
Computational models of object motion

detectors accelerated using FPGA

technology

Department of Computer Science
School of Science and Technology

Nottingham Trent University

Pedro Miguel Baptista Machado

A thesis submitted in partial fulfilment of the requirements of
The Nottingham Trent University for the degree of Doctor of Philosophy

July, 2021

The copyright in this work is held by the author. You may copy up to 5%

of this work for private study, or personal, non-commercial research. Any re-use

of the information contained within this document should be fully referenced,

quoting the author, title, university, degree level and pagination. Queries or

requests for any other use, or if a more substantial copy is required, should be

directed to the author.

2

I would like to dedicate this PhD thesis to my wife Laura, children

Elisa and Ana, my parents, sister and my grandmother Helena

Machado. Laura has been by my side, giving me support and

encouragement during this long PhD journey. I am truly thankful for

having you in my life, and please remember that this PhD degree is

also yours. Elisa, I tried my best to be there and play with you while

you were growing up. Ana, thank you for all the support you gave

me and for stepping up and helping mom looking after Elisa when I

was working on my PhD.

Obrigado mãe pelo apoio e força que sempre me deste. À memória

da minha avó que sempre me apoiou no meu percurso académico.

Acknowledgements

I want to thank my supervisory team and independent assessor; Pro-

fessor Martin McGinnity, for his immeasurable wisdom, being my

mentor, extended support, encouragement and invaluable guidance

during the PhD journey; Dr Andreas Oikonomou for being there to

support me when I needed the most and for the long, very productive

brainstorms and guidance; Professor Eiman Kanjo for her support

and guidance, Dr João Filipe Ferreira who was my 2nd Supervisor;

Professor Ahmad Lotfi for his support, encouragement and guidance.

I also want to thank my PhD thesis’ non-official reviewers and friends;

Dr Robert Ranson (mentor and friend), Dr John Wade (long-time

friend), Dr Farhad Fassihi Tash, Dr (to be) Francisco Lemos (lifetime

friend), Dr Lorenzo Ferrara, Dr Isibor Kennedy Ihianle and Samuel

Brandenburg. Their feedback and suggestions were crucial to finalise

the PhD thesis.

A big thanks to my colleagues and friends; Dr David Adama, Dr Kay-

ode Owa, Dr Salisu Yahaya, Dr Kofi Appiah, Dr Nikesh Lama, Dr

Peter FitzGerald, Dr Neil Sculthorpe, Dr Filipe Neves dos Santos, Dr

Micael Couceiro, Dr David Portugal, Dr Raquel Santos (close friend),

Dr Alexey Petrushin, Jorge Rosário (close friend), Lúıs Costa (life-

time friend and mentor), Nuno Semedo (lifetime friend), João Reis

(lifetime friend), Hugo Faria (lifetime friend) and Bruno Santos (life-

time friend) and many other names that were not enumerated here.

Each one of them have contributed in their way to help me to reach

this important milestone.

Abstract

The detection of moving objects is a trivial task when performed by

vertebrate retinas, yet a complex computer vision task. This PhD

research programme has made three key contributions, namely: 1)

a multi-hierarchical spiking neural network (MHSNN) architecture

for detecting horizontal and vertical movements, 2) a Hybrid Sensi-

tive Motion Detector (HSMD) algorithm for detecting object motion

and 3) the Neuromorphic Hybrid Sensitive Motion Detector (Neu-

roHSMD) , a real-time neuromorphic implementation of the HSMD

algorithm.

The MHSNN is a customised 4 layers Spiking Neural Network (SNN)

architecture designed to reflect the basic connectivity, similar to canon-

ical behaviours found in the majority of vertebrate retinas (including

human retinas). The architecture, was trained using images from a

custom dataset generated in laboratory settings. Simulation results

revealed that each cell model is sensitive to vertical and horizontal

movements, with a detection error of 6.75% contrasted against the

teaching signals (expected output signals) used to train the MHSNN.

The experimental evaluation of the methodology shows that the MH-

SNN was not scalable because of the overall number of neurons and

synapses which lead to the development of the HSMD.

The HSMD algorithm enhanced an existing Dynamic Background

subtraction (DBS) algorithm using a customised 3-layer SNN. The

customised 3-layer SNN was used to stabilise the foreground infor-

mation of moving objects in the scene, which improves the object

motion detection. The algorithm was compared against existing back-

ground subtraction approaches, available on the Open Computer Vi-

sion (OpenCV) library, specifically on the 2012 Change Detection

(CDnet2012) and the 2014 Change Detection (CDnet2014) bench-

mark datasets. The accuracy results show that the HSMD was ranked

overall first and performed better than all the other benchmarked

algorithms on four of the categories, across all eight test metrics.

Furthermore, the HSMD is the first to use an SNN to enhance the

existing dynamic background subtraction algorithm without a sub-

stantial degradation of the frame rate, being capable of processing

images 720× 480 at 13.82 Frames Per Second (fps) (CDnet2014) and

720× 480 at 13.92 fps (CDnet2012) on a High Performance computer

(96 cores and 756 GB of RAM). Although the HSMD analysis shows

good Percentage of Correct Classifications (PCC) on the CDnet2012

and CDnet2014, it was identified that the 3-layer customised SNN

was the bottleneck, in terms of speed, and could be improved using

dedicated hardware.

The NeuroHSMD is thus an adaptation of the HSMD algorithm whereby

the SNN component has been fully implemented on dedicated hard-

ware [Terasic DE10-pro Field-Programmable Gate Array (FPGA)

board]. Open Computer Language (OpenCL) was used to simplify the

FPGA design flow and allow the code portability to other devices such

as FPGA and Graphical Processing Unit (GPU). The NeuroHSMD

was also tested against the CDnet2012 and CDnet2014 datasets with

an acceleration of 82% over the HSMD algorithm, being capable of

processing 720 × 480 images at 28.06 fps (CDnet2012) and 28.71 fps

(CDnet2014).

Contents

List of Acronyms xxi

Nomenclature xxviii

1 Introduction 1

1.1 Background . 1

1.2 Current approaches . 2

1.3 Research gaps . 5

1.4 Aims and objectives . 6

1.5 Summary of the thesis . 7

2 Background Research 10

2.1 Anatomy of the Eye and Retina 11

2.2 Spiking Neuron Models . 15

2.3 Spiking Neural Networks simulators 20

2.4 Spiking Neural Networks architectures suitable Computer Vision

Processing . 24

2.5 Object Motion Detection . 29

2.5.1 Background Subtraction 35

2.5.2 Noise reduction . 41

2.5.3 Threshold selection . 42

vii

CONTENTS

2.5.4 Moving object detection 43

2.5.4.1 Representation learning 44

2.5.4.2 Neural networks modelling 45

2.5.4.3 Deep Neural Network modelling 47

2.5.5 Advanced Object Motion Detection applications 48

2.5.5.1 Trajectory classification 49

2.5.5.2 Object tracking 51

2.5.5.3 Real-time considerations 57

2.6 Hardware implementations . 62

2.6.1 General propose Neural Network accelerators 64

2.6.2 Neuromorphic and heterogeneous devices 65

2.6.3 FPGA implementations 70

2.7 Revised Literature . 73

3 Detection of horizontal and vertical movements using Spiking

Neural Networks 77

3.1 Introduction . 78

3.2 Proposed architecture . 80

3.2.1 Input Layer: Binarisation via conversion from pixel grade

values to spike events . 80

3.2.2 Layer 1: Edge detection 83

3.2.3 Layer 2: Horizontal and vertical features extraction 84

3.2.4 Layer 3: Extraction of movement features 86

3.2.5 Layer 4: Detection of movement type 88

3.3 Implementation . 92

3.3.1 Dataset . 93

3.3.2 Image pre-processing . 93

3.3.3 Simulation Process . 97

viii

CONTENTS

3.3.4 Custom Object Direction Detection algorithms 98

3.3.5 Metrics . 101

3.4 Results . 101

3.4.1 Horizontal movement test 102

3.4.2 Vertical movement test . 105

3.4.3 Results per category . 108

3.5 Discussion . 111

4 HSMD: Hybrid Spiking Motion Detection 114

4.1 Introduction . 115

4.2 HSMD architecture . 119

4.2.1 Input Layer: background subtraction and reduction 120

4.2.2 Layer 2: Pixel intensities values to currents encoding . . . 121

4.2.3 Layer 3: Motion stability 121

4.2.4 Layer 4: Motion detection 122

4.2.5 Layer 5: Filtering . 123

4.3 Implementation details . 124

4.3.1 HSMD setup . 124

4.3.2 Datasets and metrics . 127

4.3.2.1 Datasets . 127

4.3.2.2 Metrics . 130

4.4 Results . 132

4.4.1 Overall results . 132

4.4.2 Results obtained per category 136

4.4.3 Results analysis . 140

4.5 Discussion . 141

ix

CONTENTS

5 NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detection144

5.1 Introduction . 145

5.2 Implementation details . 147

5.2.1 Heterogeneous computing platforms 148

5.2.2 FPGA Architecture . 150

5.2.3 Hardware Description Language 152

5.2.4 OpenCL . 154

5.2.5 Hardware platform . 158

5.2.6 NeuroHSMD implementation 160

5.2.6.1 Host application 164

5.2.6.2 Device kernels . 166

5.2.7 Datasets and benchmark 169

5.3 Results . 169

5.3.1 Resources Usage . 170

5.3.2 Speed performance . 173

5.3.3 Benchmark . 177

5.4 Discussion . 179

6 Discussion and Future work 182

6.1 Main contributions . 182

6.2 Future work . 186

References 251

x

List of Figures

2.1 Anatomy of the eye. Adopted from [1]. 12

2.2 The structure of the retina comprises rods, cones, and horizon-

tal, Amacrine, and ganglion cells. Light passes through all the

retinal layers and hits the pigment epithelium responsible for pro-

tecting the outer retina from excessive light. Rods detect grey

gradients and dim light, while cones detect red, green, and blue

light. Horizontal cells regulate the visual information from rods,

cones, and bipolar cells. Bipolar cells transport the visual informa-

tion to ganglion cells. Amacrine cells regulate the visual informa-

tion from bipolar and ganglion cells. Finally, ganglion cells receive

and process the visual information from bipolar cells and transmit

the post-processing information to the visual cortex via the optic

nerve. Adopted from [2]. 14

2.3 Schematic diagram of the Hodgkin-Huxley neuron model.Vm is the

membrane potential and Cm is the membrane capacitance; INa+ ,

IK+ and ILeak are the currents associated to each channels. Cm

is the membrane potential; gNa+ , gK+ are the non-linear electrical

conductances that control the voltage-gated ion channels; gLeak is

the linear conductance. ENa+ , EK+ and ELeak are the equilibrium

potentials. Adopted from [3]. 17

xi

LIST OF FIGURES

2.4 Schematic diagram of the leaky-integrate-and-fire neuron model.

The base circuit is the module inside the grey circle on the right-

hand side. A current I(t) charges the Resitance and Capacitance

(RC) circuit. If the voltage V(t) across the capacitance reaches the

threshold Vt then is a spike generated and V(t) is set to the reset

voltage during a refractory period. Adapted from [4]. 18

2.5 Spiking neural models and its performance. Adopted from [5]. . . 19

2.6 Computational retinal microcircuits that are used as basic building

blocks within COREM. Adopted from [6] 21

2.7 Interface of COREM with NEST. Adopted from [6] 23

2.8 Object Motion Detection steps. 30

2.9 Background subtraction steps. 37

2.10 Trajectory classification steps. i) selection of the initial point of

interest corresponding to the moving object’s centre of mass in

the first image frame, ii) tracking the progression of the point of

interest and iii) classification of the trajectory described by that

point of interest. 49

2.11 Object tracking steps. i) selection of the target moving object,

ii) store the moving object features, iii) extract moving objects

features in the current frame, iv) select the best set of features

that matches the target moving objects and v) update the moving

object features . 52

xii

LIST OF FIGURES

3.1 Schematic of the Direction-Selective Ganglion Cells (DSGC) cir-

cuit. The figure shows DSGC (in blue), starburst amacrine cells

(SAC) dendrites (in yellow), bipolar cells (in orange) and photore-

ceptors (green). Inhibitory synapses (in red dots) are formed on

the DSGC by the SAC dendrites (dashed arrows), which have a

preferred movement in the opposite direction to the DSGC (solid

arrow) [7]. 79

3.2 MHSNN with (i) 40 × 40 image input followed by the four pro-

cessing Layers. Layer 1: Edge detection Layer, Layer 2: Direction

features extraction, Layer 3: Movement extraction features and

Layer 4: Direction-sensitive ganglion cells. 81

3.3 Three image frames being processed by the proposed architecture.

The images are exposed to each Layer in sequence (Layer 1, 2, and

3), and finally, the movement is detected in Layer 4 by rightwards

(R), leftwards (L), upwards (U) and downwards (D) Ganglion Cells

(GC). 83

3.4 Remote Supervised Method (ReSuMe) learning: (left) Remote su-

pervision. (right) Learning windows [8]. 90

3.5 Two teacher signals used to train the horizontal sensitive cells dur-

ing the simulation time window [2290, 2315]ms. 92

3.6 Sequence of 4 raw images, where a black cylinder object is moving

rightwards (1st column); image after pre-processing steps namely,

conversion from RGB to greyscale, resizing, Principal Component

Analysis (PCA) and whitening (2nd column). 95

xiii

LIST OF FIGURES

3.7 Histograms of the sequence of the images, shown in Figure 3.6. The

histograms of pre-processed images are shown in the 1st column

and histograms of the post-processed images are shown in the 2nd

column. 96

3.8 Detection of the object movement direction. The figure repre-

sents an image of 13 × 17 where a given object (blue rectan-

gle) performs rightwards (dashed brown rectangle) and downwards

(dashed green rectangle) movements. In the case of the brown rect-

angle, cM(j) = 11, cMprev(jprev) = 8 and therefore the object is

moving rightwards because cM(j) > cMprev(jprev). While for green

rectangle, cM(i) = 8, cMprev(iprev) = 6 and therefore, the object

is moving downwards because cM(i) > cMprev(iprev). 99

3.9 Raster plot of the spiking pattern obtained during the period [4605,4640]ms

(a black cylinder object was moving rightwards) and generated by

the input layer (after converting the graded values into spikes) and

Layer 1 (edge extraction) neurons. The blue rectangle is used to

track the spike events generated during the period [4624,4625]ms. 102

3.10 Raster plot of the spikes obtained during the period [4605,4640]ms

(a black cylinder object was moving rightwards) and generated by

the neurons in Layers 2 and 3. The blue rectangle is used to track

the spike events generated during the period [4624,4625]ms. 103

3.11 Raster plot of the spikes pattern obtained during the period [4605,4640]ms

(a black cylinder object was moving rightwards) and generated by

the horizontal sensitive cells. The blue rectangle is used to track

the spike events generated during the period [4624,4625]ms. 104

xiv

LIST OF FIGURES

3.12 Raster plot of the spikes obtained during the period [4605,4640]ms

of the vertical test and generated by the input layer (after con-

verting the graded values into spikes) and Layer 1 neurons. The

blue rectangle is used to track the spike events generated during

the period [4624,4625]ms. 105

3.13 Raster plot of the spiking pattern obtained during the period [4605,4640]ms

of the vertical test and generated by the neurons in Layers 2 and

3. The blue rectangle is used to track the spike events generated

during the period [4624,4625]ms. 106

3.14 Raster plot of the spiking pattern obtained during the period [4605,4640]ms

of the vertical test and generated by the vertical sensitive cells. The

blue rectangle is used to track the spike events generated during

the period [4624,4625]ms. 107

4.1 HSMD with (i) n × m image input followed by the Background

subtraction (BS) using the Google Summer of Code (GSOC) al-

gorithm, three spiking neuronal layers and filtering. Layer 1: BS,

Layer 2: pixel intensity to spike events encoding, Layer 3: Motion

stability, Layer 4: motion detection and Layer 5: filtering. 120

4.2 HSMD connectivity. In this example, it can be seen that the neu-

ron 1 (N1) of each layer connects to the N1 of the subsequent layer. 122

4.3 Raw image frame (left) and its respective ground-truth (right).

The ground-truth images show the annotations using the datasets

labels. Adapted from [9] . 130

xv

LIST OF FIGURES

4.4 Results obtained for each of the eleven of the five categories (columns

A to F) are common to both CDnet2012 and CDnet2014 datasets,

while the remaining six categories (columns G to K) are only avail-

able on CDnet2014 dataset. Column A: baseline; B: camera jitter;

C: dynamic background; D: dynamic object motion; E: shadow,

F: thermal, G: bad weather, H: low frame rate; I: night videos,

J: PTZ and K: turbulence. Row 1: RGB image; 2: ground-

truth; and 3: HSMD binarised. The raw images, shown in the

first row, demonstrate the scenarios that can be found in both

datasets. The corresponding ground truth images, presented in

the second row, show the 5 labels, namely, i) static [greyscale

value 0], ii) shadow [greyscale value 50], iii) non-Region of Inter-

est (ROI) [greyscale value 85], iv) unknown [greyscale value 170]

and v) moving [greyscale value 255]. The corresponding binarised

images generated by the HSMD are shown in the third row. . . . 133

4.5 CDnet2012 overall result based on Average Ranking (R) per method.

The highest bars show the higher ranks, and it is clear that none of

the methods had the best ranks in all the categories. Furthermore,

it is possible to see that the HSMD achieved high ranks across all

the categories, except dynamic background. 138

4.6 CDnet2014 overall result based on Average Ranking (R) per method.

The highest bars show the higher ranks, and it is clear that none of

the methods had the best ranks in all categories. Furthermore, it

is possible to see that the HSMD achieved high ranks across most

of the categories, except dynamic background and low frame rate. 139

xvi

LIST OF FIGURES

5.1 adaptive logic module (ALM) Block Diagram. Each register has

the following ports: i) Data in, ii) Data out, iii) Clock, iv) clock

enable, v) synchronous clear and vi) asynchronous clear. Adopted

from [10]. 151

5.2 Intel Stratix 10 device design flow [11]. The main stages of the

design flow include the system specification, device selection, early

system and board planning, pin connection considerations for board

design, I/O and Clock planning, design entry, design implementa-

tion, analysis and optimisation and verification. Adopted from [12]. 153

5.3 Representation of a OpenCL host application and three device

kernels . 155

5.4 Intel FPGA Software Development Kit (SDK) for OpenCL FPGA

design flow. Adopted from [13]. 157

5.5 Intel FPGA SDK for OpenCL FPGA programming flow. Adopted

from [13]. 158

5.6 OpenCL compilation flow. Adopted from [13]. 159

5.7 Terasic DE10 pro development kit. (left) block diagram and (right)

DE10 pro board. Adopted from [14] 160

5.8 OpenCL computation stages. The stages include: a) allocation and

specification of buffer types on the host and device; b) copying data

from the application data structures to host buffers; c) transferring

data from host buffers to device buffers; d) running the inference

on the device; e) copying the results from the device to host buffers;

f) copying data from the host buffers to application data structures.161

xvii

LIST OF FIGURES

5.9 NeuroHSMD computation stages. The OpenCL implementation

is represented in blue and the OpenCV in green. The light yel-

low background represents the computation stages that run on the

Central Processing Unit (CPU) (i.e. steps 1, to 4, and 6 to 7), and

in light orange, the stage that runs on the FPGA device (i.e. step 5)162

5.10 NeuroHSMD architecture. The diagram represents the computa-

tion stages that run both on the CPU and FPGA. Shows that the

FPGA is connected to the host CPU via the Peripheral Compo-

nent Interconnect Expres (PCIe) bus. It also shows the dedicated

memory of the CPU and FPGA device. This also includes how ex-

ternal devices (e.g. image sensors, monitor, and Hard Disk Drive

(HDD)/Solid State Drive (SSD)) connect to the host CPU via

different interfaces (e.g. Ethernet (eth), Serial Advanced Technol-

ogy Attachment (SATA), display port, and usUniversal Serial Bus

(USB)b). The computation stages implemented in OpenCL are in

blue and OpenCV in green. 163

xviii

List of Tables

2.1 BS methods and their performance analysis 36

2.2 Large-scale Neural Networks accelerators characteristics. Adapted

from [15] . 65

3.1 Leftwards movements classification and processing time per method.108

3.2 Rightwards movements classification and processing time per method.109

3.3 Downwards movements classification and processing time per method.110

3.4 Upwards movements classification and processing time per method. 111

4.1 Categories available per each dataset 129

4.2 CDnet2012 overall results. Results ordered in descendent order by

AverageRankingacrossallCategories(RC) 134

4.3 CDnet2014 overall results. Results ordered in descendent order by

RC . 134

4.4 HSMD overall results. Results ordered in descendent order by RC 135

4.5 Results per category. Results ordered in descendent order by Av-

erage Ranking (R) . 137

5.1 NeuroHSMDv1 resources usage 171

5.2 NeuroHSMDv2 resources usage 172

5.3 CDnet2012 speed result . 174

xix

LIST OF TABLES

5.4 CDnet2014 speed results . 176

5.5 CDnet2012 Overall ranks . 177

5.6 CDnet2014 Overall ranks . 178

xx

List of Acronyms

ADAS Advanced-Driver Assist Systems. 1, 5, 29, 35, 57, 62, 187

AER Address Event Representation. 65–67, 69

AI Artificial Intelligence. 44, 63, 75, 146, 148, 160

ALM adaptive logic module. xvii, 150–152, 171, 172

ALU adaptive look-up-table. 150, 171–173

ANN Artificial Neural Network. 3, 5, 64

ASIC Application-Specific Integrated Circuits. 4

BRIEF Binary Robust Independent Elementary Features. 53

BS Background subtraction. xii, xv, xix, 2, 3, 5–9, 29, 35–37, 39–41, 43, 73, 74,

76, 79, 98, 112–120, 124, 127, 129, 130, 142, 164, 180, 183–187

CAPOA Content-Adaptive Progressive Occlusion analysis. 54

CCR Correct Classifications Rate. 131–135, 177, 178

CDnet2012 2012 Change Detection. v, vi, xvi, xix, xx, 6–9, 28, 39, 46, 47, 114,

117, 118, 127, 129, 132–138, 141–144, 169, 170, 173, 174, 177, 179, 180,

184–186

xxi

List of Acronyms

CDnet2014 2014 Change Detection. v, vi, xvi, xix, xx, 6–8, 28, 38, 39, 47, 115,

117, 118, 127–129, 132–137, 139, 141–144, 169, 170, 175–180, 184–186

CNN Convolutional Neural Network. 3, 5, 40, 47, 50, 53, 55, 56

CODD Custom object direction detection. 79, 82, 98–100, 108–112, 183

COTS Commercial-Off-The-Shelf. 66, 118, 145

CPG Central Pattern Generator. 71

CPU Central Processing Unit. xviii, 3–5, 57, 63, 64, 68, 69, 74, 75, 124, 144–149,

152, 154, 160, 162–164, 170, 179, 186, 187

CSNN Convolutional Spiking Neural Network. 26, 27

CUDA Compute Unified Device Architecture. 187

CV Computer Vision. 29

DAVIS Dynamic Active Pixel Vision Sensor. 65

DBS Dynamic Background subtraction. iv

DLT Deep Learning Tracker. 55, 56

DNN Deep Neural Network. 41, 47, 48, 56, 74, 76, 115, 116

DoG Difference-of-Gaussians. 20, 26, 84, 86

DSGC Direction-Selective Ganglion Cells. xiii, 5, 6, 78, 79, 83, 88, 182, 183

DSP digital signal processing. 171, 172

DVS Dynamic Voltage Scaling. 66, 67, 69

F1 F-measure. 131–135, 169, 177, 178

xxii

List of Acronyms

FN False Negatives. 130, 131

FNR False Negative Rate. 131, 132, 134, 135, 169, 177, 178

FP False Positives. 101, 111, 130, 131

FPGA Field-Programmable Gate Array. v, xvii, xviii, 4, 5, 7, 9, 57, 70–73, 75,

76, 143, 144, 146–150, 152–164, 171, 173, 174, 181, 182, 186–188

FPR False Positive Rate. 131, 132, 134, 135, 169, 177, 178

fps Frames Per Second. v, vi, 7, 59, 62, 128, 175, 177, 179, 180

GC Ganglion Cells. xiii, 15, 29, 83, 188

GLOH Gradient Location and Orientation Histogram. 52

GPU Graphical Processing Unit. v, 4, 57, 63, 68, 69, 75, 144, 146–149, 154–156,

186, 187

GSOC Google Summer of Code. xv, 6, 8, 9, 39, 41, 74, 98, 114, 115, 117–120,

127, 133, 134, 137, 140–142, 146, 161

HDD Hard Disk Drive. xviii, 163, 170, 179

HDL Hardware Description Language. 5, 70, 73, 144, 147, 152–154

HH Hodgkin & Huxley. 16–19

HLS High Level Synthesis. 70, 72, 73, 147, 152, 153

HMI Human Machine Interaction. 34

HOG Histogram of Oriented Gradients. 52

xxiii

List of Acronyms

HSMD Hybrid Sensitive Motion Detector. iv, v, xv, xvi, xix, 6–9, 113–115, 118–

120, 122, 124–127, 129, 130, 132–135, 137–144, 146, 149, 164, 166, 178–180,

184–187, 189

HSV Hue, Saturation and brightness Value. 46

IAF Integrate-and-Fire. 17–19

IC Integrated Circuit. 4

ICA Independent Component Analysis. 53

IEEE Institute of Electrical and Electronics Engineers. 152, 189

IIR Infinite Impulse Response. 43

IJCNN International Joint Conference on Neural Networks. 189

IPL Inner Plexiform Layer. 78

IZK Izhikevich. 18

KNN Mixture of Gaussians K Nearest Neighbours. 38, 98, 117, 118, 127, 134,

137

LAB logic array blocks. 150–152

LIF Leaky-Integrate-and-Fire. 17, 18, 20–22, 27, 28, 64–66, 119, 120, 125

LSBP Local Single Value Decomposition Binary Pattern. 39, 98, 117, 118, 127,

134, 137

MFCN Multiscale Fully Convolutional Network. 40

xxiv

List of Acronyms

MHSNN multi-hierarchical spiking neural network. iv, xiii, 6–8, 51, 76–82, 92,

101, 108–114, 183, 184, 186, 189

ML Machine Learning. 3, 5, 41, 44, 63, 72, 74, 75

MLAB memory logic array blocks. 151, 171, 172

MOG Mixture of Gaussians. 37, 38, 48, 98, 117, 118, 127, 134, 137

MOG2 Gaussian Mixture Probability Density. 38, 98, 117, 118, 127, 134, 137

NDK NeuronHSMD device kernels. 162, 164, 166, 172, 173

NeREM Neural Response Mixture. 48

NeuroHSMD Neuromorphic Hybrid Sensitive Motion Detector. iv, v, xviii, 7,

9, 144, 147, 149, 153, 159–163, 169, 178, 179, 185, 187, 189

NHA NeuronHSMD Host Application. 162, 164, 165

NN Neural Network. 45, 46, 48, 64

NNA Neural Network Accelerators. 63–65

NoC Network-on-Chip. 155

NS Navigational Systems. 35

NUC Next Unit of Computing. 71

OMD Object Motion Detection. xii, 5, 6, 28–30, 32, 35, 40, 43, 44, 48, 56, 57,

62, 74, 75

OMS-GC Object Motion Sensitive Ganglion Cells. 5–7, 10, 15, 28, 41, 73, 114,

118, 119, 141–143, 146, 182, 185

xxv

List of Acronyms

OpenCL Open Computer Language. v, xvii, xviii, 5–7, 70, 72, 73, 144, 147,

149, 150, 153–163, 169, 187, 188

OpenCV Open Computer Vision. v, xviii, 8, 9, 39, 79, 98, 112, 114, 117, 118,

120, 124, 127, 129, 141, 162, 163, 183, 187

ORB Oriented FAST and Rotated BRIEF. 53

OS Operating Systems. 4

PCA Principal Component Analysis. xiii, 44, 45, 50, 53, 93–96, 108–111

PCC Percentage of Correct Classifications. v, 101, 108–112, 183, 186

PCIe Peripheral Component Interconnect Expres. xviii, 63, 68, 155, 156, 160,

163, 164

Pr Precision. 131, 132, 134, 135, 169, 177, 178

PS Processor System. 187

PTZ Pan, Tilt and Zoom. 128, 137

PWC Percentage of Wrong Classifications. 101, 104, 107–112, 183

R Average Ranking. xvi, xix, 131, 132, 135–140

RAM-NN Random Access Memory Neural Network. 45

RBCNN Region Based Convolutional Neural Network. 62

RBF-NN Radial Basis Function Neural Network. 45, 46

RBM Restricted Boltzman Machine. 47

RC Average Ranking across all Categories. xix, 131–135, 169, 177, 178

xxvi

List of Acronyms

RC Resitance and Capacitance. xii, 18

Re Recall. 130–132, 134, 135, 169, 177, 178

ReSuMe Remote Supervised Method. xiii, 8, 27, 28, 67, 89, 90, 97, 98, 102

RF Receptive Field. 83–85

RGB Red, Green and Blue. 20

ROI Region of Interest. xvi, 129, 130, 133

RPCA Robust Principal Component Analysis. 44, 45

RSNN Recurrent Spiking Neural Network. 26, 27

RTL Register Transfer Level. 152

RTSS Real-Time Semantic Segmentation. 40

SAC starburst amacrine cells. xiii, 78, 79

SATA Serial Advanced Technology Attachment. xviii, 163, 164

SBS Semantic Background Segmentation. 40

SDAE Stacked Denoising Auto-Encoder. 47

SDK Software Development Kit. xvii, 154, 156–158

SDRAM Synchronous Dynamic Random Access Memory. 151

SIFT Scale-Invariant Feature Transform. 52, 53

SNN Spiking Neural Network. iv, v, 3–11, 20, 22–28, 41, 51, 63, 64, 66, 67, 69,

70, 72–76, 97, 112–115, 118, 119, 124, 125, 141–144, 146, 147, 149, 153, 155,

156, 160, 162, 177, 178, 180, 182, 184–187

xxvii

List of Acronyms

SOBS Self Organizing Background Subtraction. 46

SOM Self Organizing Map. 43, 46

Sp Specificity. 130–132, 134, 135, 169, 177, 178

SRAM Static Random Access Memory. 71, 151

SSD Solid State Drive. xviii, 163

STDP Spike Timing Dependent Plasticity. 27, 28, 71

STL Standard Template Library. 124, 141

SURF Speeded Up Robust Features. 52

TN True Negatives. 130, 131

TP True Positives. 101, 130, 131

UAV Unmanned Aerial Vehicle. 62

USB Universal Serial Bus. xviii, 163, 164

VHDL Very High Speed Integrated Circuit Hardware Description Language. 70,

147, 152

VLSI Very Large Scale of Integration. 62, 75, 76

WCR Wrong Classifications Rate. 131–135, 177, 178

xxviii

Chapter 1

Introduction

1.1 Background

In Computer Vision, object motion detection is the process of detecting moving

objects relative to their surroundings [16]. Object motion detection is required in

many real applications such as video surveillance of human activities, monitoring

of animals, optical motion detection, multimedia application, Advanced-Driver

Assist Systems (ADAS), and autonomous systems [16; 17]. There are several

challenges (e.g. objects camouflage, illumination variation, motion blur) when

performing object motion detection. Several object motion detection methods

have been published over the years [16; 17], some methods are more accurate

than others but are also more computationally intensive, while others are less

accurate and computationally intensive. The majority of the object motion de-

tection methods only focus on the accuracy of proposed methods solving a group

of challenges and do not measure the speed [16; 17]. Nevertheless, there is a

significant demand in terms of real-time robust object motion detection is re-

quired in applications such as autonomous systems’ navigation, object tracking

and changes detection [17].

1

1.2 Current approaches

The detection of moving objects in different directions and the motion detec-

tion of objects are done very efficiently by vertebrate retinas. Different retinal

circuits trigger different functionalities such as light detection, motion detection

and discrimination (i.e. interpretation of spatio-temporal patterns triggered by

the retinal photoreceptors), object motion (i.e. detection of objects moving in

the scene), identification of approaching motion (looming), anticipation, motion

extrapolation, and omitted stimulus-response [18]. Vertebrate retinas are notable

for i) incorporating millions of these retinal circuits, ii) being extremely efficient

(the whole human brain consumes approximately 20 Watts) and iii) currently

still displaying the capability to outperform any state-of-the-art computer [19].

1.2 Current approaches

The human brain is very efficient at performing computations, as it only takes

about 25 watts for 86 billion neurons [20]. The brain computational efficiency is

a consequence of massive parallelism. The retina, an extension of the brain itself,

is responsible for performing the first stages of visual pre-processing, including

the detection of movement [18; 21]. Although the detection of the directions

described by moving objects and object motion detection are trivial tasks for

vertebrate retinas [18; 21], these are still complex computational tasks using

exiting Background subtraction (BS) methods [16].

On computers, the detection of movements is normally achieved through the

use of BS methods. BS have been one of the most active research topics in

computer vision and have been widely studied for the last 30 years [16; 22; 23].

[16; 22; 23]. In BS algorithms, object motion detection is obtained through the

2

1.2 Current approaches

extraction of the foreground (composed of moving objects) from the background

(composed of static or semi-static movements) image. BS are used in applica-

tions such as intelligent surveillance of human activities in public spaces, traffic

monitoring, industrial machine vision applications, etc [22]. More recently, BS

algorithms have been improved using Machine Learning (ML) algorithms [16].

ML is a research field that focuses on the development of algorithms and meth-

ods for solving complex problems in a generic way [24]. These algorithms are

characterised by learning the detailed design from a set of labelled data and learn

a model or a set of rules from a labelled dataset so that the ML model can cor-

rectly predict the labels of data points in unforeseen datasets (i.e. datasets that

were not used to train the model) [24]. Among other research topics, ML includes

Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs) and

Spiking Neural Networks (SNNs) [20; 23].

ANNs have been widely used for classification and pattern recognition tasks,

but at the same time, ANNs lack biological plausibility [20]. Although CNNs

are as recent as ANNs, their popularity has increased in recent years as a con-

sequence of the evolution of the computational capabilities [22; 23]. CNNs are

known by its capability to accurately classify objects and can be used for tracking

of known objects but similar to ANNs ,they lack of biological plausibility [22; 23].

Unlike ANNs and CNNs that have been studied for more than thirty years, SNNs

emerged about twenty years ago and have gained growing interest in researchers

because of their biological plausibility. [20].

SNNs are well known for their biological plausibility, but also for the complex-

ity inherited from biological systems, which are characterised by massive paral-

lelism, according to [20]. Modern computation platforms rely heavily on CPU

to provide compatibility and security with other devices/applications. Although

3

1.2 Current approaches

CPUs have been evolving in recent years, CPUs still relies on the von Neumann

architecture proposed by John von Neumann proposed in 1945 [25; 26]. Blank

[27] wrote in 2018 that Moore’s law, which states that the number of transistors

in dense Integrated Circuits (ICs) doubles every eighteen to twenty-four months,

ended around 2008. Furthermore, the clock speed has reached technological limi-

tations, preventing CPUs from working with frequencies above 4 GHz, which also

introduces memory barriers, and power dissipation challenges [27]. Therefore,

the design of the CPU paradigm has shifted into multicore and multiprocessor to

overcome the limitations associated with the clock speed [26]. The scientific com-

munity agrees that the multicore and multiprocessor strategy will shortly meet

technological limitations related to the increase in power consumption of these

solutions. [26].

Neuromorphic engineering aims to develop hardware devices/platforms that

mimic biologic nervous systems. Such neuromorphic solutions must be compatible

with other devices and applications, which is a challenge because compatibility

and security are provided via standard Operating Systems (OS) (e.g. Microsoft

Windows, macOS and Linux) that only run on CPUs. The solution is heteroge-

neous computing, which combines CPUs with one or more processing technologies

such as graphical processing units GPUs, FPGAs, or other Application-Specific

Integrated Circuitss (ASICs) connected via high-speed external (e.g. PCIe) or

internal (e.g. AXI and Avalon) buses [28; 29]. Heterogeneous computing and/or

neuromorphic applications are ideal for hosting customised SNN.

4

1.3 Research gaps

1.3 Research gaps

The detection of the direction performed by moving objects and the Object Mo-

tion Detection (OMD) are used in many fields, including traffic and human activ-

ity monitoring, ADAS, object tracking, etc. Unlike computers, vertebrate retinas

are highly efficient at sensing object motion and its direction. In this PhD re-

search programme, the following gaps were identified:

• Modern BS and object motion detection algorithms use ML approaches

such as ANNs and CNNs but are not suitable for real-time applications

and lack biological plausibility.

• SNN are biologically plausible and can be used for implementing basic func-

tionalities observed in retinal cells, such as in the Direction-Selective Gan-

glion Cellss (DSGCs) and Object Motion Sensitive Ganglion Cellss (OMS-

GCs)

• SNN are massively parallel and therefore not suitable for being processed

by CPUs

• FPGAs are specialised and flexible hardware devices that offer freely-reconfigurable

logic, desirable for accelerating massively parallel algorithms

• Although FPGAs are normally reconfigured using Hardware Description

Language (HDL) which are hard to master, OpenCL is a C-like program-

ming language, it is simpler to master and more suitable for programming

devices like CPUs and FPGAs

This research was built on the premise of the aforementioned gaps identified.

5

1.4 Aims and objectives

1.4 Aims and objectives

In challenging circumstances (e.g. low visibility, blurred vision, moving cameras

with moving objects, occlusion, etc.), no BS or OMD outperforms vertebrate

retinas. Is it possible to model or enhance existing object motion detection al-

gorithms? Can such methods be accelerated using dedicated algorithms? The

PhD research programme aimed to explore how object motion detection could

be improved using SNN to mimic some of the DSGCs and OMS-GCs basic func-

tionalities and accelerate SNNs using dedicated hardware.

The PhD research programme had the following objectives:

a) Research into DSGCs and OMS-GCs and replicate their basic functionali-

ties (such as detecting horizontal and vertical movements and more generic

object motions). The research lead to the development of the MHSNN

architecture of a customised 4-layer SNN, inspired on DSGC available on

vertebrate retinas, which is sensitive to vertical and horizontal movements.

The results show that the MHSNN performed the correct detection of left-

wards, rightwards, downwards, and upwards movements in 93.6%, 92.4%,

93.9% and 93.1%, respectively when tested against the custom semisyn-

thetic dataset.

b) Explore the use of spiking neural networks to model and/or enhance exist-

ing object motion detectors. The HSMD algorithm combined an existing

BS algorithm named GSOC, available on the OpenCL library, with a cus-

tomised 3-layer SNN. The HSMD algorithm was ranked first overall against

the CDnet2012 and CDnet2014 benchmark datasets against the competing

BS algorithm. Furthermore, the HSMD did not introduce a substantial

degradation of the frame rate, being capable of processing 720 × 480 at

6

1.5 Summary of the thesis

13.82 fps (CDnet2014) and 13.92 fps (CDnet2012).

c) Optimise object motion detectors using FPGAs to improve the latency by

accelerating SNN with minimal or no deterioration of the accuracy. The

HSMD’s customised 3-layer SNN was accelerated on an FPGA device using

OpenCL and was tested against the CDnet2012 and CDnet2014 benchmark

datasets. The NeuroHSMD has produced an acceleration of 82% over the

HSMD and it is capable of processing 720× 480 at 28.06 fps (CDnet2012)

and 28.71 fps (CDnet2014).

1.5 Summary of the thesis

The PhD research programme focused on modelling a MHSNN for detecting hori-

zontal and vertical movements, design of SNN to enhance an existing and efficient

BS algorithm using a custom 3-layer SNN called HSMD and NeuroHSMD, which

is the neuromorphic implementation of the HSMD algorithm, for optimising the

computation speed of the custom 3-layer SNN. The thesis structure and a sum-

mary of each Chapter are presented below:

Chapter 2: Literature Review:

This chapter reviews the relevant common aspects to most verte-

brate retinas’ physiology, emphasising the OMS-GCs. This chapter

also reviews the most relevant SNN works, highlighting their main

advantages and disadvantages. The most relevant BS works, chal-

lenges, and limitations are also reviewed in this chapter. The Chap-

7

1.5 Summary of the thesis

ter ends with a revision of relevant neuromorphic implementations

of retinas and other brain functions.

Chapter 3 - Initial exploration of Spiking Neural Net-

works on motion detection:

The initial exploration of SNN lead to the development of a novel

MHSNN architecture capable of detecting leftwards, right-wards,

upwards, and downwards movements. It is also explained how the

supervised learning ReSuMe was used to train the output layer neu-

rons and how synapses with different propagation can be used to

create local buffers. The MHSNN is capable of classifying simple

movements using a semisynthetic dataset.

Chapter 4: HSMD - Hybrid Spiking Motion Detection:

The HSMD proposes the enhancement of the GSOC BS algo-

rithm [30] available on the OpenCV library [31], and that has per-

formed better on the CDnet2012 [9], and CDnet2014 [32] which are

two of the reference datasets for benchmarking BS algorithms using

customised 3-layer SNN. The 3-layer SNN was optimised to ensure

that the HSMD algorithm could perform background subtraction

8

1.5 Summary of the thesis

on the fly. The HSMD ranked first when benchmarked against all

the BS available on the OpenCV library [31] using the eight metrics

proposed in CDnet2012 [9].

Chapter 5: NeuroHSMD - Neuromorphic Hybrid Spik-

ing Motion Detection:

A state-of-the-art NeuroHSMD is presented in this chapter. The

3-layer SNN used to enhance the GSOC algorithm, which was the

bottleneck of the HSMD algorithm, was fully implemented on an

Intel FPGA board [33] using OpenCL [34].

Chapter 6: Conclusions and Future Work

A summary of the work and achievements obtained during the

PhD research programme is given in this chapter. A list of publi-

cations and future publications emerging from the results obtained

in Chapter 5 is also presented in this chapter. The last section dis-

cusses future work and how the systematic methodology developed

in this research programme can efficiently model other bio-inspired

retinal cells.

9

Chapter 2

Background Research

This chapter reviews works relevant to the PhD research program.

A brief introduction to the anatomy of the eye and retina is given in

Section 2.1 to set the context and to introduce the OMS-GCs, which

are the foundations of the PhD research programme. Spiking neu-

ron models and SNN are discussed and in Section 2.2. Existing SNN

simulators and their advantages/disadvantages are summarised in

Section 2.3. Relevant works in terms of SNN architectures for im-

age processing are analysed in Section 2.4. The reader will have the

opportunity to understand the research gaps in terms of SNN archi-

tectures which justify the need for this PhD research programme.

Challenges and use-case scenarios of object motion detection us-

ing classical computer vision methods are discussed in Sections 2.5.

Neuromorphic and heterogeneous computing are analysed in Sec-

tion 2.6 covers the importance of hardware implementations in the

10

2.1 Anatomy of the Eye and Retina

acceleration of SNNs. The research gaps that led to this PhD re-

search programme are discussed in section 2.7.

2.1 Anatomy of the Eye and Retina

The eye (see Figure 2.1) is a fundamental part of the vision system,

and it is composed by the following parts: Iris which is the coloured

part of the eye that is responsible for controlling the amount of light

that reaches the retina that lays at the back of the eye; Pupil is a

circular membrane in the centre of the Iris that dilates and contracts

to increase or reduce the quantity of light that reaches the retina;

Cornea is the transparent circular membrane covering the front of

the eyeball which refracts the light to the Lens;

Lens is the transparent structure behind the Pupil that refracts

the light into the retina; Choroid is the middle layer of the eye

between the retina and the Sclera that contains pigments to absorb

excess light to prevent image blurring; Ciliary body connects the

Choroid to the iris; Sclera is the white and though part of the

eye for maintaining the spherical configuration of the eye and of-

fers resistance to internal and external forces; Retina a tiny tissue

that lays at the back of the eyeball and is composed of thousands

of neurocircuits responsible for converting the light intensities into

visual information to be further processed by the brain;Fovea is a

11

2.1 Anatomy of the Eye and Retina

tiny depression in the centre of the Macula (a yellow spot on the

retina) and it is considered a highly-specialised region of the retina

responsible for producing the sharpest vision with the highest colour

discrimination; and Optic nerve which provides the multichannel

connectivity between the retina and the brain.

Figure 2.1: Anatomy of the eye. Adopted from [1].

The retina is considered an extension of the brain and has been

widely studied since Cajal (1892) [35], [36]. Vertebrate retinas vary

in type, shape, size, connectivity, and number of cell types. All

vertebrate retinas are composed of photoreceptors (cones and rods),

bipolar, horizontal, amacrine, and ganglion cells (Figure 2.2). Each

of these types of cells comprises a wide range of functional subtypes

[37].

Rods are sensitive to low intensity light, while cones sense light

and colour. Cones can be subdivided into three categories based on

12

2.1 Anatomy of the Eye and Retina

their ability to detect short, medium, and long light wavelengths

[38]. Bipolar cells forward signals triggered by rods and cones to

ganglion cells [38]. Horizontal cells are responsible for processing

visual information received from bipolar cells, rods, and cones [1;

38]. Amacrine cells are responsible for modulating and integrating

visual signals from bipolar, and ganglion cells [1; 38]. Ganglion cells

receive visual information from bipolar cells and analyse shapes,

contrast, motion, and colour, and forward them to the visual cortex

via the optic nerve [1; 38].

Each retinal cell has a specific role in the vision system. The

types of cells vary between animal species, and the number of reti-

nal cells also varies according to the surrounding environment where

each species lives. The organisation of the retina is shown in Fig-

ure 2.2

13

2.1 Anatomy of the Eye and Retina

Figure 2.2: The structure of the retina comprises rods, cones, and horizontal,
Amacrine, and ganglion cells. Light passes through all the retinal layers and hits
the pigment epithelium responsible for protecting the outer retina from excessive
light. Rods detect grey gradients and dim light, while cones detect red, green,
and blue light. Horizontal cells regulate the visual information from rods, cones,
and bipolar cells. Bipolar cells transport the visual information to ganglion cells.
Amacrine cells regulate the visual information from bipolar and ganglion cells.
Finally, ganglion cells receive and process the visual information from bipolar
cells and transmit the post-processing information to the visual cortex via the
optic nerve. Adopted from [2].

14

2.2 Spiking Neuron Models

Object motion detection, light sensitivity, and looming (i.e. ob-

ject approaching the eye) detection are three of the visual tasks that

are observed in all vertebrate retinas, such as the light sensitive and

looming GC. The OMS-GCs active respond when a local patch on

the centre of receptive field moves with a trajectory different from

the background; light sensitive GC respond to light intensity varia-

tions; and the looming GC respond to approach and recede motions

[18]. More complex cells have been identified, including the fast

response and the predictive GC. The fast response cells respond to

fast motion variations, while the predictive cells trigger automatic

responses to specific stimuli that were previously learnt [39]. The

focus of this PhD research programme is to model and emulate the

OMS-GC basic functionalities for improving existing motion detec-

tion algorithms, targeting a wide range of environmental conditions

from dim light to challenging weather conditions.

2.2 Spiking Neuron Models

Models of the retina are generally either focused on single neuron

cells, or on complex networks of neurons [40; 41]. Advances in retina

research [7; 18; 42; 43; 44] have enabled researchers to understand

better the anatomical and neurophysiological retinal function to de-

15

2.2 Spiking Neuron Models

sign computational models that mimic some retinal aspects. Reti-

nal responses are related to action potential initiation, dendritic

processing, many levels of effects (such as ionic channels, physical

properties, extracellular stimulation), motion detection, and motion

anticipation [40]. Computational models have been used to augment

the understanding of single neuron response dynamics and compu-

tation and their functional contributions in multi-hierarchy neural

networks [40]. Typically, retinal models are modelled with a high

level of abstraction, focusing on the individual action potentials [?

]. The significant differences between approaches are the degree to

which the authors can model the actual retina’s behaviours [4].

In 1952, Hodgkin & Huxley (HH) [3] proposed the first biologi-

cally plausible and also the most computationally intensive spiking

neuron model. The HH model consists of a semipermeable cell mem-

brane that splits the internal cell, that behaves as a capacitor, from

the extracellular fluids (see Figure 2.3) [3].

16

2.2 Spiking Neuron Models

Figure 2.3: Schematic diagram of the Hodgkin-Huxley neuron model.Vm is the
membrane potential and Cm is the membrane capacitance; INa+ , IK+ and ILeak
are the currents associated to each channels. Cm is the membrane potential;
gNa+ , gK+ are the non-linear electrical conductances that control the voltage-
gated ion channels; gLeak is the linear conductance. ENa+ , EK+ and ELeak are
the equilibrium potentials. Adopted from [3].

Currents are injected through the three different types of chan-

nels (sodium, potassium, and leakage), each with a distinct con-

ductivity [3]. More specialised neuron models inspired on the HH

and also based on differential equations were proposed such as the

FitzHugh-Nagumo [45], Morris-Lecar [46], Hindmarsh-Rose [47],Komendantov-

Kononenko [48] and Wilson [49].

A more simplistic model was proposed by Gerstner and Kistler [4]

proposed the Integrate-and-Fire (IAF) and some variations, includ-

ing the Leaky-Integrate-and-Fire (LIF). The main difference be-

tween the Leaky-Integrate-and-Fire (LIF) and IAF is that the LIF

is more realistic than the IAF because it includes a leakage resis-

17

2.2 Spiking Neuron Models

tor to lower the membrane potential voltage when no pre-spikes are

received. LIF neurons can be represented using an electronic RC

circuit, as shown in Figure 2.4.

Figure 2.4: Schematic diagram of the leaky-integrate-and-fire neuron model. The
base circuit is the module inside the grey circle on the right-hand side. A current
I(t) charges the RC circuit. If the voltage V(t) across the capacitance reaches the
threshold Vt then is a spike generated and V(t) is set to the reset voltage during
a refractory period. Adapted from [4].

The action potential is governed by Equation 2.1.

τδV (t)

δt
= −V (t) +RI (t) (2.1)

where τ = RC is the time constant, R the membrane resistance, C

the membrane capacitance, V(t) the membrane voltage at a given

time t and I(t) is the current at time t.

Izhikevich [5] proposed the Izhikevich (IZK) model that is as

biologically plausible as the HH model, but with a computational

efficiency comparable to the IAF/LIF models. In his work, Izhike-

18

2.2 Spiking Neuron Models

vich [5] presented a comparative study between some of the most

relevant spiking and bursting neural models, discussing the use of

each one in large-scale simulations. Figure 2.5 depicts the imple-

mentation of the computational cost versus biological plausibility of

the spiking and burst neural models.

Figure 2.5: Spiking neural models and its performance. Adopted from [5].

Figure 2.5 shows that the simplest model, in terms of implemen-

tation cost, is the IAF. The IAF is also the least realistic neu-

ral model; however, some variations of IAF (IAF with adapta-

tion, quadratic IAF resonate-and-fire and the IAF-or-burst mod-

els) have a higher level of biological realism [4; 5]. The Izhikevich

model proves to have a good balance between biological plausibility

and implementation cost [4]. Finally, the HH, FitzHugh-Nagumo,

Morris-Lecar, Hinmarsh-Rose and Wilson which are the most real-

istic models, also require more floating-point operations per second

19

2.3 Spiking Neural Networks simulators

(FLOPS) [5]. The LIF neuron model has a good balance between

processing cost and biological compatibility dynamics (see Chap-

ter 3 and 4) and suitable for implementation in large-scale on (see

Chapter 5 for further details). In this PhD research programme,

the LIF model was selected over other Spiking Neuron models; be-

cause it requires less computational resources, which is desirable

for implementing on dedicated hardware (see Chapter 5 for more

details).

2.3 Spiking Neural Networks simulators

SNNs with different spiking neuron models and synaptic models,

both parameterised with custom parameters and freely intercon-

nected. The Retiner [50; 51] is a framework designed for testing the

retina model, designed and implemented by the Cortivis consortium

[52]. The Retiner simulates nine types of cells and includes edge de-

tection, motion detection, and colour discrimination in real-time.

The primary computational colours, Red, Green and Blue (RGB),

and light intensity are filtered by Spatio-temporal retina-like filters

Difference-of-Gaussians (DoG) and the laplacian-of-gaussian opera-

tors. The output of these filters is weighted and combined to pro-

duce a unique intensity matrix. A leaky integrator is used to convert

the intensity matrix into a voltage activity matrix. The activity ma-

20

2.3 Spiking Neural Networks simulators

trix is then processed by LIF neurons, and the result is presented

in the form of spike events.

Martinez-Canada et al. proposed the COREM computational

framework for realistic retina modelling [6]. In this work, five com-

putational retinal microcircuits were used as building blocks to

model different retina mechanisms. The five computational mi-

crocircuits described in [6] are the space-variant Gaussian recep-

tive field, low-pass temporal filter, single-compartment model, static

nonlinearity, and short-term synaptic plasticity (see 2.6).

Figure 2.6: Computational retinal microcircuits that are used as basic building
blocks within COREM. Adopted from [6]

The accuracy of the computational models was validated by fit-

21

2.3 Spiking Neural Networks simulators

ting published electrophysiological recordings. Martinez-Canada

et al. modelled the adaptation to the mean light intensity, fast

and slow temporal contrast adaptation, and the object motion-

sensitive cells [6]. The five computational microcircuits, proposed

by Martinez-Canada et al. [6], can be combined to reproduce single-

cell and large-scale retina models at different abstraction levels;

and can be classified as block-structured, block-compartment, or

single-compartment models. The retinal model was then connected

with NEST [53] to simulate ganglion cells using LIF neurons. Al-

though Martinez-Canada et al. reported that it was possible to

replicate retinal cell functionalities using COREM, neither accu-

racy nor speed details were provided [6]. The COREM framework

functionality is represented in Figure 2.7.

Although the COREM and Retiner enable researchers to design

Neural Networks, the three primary and widely used SNN simu-

lators are Brian, NEURON and NEST [54]. Brian [55] is one of

the most popular SNN simulators written in Python that delivers

a user-friendly environment for users to write code quickly using

vector-based computation to deliver efficient simulations. Further-

more, Brian provides flexibility to design custom SNN with spiking

neurons freely interconnected between them. Brian simulator was

replaced by the new Brian2 that delivers a more flexible and sim-

22

2.3 Spiking Neural Networks simulators

Figure 2.7: Interface of COREM with NEST. Adopted from [6]

plified environment for users to write new neuron models and more

complex SNNs [56]. Brian 2 simulator which has been used in this

research programme is described in Chapter 3. The neuron mod-

els are written as differential equations in standard mathematical

notation [55]. NEURON is a SNN simulation toolbox that enables

users to design, implement, and run efficient discrete-event SNN

simulations, with easy to integrate hybrid simulations composed of

spiking neuron models and cells with voltage gate conductance. The

SNN simulator NEST [53] is also a simulation environment written

in C++ with Python bindings, specially designed for models that

23

2.4 Spiking Neural Networks architectures suitable Computer Vision
Processing

focus on the dynamics, size, and structure of SNNs and offers a wide

range of built-in tools to monitor internal variable states and spike

events. Many other packages and adaptors for Brian 2, NEURON

and NEST, are available (such as PyNN, Cypress, NengoDL, etc.)

but will not be discussed in this thesis; the reader can find more

details in [54; 57; 58].

2.4 Spiking Neural Networks architectures suit-

able Computer Vision Processing

SNNs have been used for performing different tasks in Computer

Vision. Long et al. [59] proposed the JSpike framework that delivers

a catalogue of algorithms suitable for designing large-scale SNNs

designed to require minimal memory and processing per synapse

and therefore suitable for computer vision processing. The JSpike

was one of the first SNN simulators optimised for computer vision

processing. Nevertheless, there are no recent publications nor an

active JSpike project, and therefore, it could be concluded that the

JSpike project is inactive.

Wu et al. proposed bio-inspired SNN for segmenting objects and

bind their pixels to construct object forms using excitatory lateral

connections [60]. In a follow-up work, Wu et al. [61] proposed an-

24

2.4 Spiking Neural Networks architectures suitable Computer Vision
Processing

other SNN for detecting moving objects in a visual image sequence.

The SNN were trained for extracting the boundaries of moving ob-

jects from grey images [61]. Cai et al. [62] expanded the work in

[60] and mimicked the basic functionality of motion detection with

axonal delays. Despite the two SNN architectures [60; 62] being able

to detect moving objects, neither is able to process moving objects

in real-time.

Zylberberq et al. [63] used a biologically inspired sparse cod-

ing model using SNNs for emulating the types of responses that are

found in cortical neurons in the primate visual cortex (also known as

Gabor functions). Zylberberg et al. used a population of inhibitory

neurons and a second population of excitatory neurons. The in-

hibitory neurons are used for producing lateral inhibition, which is

required to generate the same patterns generated by Gabor func-

tions. They also introduce a new unsupervised learning technique,

an adaptation of Oja’s learning rule, [64] for training the weights of

both populations of neurons. Nevertheless, Gabor filters are espe-

cially useful in classification and recognition applications, which is

not the main focus of this PhD research program.

Kerr et al. [65] proposed a custom SNN to model bio-inspired

photoreceptors receptive fields and integrator neurons for extract-

ing important features from intensity and range images, to perform

25

2.4 Spiking Neural Networks architectures suitable Computer Vision
Processing

edge-detection. Although the bio-inspired edge-detection proposed

by Kerr et al. perform this visual task, the authors did not perform

an exhaustive analysis to assess the quality of edge detection. Fur-

thermore, in 2015, Kerr et al. [66] proposed a four-layer hierarchical

neural network for the extraction of complex features from natural

images. The input image is convolved with DoG filters, and the re-

sult is converted by ganglion cells into spike events. The processing

stages include edge detection, orientation detection, end-stopped

detection and interest point detection. The proposed SNN was im-

plemented in the Brian simulator [55] and is capable of processing

800× 600 pixels images in 3.64s. Although 3.64s is a good process-

ing speed for a SNN, this speed is far from ideal because the typical

commercial camera frame rate is around 30 frames per second (33

ms).

Tavnaei et al. [67] who proposed a biological-inspired Convolu-

tional Spiking Neural Network (CSNN) composed of a convolution

layer, followed by a pooling layer and a fully connected layer (feature

discovery). On classification tasks on the MNIST digit dataset1, the

proposed architecture showed an accuracy of 98% for clean (without

any additive noise) images. Rueckert et al. [68] proposed a Recur-

1The MNIST database of handwritten digits is widely used to measure the accuracy of
machine learning and artificial intelligence algorithms. http://yann.lecun.com/exdb/mnist/,
last accessed: 27/02/2018.

26

http://yann.lecun.com/exdb/mnist/

2.4 Spiking Neural Networks architectures suitable Computer Vision
Processing

rent Spiking Neural Network (RSNN) for planning tasks that detect

movements. The proposed architecture is composed of 2 layers of

LIF neurons, one for saving the current state and another for keep-

ing the context. The RSNN is inspired by hippocampal neurons

found in rats; however, such recurrence is not found in vertebrate

retinas. Therefore, CSNN and RSNN are optimised to perform clas-

sification and not object motion detection.

Sun et al. [69] proposed a SNN that combines LIF neurons in

hierarchical layers with excitatory/inhibitory pathways to describe

receptive fields used to extract colour features for object recognition.

Sun et al. made use of the unsupervised learning Spike Timing

Dependent Plasticity (STDP) to train the excitatory synapses and

therefore improve the classification accuracy on the 5 public datasets

[69]. The authors claim an accuracy of about 90% in four of the 5

datasets used. Machado et al. [70] proposed the NatCSNN, a 3-layer

convolutional spiking neural network for the classification of objects

extracted from natural images. The authors [70] suggested the use

of STDP unsupervised learning for training the middle layers and

the ReSuMe supervised learning algorithm for teaching the output

layer neurons using teacher signals. Although the NatCSNN scored

an accuracy of 84.7%, the complex structure (use of a variation of

the LIF with adaptive threshold neuron model for preventing over-

27

2.4 Spiking Neural Networks architectures suitable Computer Vision
Processing

spiking, STDP and ReSuMe synapse models to interconnect neurons

via many-to-many connectivities) of the NatCSNN introduces severe

limitations in speed performance. Therefore, the NatCSNN is not

suitable nor scalable for applications targetting real-time or near

real-time processing. Although both works [69] [70] are based on

hierarchical SNNs that use a combination of excitatory/inhibitory

pathways to describe receptive fields, none of these architectures is

easily scalable nor suitable for real-time applications.

The works proposed and covered in this section share the fol-

lowing similarities: (i) use of LIF neurons, organised in a hierarchi-

cal network; (ii) neural networks are composed of 3 or more layers

which are interconnected via excitatory and/or inhibitory synapses,

forming receptive fields; (iii) inclusion of final layer trained using

STDP and/or ReSuMe. Neither of the studies addressed emulation

of OMS-GCs and the reviewed SNN architectures are not easily

scalable, nor are suitable for processing images in real-time. Al-

though only the SNN architecture that was proposed by Wu et al.

[61] was capable to perform OMD, the proposed SNN was not thor-

oughly tested against any public OMD datasets (e.g. CDnet2012

[9] or CDnet2014 [32]). Therefore, this PhD research programme

explored the use of SNN for performing OMD in real-time applica-

tions.

28

2.5 Object Motion Detection

2.5 Object Motion Detection

The detection of moving objects from video frame sequences is a

trivial visual task performed by vertebrate retinal GC [18; 21] and

yet a challenge in the Computer Vision (CV) research field. OMD

is one of the most researched fields in computer vision and has been

studied for more than 30 years [16]. OMD in videos captured from

static and/or moving cameras is essential for a wide range of com-

puter vision applications such as video surveillance, object collision

avoidance, ADAS, etc [16; 17; 71]. Although the initial OMD mod-

els were designed for static cameras, the advances in sensor tech-

nology and the accessibility to portable devices fitted with cameras

is triggering more challenging scenes where both cameras and ob-

jects can move at the same time [16]. OMD includes the following

tasks: 1) Background subtraction, 2) noise reduction, 3) threshold

selection and 4) moving objects detection (see Figure 2.8).

Several challenges have been identified in various works [16; 17;

22; 72; 73; 74] and can be summarised as follows :

• Bootstrapping: the sequence of images includes objects in

both the background and foreground.

• Camouflage: the objects in the foreground are either ob-

structed by background objects or are composed of similar

29

2.5 Object Motion Detection

Figure 2.8: Object Motion Detection steps.

colours.

• Dynamic background: the objects in the background in-

clude parasitic movements such as surface water movement,

branches and leafs shaking in trees, flags on windy days, etc.

• Camera aperture: blurred background and foreground as a

consequence of the incorrect opening in a lens through which

light passes to enter the camera.

• Variation of illumination: instant variations of illumina-

tion will increase the number of false-positive detections (i.e.

pixels that should belong to the background are classified as

30

2.5 Object Motion Detection

foreground).

• Low frame rate: the temporal distance between image frames

prevents instant updates of the background and illumination

changes, which reduces the accuracy and increases the number

of false positives.

• Motion blur: caused by rapid camera movements or jittering,

which blurs the image.

• Parallax: the apparent displacement of an object as a conse-

quence of the camera movement. The parallax will have impli-

cations on the background modelling and its compensation.

• Moving camera: moving cameras introduce complexity be-

cause the static objects seem to be moving, and objects moving

at a similar speed in the same direction of the camera will seem

to be static.

• Background objects movement: although static objects

can be added to and removed from the background, such ob-

jects should still be considered static.

• Night videos: night videos have dim light, lower contrast and

reduced colour information.

31

2.5 Object Motion Detection

• Noisy images: low-quality sensors, dust exposure, dirty lens,

bright lights and low resolution are examples of factors that

cause noisy images.

• Shadows: shadows created by objects when exposed to light

sources (e.g. sun rays and artificial illumination) should not be

part of the foreground models.

• Stationary foreground objects: a foreground that has stopped

moving for a short period should not become part of the back-

ground model;

• Challenging weather: weather conditions (such as fog, rain-

storms, strong winds, intense sun rays) have a major impact

on the image quality and reduce the quality of the image dras-

tically.

Furthermore, Garcia et al. [17] and Chapel et al. [16] identified

OMD use-cases that can address many challenges discussed above

and can be summarised as follows:

• Visual analysis of human activities fixed, or movable cam-

eras used for monitoring human activities. Human activities

can include highway maintenance (e.g. traffic density estima-

tion, vehicle tracking, detection of dangerous manoeuvres)[75;

76; 77; 78; 79; 80; 81; 82]; tracking people in public places (e.g.

32

2.5 Object Motion Detection

airports, train stations, seaports) [83; 84; 85; 86]; monitoring

specific people/objects in mass events (e.g. sports games, mu-

sic concerts, manifestations, and gatherings) [87; 88; 89]; and

indoor/outdoor behaviour analysis (e.g. track people in closed

public spaces, body-cameras installed police forces) [90; 91; 92].

• Visual observation of animals behaviours the observa-

tion of animals enables one to better understanding the health

status of individual and/or colonies of animals. Animals be-

haviours may include monitoring of livestock (monitor cows,

pigs, and diseases detection through the analysis of atypical

movements) [40; 93; 94; 95]; gathering understanding about

complex colonies of insects (e.g. bees and ants have communi-

cation mechanisms that enable them to work together to solve

complex problems) [96; 97; 98; 99]; and monitoring wildlife

(e.g. track movements of shoals of fish or pods of whales)

[100; 101; 102; 103; 104; 105].

• Visual observation of natural environments the detec-

tion of foreign objects in natural environments is crucial for

such environments. Some examples of natural environments

are forests, lakes, rivers, oceans, and glaciers that require active

human intervention to protect biodiversity in terms of fauna

33

2.5 Object Motion Detection

and flora [106; 107; 108; 109; 110].

• Visual hull computation object motion detection is cur-

rently being used in many sports (such as Football, Tennis,

and Athletics) to perform athletes movements analysis [111;

112; 113; 114; 115; 116].

• Human Machine Interaction (HMI) gesture recognition

enables users to interact with machines. HMI is currently be-

ing used in many fields such as in games (gestures are mapped

into game instructions); health (capture of facial motions to

enable patients with severe muscular degenerative diseases to

communicate using computers); and augmented/virtual real-

ity (enable interaction between users and mixture of real and

virtual objects for completing specific tasks) [117].

• Content-based video coding/decoding the foreground can

be extracted from the background and encoded and streamed

to the destination. At the destination, the foreground can be

decoded and added to the pre-existing background model [118;

119].

• Background substitution state-of-the-art conference plat-

forms enable users to blur or substitute the background in con-

ference calls. The background substitution is being widely used

34

2.5 Object Motion Detection

to protect users’ privacy [120; 121].

• ADAS and Navigational Systems (NS) require constant

updates of the foreground models to ensure that autonomous/semi-

autonomous systems can safely navigate without colliding with

a multitude of objects and living beings moving at random

speeds and variable trajectories [122; 123; 124].

2.5.1 Background Subtraction

Several surveys about BS have been published in the literature fo-

cused on static or semi-static (i.e. cameras fixed in a given po-

sition exhibiting pan-tilt-zoom movements) scenes. McIvor [125]

published, in 2000, one of the first OMD surveys where nine BS

methods which were only described in detail but not compared. Pic-

cardi [126] presented, in 2004, a comparative study between seven

algorithms cording to speed, memory resources utilisation and ac-

curacy (see Table 2.1). Piccardi’s study [126] aims to facilitate the

BS selection based on speed, memory requirements and accuracy

requirements.

Cheung et al. [136] proposed a method for validating foreground

regions (blobs) using a slow-adapting Kalman filter and compared

the proposed method against six other methods using the recall

and precision metrics. Elhabian et al. [137] covered several back-

35

2.5 Object Motion Detection

Table 2.1 BS methods and their performance analysis

Method Speed Memory Accuracy
Running Gaussian average [127; 128] high low acceptable
Temporal median filter [129; 130] high low acceptable
Mixture of Gaussians [131] low high very good
Kernel density estimation [132] low high very good
Sequential kernel density approximation [133] low acceptable good
Cooccurence of image variations [134] acceptable acceptable good
Eigenbackgrounds [135] acceptable acceptable good

ground removal algorithms and identified that all the BS algorithms

follow four significant steps, namely, pre-processing, background

modelling, foreground extraction, and validation. Although the

review was very comprehensive, the focus was on recursive and

non-recursive approaches, which are suitable for background main-

tenance but less suitable for background modelling. Cristiani et

al. [138] reviewed BS methods that can be applied to data cap-

tured from different sensor channels (including audio). Elgammal

[139] reviewed more than 100 papers about object motion detec-

tion for static and moving cameras, highlighting the challenges and

suggesting which method to use in each case. Bouwmans et al.,

Garcia et al. and Chapel et al. published comprehensive surveys

[16; 17; 22; 72; 73; 74] focusing on traditional, recent, and prospec-

tive object motion detection methods.

Consecutive frame difference, background modelling and optical

flow are the main categories for BS. Consecutive frame difference

36

2.5 Object Motion Detection

methods are the simplest to implement and require less computa-

tional resources, but are also the most sensitive to the challenges

listed above [16; 17]. In contrast, optical flow methods are the most

robust but require more computational resources and, consequently,

are not suitable for real-time applications [16; 17]. Therefore, back-

ground modelling methods are commonly used methods for extract-

ing the foreground from the background in real-time applications

[16; 17].

BS generic steps are detailed in Figure 2.9.

Figure 2.9: Background subtraction steps.

Stauffer & Grimson [131], and KaewTraKulPong & Bowden [140]

suggested modelling each pixel as a Mixture of Gaussians (MOG)

where the Gaussian distributions of the adaptive mixture model

are analysed for determining which ones are likely to belong to the

37

2.5 Object Motion Detection

background process. All the pixel values that do not fit in the

background distributions are considered foreground [131]. Zivkovic

[141] proposes an efficient adaptive algorithm using the Gaussian

Mixture Probability Density (MOG2) for enhancing the MOG algo-

rithm. MOG2 selects automatically the number of components per

pixel, which results in complete adaptation to the observed scene.

Zivkovic & Heijden [142] identified recursive equations for updat-

ing the parameters of the MOG and proposed Mixture of Gaussians

K Nearest Neighbours (KNN) for the automatic selection of the

pixel components. The Gaussian mixture based algorithms (MOG,

MOG2 and KNN) show good robustness when exposed to noise and

losses due to image compression but lack sensitivity to intermittent

object motion, moving background objects and abrupt illumination

changes.

In 2016, Sagi Zeevi [143] proposed the CNT algorithm, which per-

formed better on the CDnet2014 dataset [32] and targets embedded

platforms (e.g. Raspberry PI1). The CNT uses minimum pixel sta-

bility for a specified period for modelling the background; this can

vary from 170 ms, default for swift movements, up to hundreds of

seconds, where 60s is the default value [144]. Godbehere et al. [145]

suggested a single-camera statistical segmentation and tracking al-

1Available online, https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/, last accessed 28/03/2022

38

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

2.5 Object Motion Detection

gorithm named the GMG by combining per-pixel Bayesian segmen-

tation, a bank of Kalman filters, and Gale-Shapley matching for

the approximation of the solution to the multi-target problem. The

proposed GMG algorithm is limited when processing video streams

susceptible to camouflage, losses due to image compression, and

noise.

Guo et al. [146] reported an adaptive Background subtraction

model enhanced by a local Local Single Value Decomposition Binary

Pattern (LSBP) for addressing illumination changes. The proposed

LSBP algorithm enhances the robustness of the motion detection

to illumination changes, shadows, and noise. However, the LSBP is

less effective when processing video streams susceptible to camou-

flage, losses due to image compression, or external noise. More re-

cently, in 2017, OpenCV released an improved version of the LSBP

algorithm, also known as GSOC [147; 148], developed during the

Google Summer of Code event [149], which enhances the LSBP

algorithm by using colour descriptors and stabilisation heuristics

for motion compensation [30; 148]. The GSOC algorithm demon-

strates better performance on the CDnet2012 [9], and CDnet2014

[32] datasets [30; 31] when compared to other algorithms available

on the OpenCV library.

39

2.5 Object Motion Detection

More recently, Braham et al. [150] proposed a Semantic Back-

ground Segmentation (SBS)that uses object-level semantics to meet

a range of problematic background subtraction conditions. The pro-

posed SBS reduces false positive detections by integrating the out-

put information of a semantic segmentation method, expressed as

a probability for each pixel, with the output of existing BS meth-

ods. Inspired by Braham’s work [150], Zeng et al. [151] proposed a

Real-Time Semantic Segmentation (RTSS) for performing BS. The

RTSS consists of two components: a BS segmenter B and a seman-

tic segmenter S that work in parallel for foreground segmentation.

The RTSS achieves state-of-the-art performance among most un-

supervised background subtraction methods while functioning in

real-time as compared to other BS methods [151]. Liang et al. [152]

proposed a deep background subtraction method using a directed

learning strategy that learns a specific CNN model for each video

without manually labelling. Zeng et al. [153] proposed a Multi-

scale Fully Convolutional Network (MFCN) architecture for back-

ground subtraction that takes advantage of diverse layer features.

The deep features learned from MFCN improves foreground detec-

tion and that the complexity of the background subtraction process

can be easily handled during the subtraction operation itself.

BS is the first step and the most important step of the OMD.

40

2.5 Object Motion Detection

BS algorithms are responsible for extracting the foreground from the

background using the spatio-temporal information of the light varia-

tion between sequential video frames. Furthermore, BS can be done

using methods based on signal processing, ML, Deep Neural Net-

work (DNN) or mathematical models. Although signal processing,

ML and DNN tend to exhibit better accuracy than mathematical

models, these algorithm types are also computationally intensive, in-

troducing undesirable latencies. Nevertheless, mathematical models

exhibit lower accuracy but require fewer computational resources

and, therefore, are suitable for real-time applications. Moreover,

the methods proposed by Braham et al. [150] and Zeng et al. [154]

demonstrated that existing BS algorithms can be improved when

combined with semantic segmentation models. Therefore, this PhD

research programme combined a customised SNN for improving ex-

isting GSOC BS algorithm for mimicking simple biological function-

alities observed in OMS-GC of vertebrate retinas.

2.5.2 Noise reduction

Parks & Fels [155] evaluated several noise reduction post-processing

strategies and concluded that morphological operators outperform

other techniques such as the median filter. This technique can re-

41

2.5 Object Motion Detection

pair small gaps in the foreground segmentation and erase small clus-

ters of pixels that were incorrectly labelled as foreground. Shadows

and reflections introduce severe challenges, since most moving ob-

ject recognition techniques incorrectly classify their region pixels as

moving objects. Although it is preferable to deal with these issues

by developing an effective algorithm at the time of detection, post-

processing methods based on threshold selection can be useful in

removing erroneous information from the output data. Solehah et

al. [156] proposed comparing the current image’s histogram with

the one of the warped background and thresholding it to re-classify

the pixels to remove noisy pixels associated with the foreground.

This PhD research programme used median filters for filtering salt-

and-pepper noise [157] as consequence of random pixel illumination

variations.

2.5.3 Threshold selection

The threshold can be set to the same value for all pixels and the

series. This plan is straightforward, but it is not ideal because

pixels depict various actions, necessitating the use of an adaptable

threshold. This can be accomplished by determining the threshold

using the local temporal standard deviation of intensity between

the background and current images, and then updating it with an

42

2.5 Object Motion Detection

Infinite Impulse Response (IIR) filter as suggested by Collins et al.

[158]. According to Wren et al. [159], an adaptive threshold can also

be calculated statistically from the pixel variance. Chacon-Muguia

and Gonzalez-Duarte [160] proposed the use of fuzzy thresholds for

performing adaptive thresholds using a one-to-one Self Organizing

Map (SOM) architecture to deal with dynamic backgrounds for ob-

ject detection and shadow removal. This PhD research programme

used populations of spiking neurons (see Chapters 3 and 4) and

synapses with different propagation delays (see Chapter 3) to per-

form adaptive threshold selection.

2.5.4 Moving object detection

Detecting the physical movement of an object in a specific location

or region is known as OMD. Unlike BS algorithm, which compares

light variation between the current frame and previous frames, the

OMD detects moving objects in the scene. Moreover, the quality of

the BS (covered in section 2.5) has a direct impact on the quality of

the OMD which is the building-block of other advanced visual tasks

(such as classification of moving objects, tracking, interpretation

and description of actions, human identification, or fusion of data

from multiple cameras) [161]. This PhD research programme was

focused on the OMD and therefore, this section will briefly review

43

2.5 Object Motion Detection

some of the most relevant OMD methods available in the literature.

2.5.4.1 Representation learning

Modelling the background is a complex visual task, especially in

scenarios where the camera, objects, or both are moving. There-

fore, ML/Artificial Intelligence (AI) methods are normally used for

modelling the background [16]

Oliver et al. [135] proposed the use of PCA models to lower

the dimensionality and perform unsupervised learning of the illumi-

nation variation, which is referred to as subspace learning. Other

subspace learning methods based on discriminative [162; 163] and

mixed [164] models were proven to be more robust for foreground

detection. Nevertheless, PCA based models are very sensitive to

noise, outliers and incomplete data.

Robust Principal Component Analysis (RPCA) with decompo-

sition into low-rank plus sparse matrices have been frequently em-

ployed in the area to address the PCA based algorithms limitations

[165; 166; 167; 168]. Although these approaches are tolerant to

light variation as well as dynamic backgrounds, batch algorithms

are required, which makes these methods unsuitable for real-time

applications [16]. Dynamic RPCA and robust subspace tracking

have proven to overcome the RPCAs’ limitations and attain real-

44

2.5 Object Motion Detection

time performance of RPCA based algorithms [169; 170; 171; 172;

173; 174; 175].

Tensor RPCA based methods [176; 177; 178; 179] allow for the

consideration of spatial and temporal constraints, making them

more noise resistant. Although tensor/dynamic RPCA based al-

gorithms are more robust than PCA based algorithms, they are

also computationally intensive. Therefore, PCA was used in the

work presented in section 3 for reducing the dimensionality of the

datasets’ image frames.

2.5.4.2 Neural networks modelling

Schofield et al. [180] were the first to suggest a Neural Network (NN)

for background modelling and foreground detection named Random

Access Memory Neural Network (RAM-NN). RAM-NNs are trained

with a single pass of background images, which introduces limita-

tions related to images having to accurately reflect the scene’s back-

ground and no background maintenance stage. Tavakkoli [181] pro-

posed a NN for separating the background into chunks during the

training process. Radial Basis Function Neural Network (RBF-NN)

are trained with background samples corresponding to its associ-

ated block. RBF-NN performs as a detector rather than a discrim-

inant, generating a near border for the known class. Furthermore,

45

2.5 Object Motion Detection

RBF-NNs can learn the dynamic background while addressing dy-

namic object detection as a single class problem, but also requires

a large dataset to be able to generalise the background scenario.

Maddalena and Petrosino [182; 183; 184; 185] proposed the Self Or-

ganizing Background Subtraction (SOBS) method, which is based

on a 2D self-organizing NN designed for preserving pixel spatial re-

lationships. The background is automatically modelled using the

network’s neuron weights. A neural map with n× n weight vectors

is used to represent each individual pixel. The Hue, Saturation and

brightness Value (HSV) colour space is used to initialise the weight

vectors of the neurons with the relevant colour pixel values. For

each new image, each individual pixel value is compared to its cur-

rent model to identify whether the pixel relates to the background

or the foreground. Several SOBS-based variations have emerged in-

cluding (multivalued SOBS [186], SOBS-CF [187], SC-SOBS [188],

3dSOBS+ [189], Simplified SOM [190], Neural-Fuzzy SOM [191],

and MILSOBS [192]), allowing it to remain among the top methods

on the CDnet2012 [9]. SOBS also performs well in the detection

of stationary objects [193; 194; 195]. However, one of the major

drawbacks of SOBS-based approaches is that at least four parame-

ters must be manually adjusted, and these methods lack biological

plausibility. Therefore, the NN modelling methods were not used in

46

2.5 Object Motion Detection

this PhD research programme.

2.5.4.3 Deep Neural Network modelling

DNNs have been used for performing moving object detection for

moving cameras due to the availability of large annotated video

datasets such as the CDnet2012 [9] and CDnet2014 [32]. Babaee et

al. [196] proposed a single CNN that learns relevant features from

data and predicts an appropriate background model from video.

The proposed method can be utilised in applications for the detec-

tion of moving objects in a variety of video scenarios. The single

CNN method proposed by Babaee et al. [196] was followed by im-

proved versions that address: foreground detection enhancement

[151], ground-truth generation [197], and learning of deep spatial

features [198; 199; 200]. The methods above-mentioned are very

accurate and address different artefacts, but they are not suitable

for real-time applications.

Guo and Qi [201] and Xu et al. [202] proposed the use of Re-

stricted Boltzman Machines (RBMs) lmodelling the background cre-

ation to achieve moving object detection. Xu et al. [203; 204] used

deep auto-encoder networks to accomplish the same goal, whereas

Qu et al. [205] used a context-encoder for background initialization.

Zhang et al. [206] proposed the Stacked Denoising Auto-Encoder

47

2.5 Object Motion Detection

(SDAE) to learn robust spatial features and density analysis to

model the background, whereas Shafiee et al. [207] proposed the

Neural Response Mixture (NeREM) to acquire deep features for

improving MOG model proposed by Stauffer & Grimson [131], and

KaewTraKulPong & Bowden [140]. Although DNNs have proven to

perform object detection with a good accuracy, these types of NN

lack from biological plausibility and therefore, such methods were

not used in this PhD research programme.

2.5.5 Advanced Object Motion Detection applications

OMD methods are the building blocks for real-time applications

such as trajectory classification and object tracking [208]. Although

most OMD methods work offline by analysing recorded video se-

quences, the need for real-time moving object detection is increas-

ingly being recognised, particularly in fields such as sociology, crim-

inology, suspect behaviour detection and tracking, traffic accident

detection, crowd tracking, and vehicle and robot navigation [208].

In general, the necessity for a real-time system necessitates a very

short calculation time as well as minimal hardware and memory

requirements [208].

48

2.5 Object Motion Detection

2.5.5.1 Trajectory classification

Several works have used trajectory classification to find moving ob-

jects in video sequences acquired by cameras [16; 208]. The trajec-

tory classification generic steps (see Figure 2.10) include i) selection

of the initial point of interest corresponding to the moving object’s

centre of mass in the first image frame, ii) tracking the progres-

sion of the point of interest, and iii) classification of the trajectory

described by that point of interest.

Figure 2.10: Trajectory classification steps. i) selection of the initial point of
interest corresponding to the moving object’s centre of mass in the first image
frame, ii) tracking the progression of the point of interest and iii) classification of
the trajectory described by that point of interest.

Sheikh et al. [209] employed a scale space for the background that

was formed by the fundamental trajectory bases, and then classi-

fied trajectories that were not in this area as belonging to moving

objects. Although the proposed method relied just on 2D picture

quantities, the homography limitations were successfully extended

to 3D scenes to accommodate freely moving cameras. While the

algorithm is computationally expensive, the findings revealed that

it performs well [209].

49

2.5 Object Motion Detection

Brox & Malik [210] proposed the use of optic flow for compen-

sating long term motion in a video sequence and extracting the tra-

jectory points. Furthermore, spectral clustering was used to classify

background and foreground trajectories. The approach can handle

a high number of sequenced frames and partially occluded objects,

but it fails to segment the objects densely. Yin et al. [211] used

optic flow to compensate for camera parasitic movements, and sub-

sequently PCA was employed to reduce the number of unusual tra-

jectories. Moreover, the watershed transforms to distinguish fore-

ground and background trajectories. Although label inference is

used to handle unlabelled pixels, it fails to create dense segmenta-

tion of moving objects [211]. Singh et al. [212] addressed trajectory

detection of freely moving cameras in footage acquired while the

camera was worn by a human. Instead of employing elaborate mod-

els, they use point tracking with optical flow and a bag of words clas-

sifier to discern the trajectory of moving objects in their research.

The proposed method works well for recognising first-person actions

[212]. Zhang et al. [213] proposed a pre-trained CNN to recog-

nise moving object trajectories in an unconstrained video over time

by learning adaptive discriminating characteristics from short video

clips extracted from the main video. Local tracklets (short trajec-

tories) are extracted from each video clip and linked together across

50

2.5 Object Motion Detection

sequential video clips. Even with unrestricted camera movement,

the proposed method [213] works effectively for multi-face tracking.

However, depending on the nature of moving objects, the proposed

method requires wider training data [213].

In this PhD research programme, a custom SNN architecture is

proposed for trajectory classification (see Chapter 3). The proposed

MHSNN architecture combines excitatory and inhibitory synapses

with different propagation delays for detecting the object trajectory.

2.5.5.2 Object tracking

Tracking is the process of locating a moving object in sequences

of frames [208]. The object tracking generic steps (see Figure 2.11)

include: i) selection of the target moving object, ii) store the moving

object features, iii) extract moving objects features in the current

frame, iv) select the best set of features that matches the target

moving objects and v) update the moving object features.

The selection of the target moving object can either be done

manually by the user or automatically using object detection meth-

ods using saliency detection or object segmentation and recognition

from a single image [208]. Colours, texture, edges, geometric infor-

mation, frequency coefficients, simple pixel grey values, or a com-

bination of all of these object properties that comprise a feature

51

2.5 Object Motion Detection

Figure 2.11: Object tracking steps. i) selection of the target moving object,
ii) store the moving object features, iii) extract moving objects features in the
current frame, iv) select the best set of features that matches the target moving
objects and v) update the moving object features

space [214; 215; 216; 217; 218] can be used to characterise the tar-

get moving object. Other features for appearance modelling include

the colour histogram [219] and the Histogram of Oriented Gradients

(HOG) [220] to use a set of local histograms to characterise a mov-

ing object. Furthermore, the occurrence of gradient orientation in a

local region of the object is counted in these histograms. Although

HOG provide strong local information about a moving object, it is

susceptible to variations in illumination.

Local feature descriptors are crucial in the image registration

process and have a direct impact on the accuracy and robustness

of image registration [221]. Some of the most common local fea-

ture descriptors algorithms utilised for representing moving objects

are Gradient Location and Orientation Histogram (GLOH) [222],

Speeded Up Robust Features (SURF) [223], Scale-Invariant Feature

52

2.5 Object Motion Detection

Transform (SIFT) [224], Binary Robust Independent Elementary

Features (BRIEF) [225] and Oriented FAST and Rotated BRIEF

(ORB) [226]. SIFT is particularly desirable since it produces local

features that are resistant to scale, noise, illumination, and local ge-

ometric distortion [227]. Nevertheless, SIFT’s object tracking speed

degrades as the number of falsely matched key points increase, which

is not desirable when monitoring small objects [227]. CNNs can be

used for learning adaptive, hierarchical, and distributed features.

Such features can be used to update the object’s appearance in real

time [228] and perform descriptors encoding local spatial-temporal

properties [229].

Statistical models can be used to match the target moving ob-

ject features to the features extracted from the current frame [208].

Subspace techniques such as PCA and Independent Component

Analysis (ICA) can be utilised to decrease the dimension of the

feature space. The target moving object’s location in the current

frame should be determined using a matching strategy. The similar-

ity/correlation function will select the best moving object candidate

in the current frame that is the most similar to the target moving

object based on appearance features taken from both the candidates

and the target [208]. The target moving object features are updated

after the target is detected in the current frame, and the process re-

53

2.5 Object Motion Detection

peats for the following frames [208]. Ning et al. [230] propose using

the statistics of the object’s visual features (colour and texture) for

the matching stage. Leal et al. [229] proposed a template-based

method that uses a simple geometric shape, contour, or silhouette

of the moving object. Nevertheless, the proposed basic template-

base approach fails when the pose of the moving object changes.

Pan et al. [231] proposed the Content-Adaptive Progressive Oc-

clusion analysis (CAPOA) method that provides a clear distinction

between the target and outliers by merging the information provided

by spatio-temporal context and motion constraints together.

Comaniciu et al. [232] employed a kernel-based method us-

ing mean shift to construct a moving object’s histogram based on

appearance and similarity measurement using the Bhattacharyya

distance to determine the best match for the moving object in

the current and future frames. Bebenko et al. [233] proposed a

learning model to identify pixel blocks containing the moving ob-

ject, and track the moving object’s behaviour in subsequent frames.

Bagherzadeh & Yazdi [234] proposed the use of saliency maps to

extract appearance cues in the frequency domain, and a regularised

least squares classifier was used to classify pixels belonging to a

moving object.

Another prominent approach for tracking moving objects is tracking-

54

2.5 Object Motion Detection

by-detection [235; 236; 237] , which uses a detection algorithm com-

bined with a matching technique to correlate the discovered items

on sequenced images. This technique excels in difficult situations

such as uncalibrated moving cameras, changing backgrounds, and,

most notably, occlusion. However, matching step or object associa-

tion is challenging, and the outputs are a distinct set of answers that

frequently result in an increase of false positives. Chen et al. [238]

and Sadeghian et al. [239] proposed to use the information from

future frames to improve the detection of moving objects in the cur-

rent frame. Although the currently utilised hand-craft features for

moving object detection and tracking offer good results, new trends

are toward employing more descriptive features. Nevertheless, the

learning process can be used to target particular representations

as opposed to a fixed collection of pre-defined traits [240]. CNN

have recently been proposed for tracking moving objects, which ef-

fectively exploit category specific features for tracking objects even

in complex scenarios like moving cameras [241; 242; 243]. CNNs

have typically been employed for tracking in one of two ways: as

a feature extractor in conjunction with a good classifier [244], or

as a unified deep structure for object tracking [245]. Wang and

Ying [244] proposed the use of Deep Learning Tracker (DLT) to

learn genetic traits from supplemental natural images. Although

55

2.5 Object Motion Detection

DLT being successful in scenarios with major temporal changes,

the proposed method fails to learn these changes efficiently. Wang

et al. [246] used an improved CNN architecture to train hierarchical

features for model-free object tracking that can manage temporal

variations and do online tracking quickly and in follow-up work,

Wang et al. [247], employed a selection approach including two

pre-defined convolutional layers to filter out noisy, irrelevant, or re-

dundant features using CNN features retrieved from various layers.

Zhai et al. [248] proposed a CNN tracker using a Bayesian classifier

as a loss layer and updated the network parameters, which enables

the detection of the moving object appearance over the time. Li

et al. [249] published a comprehensive comparison of DNN-based

tracking algorithms where it is highlighted that tracking CNNs are

trained straightforwardly and effectively, resulting in good features

for object tracking with the downside of requiring large annotated

datasets.

Object tracking methods perform better than OMD algorithms

in complex scenarios where both the cameras and objects moving

freely. These approaches, however, substantially rely on the ac-

curate initial selection of the moving object in the sequence’s ini-

tial frames. Furthermore, tracking multiple objects is a complex

problem to solve, especially when both the camera and objects are

56

2.5 Object Motion Detection

moving freely. Although tracking is an important task in OMD, this

PhD research programme does not focus on moving object tracking.

2.5.5.3 Real-time considerations

Although most methods for detecting moving objects work offline

by analysing recorded video sequences, there is a need for real-time

OMD, particularly in fields such as traffic monitoring, crowd track-

ing and ADAS [208]. Moreover, real-time applications require low-

latency, which is normally preferred by parallelisable hardware such

as GPUs and FPGAs and low-spec embedded CPUs [208; 250].

There exist a wide variety of objects which exhibit different be-

haviours, which makes tracking a complex process. Comaniciu et al.

[251] proposed a method for real-time tracking of non-rigid objects

captured from a moving camera, where the mean shift iterations are

used to compute the target position in the current frame. Further-

more, the Bhattacharyya coefficient is used to express the dissim-

ilarity between the target model (its colour distribution) and the

target candidate. Comaniciu et al. [251] were able to demonstrate

the tracker’s ability to manage partial occlusions, considerable clut-

ter, and target scale fluctuations in real time.

The object size impacts on the quality of object’s tracking, and it

becomes more difficult to track small objects or objects that become

57

2.5 Object Motion Detection

progressively smaller when moving away from the centrer of the

camera. Ponga & Bowden [252] proposed using probabilistic mod-

els for tracking small-area targets, which are common in outdoor

visual surveillance scenes. The proposed model uses both appear-

ance and motion models in the tasks of classification and tracking

objects for which detailed information is not available. Moreover,

the proposed method uses motion, shape cues, and colour infor-

mation to distinguish between the different moving objects in the

scene. The results show that the proposed method can track mul-

tiple people moving independently and maintain trajectories even

when there are occlusions or background clutter.

The complexity of object tracking increases when it is required

to perform multiple-object tracking because each object will de-

scribe random trajectories and might occlude or be occluded by

other objects in the scene. Yang et al. [253] demonstrated a real-

time method for tracking several objects in dynamic situations. The

proposed method demonstrated that it is capable of coping with

long-term and full occlusion without prior knowledge of the ob-

ject’s shape or motion. Extensive testing using video sequences in

varied situations of indoor and outdoor environments with long-

duration and complete occlusions in changing backgrounds demon-

strated that the proposed method achieves good segment and track-

58

2.5 Object Motion Detection

ing for images of 30× 240 at 15 20 fps.

Selective tracking is also a challenge, especially when the real-

time tracking of the target moving object is crucial in sport appli-

cations. Grabner et al. [254] proposed an online AdaBoost feature

selection method for employing rapid computable features (such as

Haar-like wavelets, orientation histograms, and local binary pat-

terns) in real-time. Heinemann et al. [255] extended the work pro-

posed by Grabner et al. [254] and explored tracking in a controlled

environment and proposed a method for accurately recognising and

tracking the ball in a RoboCup scenario1. To get a colourless rep-

resentation of the ball, the authors used Haar features specified by

the AdaBoost method [256] and particle filter for handling the ball

tracking. It was demonstrated that, even in a congested environ-

ment, the proposed method can follow the ball in real-time (i.e. at

25 fps).

Tracking crowd movements is also a complex tracking task, be-

cause each pedestrian in the scene can describe a random trajectory

and be occluded by other pedestrians. Shah et al. [257] propose an

automated surveillance system that is suitable to be used in a wide

range of real-world applications, including railway security and law

enforcement. The proposed method has been utilised in a number of

1Available online, https://www.robocup.org/, last accessed: 12/04/2022

59

https://www.robocup.org/

2.5 Object Motion Detection

surveillance-related initiatives that have been supported by govern-

ments and private entities. The algorithm is capable of detecting

and classifying targets, as well as tracking them across numerous

cameras. It also creates a summary in terms of key frames and

a textual description of trajectories for final analysis and reaction

decision by a monitoring officer.

One of the most complex tracking challenges is associated with

tracking unknown objects because the tracking algorithm must dis-

tinguish between visual artefacts (such as shadows or ghost objects)

and real objects. Bibby et al. [258] proposed a probabilistic ap-

proach for robust real-time visual tracking of previously unknown

objects captured by a moving camera. A bag of pixels represen-

tation is used to solve the tracking problem, which includes stiff

frame registration, segmentation, and online appearance learning.

The registration compensates for rigid motion, segmentation mod-

els any residual shape distortion, and the online appearance learning

refines both object and background appearance models on a contin-

uous basis.

Night objects tracking is also a challenge for real-time object

tracking applications because it is difficult to distinguish between

the target moving objects and shadows generated by artificial il-

lumination. Huang2008 et al. [259] proposed a real-time object

60

2.5 Object Motion Detection

recognition technique for nighttime vision surveillance through con-

trast analysis. The contrast in local changes over time is employed

to detect moving objects in the scene, and the false positives are re-

duced by combining motion prediction and spatial closest neighbour

data association.

Object adaptability is a characteristic of a good real-time track-

ing algorithm. Li et al. [260] proposed the use of mean shift

technique-based solution for global target tracking combined with a

background weighted histogram and a colour weighted histogram to

represent the model and the candidate. The results show the pro-

posed method may adaptively achieve precise object size with low

computational complexity, including camera motion, camera vibra-

tion, camera zoom and focus, high-speed moving object tracking,

partial occlusions, target scale variations, etc.

Intrinsic characteristics of objects may also have a positive im-

pact on the performance and speed of the algorithm. Danelljan et

al. [216] proposed a method that performs real-time object tracking

using colour features. The findings show that colour features pro-

vide greater visual tracking performance and offer a low-dimensional

adaptive colour attribute variation for real-time aspects. The au-

thors also demonstrated that the proposed method is comparable

to state-of-the-art tracking algorithms, with a surprising speed of

61

2.6 Hardware implementations

up to 100 fps.

Navigational applications are amongst the biggest challenges for

real-time object tracking algorithms that must be capable of track-

ing objects of interest in a very short period of time to adjust the

trajectory of the moving vehicle. Agarwal et al. [261] proposed

a real-time multiple object tracking using a Region Based Con-

volutional Neural Network (RBCNN) for object detection and a

regression network for general object tracking specially design for

targetting ADAS applications. Minaeian et al. [262] proposed the

use of local motions for detecting moving objects and extract track-

ing keypoints for images captured using Unmanned Aerial Vehicles

(UAVs). Their efforts yielded positive outcomes in real-world appli-

cations. Overall, it is possible to infer that reliable OMD algorithms

are required in a wide range of applications and their quality will

dictate the quality of advanced OMD applications (such as trajec-

tory classification and object tracking). Although advanced OMD

applications were covered in this section, this PhD research pro-

gramme does not focus on such applications.

2.6 Hardware implementations

The neuromorphic computing concept was introduced by Carver

Mead [263] in 1990 and was described as the use of Very Large

62

2.6 Hardware implementations

Scale of Integration (VLSI) equipped with analogue components for

emulating biological neural systems. Neuromorphic architectures

deliver flexibility for describing highly parallel architectures, require

low-power and are typically interconnected to CPU via high-speed

interfaces (such as PCIe or intra-chip high-speed bus) [264].

Neuromorphic architectures can perform parallel calculations faster,

with higher power efficiency and a smaller footprint than the tra-

ditional 32/64-bit standard von Neumann architectures [264]. Fur-

thermore, the emerging AI/ML methods require more flexible hard-

ware architectures to accommodate the unique requirements of such

methods[264]. Emerging neuromorphic architectures deliver higher

densities of transistors per unit of space, higher intra-chip commu-

nication speed between the customisable fabric, real-time capabili-

ties, and other application-specific processing units (e.g. CPUs and

GPUs) [28]. Neuromorphic implementations can be split into dig-

ital, analogue, and hybrid (both digital and analogue) platforms

[264]. This PhD research programme aimed to develop a digi-

tal neuromorphic solution to accommodate and accelerate the cus-

tomised SNN using digital systems [264]. Neural Network Accelera-

tors (NNA) are networks of neuromorphic chips optimised to handle

complex neural network workloads that require reconfigurable com-

63

2.6 Hardware implementations

putational resources and a high degree of parallelism. The com-

parison between different types of NNA still remains a challenge,

and there is no simple way to compare the performance between

ANNs with SNNs nor between different types of Neural Networks

(i.e. different types of ANNs or SNNs). This PhD research pro-

gramme focused on SNNs, and therefore, this section only reviews

NNA that were specially designed for accelerating SSNs [15].

2.6.1 General propose Neural Network accelerators

SpiNNaker [265] is a network composed of custom CPUs with an

architecture optimised for running customised SNNs based on LIF

neurons. BrainScaleS [266] is another powerful NNA composed of

interconnected wafers composed of high input count analogue neu-

ral network cores targeting the rigorous emulation of brain-scale

NNs. Neurogrid [267] is an analogue NNA for emulating the struc-

ture of biological nervous systems in real-time. TrueNorth [268]

is a digital and low-power neuromorphic chip for simulating com-

plex neuronal networks. Loihi [269] neuromorphic chip is a state-

of-the-art brought by Intel specially designed for enabling on-chip

learning compatible with several learning rules, complex neuron and

synapses models targetting complex SNNs

64

2.6 Hardware implementations

Table 2.2 summarises the characteristics (implementation, sam-

pling time, of each one of the NNA).

Table 2.2 Large-scale Neural Networks accelerators characteristics. Adapted
from [15]
Processor BrainScaleS [266] Neurogrid [267] TrueNorth [268] SpiNNaker [265] Loihi [269]
Implementation type analogue analogue digital digital digital
Sampling Type discrete continuous discrete discrete discrete
Neuron Update continuous continuous Time MUX Time MUX Time MUX
Synapse Resolution 4b 13b shared 1b Variable 1 to 64b
Bio-Mimicry Not Configurable Not Configurable Limited to LIF Configurable Configurable
On-Chip Learning STDP only No No Yes Yes
Network on Chip Hierarchica Tree Multicast 2D Mesh Unicast 2D Mesh Multicast 2D Mesh Unicast
Neurons per Core 8 ∼512 65e3 256 ∼1e3 max. 1024
Synapses per Core ∼130k 100e6 65k x 1b ∼1e6 16000 x 64b
Cores per Chip 352 (wafer scale) 1 4096 16 128
Chip Area (mm2) 50 (single core) 168 430 102 60
Technology (nm) 180 180 28 130 14 (FinFET)
Energy/SOP (pJ) 174 941 27 27e3 105.3

2.6.2 Neuromorphic and heterogeneous devices

Lichsteiner et al. [270] introduced the concept of Address Event

Representation (AER) silicon retina chip capable of generating events

proportional to the log intensity changes. Farian et al. [271] pro-

posed an in-pixel colour processing approach inspired by the retinal

colour opponency using the same AER concept. Brandli et al. [272]

proposed a new version of the AER camera reported by Lichsteiner

[270] called the Dynamic Active Pixel Vision Sensor (DAVIS) which

exploits the efficiency of the AER protocol and introduces a new

synchronous global shutter frame concurrently.

Kasabov et al. [273] proposed the deSNN that combines the

65

2.6 Hardware implementations

use of Spike Driven Synaptic Plasticity (an unsupervised learning

method for learning spatio-temporal representations) with rank-

order learning (supervised learning for building rank-order models).

The deSNN [273] was tested on data collected by an AER silicon

retina chip [270] (which generates events in response to changes in

light intensity) for recognising moving objects. Although the deSNN

was able to recognise moving objects, the deSNN was designed to

work specifically with AER cameras. More recently, Jiang et al.

[274] proposed a SNN based on the Hough Transform to detect a

target object with an asynchronous event stream fed by an AER

cameras. The proposed algorithm [274] was able to process up to

40.74 frames per second on an Intel i7-4770 processor, accelerated

by an Nvidia Geforce GTX 645. Nevertheless, the authors do not

explain if the algorithm would work with regular Commercial-Off-

The-Shelf (COTS) cameras.

Oudjail & Martinet [275] proposes an approach to analyse a mov-

ing pattern motion using SNN from feed captured using Dynamic

Voltage Scaling (DVS) AER camera. A synthetic dataset contain-

ing three different moving patterns in four directions was used to

train and test the custom SNN designed by Oudjail & Martinet

[275]. The proposed SNN [275] is composed of LIF neurons whose

weights were trained using STDP unsupervised learning [8] and the

66

2.6 Hardware implementations

algorithm was implemented in the Brian simulator [55]. The au-

thors concluded that the number of output neurons (between 2 and

6 in the output layer) is insufficient to detect the movement’s di-

rection accurately. The results of Oudjail & Martinet [275] work

raise the following questions: 1) Was the number of neurons in the

input layer sufficient? Because each input neuron received the cur-

rents of 150 light intensity values encoded in currents, which would

most likely trigger the middle layer neurons to over-spike, forcing

the post-synaptic weight to increase until reaching the maximum al-

lowed value; 2) Was the number of neurons on the output layer suf-

ficient? Each output neuron received the synaptic connections from

25 of the previous layer neurons, again the 25 neurons which would

most likely trigger the middle layer neurons to over-spike pushing

the post-synaptic weight to increase until reaching the maximum

allowed value during the training phase; and 3) Supervised learning

ReSuMe (see Chapter 3 for further details) could have been used to

train the output layer neurons because the desired output pattern

was well known and could have been used to teach the output layer

to recognise the desired patterns.

Jiang et al. [274] proposed a SNN based on the Hough Trans-

form to detect a target captured using a DVS AER camera. The

authors concluded that the speed performance of the SNN on the

67

2.6 Hardware implementations

GPU was better than on the CPU [274]. Analysis of the results of

Jiang’s work [274] leads to the conclusion that the work is incom-

plete because 1) little is stated about the dataset; 2) it is not clear

how the dataset was preprocessed; 3) no metrics were used to assess

the accuracy of the tracking system; and 4) the comparison between

the GPU and CPU speed performance is insufficiently rigorous be-

cause a simplified and synchronous update rule was only used on

the GPU.

Kuriyama et al. [276] proposed to accelerate the cerebellar scaf-

fold model [277] using heterogeneous computing based on GPUs.

They simulated synaptic plasticity mechanisms at parallel fibre -

Purkinje cell synapses and emulated the gain adaptation of optoki-

netic response. The results show that the use of GPUs enables the

processing of 2s of simulation in just 750ms, which is about 100

times faster than previous simulations running on CPUs. Although

the Kuriyama et al. [276] model achieves an impressive acceleration

of 100 times faster than the CPU, the acceleration was obtained

using 4 GPUs which is not cost-effective (each NVIDIA Tesla V100

GPU used in this project cost thousands of dollars). It will not

be easily scalable (the majority of modern servers will only have

up to 4 PCIe slots to install GPUs and other devices). Moreover,

Kuriyama did not include details about the test conditions of the

68

2.6 Hardware implementations

CPU implementation nor the CPU specifications, which makes it

difficult to assess if the comparison between the GPU and CPU was

fair. The emulated circuit was not a retinal like circuit, which is the

focus of this research project.

She et al. [278] proposed a heterogeneous SNN (H-SNN) suitable

for learning complex spatiotemporal patterns when using unsuper-

vised learning STDP. The authors [278] demonstrated analytically

that the H-SNN exhibits long and short memory capabilities. It

was established, in simulation, that the H-SNN is capable of clas-

sifying the object type and motion dynamics. A GPU was used to

accelerate the SNN [278], but little details are provided about the

level of acceleration achieved. The results reported in [278] focus on

the accuracy of the H-SNN when compared to other classical CNNs,

and it is not clear how accurate the H-SNN is predicting the motion

dynamics. Parameshawara et al. [279] proposed the SpikeMS, a

deep SNN encoder-decoder for motion segmentation of AER frames

captured using DVS AER cameras. A novel spatial-temporal loss

formulation based on spike counts and classification labels is used

on the SpikeMS. The SpikeMS predicts using time windows with a

duration of 10 ms. Although the SpikeMS can predict the object

type with high accuracy using a 10 ms time window, it is focused

on DVS AER cameras, and it is not clear how it would perform in

69

2.6 Hardware implementations

COTS cameras.

2.6.3 FPGA implementations

FPGAs are specialised devices that can be reprogrammable after

manufacture and offer high flexibility, high degree of parallelism,

high-performance and low-power platforms [280]. FPGA offers the

desirable flexibility for accelerating SNNs which are characterised

for being massively parallel [281]. FPGAs are also known for being

programmed using low-level HDLs such as Very High Speed Inte-

grated Circuit Hardware Description Language (VHDL), and Ver-

ilog [282]. Nowadays, FPGA development has been simplified with

the introduction of High Level Synthesis (HLS) tools, which allow

FPGA developers to implement their applications using high-level

programming languages such as C and OpenCL [282].

Mishra et al. [283] identified in their survey that many of SNN

usually have about 104 ∼ 108 neurons and 1010 ∼ 1014 synapses

and that high-performance neural hardware is essential for prac-

tical application. Li et al. [284] proposed the implementation of

visual cortex neurons on FPGAs. The implemented visual cortex

neurons exhibited the same dynamics as those recorded from real

neurons using multi-electrode arrays. Li et al.[285] implemented

70

2.6 Hardware implementations

256 fully connected neurons, and their performance was assessed by

storing four patterns and applying similar patterns containing er-

rors. The implemented system was capable of operating using a 100

MHz clock, which enables the acceleration of the system 40 times

above its real-time operation [285]. Cassidy et al. [286] proposed the

use of FPGAs to accommodate spiking neurons and unsupervised

STDPSTDP learning structures. In this work, Cassidy et al. [286]

demonstrated that digital neuron abstraction is preferable to more

realistic analogue neurons; they also emulated the massive paral-

lelism connectivity and high neuron density as observed in nature;

the neuron states were also multiplexed to take advantage of clock

frequencies and dense Static Random Access Memorys (SRAMs).

Moeys et al. [287] implemented object motion cells in FPGAs

that takes about 22 clock cycles at 50 MHz to detect motion and

also reported that the FPGA is at least 100 times less than an Intel

Next Unit of Computing (NUC) to compute motion. Furthermore,

the work in [287] shows that the FPGA implementation has lower

latency when compared with the same implementation running on

Intel NUC at 1.30 GHz and an Intel I7-4770k at 3.50Ghz.

Chen et al. [288] described a Central Pattern Generator (CPG)

composed of two reciprocally inhibitory neurons. To reduce the

FPGA resources usages, Chen et al. [288] has optimised the CPG

71

2.6 Hardware implementations

to avoid using multipliers (FPGAs have a low quantity of multiplier

blocks), and the non-linear parts of the Komendantov-Kononenko

neuron model [48] were removed. Cheung et al. [289] proposed the

NeuroFlow, a scalable SNN simulator suitable to be implemented

on FPGA clusters. It was possible to simulate about 600,000 neu-

rons and to get a real-time performance for up to 400,000 neurons

simulated using NeuroFlow on 6 FPGAs [289]. Podobas & Mat-

suoka [282] proposed the use of OpenCL, an HLS tool, to increase

productivity by facilitating the SNN design (provide a higher level

of hardware abstraction) on FPGAs. Two different neuron mod-

els, their axons and synapses, were designed using OpenCL and

Podobas & Matsuoka [282] claim a speed performance of up to 2.25

GSpikes/second. Sakellariou et al. [290] suggested a spiking accel-

erator based on FPGAs to enable users to develop SNNs targetting

ML applications and promise an acceleration of up to eight hundred

times for inference and up to five hundred times for training com-

pared to Software SNN simulations.

The works reviewed in this section demonstrated that FPGAs of-

fer flexibility, high efficiency, low-power, and high degree of paral-

lelism, making FPGAs suitable devices for implementing brain-like

circuits. Furthermore, FPGAs enable the design of complex biolog-

ically plausible neuron models and massively parallel SNNs capable

72

2.7 Revised Literature

of generating complex biological like patterns. Although FPGA de-

vices being normally programmed using complex HDL tools, HLS

tools such as OpenCL can be used to increase the productivity of

SNNs design process by providing hardware abstraction which re-

duces the implementation complexity.

2.7 Revised Literature

The works reviewed in section 2.1 highlight that retinal cells are or-

ganised in multi-hierarchical circuits. Unlike other retinal cells, the

retinal ganglion cells trigger spike events encoded and forwarded

to the visual cortex via the optical nerve. OMS-GC natural cir-

cuits include both nor-spiking with spiking cells, and therefore effi-

cient OMS-GC computational models will most likely combine non-

spiking BS models (e.g. BS mathematical theory models) with spik-

ing neuron models (i.e. customised SNNs). The works revised in

sections 2.2 and 2.3 show that SNNs are biologically plausible, capa-

ble of producing realistic patterns, are hardware-friendly and there-

fore suitable to be accelerated using dedicated hardware. SNN have

a massively parallel component because they combine incorporate

spiking neurons connected via numerous synapses, with differing

synaptic models. The SNN parallelism introduces speed perfor-

73

2.7 Revised Literature

mance limitations if implemented on traditional CPUs based on

the von Neumann architecture have a massively parallel component

because they combine incorporate spiking neurons connected via

numerous synapses, with differing synaptic models. This SNN par-

allelism introduces speed performance limitations if implemented

on traditional CPUs based on the von Neumann architecture (see

Chapter 4 for further details). Several OMD methods were also re-

viewed in section 2.5. Object Motion Detection includes 4 phases,

namely, Background subtraction, noise reduction, threshold selec-

tion and moving objects detection (see Figure 2.8). Three main

classes of BS were identified, namely, mathematically based theo-

ries, ML/DNN, signal processing models. Mathematical based mod-

els were selected for this PhD research programme because these

methods require lower computational requirements when compared

with ML and signal processing models. Although BS mathemati-

cal based models methods show a good balance between robustness

and processing speed, these modules can be improved using SNNs

to 1) produce bio-realistic responses for neuro-engineering appli-

cations (such as eye prosthesis), 2) enhance BS methods to filter

high-frequency parasitic light variations, and 3) reduce power by re-

ducing the dynamic power consumption (using lower speed clocks).

The enhancement of the GSOC BS algorithm using the SNNs is

74

2.7 Revised Literature

reported in Chapters 4 and 5. Although the OMD steps 2) noise

reduction and 3) threshold selection are relevant, this PhD research

programme will also explore the use of SNNs to improve the step

4) Moving objects detection (see Chapter 3) by combining receptive

fields (acting as filters to reduce noise) and synapses with differ-

ent propagation delays (short term memory) and lateral inhibition

(improving the classification).

Neuromorphic computing using VLSIs or FPGAs have been used

to accelerate for accelerating SNNs and other brain-like functions.

Modern System-on-Chip solutions make use of heterogeneous com-

puting for accelerating SNNs using CPUs with GPUs, VLSIs and

FPGAs. The revised literature shows that FPGAs deliver more

flexibility but with higher computational complexity because the

hardware developers are generally required to have a deep under-

standing of FPGA devices (see Chapter 5.2.2 and 5.2.3 for further

details). GPUs are more straightforward to program (developers

are abstracted of the GPU hardware architecture) than FPGAs

and are suitable for accelerating classical ML/AI algorithms and

delivering FPGA comparable speed performances. Nevertheless,

the GPU architecture has been designed to accelerate operations

with 2D matrices. VLSIs are normally the most power-efficient de-

vices and perhaps should be faster than FPGAs and/or GPUs, but

75

2.7 Revised Literature

VLSIs have a well-defined architecture. Moreover, state-of-the-art

DNN algorithms require flexibility for changing the number of neu-

rons, synapses, and weights and VLSIs do not offer this flexibility.

Therefore, FPGAs were selected to be used in this PhD research

programme.

This PhD research programme investigated the i) use of cus-

tomised SNNs for motion detection using either MHSNN in Chap-

ter 3; (ii) enhance existing mathematical theory BS algorithms us-

ing a customised SNN targetting real-time applications in Chapter 4

and iii) accelerate the customised SNN using an FPGA in Chapter 5.

76

Chapter 3

Detection of horizontal and

vertical movements using Spiking

Neural Networks

The MHSNN architecture for detecting horizontal and vertical move-

ments using a custom dataset is proposed in this chapter. Further-

more, the dataset is composed of semisynthetic image sequences

of black cylinders performing rightwards, leftwards, upwards, and

downwards movements, which were generated in laboratory settings.

The MHSNN architecture was designed to reflect the connectivity,

behaviour, and the number of layers found in the majority of ver-

tebrate’s retinas, including humans. The architecture was trained

using 2303 images and tested using 816 images. Simulation results

revealed that each cell model is sensitive to vertical and horizontal

77

3.1 Introduction

movements, with a detection error of 6.75%.

3.1 Introduction

Vertebrate retinas have the ability to sense the direction of moving

objects. [7]. The DSGC detect motion direction by spiking strongly

when an object moves in the preferred direction and sparsely when

the identical object moves in the opposite direction [18; 291; 292].

These cells are composed of bistratified dendrites that laminate in

both the On and Off of the retina’s Inner Plexiform Layer (IPL).

Dendrites of glutamatergic bipolar cells supply primarily excitatory

stimuli, while starburst amacrine cells (SAC), supply primarily in-

hibitory stimuli (see Figure 3.1) [292].

The MHSNN , proposed in this chapter, was designed for mim-

icking DSGC basic functionalities (i.e. detection of horizontal and

vertical movements) [293]. Similar to the DSGC, the MHSNN is

also composed of 4 layers, each layer designed to deliver functional-

ities of specific vertebrate retinal cell (i.e. photoreceivers, bipolar,

SAC and DSGC cells). Furthermore, MHSNN combines the use

of synapses with different propagation delays for generating resid-

ual synaptic memories, and also combines inhibitory with excitatory

synapses for the generation of patterns associated with the direction

78

3.1 Introduction

Figure 3.1: Schematic of the DSGC circuit. The figure shows DSGC (in blue),
SAC dendrites (in yellow), bipolar cells (in orange) and photoreceptors (green).
Inhibitory synapses (in red dots) are formed on the DSGC by the SAC dendrites
(dashed arrows), which have a preferred movement in the opposite direction to
the DSGC (solid arrow) [7].

taken by moving objects.

Custom object direction detection (CODD) algorithm (described

in Section 3.3.4 was designed and implemented to establish the com-

parison between the accuracy and computational speeds against the

MHSNN algorithm. The CODD algorithm is based on the BS algo-

rithms available through the OpenCV library. The OpenCV library

is maintained by a large Open Source community (including well-

known corporations like Intel, NVIDIA, Microsoft, and Google) and

79

3.2 Proposed architecture

it is one of the most popular and reliable computer vision libraries.

The chapter structure is as follows: the proposed MHSNN is

described in Section 3.2, the simulation methodology is described

in section 3.3, the simulation results are presented in Section 3.4

and analysis and future work are discussed in Section 3.5.

3.2 Proposed architecture

The MHSNN (see Figure 3.2) is a four-layered architecture proposed

for detecting vertical and horizontal movements. The input layer

converts the normalised graded pixel values (0.0 up to 1.0) to spike

events (where values above 0.851 are considered a spike event); Layer

1 detects local edges; Layer 2 extracts movement direction features,

Layer 3 extracts movement features, and Layer 4 detects types of

movement.

3.2.1 Input Layer: Binarisation via conversion from pixel

grade values to spike events

The input layer converts graded pixel values to spike events. Values

equal to or above 0.85 are considered spike events, similar to the

functionality of rods [21]. A 1:1 connectivity is used between each

pixel and the neurons in the input layer.

1The value 0.85 was obtained empirically.

80

3.2 Proposed architecture

Figure 3.2: MHSNN with (i) 40× 40 image input followed by the four processing
Layers. Layer 1: Edge detection Layer, Layer 2: Direction features extraction,
Layer 3: Movement extraction features and Layer 4: Direction-sensitive ganglion
cells.

Figure 3.3 shows an example where three sequential image frames

(from a synthetic dataset with objects performing horizontal and

vertical movements) of 40 × 40 pixels are presented to the Input

Layer, then processed by the neurons in Layers 1 to 4. The number

of required synapses and neurons is given by equations 3.1 and 3.2.

NN = (L− 2).(W − 2) + 3.Mf .(L− 4).(W − 4) +Mf (3.1)

81

3.2 Proposed architecture

NS = FL.FW . [(L− 2).(W − 2) + 3.Mf .(L− 4).(W − 4)]

+ 4.Mf .(L− 4).(W − 4) (3.2)

where the NN is the number of neurons, NS is the number of

synapses, L is the length of the image in pixels, W is the width of

the image in pixels, Mf is the number of movement features, FL is

the filter length and FW is the filter width.

The decision to use small-sized images was taken based on the

number of synapses and neurons that were required to implement

the MHSNN. A total of 17000 neurons and, 173700 synapses are

required to build the network for processing images of 40×40 pixels.

Overall, it takes 6 minutes and 30 seconds to build the MHSNN

architecture, 6 hours and 37 minutes for training and 7 seconds to

run the simulation when using a workstation equipped with an 8-

core Intel Xeon E5 2640 CPU @ 2.60GHz, 96 GB of DDR4, and 1

TB of disk space. Although 6 minutes and 30 seconds for building

the network and 7 seconds for running the simulation seems to be

an acceptable timing, the results shown in the Tables 3.3, 3.4, 3.1

and 3.2 show that 7 seconds is about 887% slower than the CODD

algorithm.

Figure 3.3 shows a black cylinder object moving (small displace-

ments) rightwards. In the example, each image frame is exposed to

82

3.2 Proposed architecture

the input layer for a simulation period of 1ms. The results are rep-

resented with vertical bars (i.e. spike events) in the output synapse

of the DSGC rightwars cell, which is represented with an R.

Figure 3.3: Three image frames being processed by the proposed architecture.
The images are exposed to each Layer in sequence (Layer 1, 2, and 3), and
finally, the movement is detected in Layer 4 by rightwards (R), leftwards (L),
upwards (U) and downwards (D) GC.

3.2.2 Layer 1: Edge detection

The aim of Layer 1 is to detect edges. 40 × 40 pixels images are

exposed to Layer 1 for a period of 1 simulation time step. The

neurons in Layer 1 receive spike events from a 3×3 patch where

the central neuron is connected via an excitatory synapse (weight

greater than 0), and the eight neighbouring neurons are connected

via inhibitory synapses (weight lower than 0), originating a Recep-

tive Field (RF). The RF in the visual system comprises a 2D region

in a specific visual space and may have different sizes and shapes.

The latter is represented in Figure 3.2 by windows composed of 8

83

3.2 Proposed architecture

black circumferences (acting as inhibitory synapses) and a white

central circumference (acting as an excitatory synapse). The RFs

have a stride of 1 for retaining the spatial information required for

performing the edge detection of a RF weights’ distribution given

by the DoG function [294]. The DoG function, commonly used to

perform edge detection[294], in Layer 1 is used to perform the edge

detection and is governed by equation 3.3.

DoG(x, y) =
1

2πσ2
s

e
−
x2 + y2

2σ2
s − 1

2πσ2
c

e
−
x2 + y2

2σ2
c (3.3)

σc
σs

= 1.6 (3.4)

Because of the border conditions, the number of neurons per pixel

is reduced by two columns and two rows (i.e., the required number

of neurons is reduced by 38× 38). Zero or negative values are pro-

duced by the DoG filter when a given patch is composed of similar

pixel intensities, preventing neurons from generating spike events;

Positive values are produced when the neighbouring pixels and the

central pixels have a considerable variation, triggering neurons to

generate spike events.

3.2.3 Layer 2: Horizontal and vertical features extraction

The aim of Layer 2 is to extract horizontal and vertical features.

84

3.2 Proposed architecture

Layer 2 is composed of 36 rows× 36 columns×4 groups of neu-

rons (36×36×4). Each neuron is connected via a 3×3 RF, and the

connection between neurons is performed via inhibitory and exci-

tatory synapses. The excitatory synapses between the neurons of

Layer 1 and Layer 2 vary according to the type of filter used. The

goal of each filter type is to generate unique spike patterns that

are required for detecting the movement type while retaining spa-

tial information. The filters in the inner Layer are represented in

Figure 3.2 with nine blue circles overlapping nine neurons in Layer

1.

The neurons in Layer 2 are used to extract features related to

each type of movement (rightwards, leftwards, upwards and down-

wards). Again, 3×3 windows are used to produce features maps

that capture the required details for a specific movement and dis-

tinct pattern from the homologous movement.

Lf (x, y) =
x∑
i=0

y∑
j=0

x

2
− i (3.5)

Rg (x, y) =
x∑
i=0

y∑
j=0

−x
2

+ i (3.6)

85

3.2 Proposed architecture

Up (x, y) =

y∑
j=0

x∑
i=0

−y
2

+ j (3.7)

Dw (x, y) =

y∑
j=0

x∑
i=0

y

2
− j (3.8)

where the parameters Lf , Rg, Up and Dw represent rightwards,

leftwards, upwards, and downwards filter weight distribution. The

number of neurons per patch of layer neurons is reduced by two

columns and two rows (i.e.. The required number of neurons is

36×36) per filter type because of the border conditions. Like the

DoG filters, neurons will trigger spike events when the current values

generated by the patch of neurons in Layer 1 is positive and greater

or equal to the threshold.

3.2.4 Layer 3: Extraction of movement features

The aim of Layer 3 is to extract horizontal and vertical movement

features. Layer 3 neurons are connected in a one-to-one (1:1) config-

uration to the Layer 2 neurons. There are two neuron populations,

Population A and Population B.

The Population A neurons are wired via two synapses, an exci-

tatory synapse with no delay, and an inhibitory synapse with a 1ms

delay. The use of synapses with different delays facilitates move-

ment feature extraction [295]. In addition, the delay produced by

86

3.2 Proposed architecture

synapses with varying times of propagation creates a short-term

memory. E.g. given a pre-neuron that spiked at the timestep t and

did not spike at timestep t − 1 causes a spike event in the post-

neuron because the difference between spike events is positive and

above the threshold.

Population B differs from Population A because the inhibitory

synapses are delayed by two simulation time steps instead of one.

The two populations are used for improving the accuracy of the

movement features extraction by creating a bio-inspired buffer of 3

spike patterns. Each group of neurons comprises groups of 36×36

neurons, and in the overall configuration, there are eight groups of

neurons (four per population). The neurons in layer three can sense

movement because they are interconnected using different propaga-

tion delays. Such delays create a local residual memory for holding

past neurons’ events and comparing them with current events (the

simulation time-step was set to 1ms). In addition, the populations

are used to improve the robustness of the motion detection because

fast movements are detected by Population A, slower signs by Popu-

lation B and average speed movements are seen by both populations

of neurons. Therefore, a movement feature is extracted if a spike

in the current frame was not detected in the previous frame (pop-

ulation A with a propagation delay of one) or two frames before

87

3.2 Proposed architecture

(population B with a propagation delay of 2).

Therefore, it is possible to generate different spiking patterns to

detect differences between spike trains. The neurons in Layer 3 will

spike if changes are detected.

3.2.5 Layer 4: Detection of movement type

The aim of Layer 4 is to detect horizontal and vertical movements’

directions (i.e. rightwards, leftwards, downwards, and upwards)

based on the movement features extracted in Layer 3. The horizon-

tal and vertical movements were inspired by the basic functionalities

exhibited by DSGC [7; 18]. Each neuron in Layer 4 receives con-

nections from all the neurons of population A and B, of its specific

type of movement (e.g. right movement cell is connected via excita-

tory cells to the left population’s A and B) and inhibitory synapses

from its type of movement (e.g. right movement cell is connected

via inhibitory cells to the right population’s A and B). The rea-

son for having these connections is that the left cell must not spike

when the right cell is spiking, or vice-versa. It is possible in certain

circumstances to have different types of cells spiking at the same

time (e.g. a simultaneous rightwards and upwards). However, a

particular cell cannot spike at the same time as its pairing cell (e.g.

the right cell cannot spike at the same time as the left cell because

88

3.2 Proposed architecture

that would mean that a given object was moving rightwards and

leftwards at the same time). In Figure 3.2, the inhibitory synapses

are represented with dashed red lines, and the inhibitory synapses

with blue lines. The brown and yellow dashed boxes indicate that

all the neurons are connected to the movement-sensitive cells.

This layer contains four types of neurons, two of which respond

to horizontal movements and the other two to vertical movements.

These neurons receive connections from the neurons of both popu-

lations, A and B, of the same type and its pairing (e.g. right/left).

The connections from the same kinds of movements are excitatory,

while the connections from the paring type are inhibitory.

The weights of these connections were trained using the ReSuMe

algorithm proposed in [8].

ReSuMe [8], a supervised learning algorithm, was used to train

the Layer 3 neurons’ response. In ReSuMe, teacher signals are used

to produce the desired spike pattern in response to a stimulus [8].

Figure 3.4 shows the teacher signal (desired spike pattern) nteach

being presented to a neuron npost for delivering a spike pattern by

adjusting the synaptic weight w between the pre-neuron npre and

the post-neuron npost. The learning occurs with the modification of

the weights.

89

3.2 Proposed architecture

Figure 3.4: ReSuMe learning: (left) Remote supervision. (right) Learning win-
dows [8].

The ReSuMe [8] equations are as follows:

[h]Wex(sex) =


Aexe

(−sex
τex), if sex > 0,

0, if sex ≤ 0,

(3.9)

Wih(sih) =


Aihe

(
−sih
τih

)
, if sih > 0,

0, if sih ≤ 0,

(3.10)

where Aex, Aih, τex and τih are constants. Aex and Aih are positive

in excitatory synapses and negative in inhibitory synapses. In both

cases, τex and τih are positive time constants [8].

Layer 4 neurons were trained using teacher signals. The teacher

signal is generated using one teacher neuron (nteach) connected to a

Layer 4 neuron. To generate a spike event, a high current is applied

90

3.2 Proposed architecture

to nteach which makes the Layer 4 neuron generate a spike event.

This interactive process enables the weights of synapses coming from

Layer 3 neurons to increase over time. The training was initially

done on the horizontally sensitive cells and then on the vertically

sensitive cells.

In Figure 3.5 the two teacher signals used to train the synaptic

weights of the horizontal cells during the simulation time window

[2290, 2315]ms are shown. The period [2290, 2315]ms refers to a

time window where a black cylinder object is moving leftwards dur-

ing the period [2290, 2303]ms rightwards during the period [2304,

2315]ms.

91

3.3 Implementation

Figure 3.5: Two teacher signals used to train the horizontal sensitive cells during
the simulation time window [2290, 2315]ms.

3.3 Implementation

This section covers the details of how the dataset was generated and

preprocessed, and the methodology that was followed for evaluating

the performance of the proposed MHSNN for detecting horizontal

and vertical movements.

92

3.3 Implementation

3.3.1 Dataset

A simple dataset containing 100 repetitions of a black cylindrical ob-

ject moving rightwards. Each repetition comprises approximately 30

images (the number of images is proportional to the object speed).

A total of 3120 images were generated from one hundred trials. The

dataset was augmented by performing rotations of π
2 rad (downward

movements), π rad (rightward movements), and 2π
3 rad (upward

movements). In addition, all the images were annotated with the

type of movement being described. The original size of each figure

is 640×480 pixels.

3.3.2 Image pre-processing

Natural images extracted from batches of image sequences require

preprocessing to reduce the dimension of the images and lower the

number of neurons per layer. Therefore, the image is first converted

to greyscale and the number of channels is reduced from 3 (red,

green, and blue) to one (greyscale) by applying equation 3.11 [296].

Grey = (0.299×R) + (0.587×G) + (0.114×B) (3.11)

The second preprocessing step was to compute the PCA whiten-

93

3.3 Implementation

ing to reduce the amount of redundant input. Through the ap-

plication of PCA whitening, we minimise the degree of correlation

between adjacent pixels or feature values, which might be highly

correlated [297].

The PCA and whitening were done using the Python 3.8 Sklearn

library1. The third and final step was resizing the image to reduce

the number of required neurons per layer using the OpenCV library

built-in functions for Python 3.8. The image frames were resized to

40× 40 pixels while keeping the original aspect ratio.

For example, figure 3.6 shows a sequence of 4 images extracted

from one of the trials, where the black cylindrical object is moving

rightwards.

1Available online, https://scikit-learn.org/stable/modules/generated/sklearn.

decomposition.PCA.html, last accessed: 22/06/2022

94

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

3.3 Implementation

Figure 3.6: Sequence of 4 raw images, where a black cylinder object is moving
rightwards (1st column); image after pre-processing steps namely, conversion from
RGB to greyscale, resizing, PCA and whitening (2nd column).

95

3.3 Implementation

Figure 3.7: Histograms of the sequence of the images, shown in Figure 3.6. The
histograms of pre-processed images are shown in the 1st column and histograms
of the post-processed images are shown in the 2nd column.

Figure 3.7 depicts the histograms of the pre- and post-processed

images. Compared with histograms from the first-column, the his-

tograms from the second column show a dimensionality reduction

due to using the PCA and, therefore, reducing the local correlation

between pixels and speed performance.

The results labelled with MHSNNv1 were obtained when tested

against the dataset after the pre-processing stage 1 (i.e., image con-

version from colour to greyscale), whereas the MHSNNv2 results

were obtained against the dataset after the pre-processing steps 1

and 2 (i.e., image conversion from colour to greyscale followed by

the PCA whitening).

96

3.3 Implementation

3.3.3 Simulation Process

The simulation was performed using the Brian2 SNN simulator1.

Step 1 - Preparing the simulation: The image sequences

were randomly split into four dataset subsets, each comprising dif-

ferent training and testing batches. A total of 75 batches of image

sequences (2303 images) were used for training and the remaining 25

batches of image sequences (816 images) for testing per movement

type. The batches of image sequences were all loaded into memory

before starting the training/simulation.

Step 2 - Setting the simulation parameters: The simula-

tion, neuron, and synapses parameters were set in accordance with

the Brian 2 documentation [298]. The simulation was configured

with a time step of τ = 1ms. The following parameters were set

for all neurons: ureset = −1mV , τrefractory = 0. The threshold for

neurons in Layer 1, 2 and 3 was set to uth = 0.0mV and for Layer 4

uth = 30.0mV . The weights for Layers 1, 2 and 3 were set constant.

The neurons in Layer 4 had their weights trained using the ReSuMe

algorithm, with the following parameters: τ d = 20ms, τ l = 20ms,

Ad = 0.01, Al = 0.01 (for excitatory synapses) and Ad = −0.01,

Al = −0.01 (for inhibitory synapses).

1The Brian2 SNN simulator. http://brian2.readthedocs.io/en/stable/index.html,
last accessed: 31/01/2018

97

http://brian2.readthedocs.io/en/stable/index.html

3.3 Implementation

Step 3 - Simulation stages: The simulation can be divided

into two stages, namely training and testing.

• Training Stage: During the simulation training stage, a teacher

signal is used to train each cell’s weights. The weights of all

synapses connected to all the Layer 4 neurons were initialised

with 1.0. The training is repeated 10,000 times1 on the training

batches, while the weights are updated constantly.

• Testing Stage: The testing mode is repeated once on the test

batches, while the weights are kept constant. In the test mode,

ReSuMe is not used, and the outputs of Layer 4 are scored

against the expected results.

3.3.4 Custom Object Direction Detection algorithms

The OpenCV’s BS algorithms (i.e. MOG, MOG2, CNT, KNN,

GMG, LSBP and GSOC) are highly efficient algorithms designed

for modelling the dynamic background changes (i.e. about two hun-

dred frames are required to train the background model) and clas-

sifying all the outliers as foreground. The CODD algorithm makes

use of the OpenCV’s BS algorithms for extracting the foreground

from the background. The direction of the movement is obtained by

computing the centre of mass (cM) from the foreground blob with

1The value 10,000 was obtained experimentally.

98

3.3 Implementation

the coordinates (i, j) and comparing cM to the centre of mass from

the previous frame (cMprev) with the coordinates (iprev,jprev). When

detecting vertical motion, the object moves upwards when cM(i) <

cMprev(iprev), remains stationary when cM(i) = cMprev(iprev) or

moves downwards when cM(i) > cMprev(iprev). Similarly, when

detecting horizontal motion, the object moves leftwards when

cM(j) < cMprev(jprev), remains stationary when cM(j) = cMprev(jprev)

or moves rightwards when

cM(j) > cMprev(jprev). Algorithm 1 describes the CODD algorithm

(see Figure 3.8).

Figure 3.8: Detection of the object movement direction. The figure represents
an image of 13 × 17 where a given object (blue rectangle) performs rightwards
(dashed brown rectangle) and downwards (dashed green rectangle) movements.
In the case of the brown rectangle, cM(j) = 11, cMprev(jprev) = 8 and therefore
the object is moving rightwards because cM(j) > cMprev(jprev). While for green
rectangle, cM(i) = 8, cMprev(iprev) = 6 and therefore, the object is moving
downwards because cM(i) > cMprev(iprev).

99

3.3 Implementation

Algorithm 1 CODD algorithm pseudocode

1: switch (backgound subtraction alg)
2: case MOG:
3: bgsub = createOpenCV BackgroundSubtractorMOG
4: case MOG2:
5: bgsub = createOpenCV BackgroundSubtractorMOG2
6: case CNT:
7: bgsub = createOpenCV BackgroundSubtractorCNT
8: case KNN:
9: bgsub = createOpenCV BackgroundSubtractorKNN

10: case GMG:
11: bgsub = createOpenCV BackgroundSubtractorGMG
12: case LSBP:
13: bgsub = createOpenCV BackgroundSubtractorLSBP
14: case GSOC:
15: bgsub = createOpenCV BackgroundSubtractorGSOC
16: end switch
17: set movement type
18: for k:=calibration to classification do
19: for i:=0 to number images do
20: get image
21: img = apply bgsub
22: if classification then
23: binarise img and normalise img
24: compute cM
25: if i = 0 then
26: cMprev = cM
27: end if
28: if movement type = horizontal then
29: direction = cM(j)− cMprev(jprev)
30: else
31: direction = cM(i)− cMprev(iprev)
32: end if
33: if direction = expected direction then
34: TP = TP + 1
35: else
36: FP = FP + 1
37: end if
38: end if
39: end for
40: if classification then
41: store results
42: end if
43: end for

100

3.4 Results

3.3.5 Metrics

The following metrics ruled by equations 3.13 and 3.13 were used to

compute the PCC and Percentage of Wrong Classifications (PWC)

using the True Positives (TP) and False Positives (FP).

PCC = TP
TP+FP .100 (3.12)

PWC = FP
TP+FP .100 (3.13)

3.4 Results

The voltage threshold of the Layer 1 neurons was obtained by com-

puting the average of all the images used for training. The Brian2

simulator has a structure called ”TimedArray” used to expose the

images to the first layer of neurons. Images are converted into 1D

vectors, and each image is a row of ”TimedArray”.

A vector of neuron indexes was used to retain the spatial informa-

tion between image pixels and neurons and the desired connectivity

between neurons. The Brian2 exposes each row (image) after the

predefined time step (The MHSNN uses a 1ms time step).

Spike monitors were configured and used for tracking all the

spikes generated by layer and plotted at the end of the simulation.

101

3.4 Results

The synaptic weights were updated with the output generated by

the ReSuMe training algorithm during each training mode iteration

in the training mode.

3.4.1 Horizontal movement test

The results obtained from the horizontal test sequences are shown

in Figures 3.9, 3.10 and 3.11.

Figure 3.9: Raster plot of the spiking pattern obtained during the period
[4605,4640]ms (a black cylinder object was moving rightwards) and generated
by the input layer (after converting the graded values into spikes) and Layer 1
(edge extraction) neurons. The blue rectangle is used to track the spike events
generated during the period [4624,4625]ms.

Referring to Figure 3.9, during the period [4605,4640]ms the im-

age was performing a movement rightwards. The input layer illus-

102

3.4 Results

trates the graded values after the conversion to spike events (values

above 0.85 are considered spike events). Layer 1 shows the spike

pattern generated from the edge extraction. The spiking pattern in

Figure 3.9 was generated during test mode (after training).

Figure 3.10: Raster plot of the spikes obtained during the period [4605,4640]ms
(a black cylinder object was moving rightwards) and generated by the neurons
in Layers 2 and 3. The blue rectangle is used to track the spike events generated
during the period [4624,4625]ms.

Referring to Figure 3.10, the spike activity from the right cells

is more prominent than the left cells, which is a consequence of

the type of movement. The spike patterns obtained in population

A (frame[t] − frame[t − 1]) are very similar to the ones obtained

from population B (frame[t]−frame[t−2]), which is a consequence

of having slow movements that are detected by both populations of

103

3.4 Results

neurons.

Figure 3.11: Raster plot of the spikes pattern obtained during the period
[4605,4640]ms (a black cylinder object was moving rightwards) and generated
by the horizontal sensitive cells. The blue rectangle is used to track the spike
events generated during the period [4624,4625]ms.

Figure 3.11 shows that each cell is spiking at the expected time. The

PWC was 7% for the horizontal cells. The scoring algorithm com-

pares the output result with the expected result, and the error

counter is increased by one every time an error is detected (i.e. false

positives or false negatives). The error is associated with a sudden

change of image sequences. This phenomenon occurs when the last

image of a given batch is followed by the first image of a new batch.

This situation triggers a different spike pattern compared with the

previous spike patterns (Layer 3 populations A and B).

104

3.4 Results

3.4.2 Vertical movement test

The results obtained from the vertical test sequences are shown in

Figures 3.12, 3.13 and 3.14.

Figure 3.12: Raster plot of the spikes obtained during the period [4605,4640]ms
of the vertical test and generated by the input layer (after converting the graded
values into spikes) and Layer 1 neurons. The blue rectangle is used to track the
spike events generated during the period [4624,4625]ms.

Referring to Fig. 3.12, during the period [4605,4640]ms the object

is moving downward. The input layer shows the graded values after

the conversion to spike events (values above 0.85 are considered

spike events). In Layer 1 the spike pattern generated from the edge

extraction is shown. The spiking pattern in Figure 3.12 is clearly

distinct from the spike pattern in Figure 3.9. It is possible to infer

105

3.4 Results

from the spike pattern of the input layer that the object is moving

downward.

Figure 3.13: Raster plot of the spiking pattern obtained during the period
[4605,4640]ms of the vertical test and generated by the neurons in Layers 2 and 3.
The blue rectangle is used to track the spike events generated during the period
[4624,4625]ms.

Referring to Fig. 3.13, the spike activity of the down cells is more

prominent than the up cells, which is a consequence of the type of

movement. Again, the spike patterns obtained from population A

(frame[t] − frame[t − 1]) are very similar to those obtained from

population B (frame[t]− frame[t− 2]), which is a consequence of

having slow movements that are detected by both populations of

neurons.

106

3.4 Results

Figure 3.14: Raster plot of the spiking pattern obtained during the period
[4605,4640]ms of the vertical test and generated by the vertical sensitive cells.
The blue rectangle is used to track the spike events generated during the period
[4624,4625]ms.

Figure 3.14 shows that each cell is spiking at the correct time

because the first set of images are upwards movements and then

downwards movements. It is also seen in Figure 3.14 that the right

cell generated spike events, while the left cell did not generate spike

events. The PWC was 6.5% for the vertical cells. The errors occur

when the last image of a sequence is followed by the first image of

a new sequence (i.e. when a new sequence starts and the object

moves from the end position to the start position of two sequential

images).

107

3.4 Results

3.4.3 Results per category

The MHSNN was tested against the dataset before applying PCA

whitening (MHSNNv1) and after applying PCA whitening (MH-

SNNv2) (see Section 3.3.1 for further details). Although the CODD

variants (i.e. MOG, MOG2, CNT, GMG, KNN, LSBP, GSOC) were

also tested against the dataset before applying PCA whitening, the

PCC, PWC and processing results were the same for the dataset af-

ter applying PCA whitening. Table 3.1 shows leftwards movements

classification and processing time per method.

Table 3.1 Leftwards movements classification and processing time per method.

Method movement type PCC PWC processing time

MHSNNv2 leftwards 93.6% 6.4% 1731.352 ms
CODD-MOG leftwards 90.5% 9.5% 1.304 ms
CODD-KNN leftwards 90.1% 9.9% 1.385 ms
MHSNNv1 leftwards 87.0% 13.0% 1760.069 ms

CODD-MOG2 leftwards 86.2% 13.8% 1.195 ms
CODD-CNT leftwards 61.1% 38.9% 1.4 ms

CODD-GSOC leftwards 46.1% 53.9% 3.427 ms
CODD-LSBP leftwards 44.4% 55.6% 3.665 ms
CODD-GMG leftwards 0.0% 100.0% 1.655 ms

The results show that the MHSNNv2 shows the best results in

terms of highest PCC and lowest PWC when compared with the

other CODD variants. Nevertheless, the CODD-MOG shows the

second-best result with an average processing time of 1.304ms which

is much faster than the MHSNNv2. It is also possible to infer that

108

3.4 Results

the PCA whitening has contributed to an improvement of the MH-

SNN PCC by 6.6%.

Table 3.2 shows rightwards movements classification and process-

ing time per method.

Table 3.2 Rightwards movements classification and processing time per method.

Method movement type PCC PWC processing time

MHSNNv2 rightwards 92.4% 7.6% 1775.007 ms
CODD-MOG rightwards 93.1% 6.9% 1.262 ms
CODD-KNN rightwards 92.5% 7.5% 1.716 ms

CODD-MOG2 rightwards 88.8% 11.2% 1.545 ms
MHSNNv1 rightwards 88.2% 11.8% 1803.407 ms

CODD-CNT rightwards 61.1% 38.9% 1.451 ms
CODD-GSOC rightwards 47.9% 52.1% 2.605 ms
CODD-LSBP rightwards 45.1% 54.9% 3.38 ms
CODD-GMG rightwards 0.0% 100.0% 1.604 ms

When compared to the other CODD variants, the results demon-

strate that the MHSNNv2 exhibits the highest PCC and lowest

PWC. Again, the MHSNNv2 is outperformed by the CODD-MOG,

which has a processing time average of 1.262 milliseconds. It is also

feasible to conclude that the PCA whitening has helped to improve

the MHSNN PCC by 4.2 percent.

Table 3.3 shows downwards movements classification and pro-

cessing time per method.

109

3.4 Results

Table 3.3 Downwards movements classification and processing time per method.

Method movement type PCC PWC processing time

MHSNNv2 downwards 93.9% 6.1% 1898.088 ms
CODD-MOG downwards 93.1% 6.9% 1.213 ms
CODD-KNN downwards 92.3% 7.7% 1.491 ms

CODD-MOG2 downwards 88.8% 11.2% 1.228 ms
MHSNNv1 downwards 86.1% 13.9% 1928.457 ms

CODD-CNT downwards 61.1% 38.9% 1.412 ms
CODD-GSOC downwards 47.7% 52.3% 2.761 ms
CODD-LSBP downwards 45.3% 54.7% 3.488 ms
CODD-GMG downwards 0.0% 100.0% 1.642 ms

The results show that the MHSNNv2 exhibits the greatest PCC

and lowest PWC values when compared to the other CODD vari-

ants. Once more, the CODD-MOG outperforms the MHSNNv2

with an average processing time of 1.213 milliseconds. It is also

possible to extrapolate that the PCA whitening contributed to an

improvement of the MHSNN’s PCC by 7.8%.

Table 3.4 shows upwards movements classification and processing

time per method.

110

3.5 Discussion

Table 3.4 Upwards movements classification and processing time per method.

Method movement type PCC PWC processing time

MHSNNv2 upwards 93.1% 6.9% 1749.643 ms
CODD-MOG upwards 90.5% 9.5% 1.2 ms
CODD-KNN upwards 90.4% 9.6% 1.377 ms

CODD-MOG2 upwards 86.2% 13.8% 1.154 ms
MHSNNv1 upwards 87.6% 12.4% 1905.820 ms

CODD-CNT upwards 61.1% 38.9% 1.446 ms
CODD-GSOC upwards 46.1% 53.9% 2.749 ms
CODD-LSBP upwards 44.3% 55.7% 3.557 ms
CODD-GMG upwards 0.0% 100.0% 1.553 ms

The results indicate that, when compared to the other CODD

variations, the MHSNNv2 exhibits the highest PCC and lowest

PWC values. The CODD-MOG performs better than the MH-

SNNv2 once more, with an average processing time of 1.2 millisec-

onds. It is also reasonable to deduce that the improvement of the

MHSNN’s PCC by 5.5 percent was caused by the PCA whitening.

3.5 Discussion

The MHSNN architecture was designed to detect horizontal and

vertical movements. The MHSNN detected leftwards, rightwards,

downwards, and upwards movements in 93.6%, 92.4%, 93.9% and

93.1%, respectively when tested against the custom semisynthetic

dataset. The PWCs were consequence of FPs at the beginning and

111

3.5 Discussion

end of the image sequences because the sequences were collated to-

gether on a single TimedArray. The issue occurred because the first

frame of another sequence was followed by the last frame of a given

sequence. The MHSNN was one of the first SNN capable of detect-

ing horizontal and vertical movements when tested on semisynthetic

datasets at the time of its publication back in 2018 [293].

A CODD algorithm that combined the seven BS available in the

OpenCV library was implemented to benchmark against the MH-

SNN. Although the MHSNN was ranked first in terms of the PCC

and exhibited the lowest PWC detecting the motion direction when

tested against the semisynthetic dataset, follow-up tests on natural

datasets demonstrated that the MHSNN would have to be scaled

up, which would increase the latency even more. Furthermore, the

Brian 2 simulator has proven not to be suitable for real-time appli-

cations because i) all the dataset must be loaded into the memory

before starting the simulation and ii) Brian 2 is not optimised for

running large SNNs (i.e. above 17000 neurons and 173700 synapses).

The speed limitations are very obvious when looking at the process-

ing times of the MHSNNv2 in Tables 3.1, 3.2, 3.3, and 3.4.

The lessons learnt from the MHSNN architecture implementation

112

3.5 Discussion

for targeting real-time applications using natural datasets were: 1)

a better SNN simulator or a customised SNN simulator would be

required to decrease substantially the latency, 2) robust object mo-

tion detection requires the combination of simpler theories BS algo-

rithms with SNNs and 3) the custom SNN would most likely have

to accommodate more than 100,000 neurons to provide the required

accuracy. Finally, the MHSNN architecture was fundamental for de-

signing the HSMD architecture, which will be discussed in the next

chapter 4.

113

Chapter 4

HSMD: Hybrid Spiking Motion

Detection

The HSMD algorithm proposed in this chapter was designed to

detect object motion in real-time and therefore overcome multi-

hierarchical spiking neural network speed limitations. The speed

limitation was dealt by replacing the Brian 2 simulator with an

efficient and parallel C++ implementation and through reducing

both the number of layers and synapses. Furthermore, the HSMD

combines a BS algorithm with a customised SNN for detecting ob-

ject motion as opposed to detecting the direction of motion like in

the MHSNN. The HSMD enhances the GSOC BS algorithm with

a customised 3-layer SNN that outputs spiking responses akin to

the OMS-GC. The algorithm was compared against existing BS ap-

proaches available on the OpenCV library, specifically on the CD-

114

4.1 Introduction

net2012 and the CDnet2014 benchmark datasets. The results show

that the HSMD was ranked overall first among the competing ap-

proaches and has performed better than all the other algorithms in

four of the categories across all the eight test metrics. Furthermore,

the HSMD proposed in this chapter is the first to use an SNN to

enhance an existing state-of-the-art GSOC BS algorithm, and the

results demonstrate that the SNN provides near real-time perfor-

mance in realistic applications.

4.1 Introduction

In computer vision, object motion detection is traditionally per-

formed using BS methods, where the foreground (pixels or group

of pixels whose light intensity values have suffered an abrupt vari-

ation) are compared with the previous image or background model

[16; 17; 126; 299]. BS are algorithms for extracting the back-

ground from the foreground by modelling the background through

the comparison of the current frame with previous frames [300; 301;

302; 303; 304; 305]. BS methods can be implemented using 1)

mathematical-based, 2) machine learning, 3) signal processing, and

4) DNNs approaches [16; 17]. Mathematical-based approaches are

the simplest way to model backgrounds using temporal average,

temporal median, and histograms, which can be improved using

115

4.1 Introduction

refined models (such as a mixture of Gaussians, kernel density es-

timation, etc.) and require low computational resources [16]. Ma-

chine learning models are more robust for performing BS, but they

must be trained on the target visual features and require significant

computational resources [17]. Signal processing models are used to

model the background using the temporal history of pixels as 1D

signals and usually require moderate computational resources [16].

DNN models are by far the most accurate, but they are also the

most computationally intensive and therefore not suitable for real-

time applications. Although less robust, the classical mathematical

BS models are better suited for real-time applications. As real-time

processing is a key objective of this work, we focus only on mathe-

matical models in this chapter.

BS methods can be classified as 1) Mathematical, 2) Machine Learn-

ing and 3) Signal processing [16; 17]. Mathematical theories are the

simplest way to model backgrounds using temporal average, tem-

poral median and histograms, which can be improved using refined

models (such as a mixture of Gaussians, kernel density estimation,

etc.) and require low computational resources [16]. Machine learn-

ing models are more robust for performing BS, but they must be

trained on the target visual features and require significant compu-

tational resources [17]. Signal processing models used to model the

116

4.1 Introduction

background using the temporal history of pixels as 1D signals and

usually require moderate computational resources [16]. Although

less robust, the classical mathematical BS models are better suited

for real-time to near real-time applications. As real-time process-

ing is a key objective of this work, we focus only on mathematical

models in this chapter.

The OpenCV library [306] is one of the most robust and reliable

computer vision libraries, maintained by a wide Open Source com-

munity (including high profile companies such as Intel, Microsoft

and Google) and is the reference library for computer or robot vi-

sion researchers [31]. The OpenCV’s BS algorithms (i.e. MOG,

MOG2, CNT, KNN, GMG, LSBP and GSOC) are highly efficient

BS algorithms that were designed for modelling the dynamic back-

ground changes (i.e. about two hundred frames are required to train

the background model) and classifying all the background outliers

as foreground. The GSOC algorithm was selected to perform the

first stage of BS over the other BS available on the OpenCV library

because it has demonstrated better accuracy on the CDnet2012 and

CDnet2014 datasets [30] when compared to other algorithms avail-

able on the OpenCV library.

117

4.1 Introduction

The HSMD model reported in this chapter was inspired by the

object motion functionality exhibited by vertebrate retinas, in which

OMS-GC determine the difference between a local patch’s motion

trajectory and the background [18]. In fact, the HSMD is an im-

proved version of GSOC BS algorithm [30; 148] is enhanced by a

3-layer SNN, forming a hybrid architecture.

The main contributions of the work reported in this chapter are

i) an object motion detection model inspired by the OMS-GC de-

signed to work with COTS cameras, ii) enhancement of the dynamic

BS (mathematical model) using the 3-layered SNN and iii) optimi-

sation of the proposed method for processing live capture feeds in

near real-time. The algorithm was tested on the CDnet2012 [9]

and CDnet2014 benchmark datasets [32] and compared with the

OpenCV’s BS algorithms (i.e. MOG, MOG2, CNT, KNN, GMG,

LSBP and GSOC). The HSMD can detect motion using commercial-

off-the-shelf camera feeds and/or video clips using SNN, as opposed

to cameras exploiting dedicated custom architectures.

This chapter is structured as follows: the HSMD is described in

section 4.2; the training details, use-case scenarios and HSMD pa-

rameterisation are described in section 4.3; the results are reported

118

4.2 HSMD architecture

and analysed in section 4.4; and the discussion and future work are

discussed in section 4.5.

4.2 HSMD architecture

The HSMD is a combined BS/SNN network to create a hybrid model

for detecting motion, emulating the elementary functionalities of the

OMS-GC as described in [18].

The architecture of the HSMD is shown in Figure 3.2. There

are five layers to the overall architecture. Layer 1 performs the BS

using the GSOC algorithm. The resulting BS frames are fed into

Layer 2 of the SNN, where the pixel intensity values are converted

into currents that are proportional to the light intensity (see 4.2.2).

The BS-converted currents are fed to the Layer 2 neurons via a 1:1

synaptic connectivity. Layer 2 neurons are synaptically connected

to Layer 3 neurons, which perform the first stage of motion anal-

ysis; Layer 3 neurons connect to Layer 4 neurons via 1:1 synaptic

connectivity. Layer 4 neurons perform precise motion detection. A

median filter is used to filter random spikes related to local random

illumination variations.

The LIF was the spiking neuron model used in this work be-

cause of its simplicity, computational efficiency and suitability for

119

4.2 HSMD architecture

Figure 4.1: HSMD with (i) n × m image input followed by the BS using the
GSOC algorithm, three spiking neuronal layers and filtering. Layer 1: BS, Layer
2: pixel intensity to spike events encoding, Layer 3: Motion stability, Layer 4:
motion detection and Layer 5: filtering.

processing images in near real-time. The LIF spiking neuron model

exhibits similar, but less complex, dynamics compared to real bio-

logical neurons (see Figure 2.4) [4]. The LIF neuron’s dynamics are

described by equation 2.1.

4.2.1 Input Layer: background subtraction and reduction

Each n×m image frame (i.e. camera, video sequence or image se-

quences) is converted into greyscale.

The GSOC [147] delivers a dynamic and adaptive BS using colour

descriptors and various stabilisation heuristics [30; 148] while pro-

cessing the frames pixel-wise and leveraging the parallelism inside

OpenCV [30].

120

4.2 HSMD architecture

4.2.2 Layer 2: Pixel intensities values to currents encod-

ing

Pixel intensity values are converted into proportional currents and

fed into the spiking neurons in Layer 2 via a 1:1 connectivity. The

Layer 1 neurons were trained to trigger spike events proportional to

the pixel intensity values, as described by equation 4.1.

ic(x, y) = I(x, y).c (4.1)

where ic(x, y) is the corresponding current for the image light in-

tensity value I(x, y) at coordinates x and y, and c is a conversion

constant obtained experimentally (in our case, c=17.5).

4.2.3 Layer 3: Motion stability

Layer 3 is used to perform motion stabilisation through the creation

of local buffers by delaying the propagation of spike events. A delay

is created when a given neuron of layer 2 connects to a neuron in

layer 3, before being passed to Layer 4, instead of intra-layer con-

nectivity between direct Layer 2 and Layer 4. Spike events passing

through Layer 3 are buffered by neurons in Layer 3 for one simula-

tion time-step (δt, in this work, δt = 10 ms) and presented to the

neurons in Layer 4. N[n] in the following simulation time-step.

121

4.2 HSMD architecture

The neurons in Layer 2 are connected to the Layer 3 neurons

via a 1:1 connectivity. Finally, the Layer 3 neurons connect to the

Layer 4 neurons via a 1:1 connectivity, as shown in Figure 4.2. All

synaptic weights from Layer 2 to Layers 3 and 4 have a value of

1370 (obtained experimentally).

Figure 4.2: HSMD connectivity. In this example, it can be seen that the neuron
1 (N1) of each layer connects to the N1 of the subsequent layer.

4.2.4 Layer 4: Motion detection

The Layer 4 neurons receive synaptic connections from the neurons

in Layer 2 and Layer 3 via excitatory synapses and exploit these

spiking events to detect motion. Spike events generated by Layer

4 neurons resulted from dynamic changes between sequential im-

age frames. Signals received directly from Layer 2 neurons enable

detection of changes between the current image frame n and the

previous image frame n-1. In contrast, those routed via Layer 3

neurons compare the image frame n-1 with the image frame n-2.

Layer 4 spike events are mapped into the corresponding area in the

original image captured from the camera. The synaptic weights ob-

122

4.2 HSMD architecture

tained experimentally are 1370 for all the synapses. The Layer 2 to

Layer 4 weights were tuned to forward all the spike events generated

in Layer 2. The Layer 3 to Layer 4 synaptic weights were tuned to

produce spike events from the Layer 4 neurons for each group of two

sequential spike events. The main goal is to give high importance

(larger weight) to new spike events (frame[n]− frame[n− 1]) and

lower importance to older spike events (frame[n−1]−frame[n−2]).

4.2.5 Layer 5: Filtering

The Layer 4 neurons’ spike events matrix is mapped into a motion

matrix Md of the same size as the captured image (i.e. n × m).

The events in the Md matrix are filtered using an averaging filter

described by equations 4.2 and 4.3:

H(u, v) =
1

u.v



w0, 0 ... w0, u

...

wv, 0 ... wv, u


 (4.2)

Yd(x, y) = Md(x, y) ∗H(u, v) (4.3)

where Yd(x, y) is the filtered motion detection matrix, H(u, v) is the

averaging Gaussian filter [294], u and v are the convolution window

length and height respectively, ∗ is the convolution operator, w is

123

4.3 Implementation details

the filter window.

4.3 Implementation details

The HSMD was implemented in C++ using the C++ Standard

Template Library (STL) 17 (implementation of data structures)

[307], Boost 1.71 (file management) [308] and OpenCV 4.5.0 (image

processing) [306]. The decision not to use any existing SNN simula-

tor (such as Brian 2 [298], and NEST [53]) was made to ensure that

the SNN could have the lowest latency possible. The STL C++17

library offers a collection of C++ algorithms that have been op-

timised to deliver a higher degree of parallelisation when running

on multicore CPU systems; The Boost library offers a wide range

of reusable algorithms, including file management, time monitoring,

and exception handling algorithms; and the OpenCV library offers a

collection of algorithms for computer vision applications, including

image manipulation and filtering, and BS algorithms.

4.3.1 HSMD setup

The HSMD initial setup includes the following steps:

Step 1 - Select between live capture, video analysis or

image sequences: The user can opt to run the algorithm directly

124

4.3 Implementation details

on images being captured by the camera or provide the path of a

video or set of image sequences for motion analysis.

Step 2 - Create the Layer 2 to Layer 4 neural network:

Read the first image and compute the size of the image. The number

of neurons is computed automatically from the dimensions of the

first image in a sequence of images.

Step 3 - Set the neuronal parameters: The LIF parameters

recommended in the references [309; 310] were used to configure

the SNN. Therefore, the simulation was configured with a time step

of δt=10 ms and the default neuron parameters as follows: initial

Vm=-55.0 mV, EL = -55.0 mV, Cm = 10.0 pF, Rm=1.0 MOhm,

Vreset=-70.0 mV, Vmin=-70.0 ms, Vth=-70.0 mV, τm=10.0 ms, tref=2

ms, wsyn = 1555.0 (neurons L3 and L4) and wp2i=8.0 (L2 neurons

only).

Step 4 - Start the image acquisition : Images are loaded

from folders with sequences of images while the HSMD algorithm is

being executed. The pseudo-code of the main algorithm is described

in Algorithm 2.

125

4.3 Implementation details

Algorithm 2 HSMD main algorithm pseudo-code

1: newImage = get new image
2: newImageGrey = colour2grey(newImage)
3: set number neurons from newImageGrey shape
4: build neuronal network
5: load pretrained weights
6: while frames available do
7: reset spike events
8: newImage = capture image camera
9: newImageGrey = colour2grey(newImage)

10: newImageReduced = newImageGrey
11: dynSubImage = newImageReduced− previousImage
12: previousImage = newImageReduced
13: for I in dynSubImage do
14: if dynSubImage[I]< Threshold then
15: dynSubImage[I] = 0.0
16: end if
17: currents = convP ixel2Current(dynSubImage)
18: for i:=0 to timestep do
19: apply currents to neurons L2
20: compute L2 neuron spikes;
21: convert L2 neuron spikes to currents;
22: compute L3 neuron spikes;
23: convert L3 neuron spikes to currents;
24: compute L4 neuron spikes;
25: end for
26: spikes = get sumSpikeEventsPerL4Neuron()
27: masked spikes = applyAveragingF ilter(spikes)
28: spikes = normalise(spikes)
29: display(newImage)
30: display(spikes)
31: end for
32: end while
33: Display spike rates;

126

4.3 Implementation details

4.3.2 Datasets and metrics

4.3.2.1 Datasets

The CDnet2012 [9] (cited more than 379 times and CDnet2014 [32]

(cited more than 300 times) benchmark datasets were designed for

benchmarking BS algorithms. While the HSMD algorithm has been

designed as an object detection algorithm and not a BS algorithm,

nevertheless these two datasets provide challenging scenarios for

robust comparable assessment of the proposed algorithm and net-

work. The HSMD was compared against state-of-the-art BS algo-

rithms available on the OpenCV library: MOG [131], MOG2 [141],

KNN [142], GMG [145], LSBP [146], CNT [143] and GSOC [148].

The OpenCV BS algorithms were used because they are highly op-

timised, reliable, and publicly available to anyone who wants to test

or compare their algorithms.

Each of the benchmark videos in the CDnet2012 [9] and CD-

net2014 [32] fall into one or more of the challenge categories listed

below:

CDnet2012 and CDnet2014

• Baseline: reference videos, which are relatively simple to clas-

sify; some videos contain very simple movements from the next

four categories.

127

4.3 Implementation details

• Dynamic Background: videos that have both foreground

and background motion (e.g. water movement and shaking

trees).

• Camera Jitter: videos captured with cameras installed on

unstable structures.

• Shadow: videos containing narrow shadows from solid struc-

tures or moving objects.

• Intermittent Object Motion videos include objects that are

static for most of the time and suddenly start moving.

• Thermal: videos that exhibit thermal artefacts (i.e. bright

spots and thermal reflections on windows and floors).

CDnet2014 only

• Challenging Weather: outdoor videos recorded during win-

ter storm conditions with extremely low visibility.

• Low Frame-Rate: videos captured at frame rates ranging

from 0.17 to 1 fps;

• Night: includes traffic videos with low visibility and strong

headlights.

• Pan, Tilt and Zoom (PTZ): videos recorded with cameras

that were subjected to PTZ movements.

128

4.3 Implementation details

• Air Turbulence: videos filmed from distances of 5 to 15 km

exhibiting air turbulence and frame distortion.

Table 4.1 lists the categories per each dataset.

Table 4.1 Categories available per each dataset
Category /

dataset
bad

weather
baseline

camera
jitter

intermittent
object motion

low frame
rate

night
videos

Pan, Tilt
Zoom

Shadow thermal turbulence

CDnet2012 X X X X X
CDnet2014 X X X X X X X X X X

The BS algorithms were configured using the default OpenCV

settings [306] and compared against the HSMD algorithm. The

ground-truth provided by the datasets is composed of the following

labels [9; 32]:

• Static - greyscale value 0;

• Shadow - greyscale value 50;

• non-ROI - greyscale value 85;

• Unknown - greyscale value 170;

• Moving - greyscale value 255;

The static and moving classes contain pixels that belong to the

background and foreground, respectively; the shadows, one of the

most challenging artefacts, should be classified as part of the back-

ground. The unknown region should not be considered either back-

129

4.3 Implementation details

ground or foreground because it contains pixels that cannot be accu-

rately classified as background or foreground. The non-ROI pixels

serve to exclude frames from being classified because some BS algo-

rithms require several pixels for the model to stabilise (i.e. create

the background model) and for preventing corruption by non-related

activities to the considered category [9; 32]. Figure 4.3 shows the 5

class regions.

Figure 4.3: Raw image frame (left) and its respective ground-truth (right). The
ground-truth images show the annotations using the datasets labels. Adapted
from [9]

.

4.3.2.2 Metrics

The average performance obtained for each category using each BS

method and the HSMD algorithms is characterised via eight metrics,

as shown below. The four fundamental qualitative metrics are: TP,

True Negatives (TN), FP and False Negatives (FN) [9; 32].

1. Recall (Re): Re = TP
TP+FN

Re: ranked by descending order;

2. Specificity (Sp): Sp = TN
TN+FP ;

130

4.3 Implementation details

Sp ranked by descending order;

3. False Positive Rate (FPR): FPR = FP
FP+TN ;

FPR ranked by ascending order;

4. False Negative Rate (FNR): FNR = FN
FN+TP ;

FNR ranked by ascending order;

5. Wrong Classifications Rate (WCR): WCR = FN+FP
TP+FN+FP+TN ;

WCR ranked by ascending order;

6. Correct Classifications Rate (CCR): CCR = TP+TN
TP+FN+FP+TN ;

CCR ranked by descending order;

7. Precision (Pr): Pr = TP
TP+FP ;

Pr ranked by descending order;

8. F-measure (F1): F1 = 2× Pr.Re
Pr+Re

F1 ranked by descending order;

R: R = Re+Sp+FPR+FNR+WCR+CCR+F1
nMet ;

R ranked by ascending order;

RC:

RC = Re+Sp+FPR+FNR+WCR+CCR+F1
nMet ;

RC ranked by ascending order;

where nMet is the number of metrics (8 in this case).

131

4.4 Results

4.4 Results

The HSMD was tested on both datasets under the same conditions

to ensure an accurate and rigorous comparison. The results are pre-

sented both as overall results and per category to better understand

the specific performances obtained per method. The overall results

for each method are presented in section 4.4.1 and the results per

method and category are presented in section 4.4.2.

The ↑ indicates that the highest score is the best result, and

the ↓ that the lowest result is the best result in the tables (4.2 to

4.5). The best results are highlighted using light grey for all the

methods except the HSMD results, which are highlighted in dark

grey. Re stands for recall, Sp specificity, FPR False Positive Rate,

FNR False Negative Rate, WCR Wrong Classifications Rate, CCR

Correct Classifications Rate, Pr Precision, F1 F-score, R Average

Ranking and RC Average Ranking across all categories.

The results for each of the eleven categories shared by both CD-

net2012 and CDnet2014 are shown in Figure 4.4.

4.4.1 Overall results

Tables 4.2 and 4.3 present the overall results obtained per method

and per metric, ranked by RC (average ranking across all categories,

132

4.4 Results

Figure 4.4: Results obtained for each of the eleven of the five categories (columns
A to F) are common to both CDnet2012 and CDnet2014 datasets, while the re-
maining six categories (columns G to K) are only available on CDnet2014 dataset.
Column A: baseline; B: camera jitter; C: dynamic background; D: dynamic object
motion; E: shadow, F: thermal, G: bad weather, H: low frame rate; I: night videos,
J: PTZ and K: turbulence. Row 1: RGB image; 2: ground-truth; and 3: HSMD
binarised. The raw images, shown in the first row, demonstrate the scenarios
that can be found in both datasets. The corresponding ground truth images,
presented in the second row, show the 5 labels, namely, i) static [greyscale value
0], ii) shadow [greyscale value 50], iii) non-ROI [greyscale value 85], iv) unknown
[greyscale value 170] and v) moving [greyscale value 255]. The corresponding
binarised images generated by the HSMD are shown in the third row.

first column) in ascendant order.

The HSMD algorithm ranks in first place across all eight meth-

ods with which it is compared when tested against the CDnet2012

dataset (see the RC results in Table 4.2). Although the HSMD

performed very well in five of the eight metrics, it is essential to

highlight the results from the WCR, CCR, and F1 metrics. The

results show that the HSMD is sensitive to object motion due to

the highest correct counts and lowest wrong count rates that con-

tributed to get the highest F-score and the second-best precision.

Furthermore, the GSOC algorithm ranks in second place immedi-

ately after the HSMD.

133

4.4 Results

Table 4.2 CDnet2012 overall results. Results ordered in descendent order by
RC

Method RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMD 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
GSOC 3.5 0.54 0.993 0.007 0.25 0.024 0.976 0.75 0.63
MOG2 3.8 0.37 0.995 0.004 0.24 0.026 0.974 0.76 0.50
GMG 3.9 0.20 0.998 0.002 0.21 0.033 0.967 0.79 0.32
KNN 4.3 0.39 0.995 0.005 0.26 0.025 0.975 0.74 0.51
MOG 4.5 0.32 0.996 0.004 0.26 0.030 0.970 0.74 0.44
CNT 6.1 0.73 0.927 0.073 0.71 0.081 0.919 0.29 0.41
LSBP 7.3 0.57 0.90 0.096 0.80 0.109 0.891 0.20 0.29
↑: the highest score is the best.
↓: the lowest result is the best.
Best HSMD results are highlighted using dark grey, while best results per
category are highlighted with light grey for other methods. Re stands for Recall,
Sp Specificity, FPR False Positive Rate, FNR False Negative Rate, WCR Wrong
Classifications Rate, CCR Correct Classifications Rate, Pr Precision, F1 F-score
and RC Average Ranking across all Categories.

Table 4.3 CDnet2014 overall results. Results ordered in descendent order by
RC
Method RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMD 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
GSOC 3.0 0.40 0.995 0.005 0.38 0.017 0.983 0.62 0.48
KNN 3.5 0.34 0.996 0.004 0.32 0.019 0.981 0.68 0.45
GMG 4.3 0.24 0.997 0.003 0.36 0.022 0.978 0.64 0.35
MOG 4.4 0.58 0.991 0.009 0.39 0.019 0.981 0.61 0.60
MOG2 4.5 0.39 0.994 0.006 0.42 0.018 0.982 0.58 0.47
LSBP 6.5 0.58 0.945 0.055 0.79 0.064 0.936 0.21 0.31
CNT 7.0 0.72 0.930 0.070 0.80 0.075 0.925 0.20 0.32
↑: the highest score is the best.
↓: the lowest result is the best.
Best HSMD results are highlighted using dark grey, while best results per
category are highlighted with light grey for other methods. Re stands for Recall,
Sp Specificity, FPR False Positive Rate, FNR False Negative Rate, WCR Wrong
Classifications Rate, CCR Correct Classifications Rate, Pr Precision, F1 F-score
and RC Average Ranking across all Categories.

Table 4.3 shows that the HSMD algorithm was ranked in first

place in the average ranking RC across all 11 categories when tested

134

4.4 Results

on the CDnet2014 dataset. The HSMD performed very well in seven

of the eight metrics, and exceptionally well in the precision metric.

Table 4.4 HSMD overall results. Results ordered in descendent order by RC

Dataset RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
CDnet2012 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
CDnet2014 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60

↑: the highest score is the best.
↓: the lowest result is the best.
Best results are highlighted in gray.
Re stands for Recall, Sp Specificity, FPR False Positive Rate, FNR False
Negative Rate, WCR Wrong Classifications Rate, CCR Correct Classifications
Rate, Pr Precision, F1 F-score and RC Average Ranking across all Categories.

Table 4.4 shows that there was a slight decrease in the HSMD per-

formance when tested on the eleven categories available in the CD-

net2014 as compared to the original six in the CDnet2012 dataset.

Furthermore, the extra 6 categories, which are only present in the

CDnet2014 contributed to an increase from 2.8 in the CDnet2012

to 2.9 in the CDnet2014 of RC across all categories. The increase

of RC is justifiable with the degradation of 5 metrics, namely, Sp,

FPR , FNR, F1 and Pr as a consequence of the complexity intro-

duced by the video sequences from the extra six categories. This is

more evident when analysing the individual Average Ranking (R)

results per dataset as per listed in Table 4.5, and Figures 4.5 and

4.6.

Finally, it was anticipated that none of the methods would have

excellent performance across all metrics because of the complexity

135

4.4 Results

and size of the CDnet2012 and CDnet2014 datasets.

4.4.2 Results obtained per category

The R for each of the methods per category is shown in Table 4.5.

136

4
.4

R
e
su

lts

Table 4.5 Results per category. Results ordered in descendent order by R
IntObjMotion shadow cameraJitter badWeather dynamicBackground nightVideos PTZ thermal baseline lowFramerate turbulence

Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓
HSMD 3.875 MOG2 2.375 LSBP 1.875 CNT 2.125 LSBP 1.75 HSMD 2.625 CNT 1.75 HSMD 3.25 MOG2 2.625 GSOC 2.25 HSMD 2.875
LSBP 4.125 CNT 3.5 CNT 2.625 HSMD 2.5 MOG 2.375 LSBP 3.625 MOG 3.0 MOG 3.375 MOG 3.125 GMG 3.0 MOG2 2.875
GMG 4.125 HSMD 3.875 GSOC 4.125 KNN 3.5 KNN 3.625 MOG2 4.0 LSBP 4.25 GSOC 3.625 HSMD 3.625 CNT 3.375 LSBP 3.875
GSOC 4.5 KNN 4.25 HSMD 4.5 GMG 3.75 CNT 4.125 GSOC 4.25 MOG2 4.875 KNN 3.75 GMG 4.0 LSBP 4.875 KNN 4.375
MOG2 4.875 MOG 4.375 GMG 4.625 GSOC 5.5 MOG2 5.5 MOG 5.25 HSMD 4.875 CNT 4.75 GSOC 4.875 MOG2 5.125 CNT 4.375
MOG 5.0 GMG 5.5 KNN 4.875 LSBP 5.875 GMG 5.875 CNT 5.25 KNN 5.5 LSBP 5.25 KNN 5.875 MOG 5.25 GSOC 5.375
KNN 6.375 GSOC 6.0 MOG 6.625 MOG2 6.125 GSOC 6.25 GMG 5.5 GSOC 5.5 GMG 5.25 LSBP 5.875 KNN 5.5 MOG 6.0
CNT 6.75 LSBP 6.125 MOG2 6.75 MOG 6.625 HSMD 6.5 KNN 5.5 GMG 6.25 MOG2 6.75 CNT 6.0 HSMD 6.625 GMG 6.25

↓: the lowest result is the best.
The HSMD results are highlighted using dark grey for the HSMD, and the best results of other methods are
highlighted using light grey.
R is the average ranking.
The baseline, cameraJitter, intObjMotion, shadow and thermal categories are shared between the CDnet2012 and
CDnet2014 datasets. While the badWeather, dynamicBackground, nightVideos, PTZ, lowFrameRate and turbulence
categories are specific to the CDnet2014 dataset.

137

4
.4

R
e
su

lts

Figure 4.5: CDnet2012 overall result based on Average Ranking (R) per method. The highest bars show the higher
ranks, and it is clear that none of the methods had the best ranks in all the categories. Furthermore, it is possible
to see that the HSMD achieved high ranks across all the categories, except dynamic background.

138

4
.4

R
e
su

lts

Figure 4.6: CDnet2014 overall result based on Average Ranking (R) per method. The highest bars show the higher
ranks, and it is clear that none of the methods had the best ranks in all categories. Furthermore, it is possible to see
that the HSMD achieved high ranks across most of the categories, except dynamic background and low frame rate.

139

4.4 Results

Figures 4.5 and 4.6 show the variation of the ranks obtained per

category and per method.

Based on the results shown in Table 4.5, Figure 4.5 and Figure

4.6, the HSMD performs better when processing image sequences

from intermittent object motion, night vision, baseline, and turbu-

lence categories. These categories contain moving objects with high

contrast ration, which is ideal for sensing by the spiking neurons.

Overall, the HSMD has improved the results of the GSOC in 8 of

the 11 categories (see Table 4.5). It is also easy to infer that the

HSMD exhibits the lowest R variation, which justifies the HSMD

being ranked first.

4.4.3 Results analysis

The HSMD performed very poorly in the dynamic background and

low frame rate categories, suggesting that the spiking neuron model

is not ideal for distinguishing the type of motion. i.e. the spik-

ing neurons detect motion but are unable to distinguish between a

shadow or the object itself. This result is probably because, in ver-

tebrate retinas, only the ganglion cells are spiking cells, suggesting

that distinction between the main object and shadows is probably

performed by other non-spiking cells. Nevertheless, the creation of

the new approach incorporating both the GSOC algorithm and the

140

4.5 Discussion

SNN, which emulates the basic OMS-GC functionality, clearly im-

proves the accuracy of the GSOC algorithm.

The CDnet2012 and CDnet2014 datasets are composed of image

files of different resolution, and accordingly, the processing times

vary. The HSMD takes approximately 72.4ms (CDnet2014) and

71.9ms (CDnet2012) to process images of 720×480 on a 96-cores

Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz equipped with

792 GB of DDR4 and 12.7 TB of disk space. The slight variations

are related to other applications running in the background. There-

fore, the HSMD is capable of processing images of 720×480 at an

average speed of 13.82fps (CDnet2014) and 13.92fps (CDnet2012).

Finally, the HSMD is the first hybrid SNN algorithm capable of

processing images at such a frame rate, as far as the authors are

aware.

4.5 Discussion

A bio-inspired HSMD has been proposed to detect object motion

and assess against the CDnet2012 and CDnet2014 datasets. The

HSMD was written in C++ using the C++ STL 17 (implementa-

tion of data structures), Boost 1.71 (file management), and OpenCV

4.5.0 (image processing). These incorporate video sequences of

many moving objects under various challenging environmental con-

141

4.5 Discussion

ditions and are widely used for benchmarking BS algorithms. The

CDnet2012 is composed of 6 categories of movements, and the CD-

net2014 augments the initial 6 to 11 categories of movements. Eight

metrics, utilised as standard in the Change Detection datasets, were

used to assess and compare the quality of the HSMD algorithm.

The HSMD performed poorly in the dynamic backgrounds and

low frame rate categories, indicating that the spiking neuron model

is not the best for classifying these types of object motion (i.e. the

spiking neurons are able to detect motion but are unable to dis-

tinguish a shadow from the actual object). This deficiency is most

likely caused by the fact that only the ganglion cells in vertebrate

retinas are spiking cells, indicating that other non-spiking cells are

most likely responsible for differentiating between the main object

and shadows. However, the development of the new method that

combines the GSOC algorithm with a customised SNN, which mim-

ics the fundamental OMS-GC functionality, significantly increases

the GSOC algorithm’s accuracy. Nevertheless, the HSMD algorithm

performed overall best in both the CDnet2012 and CDnet2014 while

performing better than all the tested BS algorithms in the intermit-

tent object motion, night videos, thermal and turbulence categories,

second best in the bad weather category, and third-best in the base-

142

4.5 Discussion

line and shadow categories. The comparatively good results are a

consequence of using the SNN for emulating the basic functionality

of OMS-GC, which improves the sensitivity of the HSMD to object

motion. The HSMD is also the first hybrid SNN algorithm capa-

ble of processing video/image sequences with near real-time perfor-

mance (i.e. 720×480@13.82fps [CDnet2014] and 720×480@13.92fps

[CDnet2012]).

The main lesson learnt from the implementation of the HSMD was

that the SNN latency need to be improved for targetting real-time

applications. As already mentioned in Section 2.2, SNNs are mas-

sively parallel and can be accelerated using dedicated hardware such

as FPGAs (see 2.6.3). The hardware implementation of the HSMD

is covered in Chapter 5.

143

Chapter 5

NeuroHSMD: Neuromorphic

Hybrid Spiking Motion Detection

The NeuroHSMD is the hardware implementation of the HSMD

discussed in Chapter 4. As discussed in section 2.6.3, FPGAs offer

the desired flexibility to accelerate massively parallel SNN architec-

tures. Therefore, a high-end FPGA was selected for accelerating the

HSMD’s SNN. OpenCL was used to describe the customised SNN

because it provides a higher level of abstraction than other HDL

tools (see Section 5.2.4 for more details), increase in productivity,

and compatibility with other compatible devices such as non-Intel

FPGAs, CPUs and GPUs. The results show that the NeuroHSMD

was 82% faster processing 720×480 than the HSMD algorithm. Fur-

thermore, the NeuroHSMD was ranked first alongside the HSMD

when benchmarked against CDnet2012 and CDnet2014, meaning

144

5.1 Introduction

that there was no degradation in the quality of the foreground ex-

traction.

5.1 Introduction

The human brain is characterised by its tolerance to faults/noise,

concurrent processing capabilities, flexibility, and high level of par-

allelisation when processing data. Furthermore, the adult human

brain has a power consumption of about 400 Kcal per day, equiv-

alent to 25 Watts [311]. Again, the human brain can reach 10-50

petaflops, outperforming any COTS CPU [312]. Despite the fact

that CPUs outperform the human brain by several orders of mag-

nitude when processing and transmitting sequential signals, the hu-

man brain processes millions of signals in parallel using its massively

parallel circuits [311; 312].

The human brain is composed of millions of interconnected neu-

ron circuits composed of different types of neuron cells and con-

tributing to specific brain computations [313; 314]. While CPUs

transmit signals at a few tenths of a gigahertz, neuronal circuits

transmit signals at hundreds of gigahertz [313; 314]. Neverthe-

less, the human brain can outperform CPUs when processing signals

from complex systems such as the auditory and visual systems be-

cause of its massive parallel structure [314]

145

5.1 Introduction

GPUs and FPGAs are parallel processing devices that can be

used in conjunction with CPUs to accelerate parallellisable algo-

rithms. GPUs are specialised electronic circuits with a flexible ar-

chitecture designed for parallel processing of graphics and video ren-

dering and accelerating some types of AI algorithms [315]. FPGAs

are integrated circuits composed of built-in interconnected hard-

ware blocks that can be freely reprogrammable after manufacturing

[11]. In contrast to GPUs, which have a well-defined architecture,

FPGAs are flexible devices that allow the user to describe new hard-

ware architectures, such as brain-like, neuromorphic architectures.

The HSMD algorithm has proven to be very robust in extracting

the foreground from the background (see section 4) as a direct conse-

quence of using a SNN to emulate the basic functionality observed in

OMS-GCs. Furthermore, the HSMD improves the GSOC algorithm

by employing a customised SNN composed of three layers of inter-

connected neurons through a 1:1 synaptic connectivity. Nonethe-

less, the HSMD is substantially slower than the GSOC because the

customised SNNs also introduced a substantial delay because they

are, by their parallel nature, not optimised for sequential processing

architectures such as CPU architectures. Therefore, FPGAs were

the obvious choice for accelerating the HSMD’s SNN because of

their flexibility to describe massively parallel architectures. FPGAs

146

5.2 Implementation details

are typically reprogrammed using VHDL or Verilog, which are flex-

ible but complex HDLs. In recent years, the FPGA manufacturers

have invested in HLS tools to enable users to programme FPGAs

using C-like programming languages. One of the most successful

HLS tools is OpenCL, which allows users to program kernels that

can be compiled targeting CPUs, GPUs, and FPGAs. The Neu-

roHSMD presented in this chapter was implemented using OpenCL

on FPGAs.

The methodology is discussed in section 5.2; the results are pre-

sented in section 5.3 and the discussion of the NeuroHSMD results

is performed in section 5.4.

5.2 Implementation details

SNNs are composed of a variable number of spiking neurons, and

each neuron’s output will contribute to the generation of spike

events. Spiking neuron models are therefore highly parallelisable

and not computationally suitable for CPUs. In this section, the de-

tails of the hardware implementation are discussed. Heterogeneous

computing platforms are discussed in section 5.2.1; the architecture

of FPGA devices is discussed in section 5.2.2; HDL are discussed in

section 5.2.3, OpenCL framework is introduced in section 5.2.4; the

selected hardware platform is discussed in section 5.2.5; and the de-

147

5.2 Implementation details

tails about the host application and its device kernels are described

in section 5.2.6.

5.2.1 Heterogeneous computing platforms

The rise of AI and the continuous generation of big data are creating

computational challenges. CPUs are not enough to efficiently run

state-of-the-art AI algorithms or process all the data generated by

a wide range of sensors. World-leading processing technology com-

panies (such as NVIDIA, AMD, Intel and ARM) have been looking

closely into the new requirements. They have been pushing the

boundaries of technology to deliver efficient and flexible processing

solutions.

Heterogeneous computing refers to the use of different types of

processor systems in a given scientific computing challenge.

Heterogeneous platforms are composed of different types of com-

putational units and technologies. Such media can be composed of

multicore CPUs, GPUs and FPGAs acting as computational units

and offering the flexibility and adaptability demanded by a wide

range of application domains [316]. These computational units can

significantly increase the overall system performance and reduce

power consumption by parallelising concurrent operations that re-

quire substantial CPU resources over long periods.

148

5.2 Implementation details

Accelerators like GPUs and FPGAs are massive parallel process-

ing systems that enable accelerating portions of code that are par-

allelisable. Combining CPUs with GPUs and FPGAs helps improve

the performance by assigning different computational tasks to spe-

cialised processing systems. GPUs are optimised to perform matrix

multiplications in parallel, which is the major bottleneck in video

processing and computer graphics. Nevertheless, GPUs also intro-

duce hardware and environmental limitations (e.g. high-power con-

sumption and architectural limitations) [315]. SNNs are massively

parallel in their nature and not suitable for matrix representation

because each neuron can be considered a node containing several

sequential mathematics operations. Therefore, a FPGA device was

selected to accelerate the HSMD’s customised SNN.

OpenCL is a C/C++-based programming language specially de-

signed for software developers to write applications targeting het-

erogeneous computing platforms such as CPUs, GPUs, and FPGAs

[34]. OpenCL provides an abstraction layer allowing compatibility

across devices and enabling the same source code to run on differ-

ent device architectures. Furthermore, OpenCL provides facilities

for developers to control parallelism and make effective use of the

target device resources [33]. The OpenCL framework was chosen

to ensure that the NeuroHSMD is widely compatible with a wide

149

5.2 Implementation details

range of hardware devices (for more information on OpenCL, see

section 5.2.4).

5.2.2 FPGA Architecture

FPGAs have been used, for many decades, accelerating applica-

tions, including edge/cloud computing. FPGAs are flexible devices

because of their flexible architecture, enabling developers to de-

scribe customised architectures. Such flexibility comes with a down-

side because FPGAs are also known by their associated complexity.

There are two main FPGA manufacturers, namely, Intel1 and AMD-

Xilinx2. The Computational Neurosciences and Cognitive Robotics

(CNCR) group, where the PhD programme was developed, has dif-

ferent Intel FPGA development boards. The target board is fitted

with a state-of-the-art Stratix 10 SoC FPGA device3 (see further

details in the next section 5.2.5). Therefore, this chapter focus on

the Intel Stratix architecture.

The Intel Stratix family is composed of logic array blocks (LAB)

made up of 10 basic building blocks called ALMs. Each ALM is

composed of fractionable Look-Up-Tables, also known as adaptive

1Available online, https://www.intel.co.uk/content/www/uk/en/products/

programmable/fpga.html, last accessed: 04/03/2021
2Available online, https://www.xilinx.com/, last accessed: 04/03/2021
3Available online, https://www.intel.co.uk/content/www/uk/en/products/

programmable/soc/stratix-10.html, last accessed: 07/04/2021

150

https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga.html
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga.html
https://www.xilinx.com/
https://www.intel.co.uk/content/www/uk/en/products/programmable/soc/stratix-10.html
https://www.intel.co.uk/content/www/uk/en/products/programmable/soc/stratix-10.html

5.2 Implementation details

look-up-table (ALU), two-bit full adder and four registers (see Fig-

ure 5.1).

Figure 5.1: ALM Block Diagram. Each register has the following ports: i) Data
in, ii) Data out, iii) Clock, iv) clock enable, v) synchronous clear and vi) asyn-
chronous clear. Adopted from [10].

LABs can be freely reconfigured to implement logic and arith-

metic functions. Furthermore, up to a quarter of the LABs can be

used as memory logic array blocks (MLAB). Each LAB contains

dedicated logic elements used to drive control signals to ALMs.

Each MLAB supports up to 640 bits of simple dual-port SRAM.

It is possible to configure each ALM in an MLAB as 32×2 memory

blocks equivalent to 32 × 2 × 10 simple dual-port SRAM blocks.

Dual-port SRAMs are low-latency memory devices that only take

a clock cycle to perform a read/write operation (for example, Syn-

151

5.2 Implementation details

chronous Dynamic Random Access Memory (SDRAM) in CPUs

takes thousands of clock cycles to complete read/write operations).

5.2.3 Hardware Description Language

The behaviour of LABs and ALMs can be programmed using HDL.

Although many HDLs being available, the Institute of Electrical

and Electronics Engineers (IEEE) endorses the VHDL and Verilog.

Although the VHDL syntax is identical to Pascal and the Verilog

syntax is identical to C, both languages are easy to learn and hard

to master.

HDLs are potent tools because they enable users to programme

at the Register Transfer Level (RTL) (lowest level of coding), which

is challenging to master. Hardware developers must have a deep

knowledge of the reprogrammed device. Projects designed for a spe-

cific FPGA device might not work in another, even if they belong to

the same FPGA family. Furthermore, the debugging of HDL source

code is very slow and prone to errors, making applications a long

and time-consuming process due to the complex FPGA architecture

(see Figure 5.2).

FPGA manufacturers have been simplifying the FPGA design

flow through the HLS. HLS tools deliver C/C++ like tools provid-

ing higher-level hardware abstraction, enabling software developers

152

5.2 Implementation details

Figure 5.2: Intel Stratix 10 device design flow [11]. The main stages of the
design flow include the system specification, device selection, early system and
board planning, pin connection considerations for board design, I/O and Clock
planning, design entry, design implementation, analysis and optimisation and
verification. Adopted from [12].

to use FPGAs. OpenCL, a HLS framework, to be discussed in the

next section 5.2.4 was used to avoid having to use HDL when imple-

menting the NeuroHSMD. Moreover, the NeuroHSMD’s SNN was

153

5.2 Implementation details

written in C++ for OpenCL and automatically converted to HDL

using Intel FPGA tools.

5.2.4 OpenCL

OpenCL applications are split into two parts, namely, host appli-

cation(s) and device kernel(s) (see Figure 5.3). The host applica-

tion(s) is(are) always compiled on the host Operating System and

run on a CPU. Host applications are also used to launch the target

kernels on the target devices. Kernels are special functions writ-

ten in OpenCL C/C++ to perform parallelisable computations on

accelerators such as GPUs and FPGAs [33]. For instance, consider

two m×n matrices, A and B where it is expected to do the oper-

ation C=A+B where C is the third matrix of m×n. In this case,

the kernel could just perform, in parallel, the addition of matrices

A and B elements and store the result in C. Unlike in CPUs, where

it would take m×n to do this matrix addition, GPUs and FPGAs

could parallelise this operation depending on the resources available

per device resulting in the acceleration of the application.

Buffer objects within a context are used in OpenCL to exchange

data between the host and device [317]. The Intel FPGA SDK

for OpenCL offline compiler optimises the kernel throughput by

adjusting buffer sizes during the kernel compilation process [28].

154

5.2 Implementation details

OpenCL provides both mapped and asynchronous buffers, enabling

the application to continue to run while additional data is exchanged

(see Figure 5.3).

Figure 5.3: Representation of a OpenCL host application and three device kernels

Software developers have to carefully analyse the code to be op-

timised and only select the sections that may benefit from hardware

acceleration because the maximum speed is always dictated by the

PCIe bus speed. Another big challenge for software developers is

the low debugging capabilities available while the code is being ex-

ecuted on the device.

Although it is possible to use OpenCL to program FPGA and

GPU devices, GPUs are specialised devices designed for video ren-

dering and graphics processing. At the same time, FPGAs are cus-

tomisable devices that can be freely reconfigurable. Therefore, FP-

GAs offer more flexibility than GPUs, which is desirable for accel-

erating SNNs because they can be modelled using the Network-on-

155

5.2 Implementation details

Chips (NoCs) concept. Each individual spiking neuron in the node

interconnects to one or more nodes of the same SNN. The flexibil-

ity offered by both FPGAs and OpenCL makes selection of FPGAs

over GPUs the obvious choice.

Intel FPGA SDK for OpenCL (IOCL) provides a compiler and

powerful tools to build and run OpenCL applications targeting In-

tel FPGA devices. The IOCL generates two main components: the

host application and the FPGA programming bitstream(s). The

IOCL offline compiler (AOC) first compiles the custom kernel(s) to

an image file (*.aocx) that will be used to program the FPGA. In

contrast, the host-side C/C++ compiler compiles the host applica-

tion and then links it to the IOCL runtime libraries (see Figure 5.4).

The DE10-pro platform provides the board support package (*.bsp).

The AOC targets the DE10-pro platform when compiling an OpenCL

kernel to generate the *.aocx object that is only compatible with

the DE10-pro’s Intel Stratix 10 FPGA device. The IOCL utility pro-

gramme (aocl) is used to programme the FPGA device using the

image file *.aocx is then used to programme the FPGA to enable

the host application to exchange data with the kernel using OpenCL

buffers via the PCIe bus. Multiple FPGAs can be used by the same

host application (see Figure 5.5).

The IOCL compiles one or more OpenCL kernels and creates a

156

5.2 Implementation details

Figure 5.4: Intel FPGA SDK for OpenCL FPGA design flow. Adopted from [13].

hardware configuration file. After a successful compilation, the files

*.aocr, *.aoco, (*.aocx), and reports/report.html are generated

(see Figure 5.6). The report.html contains the estimated resource

usage and a preliminary assessment of area usage. The intermediary

*.aoco and *.aocr are only used in the generation of the *.aocx

which is then used to programme the FPGA.

157

5.2 Implementation details

Figure 5.5: Intel FPGA SDK for OpenCL FPGA programming flow. Adopted
from [13].

5.2.5 Hardware platform

Although there are hundreds of FPGA boards, only a few boards

provide board support packages (BSP) for OpenCL. The creation

158

5.2 Implementation details

Figure 5.6: OpenCL compilation flow. Adopted from [13].

of the OpenCL BSP for a given FPGA is a complex and time-

consuming process that considers the FPGA device and how the

Inputs/Outputs are routed on the physical board. Therefore, the

selection of the FPGA board should be made taking into consider-

ation the size of the FPGA device, the OpenCL BSP, the version

of the BSP to ensure compatibility with recent Linux distributions

and the reference/user manuals.

The Terasic DE10-pro development board [14] (see Figure 5.7)

was used for implementing the NeuroHSMD discussed in this chap-

ter. The Terasic DE10-pro development board is equipped with a

state-of-the-art high-end Intel Stratix 10 FPGA device. According

159

5.2 Implementation details

to Terasic, the DE10 pro was created to meet the needs of AI, data

centers, and high-performance computing. Furthermore, the DE10-

pro development board takes advantage of the latest Intel Stratix 10

to obtain high-speed and low-power (with up to 70% lower power).

It is equipped with a 32GB DDR4 memory module running at over

150 Gbps, up to 15.754 GB/s data transfer via PCIe Gen 3 x16 edge

between FPGA and the host PC, and 4 onboard QSFP28 (100GbE)

connectors.

Figure 5.7: Terasic DE10 pro development kit. (left) block diagram and (right)
DE10 pro board. Adopted from [14]

The DE10 pro was installed on the host PC equipped with an

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz and 16 GB of DDR3

using the PCIe slot.

5.2.6 NeuroHSMD implementation

The NeuroHSMD’s SNN was written in C++ for OpenCL. In OpenCL,

the data flow between host application and FPGA kernel is as fol-

160

5.2 Implementation details

lows: a) allocate and specify buffer types (read/write) on the host

and device; b) copy FPGA data from application data structures to

host buffers; c) transfer data from host buffers to device buffers; d)

run the inference on the device; e) copy the results from the device

to host buffers; f) copy data from host buffers to application data

structures (see Figure 5.8).

Figure 5.8: OpenCL computation stages. The stages include: a) allocation and
specification of buffer types on the host and device; b) copying data from the ap-
plication data structures to host buffers; c) transferring data from host buffers to
device buffers; d) running the inference on the device; e) copying the results from
the device to host buffers; f) copying data from the host buffers to application
data structures.

The NeuroHSMD algorithm performs the following computation

stages: 1) image capture, 2) conversion from colour to grey scale,

and 3) background subtraction using the OpenCL’s GSOC algo-

rithm, buffer the results and transfer buffered results to the FPGA

device; 4) run the FPGA inference and wait for the spike results;

161

5.2 Implementation details

5) run the SNN kernel; 6) apply average filter; and 7) display and

save the output image.

The NeuroHSMD’s processing stages are summarised in the di-

agram 5.9 and the NeuroHSMD architecture is depicted in Fig-

ure 5.10.

Figure 5.9: NeuroHSMD computation stages. The OpenCL implementation is
represented in blue and the OpenCV in green. The light yellow background
represents the computation stages that run on the CPU (i.e. steps 1, to 4, and 6
to 7), and in light orange, the stage that runs on the FPGA device (i.e. step 5)

Furthermore, the NeuroHSMD implementation can be split into

the NeuronHSMD Host Application (NHA) and the NeuronHSMD

device kernels (NDK). The NHA and NDK are described in detail

in the sections 5.2.6.1 and 5.2.6.2, respectively.

162

5.2 Implementation details

Figure 5.10: NeuroHSMD architecture. The diagram represents the computation
stages that run both on the CPU and FPGA. Shows that the FPGA is connected
to the host CPU via the PCIe bus. It also shows the dedicated memory of
the CPU and FPGA device. This also includes how external devices (e.g. image
sensors, monitor, and HDD/SSD) connect to the host CPU via different interfaces
(e.g. Ethernet (eth), SATA, display port, and usUSBb). The computation stages
implemented in OpenCL are in blue and OpenCV in green.

163

5.2 Implementation details

5.2.6.1 Host application

The NHA is used to interface the two NDK. The NHA performs

the first stages of pre-processing and performs inference of the SNN

kernel (described on the FPGA), and uses the inference results to

compute the BS . Furthermore, the NHA can process both live im-

ages captured from camera devices or extracted from videos stored

on USB or SATA devices. The NHA is used to interface the NDKs.

The NHA performs the first stages of pre-processing and performs

inference of the NDK (described on the FPGA), and uses the infer-

ence results to compute the BS. Furthermore, the NHA can process

both live images captured from camera devices or extracted from

videos stored on USB or SATA devices.

Algorithm 3 summarises each of the computation stages that

occur in the NHA.

The communication between the NHA and the NDK is limited

by the PCIe bus speed (16 GB/s 1). In the HSMD, the limitations

are only dictated by the CPU speed and the DDR4 memory speed

(34.1 GB/s2) which two times faster than the PCIe bus speed.

1Available online, https://www.trentonsystems.com/blog/

pcie-gen4-vs-gen3-slots-speeds, last accessed: 21/06/2021
2Available online, https://www.crucial.com/support/articles-faq-memory/

understanding-cpu-limitations-with-memory, last accessed: 21/06/2021

164

https://www.trentonsystems.com/blog/pcie-gen4-vs-gen3-slots-speeds
https://www.trentonsystems.com/blog/pcie-gen4-vs-gen3-slots-speeds
https://www.crucial.com/support/articles-faq-memory/understanding-cpu-limitations-with-memory
https://www.crucial.com/support/articles-faq-memory/understanding-cpu-limitations-with-memory

5.2 Implementation details

Algorithm 3 NHA
Input:
img: image frame;
Output:
post proc img: post processed image;
stats: computation statistics;
Main Algorithm:

1: initialise opencl()
2: for iterator ← list folders.begin() to list folders.end() do
3: (x, y)← get image size();
4: num layers← 3
5: tot neurons← x.y.num layers
6: reset opencl buffers(tot neurons)
7: gsoc← initialise gsoc back subtraction
8: for iterator2← files list.begin() to files list.end() do
9: img ← read image(iterator2);

10: < pixel values >← gsoc.compute(img)
11: aocl snn v1(< pixel values >) →< spike sum > {Alg. 4}
12: OR
13: aocl snn v2(< pixel values >) →< spike sum > {Alg. 5}
14: post proc img ← get spikes sum l3(< spike sum >)
15: save(post proc img)
16: stats← compute stats(time)
17: end for
18: save(stats)
19: end for

165

5.2 Implementation details

5.2.6.2 Device kernels

The NDKs section covers the two kernels (i.e. NeuroHSMDv1 and

NeuroHSMDv2) that have been implemented. The only difference

between the two NDKs is that the aocl snn v2 only computes the

spike sums for neurons that have the pixel intensity values above 0.0.

The aocl snn v1 was parallelised by a factor of 16. The NDK

version 1 is the equivalent implementation of the HSMD algorithm

described in chapter 4 which is referred to as HSMDv1 in this chap-

ter.

The algorithm 5, inferred by the NHP, summarises the compu-

tation steps required to compute the spike sum.

The aocl snn v2 was parallelised by factor of 16. The NDK ver-

sion 2 contains an optimisation where the spike sum for a given neu-

ron of layer 1 is only computed if the pixel intensity value is greater

than 0.0. This way, the computations will only be done for neurons

that receive stimuli from pixels that belong to the foreground.

This optimisation was also applied to the original HSMD algo-

rithm described in chapter 4. In this chapter, the optimised version

of HSMD (i.e. where the spike sum for a given neuron of layer 1

is only computed if the pixel intensity value is greater than 0.0) is

referred to as HSMDv2.

166

5.2 Implementation details

Algorithm 4 aocl snn v1

Parallel Circuits: 16
Constants:
Rm: membrane resistance;
τm: membrane time constant;
dt: time step;
p2c: pixel values to current;
steps: number of steps;
s2c: spike to current;
Input:
< pixel val >: pixel values;
num neuron layer: number of neurons per layer;
Output:
< spk sum >: spike sum;
Main Algorithm:

1: for neuron idx← 0 to number neurons do
2: Is ← pixel val[neuron idx].p2c;
3: for dt1← 0 to steps do
4: Layer 1:
5: compute Vm l1[neuron idx](Is);
6: update spike sum l1[neuron idx](Vm l1);
7: Layer 2:
8: Is l2← spike sum l1[[neuron idx].s2c;
9: compute Vm l2[[neuron idx](Is l2);

10: update spike sum l2[neuron idx](Vm l2);
11: Layer 3:
12: Is l3← spike sum l2[neuron idx].s2c;
13: compute Vm l3[neuron idx](Is l2 + Is l3);
14: update spk sum[neuron idx](Vm l3);
15: end for
16: end for

167

5.2 Implementation details

Algorithm 5 aocl snn v2

Parallel Circuits: 16
Constants:
Rm: membrane resistance;
τm: membrane time constant;
dt: time step;
p2c: pixel values to current;
steps: number of steps;
s2c: spike to current;
Input:
< pixel val >: pixel values;
num neuron layer: number of neurons per layer;
Output:
< spk sum >: spike sum;
Main Algorithm:

1: for neuron idx← 0 to number neurons do
2: if pixel val[neuron idx] > 0.0 then
3: Is ← pixel val[neuron idx].p2c;
4: for dt1← 0 to steps do
5: Layer 1:
6: compute Vm l1[neuron idx](Is);
7: update spike sum l1[neuron idx](Vm l1);
8: Layer 2:
9: Is l2← spike sum l1[[neuron idx].s2c;

10: compute Vm l2[[neuron idx](Is l2);
11: update spike sum l2[neuron idx](Vm l2);
12: Layer 3:
13: Is l3← spike sum l2[neuron idx].s2c;
14: compute Vm l3[neuron idx](Is l2 + Is l3);
15: update spk sum[neuron idx](Vm l3);
16: end for
17: end if
18: end for

168

5.3 Results

5.2.7 Datasets and benchmark

The NeuroHSMDv1, NeuroHSMDv2, HSMDv1 and HSMDv2 were

tested against the CDnet2012 [9] and CDnet2014 [32]. The scripts

provided by Nil Goyette et al. [9] were used with the same protocol

used to test the HSMDv1 algorithm reported in chapter 4. The

scripts provided by Nil Goyette et al. [9] enables the computation

of the eight metrics (Re, Sp, FPR, FNR, PWC, PCC, Pr and F1)

and rank the results (RC). More details about the eight metrics and

the ranks’ procedure can be found in section 4.3.2.

The benchmark of the four algorithms is required to ensure that

the four algorithms produce comparative results to that of the origi-

nal HSMDv1 results when tested against CDnet2012 and CDnet2014

datasets. Furthermore, the OpenCL calls the Intel Quartus, which

performs several hardware optimisations that may include convert-

ing from floating-point to fixed-point representation, which might

affect the accuracy of the NeuroHSMD algorithms during the syn-

thesis step (one of the steps of the OpenCL design flow).

5.3 Results

The HSMDv1, HSMDv2, NeuroHSMDv1 and NeuroHSMDv2 were

all tested on the same computer equipped with a quad-core Intel(R)

169

5.3 Results

Core(TM) i7-4770 CPU @ 3.40GHz, 16GB of DDR3 @ 1600 MHz

and 1TB of HDD. The results section is divided into three subsec-

tions. Namely, section 5.3.1 shows the resources’ usage to enable

the comparison between the two kernels’ complexity, the speed per-

formance results are presented in sections 5.3.2 and section 5.3.3

shows the benchmark results when tested against the CDnet2012

and CDnet2014 datasets.

5.3.1 Resources Usage

The resources’ usage are given the report generated by the aoc af-

ter the successful completion of the kernel compilation, which can

take several hours (typically between 6h and 24h depending on the

kernel complexity for the DE10pro). The resources’ usage for the

compilation of the NeuroHSMDv1 kernels is given in table 5.1 and

the NeuroHSMDv2 kernel in table 5.2.

170

5.3 Results

Table 5.1 NeuroHSMDv1 resources usage

Summary
Info
Project Name snn pc v1
Target Family, Device, Board Stratix 10, 1SG280LU3F50E1VGS1, de10 pro:s10 sh2e1 4Gx2
AOC Version 19.1.0 Build 240
Quartus Version 19.1.0 Build 240 Pro
Command aoc device/snn pci v1.cl -o bin acl/snn pci v1.aocx

-v -report -board=s10 sh2e1 4Gx2 -incremental

Quartus Fit Clock Summary
Frequency (MHz) 306.25 (fmax)

Quartus Fit Resource Utilisation Summary
ALMs FFs RAMs digital signal processings (DSPs) MLABs

Full design (all kernels) 387168.7 985558 2231 1408 4766
snn 488257.1 1060084 2484 1024 3871

Kernel Summary

Kernel Name Kernel Type Autorun Workgroup Size # Compute Units
Hyper-Optimised
Handshaking

snn 488257.1 1060084 2484 1024 3871

Estimated Resource Usage
Kernel Name ALUs FFs RAMs DSPs MLABs

snn 488257.1 1060084 2484 1024 3871
Global Interconnect 10629 16485 61 0 0
Board Interface 13132 20030 112 0 0
System description ROM 2 71 2 0 0
Total 567523 (30%) 907449 (24%) 2963 (25%) 976 (17%) 3786
Available 1866240 3732480 11721 5760 0

Compile Warnings
None

From the analysis of table 5.1 can be seen that the estimated

resource utilisation is more pessimistic than the final resources’ util-

isation, which is a direct consequence of the Intel Quartus’ optimi-

sations during the synthesis and routing phases and to ensure that

the circuit fits in the FPGA device. Nevertheless, it takes about 5

minutes to get the estimated resources usage and between 6 and 24

hours to get the resource usage summary. Therefore, it is a good

practise to define the coefficient N in the statement # PRAGMA

UNROLL N based on the estimated resources’ usage.

171

5.3 Results

Table 5.2 NeuroHSMDv2 resources usage

Summary
Info
Project Name snn pci v2
Target Family, Device, Board Stratix 10, 1SG280LU3F50E1VGS1, de10 pro:s10 sh2e1 4Gx2
AOC Version 19.1.0 Build 240
Quartus Version 19.1.0 Build 240 Pro
Command aoc device/snn pci v2.cl -o bin acl/snn pci v2.aocx

-board=s10 sh2e1 4Gx2 -v -report -incremental

Quartus Fit Clock Summary
Frequency (MHz) 300 (Kernel fmax)

Quartus Fit Resource Utilisation Summary
ALMs FFs RAMs DSPs MLABs

snn 486808.4 1034661 2486 1024 3933

Kernel Summary

Kernel Name Kernel Type Autorun Workgroup Size # Compute Units
Hyper-Optimised
Handshaking

snn Single work-item No 1,1,1 1 Off

Estimated Resource Usage
Kernel Name ALUs FFs RAMs DSPs MLABs

snn 530436 844793 2868 976 3844
Global Interconnect 10629 16485 61 0 0
Board Interface 13132 20030 112 0 0
System description ROM 2 71 2 0 0
Total 554199 (30%) 881379 (24%) 3043 (26%) 976 (17%) 3844
Available 1866240 3732480 11721 5760 0

Compile Warnings
None

.

Again, from the analysis of table 5.2 it can be seen that the es-

timated resource utilisation is higher than the actual resource utili-

sation as a consequence of the Intel Quartus’s optimisations during

the synthesis and routing phases.

The NDK v2 consumes 1448.7 ALMs less, 25423 FFs less, 2

RAMs less and the same number of DSPs as the NDK v1. Nev-

ertheless, the NDK v2 kernel max frequency is 300MHz, while the

NDK v1 kernel max frequency is 306.25 MHz. The NDK v2 enables

the saving of less than 1% of resources and introduces a 2% increase

in latency.

172

5.3 Results

To ensure the best use of FPGA resources, the coefficient N

should always be a multiple of 2n. For example, the resources’

usage of N = 48 is equivalent to N = 64. Moreover, both NDKs

had failed to compile when N = 32 because there was not enough

ALUs. The design required more ALUs than those available on the

device, violating the compilation rules because the design would not

fit on the device.

5.3.2 Speed performance

Table 5.3 displays the speed results obtained for the four algorithms

tested against the CDnet2012.

173

5.3 Results

Table 5.3 CDnet2012 speed result

Category no. imgs height width NeuroHSMDv2 NeuroHSMDv1 HSMDv2 HSMDv1
baseline/PETS2006 1199 576 720 23.66 20.45 8.40 9.73
cameraJitter/badminton 1149 480 720 28.33 25.48 10.01 11.50
dynamicBackground/fall 3999 480 720 27.28 25.01 9.87 11.08
shadow/copyMachine 3399 480 720 28.56 25.86 10.04 10.98
dynamicBackground/fountain01 1183 288 432 55.17 58.30 27.40 29.99
dynamicBackground/fountain02 1498 288 432 56.12 58.13 27.64 30.37
intermittentObjectMotion/abandonedBox 4499 288 432 55.93 58.45 26.88 29.89
intermittentObjectMotion/tramstop 3199 288 432 55.35 58.66 27.05 29.59
thermal/park 599 288 352 55.72 59.96 28.99 33.02
shadow/peopleInShade 1198 244 380 66.85 74.06 36.05 38.74
baseline/highway 1699 240 320 72.48 85.70 46.97 53.00
baseline/office 2049 240 360 69.49 78.86 40.24 46.71
baseline/pedestrians 1098 240 360 69.59 78.73 40.18 47.00
cameraJitter/boulevard 2499 240 352 68.96 78.81 41.21 46.98
cameraJitter/sidewalk 1199 240 352 69.04 78.54 39.49 47.32
cameraJitter/traffic 1569 240 320 72.17 85.29 43.95 51.40
dynamicBackground/boats 7998 240 320 71.86 84.29 45.33 51.70
dynamicBackground/canoe 1188 240 320 71.98 83.86 44.15 52.95
dynamicBackground/overpass 2999 240 320 71.98 84.56 43.69 49.31
intermittentObjectMotion/parking 2499 240 320 72.98 85.21 44.68 48.55
intermittentObjectMotion/sofa 2749 240 320 73.56 86.46 44.37 47.96
intermittentObjectMotion/streetLight 3199 240 320 72.01 84.95 44.31 47.76
intermittentObjectMotion/winterDriveway 2499 240 320 72.98 85.88 44.72 49.21
shadow/backdoor 1999 240 320 72.06 85.77 44.21 48.87
shadow/bungalows 1699 240 360 68.61 78.36 39.80 42.25
shadow/busStation 1249 240 360 68.79 78.78 39.85 42.91
shadow/cubicle 7399 240 352 70.87 80.47 41.07 44.52
thermal/corridor 5399 240 320 73.80 87.01 44.58 48.10
thermal/diningRoom 3699 240 320 73.38 86.60 44.38 47.82
thermal/lakeSide 6499 240 320 73.91 86.80 45.62 49.64
thermal/library 4899 240 320 74.83 87.05 44.40 49.36

Best results are highlighted using grey.

From Table 5.3 can be seen that both the NeuroHSMDv1 and

NeuroHSMDv2 have performed better than the software versions

(i.e. HSMDv1 and HSMDv2). It is also apparent that the Neu-

roHSMDv2 performs better in images with higher resolution (i.e.

720× 480 and 720× 576) while the NeuroHSMDv1 in lower resolu-

tions (i.e below 720× 480). Although the HSMDv2 is always faster

than the HSMDv1 (non-opimised version), the NeuroHSMDv2 is

only more efficient for resolutions above 288×432 and NeuroHSMDv2

is faster for lower size images. This is because FPGA optimisations

174

5.3 Results

require the utilisation of more resources, which might increase la-

tency.

Overall, the NeuroHSMDv1 had an average frame rate of 71.50

fps, NeuroHSMDv2 63.20 fps, HSMDv1 40.26 fps, HSMDv2 36.11

fps. Finally, the average frame rate for processing images with the

native resolution of 720 × 480 per algorithm is i) NeuroHSMDv2

28.06 fps, NeuroHSMDv1 25.45 fps, HSMDv2 11.19 fps and HSMDv1

9.97 fps.

The speed results obtained for the four algorithms when tested

against the CDnet2014 are depicted in table 5.4

Table 5.4 shows that the NeuroHSMDv1 and NeuroHSMDv2

have performed better than the software versions (i.e. HSMDv1 and

HSMDv2) when tested against the CDnet2014 dataset. Once again,

the NeuroHSMDv2 performs better in images with higher resolution

(i.e. equal or higher than 480 × 295) while the NeuroHSMDv1 in

lower resolutions (i.e below 480× 295). Again, the NeuroHSMDv2

is only more efficient for resolutions above 288× 432 because of the

complexity and latency introduced by the optimisation circuit.

Overall, the NeuroHSMDv1 has an average frame rate of 43.51

fps, NeuroHSMDv2 39.94 fps, HSMDv2 29.30 fps, and HSMDv1

25.18 fps. It is essential to highlight that the CDnet2014 has more

categories and image sequences, leading to different frame rates for

175

5.3 Results

Table 5.4 CDnet2014 speed results

Category no. imgs height width NeuroHSMDv2 NeuroHSMDv1 HSMDv2 HSMDv1
badWeather/blizzard 6999 480 720 29.70 24.55 10.12 11.21
badWeather/snowFall 6499 480 720 29.61 24.31 10.16 11.11
badWeather/wetSnow 3499 540 720 26.54 21.76 8.93 10.19
baseline/PETS2006 1199 576 720 25.04 20.36 8.52 9.53
cameraJitter/badminton 1149 480 720 28.58 25.07 9.80 11.00
dynamicBackground/fall 3999 480 720 27.48 24.75 13.90 10.96
shadow/copyMachine 3399 480 720 28.76 25.66 14.10 11.51
turbulence/turbulence0 4999 480 720 28.59 25.07 14.26 11.62
turbulence/turbulence1 3999 480 720 28.24 25.21 14.28 11.35
turbulence/turbulence3 2199 486 720 28.72 25.15 14.07 11.49
PTZ/continuousPan 1699 480 704 28.49 23.91 9.88 10.85
lowFramerate/tunnelExit 0 35fps 3999 440 700 31.45 28.23 15.94 12.47
nightVideos/fluidHighway 1363 450 700 31.17 27.64 15.27 12.10
turbulence/turbulence2 4499 315 645 41.85 39.59 23.90 18.93
lowFramerate/port 0 17fps 2999 480 640 31.35 28.17 15.75 12.39
lowFramerate/tramCrossroad 1fps 899 350 640 39.51 36.73 21.37 16.71
nightVideos/busyBoulvard 2759 364 640 38.86 36.00 20.90 16.43
nightVideos/bridgeEntry 2499 430 630 34.52 31.85 17.90 14.20
nightVideos/winterStreet 1784 420 624 35.92 32.57 18.26 14.52
nightVideos/streetCornerAtNight 5199 245 595 52.86 51.56 32.83 25.35
PTZ/twoPositionPTZCam 2299 340 570 43.30 41.11 17.91 18.92
PTZ/intermittentPan 3499 368 560 40.65 38.52 16.39 17.71
badWeather/skating 3899 360 540 43.00 40.79 17.20 19.08
nightVideos/tramStation 2999 295 480 53.15 52.62 33.46 26.15
dynamicBackground/fountain01 1183 288 432 55.38 57.06 37.95 30.16
dynamicBackground/fountain02 1498 288 432 56.56 56.97 38.22 30.49
intermittentObjectMotion/abandonedBox 4499 288 432 55.64 58.03 38.19 30.26
intermittentObjectMotion/tramstop 3199 288 432 56.58 57.56 38.03 28.99
shadow/peopleInShade 1198 244 380 67.31 71.54 49.84 41.11
baseline/office 2049 240 360 71.72 75.86 37.85 45.39
baseline/pedestrians 1098 240 360 70.75 75.87 40.13 45.66
shadow/bungalows 1699 240 360 69.25 75.88 55.53 45.12
shadow/busStation 1249 240 360 69.51 74.76 55.41 46.24
cameraJitter/boulevard 2499 240 352 70.44 75.44 39.33 42.60
cameraJitter/sidewalk 1199 240 352 69.44 75.95 38.54 42.36
shadow/cubicle 7399 240 352 71.78 77.42 57.46 46.65
thermal/park 599 288 352 57.07 58.39 43.26 36.78
PTZ/zoomInZoomOut 1129 240 320 72.70 80.89 41.94 44.97
baseline/highway 1699 240 320 74.12 82.40 42.85 46.89
cameraJitter/traffic 1569 240 320 72.87 81.54 40.97 45.95
dynamicBackground/boats 7998 240 320 73.14 82.14 60.35 47.99
dynamicBackground/canoe 1188 240 320 72.64 81.62 61.19 46.91
dynamicBackground/overpass 2999 240 320 72.85 82.26 61.72 50.00
intermittentObjectMotion/parking 2499 240 320 73.56 81.88 61.94 51.23
intermittentObjectMotion/sofa 2749 240 320 73.57 82.95 62.15 47.82
intermittentObjectMotion/streetLight 3199 240 320 72.77 82.48 62.27 48.13
intermittentObjectMotion/winterDriveway 2499 240 320 74.19 82.81 62.96 48.48
lowFramerate/turnpike 0 5fps 1499 240 320 73.10 82.38 60.99 46.52
shadow/backdoor 1999 240 320 73.73 83.84 62.82 51.77
thermal/corridor 5399 240 320 74.86 83.65 62.48 51.11
thermal/diningRoom 3699 240 320 74.42 83.86 62.34 50.98
thermal/lakeSide 6499 240 320 74.93 83.60 63.23 51.68
thermal/library 4899 240 320 75.79 83.72 62.17 47.23

Best results are highlighted using grey.

176

5.3 Results

the CDnet2012 and CDnet2014 datasets.

The average frame rate for processing images with the native

resolution of 720×480 per algorithm was i) NeuroHSMDv2 28.71 fps,

NeuroHSMDv1 24.95 fps, HSMDv2 12.37 fps and HSMDv1 11.25

fps. These results are in line with the results obtained for the 4

algorithms when tested against the CDnet2012 dataset.

5.3.3 Benchmark

Table 5.5 shows the results obtained after testing the 4 methods

against the CDnet2012 ground-truth images using the scripts pro-

vided by Nil Goyette et al. [9].

Table 5.5 CDnet2012 Overall ranks

Method RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMDv1 1 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
HSMDv2 1 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
NeuroHSMDv1 1 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
NeuroHSMDv2 1 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62

↑: the highest score is the best.
↓: the lowest result is the best.
All the 4 methods were ranked first because no changes were made to the
customised SNN. Re stands for Recall, Sp Specificity, FPR False Positive Rate,
FNR False Negative Rate, WCR Wrong Classifications Rate, CCR Correct
Classifications Rate, Pr Precision, F1 F-score and RC Average Ranking across
all Categories.

From the results shown in Table 5.5 it is possible to infer that

the results obtained with the four methods are equivalent because

all the methods were ranked in first place with the same values per

177

5.3 Results

metric. Indexing all the algorithms in the first place was expected

because the speed optimisation in version 2 of the NeuroHSMD and

HSMD should not interfere with the model dynamics.

Table 5.6 depicts the results obtained after testing 4 methods

against the CDnet2014 ground-truth images using the scripts pro-

vided by Nil Goyette et al. [9].

Table 5.6 CDnet2014 Overall ranks

Method RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMDv1 1 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
HSMDv2 1 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
NeuroHSMDv1 1 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
NeuroHSMDv2 1 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60

↑: the highest score is the best.
↓: the lowest result is the best.
All the 4 methods were ranked first because no changes were made to the
customised SNN. Re stands for Recall, Sp Specificity, FPR False Positive Rate,
FNR False Negative Rate, WCR Wrong Classifications Rate, CCR Correct
Classifications Rate, Pr Precision, F1 F-score and RC Average Ranking across
all Categories.

From the results shown in Table 5.6 it is possible to infer that

the results obtained with the four methods are probably the same

because the four methods were ranked, again, in first place with the

same values per metric. These results are important because it is

possible to infer that there has been no degradation in accuracy as

a consequence of the hardware acceleration.

178

5.4 Discussion

5.4 Discussion

Two bio-inspired NeuroHSMD have been proposed to accelerate

the HSMD algorithm that was discussed in Chapter4. The Neu-

roHSMDv1 and NeuroHSMDv2 (speed optimisation) were tested

against the CDnet2012 and CDnet2014 datasets. The NeuroHSMDv1

has lower latency when processing images with resolutions equal to

or greater than 480 × 295. The NeuronHSMDv2 (speed optimisa-

tion) has a lower latency when processing images with resolutions

smaller than 480 × 295. To ensure a fair comparison between the

software and hardware implementations, two HSMD versions were

used (HSMDv1 is the same algorithm described in Chapter 4 and

HSMDv2 with speed optimisation).

The HSMDv1, HSMDv2, NeuroHSMDv1 and NeuroHSMDv2

were all tested on the same computer equipped with a quad-core

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 16GB of DDR3 @

1600 MHz and 1TB of HDD. The average frame rate for process-

ing images with the native resolution of 720×480 per algorithm was:

CDnet2012:

i) NeuroHSMDv2 28.06 fps, NeuroHSMDv1 25.45 fps, HSMDv2

179

5.4 Discussion

11.19 fps and HSMDv1 9.97 fps

CDnet2014:

i) NeuroHSMDv2 28.71 fps, NeuroHSMDv1 24.95 fps, HSMDv2

12.37 fps and HSMDv1 11.25 fps

The four methods were also tested against the ground-truth im-

ages available in the CDnet2012 and CDnet2014 datasets using the

eight metrics, which were used to assess and compare the quality of

the HSMD algorithm. The four methods obtained the same values

for all the metrics and were all ranked first. The first place acquired

by the four methods is an indication that there was no degradation

in the hardware acceleration.

Future work includes optimising the HSMD algorithm to detect

and track motion in challenging scenarios (e.g. low frame rate, dy-

namic background, and camera jitter) and an investigation to ver-

ify if the SNN improves the remaining methods’ output. It is also

planned to implement and evaluate more complex retinal cells (such

as predictive cells) using SNNs, as well as assess the effectiveness of

BS algorithms in optimising and accelerating such complex retinal

180

5.4 Discussion

cells using FPGA technology.

181

Chapter 6

Discussion and Future work

6.1 Main contributions

Retinal cells are highly efficient in performing primary steps in pro-

cessing of natural images. The retina performs visual tasks such as

object movement sensitivity, looming, fast response to fast stimuli,

and even prediction.

The first goal of the PhD research programme (see chapter 2) was

to investigate and replicate the basic functionalities of DSGCs (such

as detecting horizontal and vertical movements and more generic

object motions). This PhD research programme’s second objective

was to explore the use of SNNs for implementing bio-inspired ob-

ject motion detectors inspired by the OMS-GC. The third and final

objective was to optimise the object motion detector, using FPGA

technology to improve the latency by accelerating SNN and reduc-

ing the dynamic power consumption associated with high-frequency

182

6.1 Main contributions

clocks.

The MHSNN architecture presented in Chapter 3 contributes to

the first and second objectives of this PhD research programme.

MHSNN’s main contributions are:

1. Layer 1 edge detection

2. Extraction of direction motion features in Layer 2;

3. Extraction of movement features in Layer 3;

4. Movement detection in Layer 4.

Therefore, the MHSNN outputs reflect object motion detection

in vertebrate retinas. The most straightforward behaviour shown

by DSGCs, horizontal and vertical movement detection, was mod-

elled. Experiments were carried out using a semisynthetic dataset of

a black cylinder performing leftwards, rightwards, downwards and

upwards movement. A CODD algorithm that combined the seven

BS available in the OpenCV library was implemented to bench-

mark against the MHSNN. The MHSNN was ranked first in terms

of the PCC and exhibited the lowest PWC detecting the motion

direction when tested against the semisynthetic dataset. Although

the MHSNN could be adapted for modelling other types of gan-

183

6.1 Main contributions

glion cells, such as looming (sensitive to approach and recede move-

ments), fast-response (sensitive to fast movements) and predictive

(predicting movement trajectories) cells, the MHSNN is not a scal-

able architecture because of the required number of neurons and

synapses (above 17000 neurons and 173700 synapses for processing

40 × 40 pixels image, see Chapter 3). Nevertheless, the number of

neurons and synapses can be substantially decreased by combining

SNN with existing BS algorithms.

The MHSNN architecture lead to the development of a bio-

inspired HSMD discussed in Chapter 4, to detect object motion

and assess against the CDnet2012 and CDnet2014 datasets. The

HSMD contributes to the first and second objectives of this PhD

research programme. These incorporate video sequences of many

moving objects under various challenging environmental conditions

and are widely used for benchmarking background subtraction al-

gorithms. The CDnet2012 is composed of five categories of move-

ments, and the CDnet2014 augments the initial five to eleven cat-

egories of movements. Eight metrics, utilised as standard in the

change detection datasets, were used to assess and compare the

quality of the HSMD algorithm. The HSMD algorithm performed

overall best in both the CDnet2012 and CDnet2014 while perform-

184

6.1 Main contributions

ing better than all the tested BS algorithms in the intermittent

object motion, night videos, thermal and turbulence categories, it

performs second-best in the bad weather category and the third-

best in the baseline and shadow categories. The comparatively good

results are a consequence of using the SNN for emulating the ba-

sic functionality of OMS-GC, which improves the sensitivity of the

HSMD to object motion. The HSMD is also the first hybrid SNN

algorithm capable of processing video/image sequences in near real-

time (i.e. 720×480@13.82fps [CDnet2014] and 720×480@13.92fps

[CDnet2012]).

Finally, in Chapter 5, two bio-inspired NeuroHSMD have been

proposed to accelerate the HSMD algorithm that was discussed in

Chapter4. The NeuroHSMD algorithm contributes to all the ob-

jectives of this PhD research programme. The NeuroHSMDv1 and

NeuroHSMDv2 (speed optimisation) were tested against the CD-

net2012 and CDnet2014 datasets. The NeuroHSMDv2 (speed opti-

misation) has lower latency when processing higher resolution im-

ages (equal to or greater than 480 × 295). The NeuronHSMDv1

has a lower latency when processing images with lower resolutions

(smaller or equal to 480 × 295). Both versions of the NeuroHSMD

algorithms have produced the same results as the original HSMD

185

6.2 Future work

algorithm reported in Chapter 4. The average frame rate for pro-

cessing images with the native resolution of 720×480 per algorithm

was

CDnet2012:

i) NeuroHSMDv2 28.06 fps, NeuroHSMDv1 25.45 fps, HSMDv2

11.19 fps and HSMDv1 9.97 fps

CDnet2014:

i) NeuroHSMDv2 28.71 fps, NeuroHSMDv1 24.95 fps, HSMDv2

12.37 fps and HSMDv1 11.25 fps.

6.2 Future work

Future work on the MHSNN includes replacing the first two layers

by BS algorithms to reduce the number of neurons and synapses and

test it on natural images. It is also planned to adapt the MHSNN

to detect approach and receding movements. At the same time, it is

also planned to benchmark the MHSNN’s SNN inference on CPUs,

FPGAs and GPUs and compare the power consumption profiles of

each solution. The power consumption and the PCC will be used

to justify the technology (or technologies) to be utilised to design

intelligent cameras to run variants of the MHSNN.

HSMD future work includes optimising the HSMD algorithm to

186

6.2 Future work

detect and track motion in challenging scenarios (e.g. low frame

rate, dynamic background, and camera jitter). It is further planned

to investigate if the SNN used in the HSMD also improves other

OpenCV BS methods. Furthermore, the author will also test if the

SNN can enhance other BS algorithms available on the OpenCV li-

brary. Simultaneously, it is also planned to benchmark the HSMD’s

SNN inference on CPUs, FPGAs and GPUs and compare the differ-

ent power consumption profiles. The same methodology that was

used to develop the HSMD algorithm will also be used to model

more complex retinal cells such as the fast-response and predictive

cells [18].

Future work for NeuroHSMD includes optimising the custom

SNN to fit into low-cost Processor System (PS) and FPGA on the

same chip (PS-FPGA), which could deliver the next-generation of

intelligent cameras. The author also aims to convert the OpenCL

kernels into Compute Unified Device Architecture (CUDA) kernels

and evaluate the NeuroHSMD performance on a processor system

and GPU on the same chip (PS-GPU). This will lead to development

of new intelligent motion detectors which can be used in different

fields from crowd monitoring to ADAS. The knowledge gathered

in this PhD research programme about porting complex SNN into

187

6.2 Future work

FPGAs using OpenCL will also be used for porting complex retinal

cells (e.g. fast-response and predictive GCs) and other parallelisable

algorithms that can be accelerated using dedicated hardware.

188

Appendix

The MHSNN architecture presented in Chapter 3 was published on

the Conference proceedings of the International Joint Conferences

on Neural Networks 2018 [293].

P. Machado, A. Oikonomou, G. Cosma and T. M. McGinnity, ”Bio-

Inspired Ganglion Cell Models for Detecting Horizontal and Vertical

Movements” 2018 International Joint Conference on Neural Net-

works (IJCNN), 2018, pp. 1-8, doi: 10.1109/IJCNN.2018.8489439.

The HSMD algorithm presented in Chapter 4 was published on

the IEEE Access [318]. P. Machado, A. Oikonomou, J. F. Fer-

reira and T. M. McGinnity, ”HSMD: An object motion detection

algorithm using a Hybrid Spiking Neural Network Architecture,” in

IEEE Access, doi: 10.1109/ACCESS.2021.3111005.

The NeuroHSMD algorithm presented in Chapter 5 was submit-

ted to the ACM Transactions on Reconfigurable Technology and

Systems.

189

References

[1] H. Kolb, “Simple anatomy of the retina by helga

kolb. webvision,” 2011. Available online, https:

//webvision.med.utah.edu/book/part-i-foundations/

simple-anatomy-of-the-retina/, last accessed: 2021-04-

09. xi, 12, 13

[2] Chegg, “Learn About Structure Of Retina — Chegg.com.”

Available online, https://www.chegg.com/learn/biology/

anatomy-physiology-in-biology/structure-of-retina,

last accessed: 2021-06-26. xi, 14

[3] A. L. Hodgkin and A. F. Huxley, “A quantitative description

of membrane current and its application to conduction and

excitation in nerve,” The Journal of physiology, vol. 117, no. 4,

p. 500, 1952. xi, 16, 17

[4] W. Gerstner and W. M. Kistler, Spiking Neuron Models. Cam-

bridge: Cambridge University Press, 2002. xii, 16, 17, 18, 19,

120

190

https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://www.chegg.com/learn/biology/anatomy-physiology-in-biology/structure-of-retina
https://www.chegg.com/learn/biology/anatomy-physiology-in-biology/structure-of-retina

REFERENCES

[5] E. M. Izhikevich, “Which model to use for cortical spiking neu-

rons?,” IEEE transactions on neural networks, vol. 15, no. 5,

pp. 1063–1070, 2004. xii, 18, 19, 20

[6] P. Martinez-Canada, C. Morillas, B. Pino, E. Ros, and

F. Pelayo, “A computational framework for realistic retina

modeling,” International Journal of Neural Systems, vol. 26,

no. 07, p. 1650030, 2016. xii, 21, 22, 23

[7] H. Kolb, E. Fernandez, and R. Nelson, “The organization of

the retina and visual system,” Webvision-The Organization of

the Retina and Visual System, 2005. xiii, 15, 78, 79, 88

[8] F. Ponulak and A. Kasiński, “Supervised learning in spiking

neural networks with resume: sequence learning, classifica-

tion, and spike shifting,” Neural computation, vol. 22, no. 2,

pp. 467–510, 2010. xiii, 66, 89, 90

[9] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ish-

war, “Changedetection. net: A new change detection bench-

mark dataset,” in 2012 IEEE computer society conference on

computer vision and pattern recognition workshops, pp. 1–8,

IEEE, 2012. xv, 8, 9, 28, 39, 46, 47, 118, 127, 129, 130, 169,

177, 178

191

REFERENCES

[10] Intel, “Intel Stratix 10 Logic Array Blocks and

Adaptive Logic Modules User Guide,” 2020. Avail-

able online, https://www.intel.com/content/

www/us/en/docs/programmable/683665/current/

logic-array-blocks-and-adaptive-logic-24877.html,

last accessed: 2021-04-02. xvii, 151

[11] Intel, “FPGA vs. GPU for Deep Learning Applications – In-

tel.” xvii, 146, 153

[12] Intel, “Intel Stratix 10 Device Design Guidelines,” 2020.

Available online, https://www.intel.com/content/

www/us/en/docs/programmable/683738/current/

device-design-guidelines.html, last accessed: 2021-

04-02. xvii, 153

[13] Intel, “Intel FPGA SDK for OpenCL Pro Edi-

tion: Programming Guide,” 2021. Available on-

line, https://www.intel.com/content/www/us/en/

programmable/documentation/mwh1391807965224.html,

last accessed: 2021-04-09. xvii, 157, 158, 159

[14] Terasic, “Terasic - DE10-Pro,” 2021. Available onine,

https://www.terasic.com.tw/cgi-bin/page/archive.

192

 https://www.intel.com/content/www/us/en/docs/programmable/683665/current/logic-array-blocks-and-adaptive-logic-24877.html
 https://www.intel.com/content/www/us/en/docs/programmable/683665/current/logic-array-blocks-and-adaptive-logic-24877.html
 https://www.intel.com/content/www/us/en/docs/programmable/683665/current/logic-array-blocks-and-adaptive-logic-24877.html
https://www.intel.com/content/www/us/en/docs/programmable/683738/current/device-design-guidelines.html
https://www.intel.com/content/www/us/en/docs/programmable/683738/current/device-design-guidelines.html
https://www.intel.com/content/www/us/en/docs/programmable/683738/current/device-design-guidelines.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&No=1144&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&No=1144&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&No=1144&PartNo=2

REFERENCES

pl?Language=English&CategoryNo=13&No=1144&PartNo=2,

last accessed: 2021-07-31. xvii, 159, 160

[15] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Rey-

boz, E. Vianello, and E. Beigne, “Spiking neural networks

hardware implementations and challenges: A survey,” ACM

Journal on Emerging Technologies in Computing Systems

(JETC), vol. 15, no. 2, pp. 1–35, 2019. xix, 64, 65

[16] M.-N. Chapel and T. Bouwmans, “Moving objects detection

with a moving camera: A comprehensive review,” Computer

science review, vol. 38, p. 100310, 2020. 1, 2, 3, 29, 32, 36, 37,

44, 49, 115, 116, 117

[17] B. Garcia-Garcia, T. Bouwmans, and A. J. R. Silva, “Back-

ground subtraction in real applications: Challenges, current

models and future directions,” Computer Science Review,

vol. 35, p. 100204, 2020. 1, 29, 32, 36, 37, 115, 116

[18] T. Gollisch and M. Meister, “Eye smarter than scientists be-

lieved: neural computations in circuits of the retina,” Neuron,

vol. 65, no. 2, pp. 150–164, 2010. 2, 15, 29, 78, 88, 118, 119,

187

[19] C. Trujillo Herrera and J. G. Labram, “A perovskite

193

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&No=1144&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&No=1144&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&No=1144&PartNo=2

REFERENCES

retinomorphic sensor,” Applied Physics Letters, vol. 117,

p. 233501, dec 2020. 2

[20] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Rey-

boz, E. Vianello, and E. Beigne, “Spiking neural networks

hardware implementations and challenges: A survey,” ACM

Journal on Emerging Technologies in Computing Systems

(JETC), vol. 15, no. 2, pp. 1–35, 2019. 2, 3

[21] H. Kolb, “How the retina works: Much of the construction

of an image takes place in the retina itself through the use of

specialized neural circuits,” American scientist, vol. 91, no. 1,

pp. 28–35, 2003. 2, 29, 80

[22] B. Garcia-Garcia, T. Bouwmans, and A. J. R. Silva, “Back-

ground subtraction in real applications: Challenges, current

models and future directions,” Computer Science Review,

vol. 35, p. 100204, 2020. 2, 3, 29, 36

[23] U. Illahi and M. S. Mir, “Comparative analysis of background

subtraction and cnn algorithms for mid-block traffic data col-

lection and classification,” Int J Math Eng Manag Sci, vol. 5,

no. 6, pp. 1440–1451, 2020. 2, 3

[24] G. Rebala, A. Ravi, and S. Churiwala, “Machine learning def-

194

REFERENCES

inition and basics,” in An Introduction to Machine Learning,

pp. 1–17, Springer, 2019. 3

[25] J. Von Neumann, “First draft of a report on the edvac,” Moore

School, University of Pennsylvania, 1945. 4

[26] M. ZHANG, G. Zonghua, and P. Gang, “A survey of neuro-

morphic computing based on spiking neural networks,” Chi-

nese Journal of Electronics, vol. 27, no. 4, pp. 667–674, 2018.

4

[27] S. Blank, “What the GlobalFoundries’ Retreat Really

Means - IEEE Spectrum,” 2018. Available online, https:

//spectrum.ieee.org/nanoclast/semiconductors/

devices/what-globalfoundries-retreat-really-means,

last accessed: 2021-07-21. 4

[28] Intel, “Intel FPGA SDK for OpenCL Pro Edition Best Prac-

tices Guide,” 2021. Available online, https://www.intel.

com/content/www/us/en/docs/programmable/683521/

21-4/introduction-to-pro-edition-best-practices.

html, last accessed: 2021-04-02. 4, 63, 154

[29] Xilinx and Inc, “ AXI Reference Guide UG761,” 2011. Avail-

able online, https://www.xilinx.com/support/documents/

195

https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://www.intel.com/content/www/us/en/docs/programmable/683521/21-4/introduction-to-pro-edition-best-practices.html
https://www.intel.com/content/www/us/en/docs/programmable/683521/21-4/introduction-to-pro-edition-best-practices.html
https://www.intel.com/content/www/us/en/docs/programmable/683521/21-4/introduction-to-pro-edition-best-practices.html
https://www.intel.com/content/www/us/en/docs/programmable/683521/21-4/introduction-to-pro-edition-best-practices.html
https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf

REFERENCES

ip_documentation/axi_ref_guide/latest/ug761_axi_

reference_guide.pdf, last accessed: 2021-07-21. 4

[30] V. Samsonov, “Improvement of the background

subtraction algorithm,” 2017. Available online,

https://summerofcode.withgoogle.com/archive/2017/

projects/6453014550282240/, last accessed: 23/11/2020.

8, 39, 117, 118, 120

[31] OpenCV, “OpenCV: Operations on arrays,” 2021. Available

online, https://docs.opencv.org/3.4/d4/dd5/classcv_

1_1bgsegm_1_1BackgroundSubtractorGSOC.html, last

accessed: 2021-05-27. 8, 9, 39, 117

[32] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth,

and P. Ishwar, “Cdnet 2014: An expanded change detection

benchmark dataset,” in Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pp. 387–

394, 2014. 8, 28, 38, 39, 47, 118, 127, 129, 130, 169

[33] Intel, “Using Intel FPGA SDK for OpenCL on DE-Series

Boards,” 2019. Available online, https://ftp.intel.com/

Public/Pub/fpgaup/pub/Teaching_Materials/current/

Tutorials/OpenCL_On_DE_Series_Boards.pdf, last ac-

cessed: 2021-04-02. 9, 149, 154

196

https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documents/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
https://summerofcode.withgoogle.com/archive/2017/projects/6453014550282240/
https://summerofcode.withgoogle.com/archive/2017/projects/6453014550282240/
https://docs.opencv.org/3.4/d4/dd5/classcv_1_1bgsegm_1_1BackgroundSubtractorGSOC.html
https://docs.opencv.org/3.4/d4/dd5/classcv_1_1bgsegm_1_1BackgroundSubtractorGSOC.html
https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/OpenCL_On_DE_Series_Boards.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/OpenCL_On_DE_Series_Boards.pdf
https://ftp.intel.com/Public/Pub/fpgaup/pub/Teaching_Materials/current/Tutorials/OpenCL_On_DE_Series_Boards.pdf

REFERENCES

[34] Kronos, “OpenCL Overview,” 2021. Available online, https:

//www.khronos.org/opencl/, last accessed: 2021-04-02. 9,

149

[35] R. Cajal, “The Structure of the Retina,” hTorpe SA, Glick-

stein M, translators., 1892. 12

[36] M. Piccolino, “Cajal and the retina: a 100-year retrospective,”

Trends in neurosciences, vol. 11, no. 12, pp. 521–525, 1988. 12

[37] R. H. Masland, “The fundamental plan of the retina,” Nature

neuroscience, vol. 4, no. 9, pp. 877–886, 2001. 12

[38] B. Bosze, R. B. Hufnagel, and N. L. Brown, “Chapter 21

- specification of retinal cell types,” in Patterning and Cell

Type Specification in the Developing CNS and PNS (Second

Edition) (J. Rubenstein, P. Rakic, B. Chen, and K. Y. Kwan,

eds.), pp. 481–504, Academic Press, second edition ed., 2020.

13

[39] M. M. Garvert and T. Gollisch, “Local and global contrast

adaptation in retinal ganglion cells,” Neuron, vol. 77, no. 5,

pp. 915–928, 2013. 15

[40] T. Guo, D. Tsai, S. Bai, J. W. Morley, G. J. Suaning, N. H.

Lovell, and S. Dokos, “Understanding the retina: A review of

197

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

REFERENCES

computational models of the retina from the single cell to the

network level,” Critical Reviews™ in Biomedical Engineering,

vol. 42, no. 5, 2014. 15, 16, 33

[41] P. A. Roberts, E. A. Gaffney, P. J. Luthert, A. J. Foss, and

H. M. Byrne, “Mathematical and computational models of the

retina in health, development and disease,” Progress in retinal

and eye research, vol. 53, pp. 48–69, 2016. 15

[42] P. J. Vance, G. P. Das, D. Kerr, S. A. Coleman, T. M. McGin-

nity, T. Gollisch, and J. K. Liu, “Bioinspired approach to mod-

eling retinal ganglion cells using system identification tech-

niques,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 29, no. 5, pp. 1796–1808, 2017. 15

[43] Q. Fu, H. Wang, C. Hu, and S. Yue, “Towards computational

models and applications of insect visual systems for motion

perception: A review,” Artificial life, vol. 25, no. 3, pp. 263–

311, 2019. 15

[44] N. K. Kühn and T. Gollisch, “Activity correlations between

direction-selective retinal ganglion cells synergistically en-

hance motion decoding from complex visual scenes,” Neuron,

vol. 101, no. 5, pp. 963–976, 2019. 15

198

REFERENCES

[45] J. Nagumo, S. Arimoto, and S. Yoshizawa, “Impulses and

physiological states in models of nerve membrane,” in Proc.

Inst. Radio Engrs, vol. 50, pp. 2061–2070, 1962. 17

[46] C. Morris and H. Lecar, “Voltage oscillations in the barna-

cle giant muscle fiber,” Biophysical journal, vol. 35, no. 1,

pp. 193–213, 1981. 17

[47] R. Rose and J. Hindmarsh, “The assembly of ionic currents in

a thalamic neuron i. the three-dimensional model,” Proceed-

ings of the Royal Society of London. B. Biological Sciences,

vol. 237, no. 1288, pp. 267–288, 1989. 17

[48] A. O. Komendantov and N. I. Kononenko, “Deterministic

chaos in mathematical model of pacemaker activity in burst-

ing neurons of snail, helix pomatia,” Journal of theoretical

biology, vol. 183, no. 2, pp. 219–230, 1996. 17, 72

[49] H. R. Wilson, “Simplified dynamics of human and mammalian

neocortical neurons,” Journal of theoretical biology, vol. 200,

no. 4, pp. 375–388, 1999. 17

[50] F. Pelayo, A. Martinez, S. Romero, C. A. Morillas, E. Ros,

and E. Fernandez, “Cortical visual neuro-prosthesis for the

blind: retina-like software/hardware preprocessor,” in First

199

REFERENCES

International IEEE EMBS Conference on Neural Engineering,

2003. Conference Proceedings., pp. 150–153, IEEE, 2003. 20

[51] F. J. Pelayo, S. Romero, C. A. Morillas, A. Martinez,

E. Ros, and E. Fernandez, “Translating image sequences into

spike patterns for cortical neuro-stimulation,” Neurocomput-

ing, vol. 58, pp. 885–892, 2004. 20

[52] E. CORDIS, “Cortical visual neuroprosthesis for the blind

— CORTIVIS Project — FP5 — CORDIS — European

Commission.” Available online, https://cordis.europa.

eu/project/id/QLK6-CT-2001-00279, last accessed: 2021-

06-24. 20

[53] J. Jordan, H. Mørk, S. B. Vennemo, D. Terhorst, A. Peyser,

T. Ippen, R. Deepu, J. M. Eppler, A. van Meegen,

S. Kunkel, A. Sinha, T. Fardet, S. Diaz, A. Morrison,

W. Schenck, D. Dahmen, J. Pronold, J. Stapmanns, G. Tren-

sch, S. Spreizer, J. Mitchell, S. Graber, J. Senk, C. Linssen,

J. Hahne, A. Serenko, D. Naoumenko, E. Thomson, I. Ki-

tayama, S. Berns, and H. E. Plesser, “Nest 2.18.0,” June

2019. Available online, https://doi.org/10.5281/zenodo.

2605422, last accessed: 11/05/2022. 22, 23, 124

[54] R. A. Tikidji-Hamburyan, V. Narayana, Z. Bozkus, and T. A.

200

https://cordis.europa.eu/project/id/QLK6-CT-2001-00279
https://cordis.europa.eu/project/id/QLK6-CT-2001-00279
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.5281/zenodo.2605422

REFERENCES

El-Ghazawi, “Software for brain network simulations: a com-

parative study,” Frontiers in Neuroinformatics, vol. 11, p. 46,

2017. 22, 24

[55] D. F. Goodman and R. Brette, “The brian simulator,” Fron-

tiers in neuroscience, vol. 3, p. 26, 2009. 22, 23, 26, 67

[56] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an in-

tuitive and efficient neural simulator,” Elife, vol. 8, p. e47314,

2019. 23

[57] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “Spiking

neural networks and online learning: An overview and per-

spectives,” Neural Networks, vol. 121, pp. 88–100, 2020. 24

[58] D. Rasmussen, “Nengodl: Combining deep learning and neu-

romorphic modelling methods,” Neuroinformatics, vol. 17,

no. 4, pp. 611–628, 2019. 24

[59] L. Long and A. Gupta, “Biologically-inspired spiking neural

networks with hebbian learning for vision processing,” in 46th

AIAA Aerospace Sciences Meeting and Exhibit, p. 885, 2008.

24

[60] Q. Wu, T. M. McGinnity, L. P. Maguire, A. Belatreche, and

B. Glackin, “Processing visual stimuli using hierarchical spik-

201

REFERENCES

ing neural networks,” Neurocomputing, vol. 71, no. 10-12,

pp. 2055–2068, 2008. 24, 25

[61] Q. Wu, T. M. McGinnity, L. Maguire, J. Cai, and G. D.

Valderrama-Gonzalez, “Motion detection using spiking neu-

ral network model,” in International conference on intelligent

computing, pp. 76–83, Springer, 2008. 24, 25, 28

[62] R. Cai, Q. Wu, P. Wang, H. Sun, and Z. Wang, “Moving target

detection and classification using spiking neural networks,” in

International Conference on Intelligent Science and Intelligent

Data Engineering, pp. 210–217, Springer, 2011. 25

[63] J. Zylberberg, J. T. Murphy, and M. R. DeWeese, “A sparse

coding model with synaptically local plasticity and spiking

neurons can account for the diverse shapes of v1 simple cell

receptive fields,” PLoS computational biology, vol. 7, no. 10,

p. e1002250, 2011. 25

[64] E. Oja, “Simplified neuron model as a principal component

analyzer,” Journal of mathematical biology, vol. 15, no. 3,

pp. 267–273, 1982. 25

[65] D. Kerr, S. A. Coleman, T. M. McGinnity, and M. Clogen-

son, “Biologically inspired intensity and range image feature

202

REFERENCES

extraction,” in The 2013 International Joint Conference on

Neural Networks (IJCNN), pp. 1–8, IEEE, 2013. 25

[66] D. Kerr, T. M. McGinnity, S. Coleman, and M. Clogenson,

“A biologically inspired spiking model of visual processing for

image feature detection,” Neurocomputing, vol. 158, pp. 268–

280, 2015. 26

[67] A. Tavanaei and A. S. Maida, “Bio-inspired spiking convolu-

tional neural network using layer-wise sparse coding and stdp

learning,” arXiv preprint arXiv:1611.03000, 2016. 26

[68] E. Rueckert, D. Kappel, D. Tanneberg, D. Pecevski, and J. Pe-

ters, “Recurrent spiking networks solve planning tasks,” Sci-

entific reports, vol. 6, no. 1, pp. 1–10, 2016. 26

[69] Q. Y. Sun, Q. X. Wu, X. Wang, and L. Hou, “A spiking

neural network for extraction of features in colour opponent

visual pathways and fpga implementation,” Neurocomputing,

vol. 228, pp. 119–132, 2017. 27, 28

[70] P. Machado, G. Cosma, and T. M. McGinnity, “Natcsnn: A

convolutional spiking neural network for recognition of objects

extracted from natural images,” Lecture Notes in Computer

Science, p. 351–362, 2019. 27, 28

203

REFERENCES

[71] P. K. Tadiparthi, S. Ponnada, K. Jhansi, P. K. Bheemavarapu,

and A. Gottimukkala, “A comprehensive review of moving

object identification using background subtraction in dynamic

scenes,” Solid State Technology, vol. 64, no. 2, pp. 4114–4124,

2021. 29

[72] T. Bouwmans, F. El Baf, and B. Vachon, “Statistical back-

ground modeling for foreground detection: A survey,” in

Handbook of pattern recognition and computer vision, pp. 181–

199, World Scientific, 2010. 29, 36

[73] T. Bouwmans, “Traditional and recent approaches in back-

ground modeling for foreground detection: An overview,”

Computer science review, vol. 11, pp. 31–66, 2014. 29, 36

[74] T. Bouwmans, F. Porikli, B. Höferlin, and A. Vacavant, Back-

ground modeling and foreground detection for video surveil-

lance. CRC press, 2014. 29, 36

[75] G. Monteiro, J. Marcos, M. Ribeiro, and J. Batista, “Ro-

bust segmentation for outdoor traffic surveillance,” in 2008

15th IEEE International Conference on Image Processing,

pp. 2652–2655, IEEE, 2008. 32

[76] G. Monteiro, J. Marcos, M. Ribeiro, and J. Batista, “Ro-

bust segmentation process to detect incidents on highways,”

204

REFERENCES

in International Conference Image Analysis and Recognition,

pp. 110–121, Springer, 2008. 32

[77] G. Monteiro, J. Marcos, and J. Batista, “Stopped vehicle

detection system for outdoor traffic surveillance,” RECPAD

2008, 2008. 32

[78] G. Monteiro, Traffic video surveillance for automatic incident

detection on highways. PhD thesis, Coimbra, Portugal: Uni-

versity of Coimbra, 2008. 32

[79] J. Batista, P. Peixoto, C. Fernandes, and M. Ribeiro, “A dual-

stage robust vehicle detection and tracking for real-time traffic

monitoring,” in 2006 IEEE Intelligent Transportation Systems

Conference, pp. 528–535, IEEE, 2006. 32

[80] R. A. Hadi, L. E. George, and M. J. Mohammed, “A computa-

tionally economic novel approach for real-time moving multi-

vehicle detection and tracking toward efficient traffic surveil-

lance,” Arabian Journal for Science and Engineering, vol. 42,

no. 2, pp. 817–831, 2017. 32

[81] Á. Virginás-Tar, M. Baba, V. Gui, D. Pescaru, and I. Jian,

“Vehicle counting and classification for traffic surveillance us-

ing wireless video sensor networks,” in 2014 22nd Telecom-

205

REFERENCES

munications Forum Telfor (TELFOR), pp. 1019–1022, IEEE,

2014. 32

[82] R. Lin, X. Cao, Y. Xu, C. Wu, and H. Qiao, “Airborne mov-

ing vehicle detection for video surveillance of urban traffic,”

in 2009 IEEE Intelligent Vehicles Symposium, pp. 203–208,

IEEE, 2009. 32

[83] O. Masoud and N. P. Papanikolopoulos, “A novel method for

tracking and counting pedestrians in real-time using a single

camera,” IEEE transactions on vehicular technology, vol. 50,

no. 5, pp. 1267–1278, 2001. 33

[84] L. Yi, Y. Ting, and L. Xinqiao, “Analysis and simulation of

crowd in airport multiple transport modes,” in Proceedings

of the 2020 International Conference on Aviation Safety and

Information Technology, pp. 36–41, 2020. 33

[85] F. Z. Qureshi, “Object-video streams for preserving privacy

in video surveillance,” in 2009 Sixth IEEE International Con-

ference on Advanced Video and Signal Based Surveillance,

pp. 442–447, IEEE, 2009. 33

[86] D.-J. Wang, W.-S. Chen, T.-H. Chen, and T.-Y. Chen, “The

study on ship-flow analysis and counting system in a specific

206

REFERENCES

sea-area based on video processing,” in 2008 International

Conference on Intelligent Information Hiding and Multime-

dia Signal Processing, pp. 655–658, IEEE, 2008. 33

[87] S. Chen, Z. Feng, Q. Lu, B. Mahasseni, T. Fiez, A. Fern,

and S. Todorovic, “Play type recognition in real-world foot-

ball video,” in IEEE Winter Conference on Applications of

Computer Vision, pp. 652–659, IEEE, 2014. 33

[88] L. H. Leong, M. A. Zulkifley, and A. B. Hussain, “Computer

vision approach to automatic linesman,” in 2014 IEEE 10th

International Colloquium on Signal Processing and its Appli-

cations, pp. 212–215, IEEE, 2014. 33

[89] S. Guler and M. K. Farrow, “Abandoned object detection in

crowded places,” in Proc. of PETS, pp. 18–23, Citeseer, 2006.

33

[90] B. Li, J. Zhang, Z. Zhang, and Y. Xu, “A people counting

method based on head detection and tracking,” in 2014 Inter-

national Conference on Smart Computing, pp. 136–141, IEEE,

2014. 33

[91] E. Cermeño, A. Pérez, and J. A. Sigüenza, “Intelligent video

surveillance beyond robust background modeling,” Expert

Systems with Applications, vol. 91, pp. 138–149, 2018. 33

207

REFERENCES

[92] M. Dotter and J. Harguess, “Automated situational report-

ing,” in Geospatial Informatics XI, vol. 11733, p. 117330G,

International Society for Optics and Photonics, 2021. 33

[93] K. Ren, G. Bernes, M. Hetta, and J. Karlsson, “Tracking and

analysing social interactions in dairy cattle with real-time lo-

cating system and machine learning,” Journal of Systems Ar-

chitecture, vol. 116, p. 102139, 2021. 33

[94] K. Pasupa, N. Pantuwong, and S. Nopparit, “A comparative

study of feature point matching versus foreground detection

for computer detection of dairy cows in video frames,” Ar-

tificial Life and Robotics, vol. 20, no. 4, pp. 320–326, 2015.

33

[95] F. Okura, S. Ikuma, Y. Makihara, D. Muramatsu, K. Nakada,

and Y. Yagi, “Rgb-d video-based individual identification of

dairy cows using gait and texture analyses,” Computers and

Electronics in Agriculture, vol. 165, p. 104944, 2019. 33

[96] T. Fasciano, A. Dornhaus, and M. C. Shin, “Ant tracking

with occlusion tunnels,” in IEEE Winter Conference on Ap-

plications of Computer Vision, pp. 947–952, IEEE, 2014. 33

[97] T. Kimura, M. Ohashi, K. Crailsheim, T. Schmickl, R. Okada,

G. Radspieler, and H. Ikeno, “Development of a new method

208

REFERENCES

to track multiple honey bees with complex behaviors on a flat

laboratory arena,” PloS one, vol. 9, no. 1, p. e84656, 2014. 33

[98] C. Yang and J. Collins, “Improvement of honey bee tracking

on 2d video with hough transform and kalman filter,” Journal

of Signal Processing Systems, vol. 90, no. 12, pp. 1639–1650,

2018. 33

[99] M. Wu, X. Cao, and S. Guo, “Accurate detection and tracking

of ants in indoor and outdoor environments,” bioRxiv, 2020.

33

[100] J. Zhao, Z. Gu, M. Shi, H. Lu, J. Li, M. Shen, Z. Ye, and

S. Zhu, “Spatial behavioral characteristics and statistics-based

kinetic energy modeling in special behaviors detection of a

shoal of fish in a recirculating aquaculture system,” Computers

and Electronics in Agriculture, vol. 127, pp. 271–280, 2016. 33

[101] G. de Oliveira Feijó, V. A. Sangalli, I. N. L. da Silva, and M. S.

Pinho, “An algorithm to track laboratory zebrafish shoals,”

Computers in biology and medicine, vol. 96, pp. 79–90, 2018.

33

[102] M. Srividya, R. Hemavathy, and G. Shobha, “Underwater

video processing for detecting and tracking moving object,”

209

REFERENCES

International Journal of Engineering and computer science,

vol. 3, no. 5, pp. 5843–5847, 2014. 33

[103] H. Qin, Y. Peng, and X. Li, “Foreground extraction of under-

water videos via sparse and low-rank matrix decomposition,”

in 2014 ICPR Workshop on Computer Vision for Analysis of

Underwater Imagery, pp. 65–72, IEEE, 2014. 33

[104] E. Hossain, S. S. Alam, A. A. Ali, and M. A. Amin, “Fish ac-

tivity tracking and species identification in underwater video,”

in 2016 5th International conference on informatics, electron-

ics and vision (ICIEV), pp. 62–66, IEEE, 2016. 33

[105] N. Seese, A. Myers, K. Smith, and A. O. Smith, “Adap-

tive foreground extraction for deep fish classification,” in 2016

ICPR 2nd Workshop on Computer Vision for Analysis of Un-

derwater Imagery (CVAUI), pp. 19–24, IEEE, 2016. 33

[106] A. Salman, S. Maqbool, A. H. Khan, A. Jalal, and F. Shafait,

“Real-time fish detection in complex backgrounds using proba-

bilistic background modelling,” Ecological Informatics, vol. 51,

pp. 44–51, 2019. 34

[107] N. Wawrzyniak, T. Hyla, and A. Popik, “Vessel detection and

tracking method based on video surveillance,” Sensors, vol. 19,

no. 23, p. 5230, 2019. 34

210

REFERENCES

[108] M. Fattahzadeh and A. Saghaei, “A statistical method for

sequential images–based process monitoring,” International

Journal of Engineering, vol. 33, no. 7, pp. 1285–1292, 2020.

34

[109] H. Ghaffarian, P. Lemaire, Z. Zhi, L. Tougne, B. MacVicar,

and H. Piégay, “Automated quantification of floating wood

pieces in rivers from video monitoring: a new software tool and

validation,” Earth Surface Dynamics, vol. 9, no. 3, pp. 519–

537, 2021. 34

[110] Y. Cao, Q. Tang, X. Wu, and X. Lu, “Effnet: Enhanced fea-

ture foreground network for video smoke source prediction and

detection,” IEEE Transactions on Circuits and Systems for

Video Technology, 2021. 34

[111] V. Reno, N. Mosca, M. Nitti, T. D’Orazio, D. Campagnoli,

A. Prati, and E. Stella, “Tennis player segmentation for se-

mantic behavior analysis,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision Workshops, pp. 1–8,

2015. 34

[112] Y. Liu and M. Zhi, “Moving object detection in tennis video,”

in 2015 8th International Conference on Intelligent Networks

211

REFERENCES

and Intelligent Systems (ICINIS), pp. 109–112, IEEE, 2015.

34

[113] W. Barhoumi, “Detection of highly articulated moving objects

by using co-segmentation with application to athletic video

sequences,” Signal, Image and Video Processing, vol. 9, no. 7,

pp. 1705–1715, 2015. 34

[114] W. Kim, S.-W. Moon, J. Lee, D.-W. Nam, and C. Jung,

“Multiple player tracking in soccer videos: an adaptive multi-

scale sampling approach,” Multimedia Systems, vol. 24, no. 6,

pp. 611–623, 2018. 34

[115] R. Meghana, Y. Chitkara, S. Apoorva, et al., “Background-

modelling techniques for foreground detection and tracking us-

ing gaussian mixture model,” in 2019 3rd International Con-

ference on Computing Methodologies and Communication (IC-

CMC), pp. 1129–1134, IEEE, 2019. 34

[116] W. Kim, “Multiple object tracking in soccer videos using topo-

graphic surface analysis,” Journal of Visual Communication

and Image Representation, vol. 65, p. 102683, 2019. 34

[117] B. K. Chakraborty, D. Sarma, M. K. Bhuyan, and K. F. Mac-

Dorman, “Review of constraints on vision-based gesture recog-

212

REFERENCES

nition for human–computer interaction,” IET Computer Vi-

sion, vol. 12, no. 1, pp. 3–15, 2018. 34

[118] P. K. Podder, M. Paul, and M. Murshed, “Foreground mo-

tion and spatial saliency-based efficient hevc video coding,” in

2015 International Conference on Image and Vision Comput-

ing New Zealand (IVCNZ), pp. 1–6, IEEE, 2015. 34

[119] L. Zhao, X. Zhang, X. Zhang, S. Wang, S. Wang, S. Ma, and

W. Gao, “Intelligent analysis oriented surveillance video cod-

ing,” in 2017 IEEE International Conference on Multimedia

and Expo (ICME), pp. 37–42, IEEE, 2017. 34

[120] H. Huang, X. Fang, Y. Ye, S. Zhang, and P. L. Rosin, “Prac-

tical automatic background substitution for live video,” Com-

putational Visual Media, vol. 3, no. 3, p. 1, 2017. 35

[121] M. Grega, P. Donath, P. Guzik, J. Król, A. Matiolański,

K. Rusek, and A. Dziech, “Application of logistic regression

for background substitution,” in International Conference on

Multimedia Communications, Services and Security, pp. 33–

46, Springer, 2017. 35

[122] C. R. Del-Blanco, T. Mantecón, M. Camplani, F. Jaureguizar,

L. Salgado, and N. Garćıa, “Foreground segmentation in depth

213

REFERENCES

imagery using depth and spatial dynamic models for video

surveillance applications,” Sensors, vol. 14, no. 2, pp. 1961–

1987, 2014. 35

[123] R. S. Dixit, S. Gandhe, and P. Dhulekar, “Pedestrian protec-

tion system for adas using arm 9,” International Journal of

Computer Applications, vol. 975, p. 8887, 2015. 35

[124] P. Vasuki and S. Veluchamy, “Pedestrian detection for driver

assistance systems,” in 2016 International Conference on Re-

cent Trends in Information Technology (ICRTIT), pp. 1–4,

IEEE, 2016. 35

[125] A. M. McIvor, “Background subtraction techniques,” Proc. of

Image and Vision Computing, vol. 4, pp. 3099–3104, 2000. 35

[126] M. Piccardi, “Background subtraction techniques: a review,”

in 2004 IEEE International Conference on Systems, Man and

Cybernetics (IEEE Cat. No. 04CH37583), vol. 4, pp. 3099–

3104, IEEE, 2004. 35, 115

[127] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pent-

land, “Pfinder: Real-time tracking of the human body,” IEEE

Transactions on pattern analysis and machine intelligence,

vol. 19, no. 7, pp. 780–785, 1997. 36

214

REFERENCES

[128] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara,

B. Rao, and S. Russell, “Towards robust automatic traffic

scene analysis in real-time,” in Proceedings of 12th Interna-

tional Conference on Pattern Recognition, vol. 1, pp. 126–131,

IEEE, 1994. 36

[129] B. P. L. Lo and S. Velastin, “Automatic congestion detection

system for underground platforms,” in Proceedings of 2001 In-

ternational Symposium on Intelligent Multimedia, Video and

Speech Processing. ISIMP 2001 (IEEE Cat. No. 01EX489),

pp. 158–161, IEEE, 2001. 36

[130] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detect-

ing moving objects, ghosts, and shadows in video streams,”

IEEE transactions on pattern analysis and machine intelli-

gence, vol. 25, no. 10, pp. 1337–1342, 2003. 36

[131] C. Stauffer and W. E. L. Grimson, “Adaptive background mix-

ture models for real-time tracking,” in Proceedings. 1999 IEEE

computer society conference on computer vision and pattern

recognition (Cat. No PR00149), vol. 2, pp. 246–252, IEEE,

1999. 36, 37, 38, 48, 127

[132] B. Han, D. Comaniciu, and L. Davis, “Sequential kernel den-

sity approximation through mode propagation: Applications

215

REFERENCES

to background modeling,” in proc. ACCV, vol. 4, pp. 818–823,

Citeseer, 2004. 36

[133] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric

model for background subtraction,” in European conference

on computer vision, pp. 751–767, Springer, 2000. 36

[134] M. Seki, T. Wada, H. Fujiwara, and K. Sumi, “Background

subtraction based on cooccurrence of image variations,” in

2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003. Proceedings., vol. 2, pp. II–II,

IEEE, 2003. 36

[135] N. M. Oliver, B. Rosario, and A. P. Pentland, “A bayesian

computer vision system for modeling human interactions,”

IEEE transactions on pattern analysis and machine intelli-

gence, vol. 22, no. 8, pp. 831–843, 2000. 36, 44

[136] S.-C. S. Cheung and C. Kamath, “Robust background

subtraction with foreground validation for urban traffic

video,” EURASIP Journal on Advances in Signal Processing,

vol. 2005, no. 14, pp. 1–11, 2005. 35

[137] S. Y. Elhabian, K. M. El-Sayed, and S. H. Ahmed, “Moving

object detection in spatial domain using background removal

216

REFERENCES

techniques-state-of-art,” Recent patents on computer science,

vol. 1, no. 1, pp. 32–54, 2008. 35

[138] M. Cristani, M. Farenzena, D. Bloisi, and V. Murino, “Back-

ground subtraction for automated multisensor surveillance: a

comprehensive review,” EURASIP Journal on Advances in

signal Processing, vol. 2010, pp. 1–24, 2010. 36

[139] A. Elgammal, “Background subtraction: Theory and prac-

tice,” Synthesis Lectures on Computer Vision, vol. 5, no. 1,

pp. 1–83, 2014. 36

[140] P. KaewTraKulPong and R. Bowden, “An improved adaptive

background mixture model for real-time tracking with shadow

detection,” in Video-based surveillance systems, pp. 135–144,

Springer, 2002. 37, 48

[141] Z. Zivkovic, “Improved adaptive gaussian mixture model for

background subtraction,” in Proceedings of the 17th Interna-

tional Conference on Pattern Recognition, 2004. ICPR 2004.,

vol. 2, pp. 28–31, IEEE, 2004. 38, 127

[142] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive den-

sity estimation per image pixel for the task of background sub-

traction,” Pattern recognition letters, vol. 27, no. 7, pp. 773–

780, 2006. 38, 127

217

REFERENCES

[143] S. Zeevi, “BackgroundSubtractorCNT: A Fast Background

Subtraction Algorithm,” Dec. 2016. Available online,

https://doi.org/10.5281/zenodo.4267853, last accessed:

23/11/2020. 38, 127

[144] S. Zeevi, “Fastest background subtraction is

BackgroundSubtractorCNT,” 2016. Available

onine, https://www.theimpossiblecode.com/blog/

fastest-background-subtraction-opencv/, last accessed:

09/11/2020. 38

[145] A. B. Godbehere and K. Goldberg, “Algorithms for visual

tracking of visitors under variable-lighting conditions for a re-

sponsive audio art installation,” in Controls and art, pp. 181–

204, Springer, 2014. 38, 127

[146] L. Guo, D. Xu, and Z. Qiang, “Background subtraction using

local svd binary pattern,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pp. 86–94, 2016. 39, 127

[147] OpenCV, “Background Subtractor GSOC,” 2020. Available

online, https://docs.opencv.org/4.5.0/d4/dd5/classcv_

1_1bgsegm_1_1BackgroundSubtractorGSOC.html, last ac-

cessed: 06/11/2020. 39, 120

218

https://doi.org/10.5281/zenodo.4267853
https://www.theimpossiblecode.com/blog/fastest-background-subtraction-opencv/
https://www.theimpossiblecode.com/blog/fastest-background-subtraction-opencv/
https://docs.opencv.org/4.5.0/d4/dd5/classcv_1_1bgsegm_1_1BackgroundSubtractorGSOC.html
https://docs.opencv.org/4.5.0/d4/dd5/classcv_1_1bgsegm_1_1BackgroundSubtractorGSOC.html

REFERENCES

[148] V. Samsonov, “Improved background subtraction algorithm,”

Nov. 2017. Available online, https://zenodo.org/record/

4269865, last accessed: 23/11/2020. 39, 118, 120, 127

[149] Google, “Google Summer of Code Archive,” 2017. Available

online, https://summerofcode.withgoogle.com/archive/

2017/projects/, last accessed: 2021-07-28. 39

[150] M. Braham, S. Pierard, and M. Van Droogenbroeck, “Se-

mantic background subtraction,” in 2017 IEEE International

Conference on Image Processing (ICIP), pp. 4552–4556, Ieee,

2017. 40, 41

[151] D. Zeng, M. Zhu, and A. Kuijper, “Combining background

subtraction algorithms with convolutional neural network,”

Journal of Electronic Imaging, vol. 28, no. 1, p. 013011, 2019.

40, 47

[152] X. Liang, S. Liao, X. Wang, W. Liu, Y. Chen, and S. Z.

Li, “Deep background subtraction with guided learning,” in

2018 IEEE International Conference on Multimedia and Expo

(ICME), pp. 1–6, IEEE, 2018. 40

[153] D. Zeng and M. Zhu, “Background subtraction using mul-

tiscale fully convolutional network,” IEEE Access, vol. 6,

pp. 16010–16021, 2018. 40

219

https://zenodo.org/record/4269865
https://zenodo.org/record/4269865
https://summerofcode.withgoogle.com/archive/2017/projects/
https://summerofcode.withgoogle.com/archive/2017/projects/

REFERENCES

[154] D. Zeng, X. Chen, M. Zhu, M. Goesele, and A. Kuijper,

“Background subtraction with real-time semantic segmenta-

tion,” IEEE Access, vol. 7, pp. 153869–153884, 2019. 41

[155] D. H. Parks and S. S. Fels, “Evaluation of background sub-

traction algorithms with post-processing,” in 2008 IEEE Fifth

International Conference on Advanced Video and Signal Based

Surveillance, pp. 192–199, IEEE, 2008. 41

[156] S. N. Yaakob, Z. Kadim, H. H. Woon, et al., “Moving object

extraction in ptz camera using the integration of background

subtraction and local histogram processing,” in 2012 Interna-

tional Symposium on Computer Applications and Industrial

Electronics (ISCAIE), pp. 167–172, IEEE, 2012. 42

[157] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper

noise removal by median-type noise detectors and detail-

preserving regularization,” IEEE Transactions on image pro-

cessing, vol. 14, no. 10, pp. 1479–1485, 2005. 42

[158] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Dug-

gins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt,

et al., “A system for video surveillance and monitoring,”

VSAM final report, vol. 2000, no. 1-68, p. 1, 2000. 43

220

REFERENCES

[159] C. Wren, “Real-time tracking of the human body,” Photonics

East, SPIE, vol. 2615, 1995. 43

[160] M. I. Chacon-Murguia and S. Gonzalez-Duarte, “An adap-

tive neural-fuzzy approach for object detection in dynamic

backgrounds for surveillance systems,” IEEE Transactions on

Industrial Electronics, vol. 59, no. 8, pp. 3286–3298, 2011. 43

[161] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual

surveillance of object motion and behaviors,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), vol. 34, no. 3, pp. 334–352, 2004. 43

[162] F. Diana and T. Bouwmans, “Background modeling via a su-

pervised subspace learning,” in International Conference on

Image, Video Processing and Computer Vision, pp. 1–7, In-

ternational Society for Research in Science and Technology,

2010. 44

[163] D. Farcas, C. Marghes, and T. Bouwmans, “Background sub-

traction via incremental maximum margin criterion: a dis-

criminative subspace approach,” Machine Vision and Appli-

cations, vol. 23, no. 6, pp. 1083–1101, 2012. 44

[164] C. Marghes and T. Bouwman, “Background modeling via in-

221

REFERENCES

cremental maximum margin criterion,” in Asian Conference

on Computer Vision, pp. 394–403, Springer, 2010. 44

[165] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal

component analysis?,” Journal of the ACM (JACM), vol. 58,

no. 3, pp. 1–37, 2011. 44

[166] A. Sobral, T. Bouwmans, and E.-h. ZahZah, “Double-

constrained rpca based on saliency maps for foreground detec-

tion in automated maritime surveillance,” in 2015 12th IEEE

international conference on advanced video and signal based

surveillance (AVSS), pp. 1–6, IEEE, 2015. 44

[167] S. Javed, S. K. Jung, A. Mahmood, and T. Bouwmans,

“Motion-aware graph regularized rpca for background model-

ing of complex scenes,” in 2016 23rd International Conference

on Pattern Recognition (ICPR), pp. 120–125, IEEE, 2016. 44

[168] S. Javed, A. Mahmood, T. Bouwmans, and S. K. Jung, “Spa-

tiotemporal low-rank modeling for complex scene background

initialization,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 28, no. 6, pp. 1315–1329, 2016. 44

[169] J. He, L. Balzano, and A. Szlam, “Incremental gradient on

the grassmannian for online foreground and background sepa-

222

REFERENCES

ration in subsampled video,” in 2012 ieee conference on com-

puter vision and pattern recognition, pp. 1568–1575, IEEE,

2012. 45

[170] H. Guo, C. Qiu, and N. Vaswani, “Practical reprocs for sepa-

rating sparse and low-dimensional signal sequences from their

sum—part 1,” in 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 4161–

4165, IEEE, 2014. 45

[171] P. Rodriguez and B. Wohlberg, “Incremental principal com-

ponent pursuit for video background modeling,” Journal of

Mathematical Imaging and Vision, vol. 55, no. 1, pp. 1–18,

2016. 45

[172] P. Narayanamurthy and N. Vaswani, “A fast and memory-

efficient algorithm for robust pca (merop),” in 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pp. 4684–4688, IEEE, 2018. 45

[173] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy,

“Robust subspace learning: Robust pca, robust subspace

tracking, and robust subspace recovery,” IEEE signal process-

ing magazine, vol. 35, no. 4, pp. 32–55, 2018. 45

223

REFERENCES

[174] S. Javed, P. Narayanamurthy, T. Bouwmans, and N. Vaswani,

“Robust pca and robust subspace tracking: A comparative

evaluation,” in 2018 IEEE Statistical Signal Processing Work-

shop (SSP), pp. 836–840, IEEE, 2018. 45

[175] S. Prativadibhayankaram, H. V. Luong, T. H. Le, and

A. Kaup, “Compressive online video background–foreground

separation using multiple prior information and optical flow,”

Journal of Imaging, vol. 4, no. 7, p. 90, 2018. 45

[176] S. Javed, T. Bouwmans, and S. K. Jung, “Stochastic decom-

position into low rank and sparse tensor for robust background

subtraction,” in 6th International Conference on Imaging for

Crime Prevention and Detection (ICDP-15), pp. 1–6, IET,

2015. 45

[177] A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E.-h. Za-

hzah, “Online stochastic tensor decomposition for background

subtraction in multispectral video sequences,” in Proceedings

of the IEEE International Conference on Computer Vision

Workshops, pp. 106–113, 2015. 45

[178] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor

robust principal component analysis with a new tensor nuclear

224

REFERENCES

norm,” IEEE transactions on pattern analysis and machine

intelligence, vol. 42, no. 4, pp. 925–938, 2019. 45

[179] D. Driggs, S. Becker, and J. Boyd-Graber, “Tensor robust

principal component analysis: Better recovery with atomic

norm regularization,” arXiv preprint arXiv:1901.10991, 2019.

45

[180] A. J. Schofield, P. Mehta, and T. J. Stonham, “A system

for counting people in video images using neural networks to

identify the background scene,” Pattern Recognition, vol. 29,

no. 8, pp. 1421–1428, 1996. 45

[181] A. Tavakkoli, “Foreground-background segmentation in video

sequences using neural networks,” Intelligent Systems: Neural

Networks and Applications, 2005. 45

[182] L. Maddalena and A. Petrosino, “A self-organizing approach

to detection of moving patterns for real-time applications,”

in International Symposium on Brain, Vision, and Artificial

Intelligence, pp. 181–190, Springer, 2007. 46

[183] L. Maddalena and A. Petrosino, “A self-organizing neural sys-

tem for background and foreground modeling,” in Interna-

tional Conference on Artificial Neural Networks, pp. 652–661,

Springer, 2008. 46

225

REFERENCES

[184] L. Maddalena and A. Petrosino, “Neural model-based seg-

mentation of image motion,” in International Conference on

Knowledge-Based and Intelligent Information and Engineer-

ing Systems, pp. 57–64, Springer, 2008. 46

[185] L. Maddalena and A. Petrosino, “A self-organizing approach

to background subtraction for visual surveillance applica-

tions,” IEEE Transactions on Image Processing, vol. 17, no. 7,

pp. 1168–1177, 2008. 46

[186] L. Maddalena and A. Petrosino, “Multivalued back-

ground/foreground separation for moving object detection,”

in International Workshop on Fuzzy Logic and Applications,

pp. 263–270, Springer, 2009. 46

[187] L. Maddalena and A. Petrosino, “A fuzzy spatial coherence-

based approach to background/foreground separation for mov-

ing object detection,” Neural Computing and Applications,

vol. 19, no. 2, pp. 179–186, 2010. 46

[188] L. Maddalena and A. Petrosino, “The sobs algorithm: What

are the limits?,” in 2012 IEEE computer society conference on

computer vision and pattern recognition workshops, pp. 21–26,

IEEE, 2012. 46

226

REFERENCES

[189] L. Maddalena and A. Petrosino, “The 3dsobs+ algorithm for

moving object detection,” Computer Vision and Image Un-

derstanding, vol. 122, pp. 65–73, 2014. 46

[190] G. D. Sergio, V. P. Javier, et al., “Simplified som-neural model

for video segmentation of moving objects,” in 2009 Inter-

national Joint Conference on Neural Networks, pp. 474–480,

IEEE, 2009. 46

[191] M. I. Chacon-Murgúıa, G. Ramirez-Alonso, and S. Gonzalez-

Duarte, “Improvement of a neural-fuzzy motion detection vi-

sion model for complex scenario conditions,” in The 2013 In-

ternational Joint Conference on Neural Networks (IJCNN),

pp. 1–8, IEEE, 2013. 46

[192] G. Gemignani and A. Rozza, “A novel background subtrac-

tion approach based on multi layered self-organizing maps,”

in 2015 IEEE International Conference on Image Processing

(ICIP), pp. 462–466, IEEE, 2015. 46

[193] L. Maddalena and A. Petrosino, “3d neural model-based

stopped object detection,” in International Conference on Im-

age Analysis and Processing, pp. 585–593, Springer, 2009. 46

[194] L. Maddalena and A. Petrosino, “Self organizing and fuzzy

modelling for parked vehicles detection,” in International con-

227

REFERENCES

ference on advanced concepts for intelligent vision systems,

pp. 422–433, Springer, 2009. 46

[195] L. Maddalena and A. Petrosino, “Stopped object detection by

learning foreground model in videos,” IEEE transactions on

neural networks and learning systems, vol. 24, no. 5, pp. 723–

735, 2013. 46

[196] M. Babaee, D. T. Dinh, and G. Rigoll, “A deep convolutional

neural network for background subtraction,” arXiv preprint

arXiv:1702.01731, 2017. 47

[197] Y. Wang, Z. Luo, and P.-M. Jodoin, “Interactive deep learning

method for segmenting moving objects,” Pattern Recognition

Letters, vol. 96, pp. 66–75, 2017. 47

[198] S. Lee and D. Kim, “Background subtraction using the fac-

tored 3-way restricted boltzmann machines,” arXiv preprint

arXiv:1802.01522, 2018. 47

[199] T. P. Nguyen, C. C. Pham, S. V.-U. Ha, and J. W. Jeon,

“Change detection by training a triplet network for motion

feature extraction,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 29, no. 2, pp. 433–446, 2018.

47

228

REFERENCES

[200] M. J. Shafiee, P. Siva, P. Fieguth, and A. Wong, “Real-time

embedded motion detection via neural response mixture mod-

eling,” Journal of Signal Processing Systems, vol. 90, no. 6,

pp. 931–946, 2018. 47

[201] R. Guo and H. Qi, “Partially-sparse restricted boltzmann ma-

chine for background modeling and subtraction,” in 2013 12th

International Conference on Machine Learning and Applica-

tions, vol. 1, pp. 209–214, IEEE, 2013. 47

[202] L. Xu, Y. Li, Y. Wang, and E. Chen, “Temporally adaptive

restricted boltzmann machine for background modeling,” in

Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 29, 2015. 47

[203] P. Xu, M. Ye, Q. Liu, X. Li, L. Pei, and J. Ding, “Motion de-

tection via a couple of auto-encoder networks,” in 2014 IEEE

International Conference on Multimedia and Expo (ICME),

pp. 1–6, IEEE, 2014. 47

[204] P. Xu, M. Ye, X. Li, Q. Liu, Y. Yang, and J. Ding, “Dynamic

background learning through deep auto-encoder networks,”

in Proceedings of the 22nd ACM international conference on

Multimedia, pp. 107–116, 2014. 47

229

REFERENCES

[205] Z. Qu, S. Yu, and M. Fu, “Motion background modeling based

on context-encoder,” in 2016 Third International Conference

on Artificial Intelligence and Pattern Recognition (AIPR),

pp. 1–5, IEEE, 2016. 47

[206] Y. Zhang, X. Li, Z. Zhang, F. Wu, and L. Zhao, “Deep learning

driven blockwise moving object detection with binary scene

modeling,” Neurocomputing, vol. 168, pp. 454–463, 2015. 47

[207] M. J. Shafiee, P. Siva, P. Fieguth, and A. Wong, “Embed-

ded motion detection via neural response mixture background

modeling,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), pp. 837–844,

IEEE, 2016. 48

[208] M. Yazdi and T. Bouwmans, “New trends on moving object

detection in video images captured by a moving camera: A

survey,” Computer Science Review, vol. 28, pp. 157–177, 2018.

48, 49, 51, 53, 54, 57

[209] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction

for freely moving cameras,” in 2009 IEEE 12th International

Conference on Computer Vision, pp. 1219–1225, IEEE, 2009.

49

230

REFERENCES

[210] T. Brox and J. Malik, “Object segmentation by long term

analysis of point trajectories,” in European conference on com-

puter vision, pp. 282–295, Springer, 2010. 50

[211] X. Yin, B. Wang, W. Li, Y. Liu, and M. Zhang, “Back-

ground subtraction for moving cameras based on trajectory-

controlled segmentation and label inference,” KSII Transac-

tions on Internet and Information Systems (TIIS), vol. 9,

no. 10, pp. 4092–4107, 2015. 50

[212] S. Singh, C. Arora, and C. Jawahar, “Trajectory aligned fea-

tures for first person action recognition,” Pattern Recognition,

vol. 62, pp. 45–55, 2017. 50

[213] S. Zhang, J.-B. Huang, J. Lim, Y. Gong, J. Wang, N. Ahuja,

and M.-H. Yang, “Tracking persons-of-interest via unsuper-

vised representation adaptation,” International Journal of

Computer Vision, vol. 128, no. 1, pp. 96–120, 2020. 50, 51

[214] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng,

S. L. Hicks, and P. H. Torr, “Struck: Structured output track-

ing with kernels,” IEEE transactions on pattern analysis and

machine intelligence, vol. 38, no. 10, pp. 2096–2109, 2015. 52

[215] W.-Z. Zhang, J.-G. Ji, Z.-Z. Jing, W.-F. Jing, and Y. Zhang,

“Adaptive real-time compressive tracking,” in 2015 Interna-

231

REFERENCES

tional Conference on Network and Information Systems for

Computers, pp. 236–240, IEEE, 2015. 52

[216] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de

Weijer, “Adaptive color attributes for real-time visual track-

ing,” in Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pp. 1090–1097, 2014. 52, 61

[217] D. Du, H. Qi, L. Wen, Q. Tian, Q. Huang, and S. Lyu, “Geo-

metric hypergraph learning for visual tracking,” IEEE trans-

actions on cybernetics, vol. 47, no. 12, pp. 4182–4195, 2016.

52

[218] T. Bouwmans, C. Silva, C. Marghes, M. S. Zitouni,

H. Bhaskar, and C. Frelicot, “On the role and the impor-

tance of features for background modeling and foreground de-

tection,” Computer Science Review, vol. 28, pp. 26–91, 2018.

52

[219] Q. Zhao, Z. Yang, and H. Tao, “Differential earth mover’s dis-

tance with its applications to visual tracking,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 32,

no. 2, pp. 274–287, 2008. 52

[220] N. Dalal and B. Triggs, “Histograms of oriented gradients for

human detection,” in 2005 IEEE computer society conference

232

REFERENCES

on computer vision and pattern recognition (CVPR’05), vol. 1,

pp. 886–893, Ieee, 2005. 52

[221] C. Leng, H. Zhang, B. Li, G. Cai, Z. Pei, and L. He, “Lo-

cal feature descriptor for image matching: A survey,” IEEE

Access, vol. 7, pp. 6424–6434, 2018. 52

[222] K. Mikolajczyk and C. Schmid, “A performance evaluation of

local descriptors,” IEEE transactions on pattern analysis and

machine intelligence, vol. 27, no. 10, pp. 1615–1630, 2005. 52

[223] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up

robust features,” in European conference on computer vision,

pp. 404–417, Springer, 2006. 52

[224] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International journal of computer vision, vol. 60,

no. 2, pp. 91–110, 2004. 53

[225] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Bi-

nary robust independent elementary features,” in European

conference on computer vision, pp. 778–792, Springer, 2010.

53

[226] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb:

233

REFERENCES

An efficient alternative to sift or surf,” in 2011 International

conference on computer vision, pp. 2564–2571, Ieee, 2011. 53

[227] S.-W. Ha and Y.-H. Moon, “Multiple object tracking using

sift features and location matching,” International Journal of

Smart Home, vol. 5, no. 4, pp. 17–26, 2011. 53

[228] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hy-

pothesis tracking revisited,” in Proceedings of the IEEE inter-

national conference on computer vision, pp. 4696–4704, 2015.

53

[229] L. Leal-Taixe, C. Canton-Ferrer, and K. Schindler, “Learning

by tracking: Siamese cnn for robust target association,” in

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pp. 33–40, 2016. 53, 54

[230] J. Ning, L. Zhang, D. Zhang, and C. Wu, “Robust ob-

ject tracking using joint color-texture histogram,” Interna-

tional Journal of Pattern Recognition and Artificial Intelli-

gence, vol. 23, no. 07, pp. 1245–1263, 2009. 54

[231] J. Pan, B. Hu, and J. Q. Zhang, “Robust and accurate object

tracking under various types of occlusions,” IEEE transactions

on circuits and systems for video technology, vol. 18, no. 2,

pp. 223–236, 2008. 54

234

REFERENCES

[232] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object

tracking,” IEEE Transactions on pattern analysis and ma-

chine intelligence, vol. 25, no. 5, pp. 564–577, 2003. 54

[233] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object

tracking with online multiple instance learning,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 33,

no. 8, pp. 1619–1632, 2010. 54

[234] M. A. Bagherzadeh and M. Yazdi, “Regularized least-square

object tracking based on l2, 1 minimization,” in 2015 3rd

RSI International Conference on Robotics and Mechatronics

(ICROM), pp. 635–639, IEEE, 2015. 54

[235] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and

L. Van Gool, “Robust tracking-by-detection using a detector

confidence particle filter,” in 2009 IEEE 12th International

Conference on Computer Vision, pp. 1515–1522, IEEE, 2009.

55

[236] A. Milan, K. Schindler, and S. Roth, “Multi-target tracking by

discrete-continuous energy minimization,” IEEE transactions

on pattern analysis and machine intelligence, vol. 38, no. 10,

pp. 2054–2068, 2015. 55

235

REFERENCES

[237] N. Le, A. Heili, and J.-M. Odobez, “Long-term time-sensitive

costs for crf-based tracking by detection,” in European Con-

ference on Computer Vision, pp. 43–51, Springer, 2016. 55

[238] J. Chen, H. Sheng, Y. Zhang, and Z. Xiong, “Enhancing detec-

tion model for multiple hypothesis tracking,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pp. 18–27, 2017. 55

[239] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the un-

trackable: Learning to track multiple cues with long-term de-

pendencies,” in Proceedings of the IEEE international confer-

ence on computer vision, pp. 300–311, 2017. 55

[240] J. Kuen, K. M. Lim, and C. P. Lee, “Self-taught learning of

a deep invariant representation for visual tracking via tempo-

ral slowness principle,” Pattern recognition, vol. 48, no. 10,

pp. 2964–2982, 2015. 55

[241] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierar-

chical convolutional features for visual tracking,” in Proceed-

ings of the IEEE international conference on computer vision,

pp. 3074–3082, 2015. 55

[242] H. Li, Y. Li, F. Porikli, et al., “Deeptrack: Learning discrim-

236

REFERENCES

inative feature representations by convolutional neural net-

works for visual tracking.,” in BMVC, vol. 1, p. 3, 2014. 55

[243] H. Nam and B. Han, “Learning multi-domain convolutional

neural networks for visual tracking,” in Proceedings of the

IEEE conference on computer vision and pattern recognition,

pp. 4293–4302, 2016. 55

[244] N. Wang and D.-Y. Yeung, “Learning a deep compact image

representation for visual tracking,” Advances in neural infor-

mation processing systems, vol. 26, 2013. 55

[245] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung, “Transferring rich

feature hierarchies for robust visual tracking,” arXiv preprint

arXiv:1501.04587, 2015. 55

[246] L. Wang, T. Liu, G. Wang, K. L. Chan, and Q. Yang, “Video

tracking using learned hierarchical features,” IEEE Transac-

tions on Image Processing, vol. 24, no. 4, pp. 1424–1435, 2015.

56

[247] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking

with fully convolutional networks,” in Proceedings of the IEEE

international conference on computer vision, pp. 3119–3127,

2015. 56

237

REFERENCES

[248] M. Zhai, L. Chen, G. Mori, and M. Javan Roshtkhari, “Deep

learning of appearance models for online object tracking,” in

Proceedings of the European Conference on Computer Vision

(ECCV) Workshops, pp. 0–0, 2018. 56

[249] P. Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking:

Review and experimental comparison,” Pattern Recognition,

vol. 76, pp. 323–338, 2018. 56

[250] Z. Yu, P. Machado, A. Zahid, A. M. Abdulghani,

K. Dashtipour, H. Heidari, M. A. Imran, and Q. H. Abbasi,

“Energy and performance trade-off optimization in hetero-

geneous computing via reinforcement learning,” Electronics,

vol. 9, no. 11, p. 1812, 2020. 57

[251] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time track-

ing of non-rigid objects using mean shift,” in Proceedings

IEEE Conference on Computer Vision and Pattern Recogni-

tion. CVPR 2000 (Cat. No. PR00662), vol. 2, pp. 142–149,

IEEE, 2000. 57

[252] P. KaewTrakulPong and R. Bowden, “A real time adaptive

visual surveillance system for tracking low-resolution colour

targets in dynamically changing scenes,” Image and Vision

Computing, vol. 21, no. 10, pp. 913–929, 2003. 58

238

REFERENCES

[253] T. Yang, Q. Pan, J. Li, and S. Z. Li, “Real-time multiple

objects tracking with occlusion handling in dynamic scenes,”

in 2005 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR’05), vol. 1, pp. 970–975,

IEEE, 2005. 58

[254] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking

via on-line boosting.,” in Bmvc, vol. 1, p. 6, Citeseer, 2006. 59

[255] P. Heinemann, M. Plagge, A. Treptow, and A. Zell, “Track-

ing dynamic objects in a robocup environment-the attempto

tübingen robot soccer team,” RoboCup-2003: Robot Soccer

World Cup VII, Lecture Notes in Computer Science (CD-

Supplement). Springer Verlag, 2003. 59

[256] R. E. Schapire, “Explaining adaboost,” in Empirical inference,

pp. 37–52, Springer, 2013. 59

[257] M. Shah, O. Javed, and K. Shafique, “Automated visual

surveillance in realistic scenarios,” IEEE MultiMedia, vol. 14,

no. 1, pp. 30–39, 2007. 59

[258] C. Bibby and I. Reid, “Robust real-time visual tracking using

pixel-wise posteriors,” in European Conference on Computer

Vision, pp. 831–844, Springer, 2008. 60

239

REFERENCES

[259] K. Huang, L. Wang, T. Tan, and S. Maybank, “A real-time

object detecting and tracking system for outdoor night surveil-

lance,” Pattern Recognition, vol. 41, no. 1, pp. 432–444, 2008.

60

[260] S.-X. Li, H.-X. Chang, and C.-F. Zhu, “Adaptive pyramid

mean shift for global real-time visual tracking,” Image and

Vision Computing, vol. 28, no. 3, pp. 424–437, 2010. 61

[261] A. Agarwal and S. Suryavanshi, “Real-time* multiple object

tracking (mot) for autonomous navigation,” Tech. Rep., 2017.

62

[262] S. Minaeian, J. Liu, and Y.-J. Son, “Effective and efficient de-

tection of moving targets from a uav’s camera,” IEEE trans-

actions on intelligent transportation systems, vol. 19, no. 2,

pp. 497–506, 2018. 62

[263] C. Mead, “Neuromorphic electronic systems,” Proceedings of

the IEEE, vol. 78, no. 10, pp. 1629–1636, 1990. 62

[264] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell,

M. E. Dean, G. S. Rose, and J. S. Plank, “A survey of neuro-

morphic computing and neural networks in hardware,” arXiv

preprint arXiv:1705.06963, 2017. 63

240

REFERENCES

[265] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The

spinnaker project,” Proceedings of the IEEE, vol. 102, no. 5,

pp. 652–665, 2014. 64, 65

[266] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier,

and S. Millner, “A wafer-scale neuromorphic hardware system

for large-scale neural modeling,” in 2010 IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1947–1950,

IEEE, 2010. 64, 65

[267] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R.

Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur,

P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-

digital multichip system for large-scale neural simulations,”

Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, 2014.

64, 65

[268] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy,

J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo,

Y. Nakamura, et al., “A million spiking-neuron integrated cir-

cuit with a scalable communication network and interface,”

Science, vol. 345, no. 6197, pp. 668–673, 2014. 64, 65

[269] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H.

Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi:

241

REFERENCES

A neuromorphic manycore processor with on-chip learning,”

Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018. 64, 65

[270] P. Lichtsteiner and T. Delbruck, “A 64x64 aer logarithmic

temporal derivative silicon retina,” in Research in Microelec-

tronics and Electronics, 2005 PhD, vol. 2, pp. 202–205, IEEE,

2005. 65, 66

[271] L. Farian, J. A. Lenero-Bardallo, and P. Hafliger, “A bio-

inspired aer temporal tri-color differentiator pixel array,”

IEEE Transactions on Biomedical Circuits and Systems,

vol. 9, no. 5, pp. 686–698, 2015. 65

[272] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck,

“A 240× 180 130 db 3 µs latency global shutter spatiotemporal

vision sensor,” IEEE Journal of Solid-State Circuits, vol. 49,

no. 10, pp. 2333–2341, 2014. 65

[273] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dy-

namic evolving spiking neural networks for on-line spatio-

and spectro-temporal pattern recognition,” Neural Networks,

vol. 41, pp. 188–201, 2013. 65, 66

[274] Z. Jiang, Z. Bing, K. Huang, and A. Knoll, “Retina-based

pipe-like object tracking implemented through spiking neural

242

REFERENCES

network on a snake robot,” Frontiers in neurorobotics, vol. 13,

p. 29, 2019. 66, 67, 68

[275] V. Oudjail and J. Martinet, “Bio-inspired event-based motion

analysis with spiking neural networks.,” in VISIGRAPP (4:

VISAPP), pp. 389–394, 2019. 66, 67

[276] R. Kuriyama, C. Casellato, E. D’Angelo, and T. Yamazaki,

“Real-time simulation of a cerebellar scaffold model on

graphics processing units,” Frontiers in cellular neuroscience,

vol. 15, p. 106, 2021. 68

[277] E. D‘Angelo, S. Solinas, J. Mapelli, D. Gandolfi, L. Mapelli,

and F. Prestori, “The cerebellar golgi cell and spatiotemporal

organization of granular layer activity,” Frontiers in neural

circuits, vol. 7, p. 93, 2013. 68

[278] X. She, S. Dash, D. Kim, and S. Mukhopadhyay, “A hetero-

geneous spiking neural network for unsupervised learning of

spatiotemporal patterns,” Frontiers in Neuroscience, vol. 14,

p. 1406, 2021. 69

[279] C. M. Parameshwara, S. Li, C. Fermüller, N. J. Sanket, M. S.

Evanusa, and Y. Aloimonos, “Spikems: Deep spiking neu-

ral network for motion segmentation,” in 2021 IEEE/RSJ

243

REFERENCES

International Conference on Intelligent Robots and Systems

(IROS), pp. 3414–3420, IEEE, 2021. 69

[280] T. Chen and S. Lu, “Object-level motion detection from mov-

ing cameras,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 27, no. 11, pp. 2333–2343, 2016. 70

[281] S. Yang, X. Hao, B. Deng, X. Wei, H. Li, and J. Wang, “A

survey of brain-inspired artificial intelligence and its engineer-

ing,” Life Research, vol. 1, no. 1, pp. 23–29, 2018. 70

[282] A. Podobas and S. Matsuoka, “Designing and accelerating

spiking neural networks using opencl for fpgas,” in 2017

International Conference on Field Programmable Technology

(ICFPT), pp. 255–258, IEEE, 2017. 70, 72

[283] J. Misra and I. Saha, “Artificial neural networks in hardware:

A survey of two decades of progress,” Neurocomputing, vol. 74,

no. 1-3, pp. 239–255, 2010. 70

[284] G. Li, V. Talebi, A. Yoonessi, and C. L. Baker Jr, “A fpga

real-time model of single and multiple visual cortex neurons,”

Journal of neuroscience methods, vol. 193, no. 1, pp. 62–66,

2010. 70

[285] J. Li, Y. Katori, and T. Kohno, “An fpga-based silicon neu-

244

REFERENCES

ronal network with selectable excitability silicon neurons,”

Frontiers in neuroscience, vol. 6, p. 183, 2012. 70, 71

[286] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of

silicon brains in the nano-cmos era: Spiking neurons, learning

synapses and neural architecture optimization,” Neural Net-

works, vol. 45, pp. 4–26, 2013. 71

[287] D. P. Moeys, T. Delbrück, A. Rios-Navarro, and A. Linares-

Barranco, “Retinal ganglion cell software and fpga model im-

plementation for object detection and tracking,” in 2016 IEEE

International Symposium on Circuits and Systems (ISCAS),

pp. 1434–1437, IEEE, 2016. 71

[288] Q. Chen, J. Wang, S. Yang, Y. Qin, B. Deng, and X. Wei,

“A real-time fpga implementation of a biologically inspired

central pattern generator network,” Neurocomputing, vol. 244,

pp. 63–80, 2017. 71

[289] K. Cheung, S. R. Schultz, and W. Luk, “Neuroflow: a gen-

eral purpose spiking neural network simulation platform us-

ing customizable processors,” Frontiers in neuroscience, vol. 9,

p. 516, 2016. 72

[290] V. Sakellariou and V. Paliouras, “An fpga accelerator for spik-

ing neural network simulation and training,” in 2021 IEEE

245

REFERENCES

International Symposium on Circuits and Systems (ISCAS),

pp. 1–5, IEEE, 2021. 72

[291] M. Im and S. I. Fried, “Directionally selective retinal ganglion

cells suppress luminance responses during natural viewing,”

Scientific reports, vol. 6, no. 1, pp. 1–9, 2016. 78

[292] J. N. Kay, I. De la Huerta, I.-J. Kim, Y. Zhang, M. Yamagata,

M. W. Chu, M. Meister, and J. R. Sanes, “Retinal ganglion

cells with distinct directional preferences differ in molecular

identity, structure, and central projections,” Journal of Neu-

roscience, vol. 31, no. 21, pp. 7753–7762, 2011. 78

[293] P. Machado, A. Oikonomou, G. Cosma, and T. M. McGinnity,

“Bio-inspired ganglion cell models for detecting horizontal and

vertical movements,” in 2018 International Joint Conference

on Neural Networks (IJCNN), pp. 1–8, IEEE, 2018. 78, 112,

189

[294] G. Deng and L. Cahill, “An adaptive gaussian filter for noise

reduction and edge detection,” in 1993 IEEE Conference

Record Nuclear Science Symposium and Medical Imaging Con-

ference, pp. 1615–1619 vol.3, 1993. 84, 123

[295] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “Dl-

resume: A delay learning-based remote supervised method for

246

REFERENCES

spiking neurons,” IEEE transactions on neural networks and

learning systems, vol. 26, no. 12, pp. 3137–3149, 2015. 86

[296] OpenCV, “OpenCV: Color conversions,” 2021. Available

onine, https://docs.opencv.org/3.4/de/d25/imgproc_

color_conversions.html, last accessed: 30/07/2021. 93

[297] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening

and decorrelation,” The American Statistician, vol. 72, no. 4,

pp. 309–314, 2018. 94

[298] Brian, “Introduction to Brian 2,” 2021. Available onine,

https://brian2.readthedocs.io/en/2.0rc/resources/

tutorials/2-intro-to-brian-synapses.html, last ac-

cessed: 30/07/2021. 97, 124

[299] L. Maddalena and A. Petrosino, “Background subtraction for

moving object detection in rgbd data: A survey,” Journal of

Imaging, vol. 4, no. 5, p. 71, 2018. 115

[300] D. Holmes, “Reconstructing the retina.,” Nature, vol. 561,

no. 7721, pp. S2–S3, 2018. 115

[301] A. Stalin and W. Amitabh, “Bsfd: Background subtraction

frame difference algorithm for moving object,” Journal of The-

247

https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://brian2.readthedocs.io/en/2.0rc/resources/tutorials/2-intro-to-brian-synapses.html
https://brian2.readthedocs.io/en/2.0rc/resources/tutorials/2-intro-to-brian-synapses.html

REFERENCES

oretical and Applied Information Technology, vol. 60, no. 3,

pp. 623–628, 2014. 115

[302] A. Vacavant, T. Chateau, A. Wilhelm, and L. Lequievre, “A

benchmark dataset for outdoor foreground/background ex-

traction,” in Asian Conference on Computer Vision, pp. 291–

300, Springer, 2012. 115

[303] R. D. Sharma, S. L. Agrwal, S. K. Gupta, and A. Prajap-

ati, “Optimized dynamic background subtraction technique

for moving object detection and tracking,” in 2017 2nd In-

ternational Conference on Telecommunication and Networks

(TEL-NET), pp. 1–3, IEEE, 2017. 115

[304] M. Rashid and V. Thomas, “A background foreground com-

petitive model for background subtraction in dynamic back-

ground,” Procedia technology, vol. 25, pp. 536–543, 2016. 115

[305] J.-W. Seo and S. D. Kim, “Dynamic background subtrac-

tion via sparse representation of dynamic textures in a low-

dimensional subspace,” Signal, Image and Video Processing,

vol. 10, no. 1, pp. 29–36, 2016. 115

[306] O. Community, “OpenCV,” 2020. Available online, https:

//opencv.org/, last accessed: 2020-01-22. 117, 124, 129

248

https://opencv.org/
https://opencv.org/

REFERENCES

[307] F. Standard C++, “STL C++17,” 2017. Available

online, https://isocpp.org/std/status, last accessed:

23/11/2020. 124

[308] Boost, “Boost C++ libraries,” 2020. Available online, http:

//www.boost.org/, last accessed: 23/11/2020. 124

[309] R. Jolivet, T. J. Lewis, and W. Gerstner, “Generalized

integrate-and-fire models of neuronal activity approximate

spike trains of a detailed model to a high degree of accuracy,”

Journal of neurophysiology, vol. 92, no. 2, pp. 959–976, 2004.

125

[310] R. Brette and W. Gerstner, “Adaptive exponential integrate-

and-fire model as an effective description of neuronal activ-

ity,” Journal of neurophysiology, vol. 94, no. 5, pp. 3637–3642,

2005. 125

[311] L. A Pastur-Romay, A. B Porto-Pazos, F. Cedrón, and A. Pa-

zos, “Parallel computing for brain simulation,” Current Topics

in Medicinal Chemistry, vol. 17, no. 14, pp. 1646–1668, 2017.

145

[312] R. Brooks, D. Hassabis, D. Bray, and A. Shashua, “Is the brain

a good model for machine intelligence?,” Nature, vol. 482,

no. 7386, p. 462, 2012. 145

249

https://isocpp.org/std/status
http://www.boost.org/
http://www.boost.org/

REFERENCES

[313] S. Herculano-Houzel, “The human brain in numbers: a lin-

early scaled-up primate brain,” Frontiers in human neuro-

science, p. 31, 2009. 145

[314] P. J. Fox, “Massively Parallel Neural Computation,” Univer-

sity of Cambridge Computer Laboratory, no. 830, pp. 1–105,

2013. 145

[315] Intel, “What Is a GPU? Graphics Processing Units Defined,”

2020. Available online, https://www.intel.co.uk/content/

www/uk/en/products/docs/processors/what-is-a-gpu.

html, last accessed: 2021-03-10. 146, 149

[316] H. S. de Andrade, Software Concerns for Execution on Hetero-

geneous Platforms. PhD thesis, Chalmers University of Tech-

nology, 2018. 148

[317] CodeProjects, “Part 5: OpenCL Buffers and Mem-

ory Affinity - CodeProject,” 2011. Available online,

https://www.codeproject.com/Articles/201258/

Part-5-OpenCL-Buffers-and-Memory-Affinity, last

accessed: 2021-04-02. 154

[318] P. Machado, A. Oikonomou, J. F. Ferreira, and T. McGinnity,

“Hsmd: An object motion detection algorithm using a hybrid

250

https://www.intel.co.uk/content/www/uk/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.co.uk/content/www/uk/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.co.uk/content/www/uk/en/products/docs/processors/what-is-a-gpu.html
 https://www.codeproject.com/Articles/201258/Part-5-OpenCL-Buffers-and-Memory-Affinity
 https://www.codeproject.com/Articles/201258/Part-5-OpenCL-Buffers-and-Memory-Affinity

REFERENCES

spiking neural network architecture,” IEEE Access, pp. 1–1,

2021. Available onine, https://doi.org/10.1109/ACCESS.

2021.3111005, last accessed: 2021-07-31. 189

251

https://doi.org/10.1109/ACCESS.2021.3111005
https://doi.org/10.1109/ACCESS.2021.3111005

	List of Acronyms
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Current approaches
	1.3 Research gaps
	1.4 Aims and objectives
	1.5 Summary of the thesis

	2 Background Research
	2.1 Anatomy of the Eye and Retina
	2.2 Spiking Neuron Models
	2.3 Spiking Neural Networks simulators
	2.4 Spiking Neural Networks architectures suitable Computer Vision Processing
	2.5 Object Motion Detection
	2.5.1 Background Subtraction
	2.5.2 Noise reduction
	2.5.3 Threshold selection
	2.5.4 Moving object detection
	2.5.4.1 Representation learning
	2.5.4.2 Neural networks modelling
	2.5.4.3 Deep Neural Network modelling

	2.5.5 Advanced Object Motion Detection applications
	2.5.5.1 Trajectory classification
	2.5.5.2 Object tracking
	2.5.5.3 Real-time considerations

	2.6 Hardware implementations
	2.6.1 General propose Neural Network accelerators
	2.6.2 Neuromorphic and heterogeneous devices
	2.6.3 FPGA implementations

	2.7 Revised Literature

	3 Detection of horizontal and vertical movements using Spiking Neural Networks
	3.1 Introduction
	3.2 Proposed architecture
	3.2.1 Input Layer: Binarisation via conversion from pixel grade values to spike events
	3.2.2 Layer 1: Edge detection
	3.2.3 Layer 2: Horizontal and vertical features extraction
	3.2.4 Layer 3: Extraction of movement features
	3.2.5 Layer 4: Detection of movement type

	3.3 Implementation
	3.3.1 Dataset
	3.3.2 Image pre-processing
	3.3.3 Simulation Process
	3.3.4 Custom Object Direction Detection algorithms
	3.3.5 Metrics

	3.4 Results
	3.4.1 Horizontal movement test
	3.4.2 Vertical movement test
	3.4.3 Results per category

	3.5 Discussion

	4 HSMD: Hybrid Spiking Motion Detection
	4.1 Introduction
	4.2 HSMD architecture
	4.2.1 Input Layer: background subtraction and reduction
	4.2.2 Layer 2: Pixel intensities values to currents encoding
	4.2.3 Layer 3: Motion stability
	4.2.4 Layer 4: Motion detection
	4.2.5 Layer 5: Filtering

	4.3 Implementation details
	4.3.1 HSMD setup
	4.3.2 Datasets and metrics
	4.3.2.1 Datasets
	4.3.2.2 Metrics

	4.4 Results
	4.4.1 Overall results
	4.4.2 Results obtained per category
	4.4.3 Results analysis

	4.5 Discussion

	5 NeuroHSMD: Neuromorphic Hybrid Spiking Motion Detection
	5.1 Introduction
	5.2 Implementation details
	5.2.1 Heterogeneous computing platforms
	5.2.2 FPGA Architecture
	5.2.3 Hardware Description Language
	5.2.4 OpenCL
	5.2.5 Hardware platform
	5.2.6 NeuroHSMD implementation
	5.2.6.1 Host application
	5.2.6.2 Device kernels

	5.2.7 Datasets and benchmark

	5.3 Results
	5.3.1 Resources Usage
	5.3.2 Speed performance
	5.3.3 Benchmark

	5.4 Discussion

	6 Discussion and Future work
	6.1 Main contributions
	6.2 Future work

	References

