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Abstract—The use of artificial intelligence has become increas-
ingly popular in recent years, allowing technology once thought of
as futuristic to become possible and utilised at the consumer level.
Many technological barriers to human-computer interaction have
been overcome, and there is now a focus on the sociological
acceptance of such technology. Inferring human emotional states
is a time-consuming process and can be automated with computer
vision. In this study, we explore how computer vision and face
recognition systems can be leveraged to automatically infer
human emotional states from the face. Rather than the clas-
sical single-emotion classification method, our aim is to explore
whether it is possible to perform regression techniques to observe
valence and arousal. Following the topology tuning of 33 different
neural networks, the results show that valence and arousal can
be predicted by a branched Convolutional Neural Network model
with a mean squared error of 0.066 and 0.107, respectively. In
addition, we discuss methods of improving the model, as well as
uses of the technology, which include the autonomous monitoring
of affect during situations of technological acceptance.

Index Terms—Affective Computing, Human-Computer Inter-
action, Computer Vision, Emotion Regression

I. INTRODUCTION

In recent years, research and development of intelligent

robotic platforms have seen a rapid increase, allowing tech-

nology once thought of as futuristic to become possible

and used at the consumer level. Therefore, the barrier is

not technological, but social, and the acceptance of such

technologies is questionable. In this research, our aim is to

explore emotional reactions to artificially intelligent machines
through autonomous affective computing. There are many

studies that explore the acceptance of new technology, often

seen as radical by users [1]–[3]. Indeed, the acceptance of such

technology could increase the efficiency and value of industrial

domains such as customer service [4]–[6]. Given this, the

need for affective reaction is paramount to understanding
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human behaviour within human-machine interaction, and its

automation could enable studies en masse.
Classically, emotional recognition is often a concrete pre-

diction of labels. For example, an image of a person smiling

would be labelled as “Happy”, and an image of a person

crying would be labelled as “Sad”. Though this is the case,

human emotion is much more nuanced. For example, such a

model given an input of a person crying with joy would likely

encounter problems with labelling. Similarly, many emotions

are similar; boredom and sleepiness cause the exhibition of

similar facial expressions, as do surprised and scared states.

This, then, suggests that Machine Learning (ML) approaches

should learn to recognise minute physical differences, which

would lead to distinctly different emotions. Human facial

emotions are measured in psychology on a circumplex of two

values, valence and arousal. Therefore, ML models should
follow a similar approach to inference of the human face.

In this study, we propose to predict the two values as a

regression problem, rather than a single-class classification.

This is achieved through computer vision, where each human

face is extracted from an image before regression of the two

values.
The scientific contributions of this work relate to the

exploration of computer vision model topologies to predict

emotional states. Following 33 tuning experiments, the final

model was able to predict emotional states of valence and

arousal with relatively high accuracy. The model was observed

to achieve an average Mean Squared Error on validation data

of 0.087. We open-source our model and make it available to

the research community for future work1.
The remainder of this article is as follows: Section II

presents a review of the literature on related work in the field.

Section III explains the methodology followed by a summary

of the experiments carried out in this study, before the results

1The final model and Python code from this
work is available at: https://github.com/jordan-bird/
Valence-and-Arousal-Recognition-from-Human-Faces
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Fig. 1. An example of emotions on Russell’s Circumplex Model of Affect
[22].

are presented in Section IV. Finally, future work is discussed

and this study is concluded in Section V.

II. RELATED WORK

The related background work contributing to the under-

standing of human facial emotions, facial expression recog-

nition, and the use of affective computing in human-machine

interaction is presented in this section.

While Charles Darwin’s work is most often related to bio-

logical evolutionary theories, his work [7] on The Expression
of the Emotions in Man and Animals explored the psycho-
logical aspect of evolution. According to Darwin, particular

instances of emotion share distinct and immutable states and

are innate to all human beings. A large number of studies

have suggested that universal facial expressions occur spon-

taneously during an emotional state [8], for example, studies

on infants show that social smiles form around the same age

regardless of whether the child is blind, visually impaired,

or has 20:20 vision [9]. Given this, therein lies the argument

that if some physiological emotional states are universal, then

they could also be generalised. Facial Expression Recognition

(FER) is the autonomous encoding and analysis of information

expressed by the human face to derive affective information

[10]. Facial emotion recognition is a subset of sentiment

analysis that can be inferred from text [11], [12], human

activity [13], [14], signal processing [13], [15], Computer

Vision [16]–[18] and landmark classification [19]–[21].

Classically, emotion recognition was thought of as a

classification-based task due to relatively scarce datasets [23].

Russell’s Circumplex Model of Affect [22] instead suggests

that emotion recognition is a more akin to a regression task;

Russell argued that affective states arise from the neurophys-

iological systems of valence, or how pleasurable a state is,

and arousal, a measure of how alert the state is. For example,

the states of surpised and scared are similar in arousal, but

differ in that one is of positive valence and the other negative.

A diagram of the circumplex model can be found in Fig. 1.

Mollahosseini, Hasani, and Mahoor presented the AffectNet

dataset in 2017 [24], contributing a large-scale data set of

1 million images with values of valence and arousal, which

allowed this task in machine learning. In the original paper, the

authors found that AlexNet could achieve Root Mean Squared

Error (RMSE) values of 0.37 and 0.41 for valence and arousal,

respectively.

In 2019, Deng et al. [25] suggested a Conditional Generative

Adversarial Network (cGAN) approach to facial expression

recognition for Human-Robot Interaction. In this work, a

cGAN was trained to change the emotion on facial expression

images in order to alleviate intra-class variability. Although

facial expressions have been argued to be universal and

thus generalisable, such approaches can aid in situations of

data scarcity (i.e., in the form of data augmentation). The

approach was noted to be effective in decoupling variations of

personal identity and pose from the emotional class. Melinte

and Luige [26] proposed a framework which coupled region-

based computer vision for face recognition and fine-tune

transfer learning of Convolutional Neural Networks (CNN)

for emotional recognition. It was noted that transfer learning

from a pre-trained Residual CNN could recognise emotions

with around 90.14% accuracy, and the model was deployed

for use on Softbank’s NAO robot.

In [27], the authors propose a computer vision-based ap-

proach to emotion recognition in the wild. Each of the seven

basic emotional states was classified with a mean accuracy

of around 61.29%; confusion matrices in this study show

the confusion that models can have when classifying related

emotional states. For example, more obvious emotions with

high valence, such as anger and happiness, were relatively

easier to classify compared to other emotions, such as fear,

which was more often misclassified as surprise. As discovered

during the literature review on the circumplex model of affect,

emotions such as fear and surprise exist closely on the model

and thus are exhibited in similar ways. Similarly, the studies in

[28] discovered that there was crossover in predictions of anger

and surprise in the Extended Cohn-Kanade dataset. Given this,

it is therefore proposed to consider measures of valence and

arousal rather than a single-label emotional state.

III. METHOD

In this section we discuss the methodology followed by the

experiments in this work. Firstly, data collection and prepro-

cessing of images will be presented prior to data selection and

subsequent application of ML techniques.

The dataset for this study is collected from the AffectNet

repository of facial images [24]. The dataset is comprised of

1 million images of human faces with perceived measures of

valence and arousal on a scale of -1 to 1.

Fig. 2 shows four random examples of images from the

dataset along with their perceived measurements of emotional

valence and arousal. For this study, a random subset of 10,000

images are used to tune the model hyperparameters, before the
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Fig. 2. A sample of four random examples of valence and arousal measure-
ments from the AffectNet dataset.
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Fig. 3. Overview of the branched computer vision approach to affective
regression.

final model is trained on 100,000 images selected at random.

All images are resized as 128 px square images and colours

are reduced to one (greyscale) channel. Thus, there are a total

of 16,384 input parameters (128× 128× 1).
This study is supported by three main technologies. Firstly,

the Convolutional Neural Network [29], [30], which is a

subset of neural networks specialising in performing learnt

operations on spatial data, in our case, implementing filters for

visual data. CNNs are often three-dimensional in nature due

to images often having three colour channels, though, in this

work, images are one-channel (greyscale) and thus the CNN

is 2-Dimensional. Secondly, the multilayer perceptron (MLP);

similarly to the CNN, the goal of the neuronal layers are to

extract underlying information from a given data, leading to an

ideal transformation. The transformation in this case would be

to take the outputs of the CNN features and predict a numerical

value of affect.

Overall, the two CNNs and MLPs combine to form an

overall system that (i) learns and extracts useful spatial features

from images, (ii) processes these features to extract further

higher-level information, and finally (iii) predicts two outputs

based on the input face. The first being a measure of valence

and the second being arousal, both on a scale of -1 to 1. This

process of predicting a real number is known as regression.
During the initial benchmarking, it was discovered that a

single computer vision model often produced poor regression

results. This is possibly due to there being a lack of com-

plementary features to contribute to both outputs. Therefore,

instead, a branched CNN approach was selected, an example

of which can be seen in Fig. 3. The input image is given to

two individual neural networks which then produce outputs

for both regression goals. The problem that the network is

intended to solve is to reduce the mean difference between the

predicted and real values. The general goal of the regression

network is to reduce the Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

, (1)

where, for n images, the MSE is the mean 1
n

∑n
i=1 of the

errors squared (Yi − Ŷi)
2 for real value Yi and the predicted

value Ŷi. Given that two values must be predicted for every

data point, the loss function is therefore the mean of the two

observed MSE values MSEv+MSEa

2 , for the MSE of valence

v and arousal a. Results are also presented in Root Mean
Squared Error (RMSE) form since RMSE is measured with

the same units as the output value, calculated as RMSE =√
MSE. The expected outputs of the model are on a scale of
-1 to 1 for both valence and arousal.

Each module of the system is tuned sequentially in grid

search; initially, the CNN feature extractor is tuned with 1 to

4 layers, each comprised of 32, 64, or 128 neurons. Then,

the secondary neural network is tuned from 1 to 3 layers

each comprised of 32, 64, 128, 256, or 512 rectified linear

units. Finally, Dropout [31] is introduced between each of

the modules in a linear search of {0, 0.1, ..., 0.5} to discover
whether overfitting is occurring during the machine learning

process. All machine learning models are trained using 80/20

data split for training and validation.

The weights of the neural network are trained with the

ADAM optimiser [32] with a learning rate of 0.001, expo-
nential decay for the first moment β1 = 0.9, for the second
moment β2 = 0.999, and a constant for numerical stability
ε = 1e − 07. All neurons are Rectified Linear Units (ReLu),
f(x) = max(0, x), with the exception of the output neurons
which are linear and have no activation function.

All benchmarking takes place on a subset of 10,000 images,

and then the final model is trained on 100,000 images selected

at random from the dataset. Due to this, statistical testing is

required to observe the difference between the datasets, if

any. To achieve this, we measure and compare the means,

medians, and standard deviations of the observed emotional

values. Following this, we then perform an unpaired t-test for

both sets of valence and arousal values to discern whether

there are statistical differences between the two. The models

are trained via the TensorFlow 2.6.0 library on an Nvidia RTX

2080Ti GPU which has 11 GB of VRAM and 4,352 CUDA

cores.

IV. RESULTS AND DISCUSSION

The results of all experiments are presented in this section.

Initially, the details of hyperparameter tuning experiments,

which follow the process of tuning the CNN and MLP

topologies, are presented before the implementation of dropout

to prevent overfitting. Prior to training this topology on a larger

set of data, statistical tests are then performed to observe

any differences between the two datasets. Finally, the tuned

topology is then trained on the full set of 100,000 images,

and the overall results are presented.



TABLE I
MEAN LOSSES FOR THE FEATURE EXTRACTOR HYPERPARAMETER

TUNING TOWARDS THE REGRESSION OF VALENCE AND AROUSAL FROM

IMAGES OF FACIAL EMOTION.

Filters Layers

1 2 3 4

32 0.154 0.14 0.124 0.114
64 0.154 0.137 0.122 0.112

128 0.153 0.139 0.128 0.113

TABLE II
MEAN LOSSES FOR THE TUNING OF DENSE LAYERS (FOLLOWING THE
CNN) TOWARDS THE REGRESSION OF VALENCE AND AROUSAL FROM

IMAGES OF FACIAL EMOTION.

Neurons Layers

1 2 3

32 0.11 0.107 0.108
64 0.106 0.108 0.107

128 0.108 0.108 0.107
256 0.111 0.111 0.11
512 0.112 0.113 0.108

A. Topology Tuning

For the first set of tests, the CNN-based feature extractor

is trained without dense tertiary layers to discern the most

effective topology within the selected bounds. Table I shows

the results and it can be observed that four layers of 64 filters

produced the strongest model, resulting in the lowest mean

loss of 0.112. This network is then used as the basis for the

subsequent dense layers.

Table II shows the results for dense networks, which are

attached to the CNN output. Within these results, it can be

observed that the best network was comprised of the CNN

feeding into a single layer of 64 rectified linear units. This led

to a lower mean loss of 0.106.

In the final topology tuning experiments, Table III shows the

tuning of dropout values from 0.1 to 0.5. A slightly lower mean

loss of 0.105 was achieved given a 20% dropout rate between

each layer, suggesting that some overfitting was taking place

during learning.

The general topology of the model defined by the described

experiments was a CNN feature extractor comprised of 4

layers of 64 filters, which was then attached to a dense layer

of 64 rectified linear units, each layer had a dropout rate of

20%.

B. Statistical Tests between Datasets

Given that topology tuning was trained on a set of 10,000

images due to the limited availability of computational re-

sources, and the final model was then trained on a larger set

of 10,000 images, statistical differences between the two sets

must be observed. Firstly, Table IV shows the statistics of

each dataset. Here we can see that the sets of model outputs

are statistically similar, with the mean valence changing by

0.001 between the datasets. Similarly, the difference in the

TABLE III
TUNING OF DROPOUT VALUES TO REDUCE OVERFITTING FOR THE
REGRESSION OF VALENCE AND AROUSAL FROM IMAGES OF FACIAL

EMOTION.

Dropout Validation Loss

0 0.106
0.1 0.107
0.2 0.105
0.3 0.107
0.4 0.107
0.5 0.108

TABLE IV
STATISTICAL DIFFERENCES BETWEEN THE TWO DATASETS. THE 10K
DATASET IS USED FOR TOPOLOGY TUNING, AND THE 100K DATASET IS

USED FOR TRAINING THE FINAL MODEL.

Data Valence Arousal

Mean Median Std. Mean Median Std.

10k 0.185 0.198 0.523 0.116 0.198 0.303
100k 0.186 0.203 0.517 0.118 0.068 0.302
Diff. 0.002 0.005 -0.006 0.002 -0.130 -0.001

means of the arousal states had a difference of 0.002. For

valence, the standard deviation of the 10k dataset was 0.523

and was 0.517 for the 100k dataset, resulting in a difference of

0.006. For arousal, the difference was smaller, with a change

of 0.001 between the two sets. Table V shows an unpaired t-

test between the expected model outputs for the two datasets.

Given p of 0.369 for valence and 0.29 for arousal, it can
be argued that there is no statistical significance between the

datasets. Thus, the tuned topology is then trained on the full

set of images.

C. Training the Final Model

Table VI shows the results for the final model. The chosen

topology is that which was derived from the tuning experi-

ments when considering 10,000 images, and these results show

the metrics for 100,000 images. The RMSE for valence was

observed to be around 0.257, and 0.327 for arousal2.

V. FUTURE WORK AND CONCLUSION

In this study, we have explored a method to predict human

emotional states from the face with computer vision. With

relatively few computational resources training a small model,

it was observed that it is possible to predict both the valence

and arousal states of the emotion. In future, given more

resources, the model could be trained on the full set of 1

million images. Dimensions were reduced to greyscale, but

skin colouration may be useful for the recognition of affect

as it is to measure heart rate in video [33]; therefore, future

work could concern the regression of RGB images. Following

further tuning, the model could be used for case studies

involving technological acceptance studies. For example, when

interacting with humanoid robots, the deployment of this

2The final model is open source and can be downloaded from GitHub:
https://github.com/jordan-bird/Valence-and-Arousal-Recognition-from-Human-Faces



TABLE V
RESULTS OF THE UNPAIRED T-TEST BETWEEN THE SET OF 10K IMAGES
USED FOR TOPOLOGY TUNING AND THE SET OF 100K IMAGES FOR

TRAINING THE FINAL MODEL.

Valence Arousal

p-value 0.369 0.290

TABLE VI
FINAL RESULTS WHEN THE FINAL MODEL IS TRAINED ON A LARGER

DATASET OF 100,000 IMAGES.

MSE RMSE Loss

Valence 0.066 0.257 0.108
Arousal 0.107 0.327 0.0672
Mean 0.0865 0.292 0.0876

model would allow both the robot and observers to measure

the change in emotion during interactive activities. Similarly,

the model has relevant applications in consumer studies, such

as when a potential customer interacts with a product or

consumes media. In our future work, we plan on applying

the model arising from this study in Human-Robot Interaction

to study human emotional reactions to technology in real-time.
To finally conclude, the results arising from this work

show that it is possible to predict human emotional states on

the numerical scale of Russell’s circumplex using computer

vision. Following the topology tuning of 33 individual neural

networks, the final results shows that valence and arousal could

be predicted from the human face with mean squared errors

of 0.066 and 0.107, respectively.
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