex fuzzy
logic computations to take the advantage of the future quantum
computers. Recently, it has been introduced a novel representa-
tion of fuzzy sets and implementations of some basic fuzzy logic
operators (union, intersection, alpha-cut and maximum) based on
solving a Quadratic Unconstrained Binary Optimization (QUBO)
problems, on a type of quantum computers known as quantum
annealers. In this paper, this work is extended by presenting an
implementation of centroid defuzzification on quantum annealer
machines, based on binary quadratic model (BQM) but this time
using Ising model. Having the basic operations and defuzzifi-
cation implemented on quantum computers, this paper paves
the way towards the implementation of a whole fuzzy inference
engine on enhanced devices, such as quantum annealers.

Index Terms—Quantum computing, fuzzy logic, fuzzy set.

I. INTRODUCTION

Quantum computing aims to solve intractable computational
problems by leveraging quantum mechanics principles like
superposition and entanglement to manipulate information in
a different and potentially more efficient way than traditional
electronic computers. Since Feynman [1] introduced the idea
of this different paradigm of computation, several quantum
algorithms have been developed in different applications do-
mains, from finance [2] and chemistry [3] to artificial and
computational intelligence [4]–[8]. In the latter field, quantum
computers can play a key role in improving current implemen-
tations of fuzzy systems.

In fact, today’s applications of fuzzy systems are increas-
ingly working with large amounts of data, and there is a strong
emergence of identifying innovative computational paradigms
capable of efficiently managing this type of systems. However,
in order to develop an efficient quantum fuzzy system, several
steps still need to be taken.

In [9] the authors paved the way by introducing a quantum
representation of the fuzzy sets and of the operators that
operate on them, such as fuzzy union, fuzzy intersection,
alpha-cut and maximum. Such a representation is based on a
formulation of fuzzy logic as Binary Quadratic Model (BQM),
where the aforementioned operations were formulated as Un-
constrained Binary Optimization (QUBO) problems in order to
be efficiently solved on particular quantum computers, known
as Quantum Annealers or Adiabatic Quantum Computers.

A new step towards the development of an efficient quantum
fuzzy system is taken in this research, where the well-known
centroid defuzzification mechanism is reformulated as BQM,
but this time by using an Ising expression of the problem.
The expressions for Ising and QUBO problems do look very
similar. In fact, the Ising and QUBO expressions are isomor-
phic [10] and both can be addressed efficiently on quantum
annealers. The major difference between the two models is
that an Ising problem deals with spin (-1, 1), while QUBO
uses binary (0,1).

As shown in the remaining of the paper, the spin repre-
sentation is particularly suitable for modelling the centroid
defuzzification mechanism as an objective function that can
be minimized via quantum annealing. This approach is a
metaheuristic whose goal is to find the global minimum of
a given objective function over a given set of candidate
solutions by exploiting the massive parallelism induced by
quantum superposition and entanglement. The devices that
exploit quantum annealing have been shown to outperform
classical computers on several instances [11], and in our
opinion, the joint use of these machines with an appropriate
modelling of fuzzy logic via BQM will be crucial for the
development of new inference engines.

The remaining of the paper is structured as follows: in
Section II an analysis of the literature about the integration
of fuzzy logic and quantum computing is carried out; in order
to make the paper self-contained Section III describes the basic
concepts of quantum annealing and summarises the fundamen-
tal aspects of a defuzzification operator; Section IV introduces
the modelling of centorid defuzzification as BQM problem;
finally, Section V shows the implementation of the centroid
defuzzification as BQM problem on the D-Wave quantum
annealers and reports the results of the experimentation.

II. RELATED WORKS

The similarity between fuzzy logic and quantum computing
has motivated several researchers to start bridging the gap
between these two theories. On the one hand, fuzzy logic has
started to be used for simulating or modelling physical quan-
tum systems [12]–[14], on the other hand, quantum computing
concepts are currently investigated for a more efficient refor-
mulation of fuzzy systems. In this latter area, both quantum-



inspired and real-quantum algorithms have been proposed for
achieve different results. In [15] a quantum inspired genetic
algorithm is proposed to initialize cluster centers in fuzzy
c-means; in [16] a different example of quantum-inspired
classical computation is used to improve the robustness of
fuzzy controllers by modifying their inference performance
based on quantum algorithms. In general, quantum-inspired
algorithms are not specific to fuzzy systems, as it also exists
for some other computational intelligence methods which are
reviewed in [17].

As for purely quantum algorithms, these have been held
back by the fact that only in recent years have usable quantum
processors become available via cloud, but they are still
severely limited by the high level of noise and small number
of qubits that constitute them [18]. Therefore no advantage
in using real-quantum algorithm in fuzzy systems has still
been demonstrated practically. However, important theoretical
results have been already achieved: for instance in [19] Rigatos
and Tzafestas have proposed a procedure to speedup the
inference process of a fuzzy switching control by means
of a one-step quantum addition and subtraction that replace
classical operations between large matrices.

In [20] it is presented a quantum approach to implementing
a fuzzy system based on a lookup table. In particular, Grover’s
algorithm [21] has been used to perform the search for rela-
tionships between input and output variables of a system using
a quantum computer. Although this paper represents the first
attempt to use a well-known quantum algorithm to implement
fuzzy systems, its use is very limited since the input-output
relationships present in the lookup must be generated using
classical computation.

Alongside these pioneering works directly attempting to
model fuzzy systems via quantum algorithms, many re-
searchers are following a more gradual approach to the devel-
opment of quantum fuzzy systems, starting with a quantum
implementation of fuzzy logic operators. In [22], Visintin et
al. use quantum gates to implement t-norm and t-conorm
operations so as to enable a quantum version of fuzzy union,
intersection, and so on. Similarly, in [9], it is introduced a
novel representation of fuzzy sets and operators based on
(QUBO) problems, which are solvable efficiently by quantum
annealers. However, none of the above researches focuses
on the implementation of defuzzification process on quantum
computers, that is one of the most computationally expensive
process in a fuzzy inference engine.

III. BASIC CONCEPTS

A. BQM Problem and Quantum Annealers

Binary Quadratic Model (BQM) problems are traditionally
used in computer science, with applications ranging from
machine learning [23] to biology [24]. They are defined as
optimization problems formulating as follows: if Q is an
upper-diagonal matrix, which is an NxN upper-triangular
matrix of real weights, and X is a vector of binary variables,
a BQM problem consists in minimizing the function:

f(X) =

n∑
i=1

(qixi) +

n−1∑
i=1

n∑
j=i+1

(qijxixj) (1)

where qi and qij are configurable (linear and quadratic)
coefficients. BQM encompasses both Ising and QUBO prob-
lems, with the difference that in the former case the solutions
are spin solutions, i.e. xi ∈ {−1, 1} with i ∈ [1, . . . n],
whereas in the latter case the solutions are binary solutions,
i.e. xi ∈ {0, 1} with i ∈ [1, . . . n]. This kind of problems can
be addressed efficiently by quantum annealers. In this model
of computing the basic information units are the so-called
quantum bits (qubits). While a classical bit can take a binary
value, a qubit in its superpositioned state can take both 0 and
1 with different ”probabilities”. Moreover, qubits can exploit
the quantum mechanical phenomenon of entanglement, that
happens when one qubit state depends on another one. In the
quantum annealers model, a setting of qubits is specialised to
find the optimum solution for minimising a binary objective
function [25].

The quantum computer works out the optimum solution by
means of minimising the total energy of the quantum system
in an annealing process, that is why this model is also called
quantum annealing. Briefly, formulating a problem in adiabatic
model is finding qi and qij , respectively associated to the
superposition and entanglement biases, so that assignments
of binary values xa, . . . , xn minimises the objective function,
thus represents the solutions to the problem. Then during an
annealing phase, the qubits are collapsed to 0 or 1 states, so
that the system naturally selects its minimum possible energy.
This means that the binary states of the collapsed qubits
collectively provide a solution for f(X) minimisation. Similar
to any quantum system, the solution is probabilistic, so that
the solutions made by a number of runs (called sampling) are
being averaged.

B. Defuzzification Process

Defuzzification is a process that maps a fuzzy set into a
crisp value [26]. In detail, the process of defuzzification of
a fuzzy set A defined on an universe X can be seen as the
selection of a single element of X, based on the information
conveyed in A. In [27] Runkler and Glesner developed a
mathematically motivated set of 13 constraints characterizing
rational defuzzification procedures. Such constraints can be
summarized in four core properties as proposed in [28]:

1) A defuzzification operator always computes to one nu-
meric value

2) The membership function determines the defuzzified
value

3) The defuzzified value of two triangular-operated fuzzy
sets is always contained within the bounds of individual
defuzzified values

4) In the case of prohibitive information, the defuzzified
value should fall in the permitted zone

Property 1 implies that defuzzification is an injective op-
erator. Property 2 asserts that membership function is critical



in determining the defuzzified value and operations that don’t
affect membership functions such as the scaling or the trans-
lation of fuzzy sets, don’t affect defuzzified values which do
not get scaled or translated consequently. Formally, property
3 ensures that if C = T (A,B) is a fuzzy set obtained
as T-norm (or T-conorm) of two fuzzy sets A and B, then
D(A) ≤ D(C) ≤ D(B) where with D it is intended the
defuzzified values. Finally, property 4 refers to the specific
situations in which particular fuzzy sets can be inferred
from inference engines [29], [30] and also in such cases the
defuzzification procedure has to be effective.

Over the years, many researches have studied the logic and
the workings of defuzzification processes from different points
of view: among the others, in [30] Yager and Filev analyzed
defuzzification as invariant transformations between different
uncertainty paradigms or in [31], Roychowdhury and Wang
have attempted to understand the problem of defuzzification
from the scope of optimal selection of an element from a
fuzzy set. However, despite the different theoretical justifi-
cations underlying the defuzzification processes, well known
approaches are used in current fuzzy inference engines. In
general, all defuzzification operators can be formulated in
discrete form (via

∑
) as well as in continuous form (via

∫
).

For simplicity, the following digression will be restrict to the
discrete formulation.

Many of these operators focus on geometric support-based
computation such as the Mean of Maxima (MOM) and the
Center of Gravity (COG). The former [32] computes the output
crisp value x̄ as center of gravity of the area under the maxima
of the fuzzy set as follows:

x̄ =

∑n
i=1 xi

|i|µi = max{µ1, . . . , µn}|
(2)

where n is the number of samples along x and µ(x) is a
discrete fuzzy set. The latter computes the defuzzified value
according to (3):

x̄ =

∑n
i=1 xiµ(xi)∑n
i=1 µ(xi)

(3)

As shown in [28], the COG approach involves an optimiza-
tion process that minimizes the membership graded weighted
mean of the square of the distance. These methods are quite
popular as they are computationally inexpensive and they are
easy to implement within fuzzy hardware chips.

While COG is the most widely used approach, other de-
fuzzification approaches have been introduced in literature,
such as the defuzzifier based on fuzzy clustering proposed
by Genther, Runkler and Glesner in [33] or the one based on
neural network proposed in [34] by Halgamuge, Runkler and
Glesner. There are also some level-based approaches such as
alpha-cut defuzzification (ACD) that is shown to consider both
static and dynamic aspects of a fuzzy set [35].

IV. MODELLING THE CENTROID DEFUZZIFICATION AS
BQM PROBLEM

Centroid defuzzification for a discrete fuzzy set A with
membership function µA(x) is defined as:

C =

∑n
i=1 xiµA(xi)∑n
i=1 µA(xi)

(4)

where n is the number of samples along the x axis. To
implement the centroid on a quantum annealer, an objective
function must be formulated in BQM. In this model, given n
binary variables Y = {y1, . . . , yn} an objective function f(Y )
is defined as:

f(Y ) =

n∑
i=1

(qiyi) +

n−1∑
i=1

n∑
j=i+1

(qijyiyj) (5)

where qi and qij are configurable (linear and quadratic)
coefficients, respectively associated to the superposition and
entanglement biases for the corresponding binary values yi
and yj . Given a fixed set of coefficients qi and qij , the aim
is find an assignment of binary values yi so that the objective
function f(Y ) is minimised.

Our aim in this paper is to map the problem of minimising
f(Y ) to the problem of finding the centroid of the fuzzy set
A. Therefore, for a given fuzzy set A, coefficient sets qi and
qij must be found in a way that minimising f(Y ) yields a
set of binary values yi that can collectively locate the centroid
of A. An intuitive approach to locate the centroid by a set of
binary values is as follows:

For a given discrete membership function µA(xi), let’s
assume that the centroid is located at the kth position between
0 and n. By definition, the centroid divides the set based on its
centre of gravity. This means that the sum of the membership
values on the left side of k must be equal (or the closest, due
to the quantisation error) to the sum of the values on its right
side. This is therefore equivalent to minimising an objective
function defined as:

fc(k) =

( k∑
i=1

µA(xi)−
n∑

i=k+1

µA(xi)

)2

(6)

To convert the above problem to BQM, we notice that
BQM has two implementations on quantum annealers, one
with binary values (0, 1) called QUBO (Binary unconstrained
binary optimisation) and the other one with values (1,−1)
called Ising. The Ising implementation has a simpler match
to mapping the centroid problem to the BQM problem, since
one can simply associate yi = 1 to the centroid’s left-side
and yi = −1 to its right-side (or vice-versa) and can target
minimising f1(Y ) defined as:

f1(X,Y ) =
( n∑
i=1

yiµA(xi)
)2
;Y = {1, ..., 1,−1, ...,−1}

(7)



For a given fixed set of A, let’s rename the values µA(xi)
as simply µi. In this case, the objective function for a given
set is a function of binary values yi, defined as:

f1(Y ) = (

n∑
i=1

yiµi)
2 ; Y = {1, ..., 1,−1, ...,−1} (8)

The constraint of having a single switch-over point between
1 and -1 in Y is an extra limitation that makes f not readily
mappable to BQM, since the function can take smaller values
if Y has more than a single switch-over point. We suggest to
add to f1 another function f2 (as a penalty function) that adds
positive values to it unless the sequence of yi’s has a single
switch-over point. To realise this function, we notice that sum
the square of differences between each two consecutive yi’s
in Y becomes 4 if and only if there is a single-switch-over
point in Y . Therefore we define:

f2(Y ) = (y1−y2)
2+(y2−y3)

2+ ...+(yn−1−yn)
2−4 (9)

For more that one switch-over points, f2(Y ) takes positive
values. In an extreme case, any added penalty value that
is more than zero should be big enough to rule out any
small value of f1(Y ) from being detected as minimum by
the annealer. We notice that:

max
(
f1(Y )

)
= (n− 2)2

f2(Y ) ∈ {0, 4, 8, ..., (n− 1)2 − 4}
(10)

To make sure the penalty value is big enough, we consider a
factor k so that the value of f2(Y ) in the case of one switch-
over point is equal or greater than the maximum of f1(Y ):

kf2(Y ) ≥ f1(Y ); if f2(Y ) ≥ 4

4k ≥ (n− 2)2 or k ≥ n

4
(n− 4) + 1

(11)

Therefore, the new objective function is defined as:

f(Y ) = f1(Y ) + kf2(Y ); k ≥ n

4
(n− 4) + 1 (12)

There is still an outstanding issue, which is for when there
is no switch-over point in Y , i.e., when Y = {1, 1, ..., 1}
or Y = {−1,−1, ...,−1}. For these two cases, f2(Y ) = −4
which gives f(Y ) a lower value than what it would be for any
single or multiple switch-over forms of Y , thus misleading
the annealer. To avoid these two cases, we notice that the
outcome of a quantum annealer is a list of Y arrangements
sorted by their energy levels. If one simply ignores the first
two low energy levels and take the third lowest one, the two
problematic cases will be avoided. This policy has no effect
on the objective function formulation, but is something to be
done programmatically after the annealing process.

Next, let’s convert f1(Y ), f2(Y ) and f(Y ) to BQM forms,
so that the coefficient values qi and qij are determined.

f1(Y ) =

( n∑
i=1

yiµi

)2

= y21µ
2
1 + ...+ y2nµ

2
n

+ 2y1y2µ1µ2 + ...+ 2yn−1ynµn−1µn

=

n∑
i=1

µ2
i + 2

n−1∑
i=1

n∑
j=i+1

µiµjyiyj

(13)

In the above, we notice that y2i = 1 for all i.

kf2(Y ) =k
(
(y1 − y2)

2 + ...+ (yn−1 − yn)
2 − 4

)
= k(y21 + 2y22 + ...+ 2y2n−1 + y2n)

− k(2y1y2 + 2y2y3 − ...+ 2yn−1yn)− 4k

= k(2n− 2)− 2k

n−1∑
i=1

yiyi+1 − 4k

= 2kn− 6k − 2k

n−1∑
i=1

yiyi+1

(14)

f(Y ) =f1(Y ) + kf2(Y )

=

n∑
i=1

µ2
i + 2

n−1∑
i=1

n∑
j=i+1

µiµjyiyj

+ 2kn− 6k − 2k

n−1∑
i=1

yiyi+1

=

n∑
i=1

µ2
i + 2kn− 6k (constant term)

+ 2
( n−1∑

i=1

n∑
j=i+1

µiµjyiyj − k

n−1∑
i=1

yiyi+1

)

(15)

For minimising f(Y ) in (15), we ignore the constant terms
and factors, thus the aim is to minimise the following term:

n−1∑
i=1

n∑
j=i+1

µiµjyiyj − k
n−1∑
i=1

yiyi+1 (16)

To determine the BQM coefficient, (5) and (16) can be
compared, therefore the linear and quadratic coefficients of
(5) can be determined to be:

qi = 0

qij = µiµj −

{
k if j = i+ 1

0 otherwise

(17)

k can be any value equal or greater than n
4 (n− 4) + 1.

The linear and quadratic coefficients determined in (17) can
be calculated for any given fuzzy set, and be used to set up
a quantum annealer. Once the annealer reaches its collapsed
states, the collapsed qubit values in the third lowest energy
level can be picked up. The location of the single switch-over
between 1 and -1 in (or vice-versa) in the collapsed bit array
is equivalent to the location of the centroid.



V. IMPLEMENTIG BMQ-BASED CENTROID
DEFUZZIFICATION ON QUANTUM ANNEALERS

Here a sample implementation of a centroid defuzzifi-
cation operation is demonstrated. It used (15) for building
the objective function, then it is minimised using quantum
annealing and the resulted binary sequences are finally shown.
The implementation is based on D-Wave System1. D-Wave
currently provides access to its D-2000 series of quantum
computers through D-Wave Leap-2, a cloud-based quantum
programming platform. D-Wave also provides some Python
libraries for programming using web-based and desktop IDE
that connect to the same platform. The details of these libraries
is out of the scope of this paper, and can be found in D-Wave
Ocean Software Documentation2.

In our experimentation a discrete fuzzy set A composed of
10 samples along the x axis for x ∈ {1, 2, ..., 10} is considered
as:

A = {0.3/1, 0.3/2, 0.5/3, 0.7/4, 0.9/5,
0.9/6, 0.3/7, 0.2/8, 0.1/9, 0.1/10}

(18)

The Python listing for this program is shown in Listing 1.

Listing 1. Python program for centroid defuzzification
import dimod
from dwave.system import DWaveSampler,
Embeddingomposite

mu = [0.3, 0.3, 0.5, 0.7, 0.9, 0.9,
0.3, 0.2, 0.1, 0.1]

n = len(mu)
k = n*(n-4)/4+1
linear = {}
quadratic = {}
for i in range(n):
linear.update((’y’+str(i):0})

for i in range(n):
for j in range(i+1, n):

qij=mu[i]*mu[j]
if (j==i+1):

qij=qij-k
quadratic.update({(’y’+str(i),’y’+str(j)):qij})

bqm = dimod.BinaryQuadraticModel(
linear, quadratic, 0, ’SPIN’)

sampler=EmbeddingComposite(DWaveSampler())
print (sampler.sample(bqm, num reads=1000))

The results of executing the program of Listing 1 on
D-Wave quantum computer are shown in Listing 2, which
lists the 12 best solutions found by the annealer sorted by
increasing energy. The energy of each solution is reported in
the last column of the listing. As highlighted in Section IV
theoretically, the two solutions of lower energy (rows 0 and
1) correspond to the cases in which there is no switch-over
point in Y and therefore they must be ignored. The third Y
reported in solution 2 contains, as expected, a single switch-
over point between y3 and y4 therefore the COG location is
found between the 3rd and the 4th positions. As the y-index
starts from 0, this matches to the calculated COG from (3)
being 4.81.

1https://docs.dwavesys.com/docs/latest/index.html
2https://docs.ocean.dwavesys.com/en/stable/

Listing 2. The results of running Listing 1 on D-Wave quantum computer.
In yellow, it is highlighted the best correct solution found.

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 energy
0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -136.1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -136.1
2 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -113.1
3 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 -113.1
4 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -112.74
5 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 -112.74
6 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -111.14
7 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 -111.14
8 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 -109.14
9 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -109.14
10 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -108.54
11 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 -108.54

Moreover, it is important to highlight two aspects of the
achieved results: firstly, for each energy level reached by
the annealer there are two solutions, representing the same
location of the centroid; secondly, all the acceptable solutions
reported on top of Listing 2 contain no more than a single
switch-over point, proving that the formulation of the penalty
function proposed in Section IV is correct.

VI. CONCLUSION

Defuzzification is the final step of a fuzzy inference engine,
through which the fuzzy output set of the system is mapped
into the numeric output value. In this paper, we reformulated
the centroid defuzzification mechanism as an Ising problem,
a particular BQM problem that can be solved efficiently by
means of a quantum annealer. Such a device is a particular type
of quantum computer that exploits the annealing phenomenon
to find, in an efficient way, optimal solutions of problems
formulated as BQM. This work takes another step towards
modelling fuzzy inferential systems on quantum computers.

Considering that today’s applications of fuzzy systems are
increasingly working with large amounts of data or large sets
of rules, there is a strong emergence of identifying innovative
computational paradigms capable of efficiently managing this
type of systems.

It is important to highlight that the main goal of this paper is
not to demonstrate an advantage in using quantum computers
to perform centroid computation, which even classically is
particularly efficient. Rather than that, the goal achieved by
this research is the proof of the quantum annealers feasibility
in performing defuzzification operations.

In the future, this approach will be used to implement
other defuzzification methods such as those presented in [36].
Furthermore, a comparison of the proposed approach will be
carried out with a formulation of the centroid calculation as
a BQM problem solved by using the quantum circuit com-
putation model. In particular, with such a model of quantum
computing some quantum algorithms present in literature for
BQM problems optimization can be exploited, such as those
proposed in [37], [38], which respectively leverage approaches
based on the Grover’s algorithm [21] and quantum genetic
algorithms.



Finally, the proposed approach will be used combined with
that proposed in [9], to develop a quantum framework capable
of firing fuzzy rules in efficient way by exploiting quantum
phenomena as superposition and entanglement, in a context
where the quantum implementation of fuzzy inference engines
will represent an added value both from the theoretical and
application point of view.
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