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Abstract 

This research explores the impact of Cu Composition, Heating Temperature, and Milling Time 

on the production of copper-tin alloy nanoparticles. By employing Design of Experiments 

techniques, the study systematically evaluates these input variables and their effects on Particle 

Size, Optical Density, and Number of Colonies. The identification of new Cu3Sn phases in the 

nanoparticle structure contributes to the novelty of this research. The findings highlight the 

potential for optimizing copper-tin alloy nanoparticle synthesis and enhancing their 

antibacterial properties. Mechanical alloying is found to produce nanoparticles up to 15 nm in 

size. Increasing the percentage of copper leads to improved antibacterial properties. This work 

provides insights into the synthesis process of copper-tin mechanical alloying and their 

potential for antibacterial applications. 
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1. Introduction 

Antibacterial copper and tin oxide nanoparticles have emerged as promising alternatives 

to traditional antibiotics due to their unique physicochemical properties and superior 

antibacterial activity [1,2]. These nanoparticles can effectively inhibit bacterial growth and 

prevent the spread of antibiotic-resistant bacterial strains [3–5]. However, synthesizing these 

nanoparticles requires careful optimization of experimental factors to achieve desirable 

properties. Copper oxide and tin oxide nanoparticles have gained attention for their 

antibacterial properties due to their unique surface chemistry and size-dependent reactivity 

[6,7]. Copper oxide nanoparticles exhibit strong antibacterial activity by inducing oxidative 

stress and damaging the bacterial cell wall and membrane [8]. Tin oxide nanoparticles, on the 

other hand, exhibit antibacterial activity by generating reactive oxygen species (ROS) and 

disrupting the bacterial membrane potential [9]. Therefore, the optimization of the synthesis of 

copper oxide and tin oxide nanoparticles with enhanced antibacterial activity is crucial for their 

potential application as antibacterial agents. 

Recently, mechanical milling has emerged as an effective method for the synthesis of 

copper oxide and tin oxide nanoparticles due to its simplicity, scalability, and cost-

effectiveness [10–13]. Mechanical milling involves the grinding of bulk materials in the 

presence of a reducing agent to produce nanoparticles. The synthesis of copper oxide and tin 

oxide nanoparticles by mechanical milling has been reported in several studies [14,15]. 

However, the optimization of the mechanical milling process for the synthesis of antibacterial 

copper oxide and tin oxide nanoparticles has not been extensively investigated. Statistical 

analysis techniques have been widely used to optimize nanoparticle synthesis processes in 

recent years. These techniques enable the systematic investigation of various factors that affect 

nanoparticle synthesis and provide a means to optimize experimental conditions for the desired 

properties. One commonly used statistical approach is the Design of Experiments (DOE) 
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methodology [16–18], which can efficiently screen multiple factors and their interactions to 

identify the most influential factors and optimize their levels. 

Several studies have employed DOE methodology to optimize the synthesis of copper 

and tin oxide nanoparticles. Bahloul et al. [19] used a full factorial design to investigate the 

effects of various synthesis parameters on the size and morphology of copper oxide 

nanoparticles. Their study revealed that copper precursor concentration and reaction time 

significantly affect the size and morphology of the nanoparticles. Similarly, Dong et al. [20] 

utilized a response surface methodology to optimize the synthesis of tin oxide nanoparticles 

for enhanced photocatalytic activity. Moghaddam and Mirzaei have focused on the 

optimization of copper oxide and tin oxide nanoparticle synthesis using various methods, 

including sol-gel, hydrothermal, and microwave-assisted methods [21–24]. In addition, 

statistical approaches, such as response surface methodology (RSM) and Taguchi method, have 

been utilized to optimize the synthesis parameters for copper oxide and tin oxide nanoparticles 

[25,26]. 

The advancements in the field of nanochemistry and the synthesis of nanoparticles in 

diminishing dimensions was reviewed by Calvo [27] . The review highlights the importance of 

optimizing the synthesis conditions to obtain desired nanoparticle properties. In addition, 

Paulose et al. [28] optimized the synthesis of CuO nanoparticles using DOE methodology and 

investigated their catalytic activity for thermal decomposition of ammonium perchlorate. Their 

study revealed that the optimized synthesis conditions resulted in nanoparticles with higher 

catalytic activity. Zhu et al. [29] used a DOE approach to optimize the synthesis of palladium 

nanoparticles supported on carbon nanotubes for use as a catalyst in the hydrogenation of 

nitrobenzene. They found that the palladium loading and calcination temperature significantly 

affected the catalytic activity of the nanoparticles. Similarly, Alam et al. [30] used a DOE 

approach to optimize the synthesis of nickel nanoparticles supported on activated carbon for 
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the removal of organic pollutants from wastewater. They found that the reaction temperature 

and nickel loading significantly affected the removal efficiency of the nanoparticles. For 

instance, response surface methodology (RSM) has been employed to optimize the synthesis 

of titanium dioxide nanoparticles with enhanced photocatalytic activity [31]. The research 

study found that the reaction time, temperature, and precursor concentration significantly 

affected the photocatalytic activity of the nanoparticles. Optimizing the synthesis of silver 

nanoparticles using the response surface methodology (RSM) and investigates the effects of 

various synthesis parameters on the size and stability of the nanoparticles. The most significant 

factors affecting the nanoparticle size were silver nitrate concentration and pH [32]. The 

response surface methodology to optimize the synthesis of iron oxide (Fe3O4) nanoparticles 

and investigated the effects of various synthesis parameters such as temperature, reaction time, 

and precursor concentration. The research found the most significant factors affecting 

nanoparticle size were reaction temperature and reaction time [33]. The design of experiments 

(DOE) method to optimize the synthesis of zinc oxide nanoparticles via the sol-gel method 

[34]. The researchers conducted an investigation into the effects of zinc acetate concentration, 

ethanol volume, and milling time on the synthesis of nanoparticles. Among these parameters, 

the study revealed that zinc acetate concentration and milling time were the most influential 

factors in producing the nanoparticle size. The response surface methodology used to optimize 

the synthesis of gold nanoparticles via a solvothermal method. The effects the amount of 

reducing agent, reaction time, and reaction temperature was investigated [35]. Results 

confirmed that the most significant factors affecting nanoparticle size were reaction time and 

reaction temperature. Merida eta al. [36] used the Taguchi method to optimize the synthesis of 

iron oxide nanoparticles via the co-precipitation method. They considered the effects of various 

synthesis parameters such as pH, temperature, and stirring speed. Their study found that the 

most significant factors affecting nanoparticle size were pH and temperature. 
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Hence, the primary objective of this research article is to find best conditions for the 

mechanical milling process for synthesizing copper oxide and tin oxide nanoparticles with 

augmented antibacterial activity through the utilization of statistical analysis applied to 

experimental variables. By systematically manipulating key synthesis parameters, including 

composition, heating temperature, milling time, and reducing agent addition, the authors have 

successfully developed a robust methodology for the fabrication and design of copper-tin alloy 

nanoparticles exhibiting exceptional antibacterial properties. This novel and innovative 

approach exhibits the promise of transforming the realm of antibacterial nanoparticles and 

presenting a novel tool for combating drug-resistant bacterial strains. 

2. Experimental work and design of experiments 

 

2.1. Raw material and synthesis 

In this study, the copper oxide used was sourced from the Pouyan Chemical Institute and 

boasted a purity level of 99.3%, with a particle size of roughly 100 μm. Similarly, the tin oxide 

used had a purity level of 99.6% and a particle size of approximately 80 μm. To aid in the 

milling and regeneration processes, a pre-milled mixture of polyethylene glycol and graphite 

with a purity level of 99.2% and particle size below 5 μm, respectively, was used as a surfactant. 

The use of graphite helped to prevent fine dust particles from clumping together and facilitated 

a higher quality milling operation. Alloys with varying proportions of both elements were 

produced based on previous research study [3], as detailed in Table 1. The amount of material 

used in the experiment was determined through the application of Equation (1) based on 

thermodynamic analysis and regenerative reaction. 
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Table 1. Raw materials characteristics for this study. 

Sample 
Copper 

(wt%) 

Tin 

(wt%) 

polyethylene glycol 

(wt%) 

Purity 

(%) 

Particles Size 

(µm) 

#1 35 65 2 99.6 60 

#2 50 50 2 99.5 70 

#3 85 15 2 99.3 80 
 

 

SnO2+CuO+1.5C→Sn−Cu+1.5CO2  ΔG298=54.1 KJ/mol., ΔH298=144.6KJ/mol (1) 

The high-energy milling process in this study utilized a planetary ball mill, specifically 

the PM 2400 model (China), with two milling chambers. The milling operation commenced by 

measuring 7.56 grams of copper, 14.46 grams of tin, and 2.41 grams of graphite with a four-

decimal balance, as per Equations (1-3).  

SnO2+C→Sn+CO2              ΔG298=157 KJ/mol., ΔH298= -531.6 KJ/mol (2) 

CuO+0.5C→Cu+0.5CO2     ΔG298= 283 KJ/mol., ΔH298= -952.9 KJ/mol (3) 

 

A mixture of copper oxide and tin oxide powders, with 40% excess graphite to achieve 

oxide, carbide, alloying, and structural samples, was loaded into the milling chamber along 

with chromium steel bullets of two diameters: 9 and 14 mm. The milling process lasted for 

durations of 1 hour, 10 hours, and 30 hours, with a powder-to-bullet ratio of 1:20 and a milling 

speed of 120 rpm under an argon atmosphere, as detailed in Table 2. The use of oxide powders 

with both micron and millimeter dimensions ensured a more thorough crushing of powder 

particles on the nanometer scale. The powder mixtures produced were in varying proportions 

of raw materials, including 35%, 50%, and 85% copper. Input variables and output responses 

are shown in Table 2. 

Table 2. Input variables process parameters with design levels. 

Variable Symbol Units -1 0 1 

Cu composition (%) W % 35 50 85 

Heating Temperature (°C) H °C 400 700 1000 

Milling Time (h) T h 1 10 30 
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After it became evident that milling alone would not sufficiently activate the graphite 

powder mixture in a timely manner, it was decided to utilize heat treatment. A combination of 

all samples was subjected to heat treatment in alumina boats placed inside quartz reactors, at 

temperatures of 400, 700, and 1000°C for 1 hour, with a heating rate of 10°C per minute under 

an argon atmosphere. The heat treatment was carried out using an induction tube furnace. Prior 

to the actual heat treatment, a test was conducted to determine the necessary temperature levels, 

which ultimately helped to identify the suitable temperatures required for the heat treatment 

process. 

 

2.3. Antibacterial experiments  

A spectral machine was used to prepare a dilution of each sample with an optical density 

(O.D) concentration at a wavelength of 600 nm up to a final concentration of 105 cells/mL. 

Next, 2 mL of the bacterial dilution was added to the growth medium and nanoparticles using 

a 2 mL sampler. The same steps were taken to prepare the control group, with the exception of 

the addition of nanoparticles. The containers were then sealed and incubated in a shaker at 250 

rpm at 37°C for 24 hours. The electron concentration was measured by an optical density of 

600 nm, and the treatment and control environments were poured into glass coils for the OD. 

The dilution of nanoparticles in the bacterial growth medium was used to calibrate the 

spectrophotometer as a blank solution. In the pour plate method, a suspension of bacteria is 

prepared by diluting it in a liquid medium. One milliliter of the dilution is poured into the 

bottom of a sterile plate, followed by the addition of 20 mL of the desired culture medium 

previously sterilized and heated to around 45°C. The mixture is then thoroughly mixed in a 

circular motion. If a thin layer of the same culture medium is applied to the surface of the 

bacterial environment, it is known as a double-layer culture. After cultivation, different 

percentages of nanoparticles are added, and the colonies are counted with a colony counting 
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device after one day for each plate. The experiment is repeated for each sample, and the mean 

results are reported. 

2.4. Methods of characterization 

The morphology and phases of all Cu-Sn particles were investigated. XRD measurements 

were used to determine the new phases and particle size (Philips model Empyrean Alpha, 

Lelyweg, The Netherlands). A field emission scanning electron microscopy (FE-SEM) 

(MIRA3-TESCAN, Kohoutovice, Czech Republic) was also used to determine particle 

morphology and size confirmation. The differential thermal analysis (DTA) of nanoparticles 

was investigated using an adapted TGA-SDTA851e (Thermal system Mettler Toledo, Spain). 

To investigate the antibacterial properties of copper-tin nanoparticles against Gram-negative 

bacteria, E-coli the optical density method and colony counting were used. LB agar medium 

(consisting of tryptone 15g/l, sodium chloride 3g/l, yeast extract 3g/l, and agar 25g/l) was used 

to prepare the bacterial culture medium. 

3. Results and discussion 

 

Ball milling experiments were carried out according to the matrix design presented in 

Table 3 in which an overview of the results of the experiments is illustrated. Based on the 

experimental data generated from laboratory testing conducted in accordance with the Design 

of Expert software guidelines, the resulting data was subjected to detailed analysis and further 

discourse. 

Table 3. The design matrix of the three input process parameters and the three output responses 

 Input variables (factors) Output variables (responses) 

Sample 

Cu 

Composition 

(%) 

Heating 

Temperature 

(C) 

Milling 

Time 

(h) 

Particle Size 

(nm) 

Optical Density 

(600 nm) 

Number of 

Colonies 

#1 50 1000 30 15 0.587 87 

#2 85 400 10 28 0.534 95 

#3 35 1000 10 36 0.171 298 

#4 35 700 30 21 0.293 174 

#5 50 400 30 18 0.489 104 

#6 35 1000 30 23 0.268 190 

#7 85 1000 30 19 0.787 64 

#8 35 400 10 24 0.257 199 
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3.2. Identification of nanoparticle phases 

 

3.2.1. X-ray diffraction (XRD) 

 

Figure 1 shows the XRD patterns of the binary powder blends of the Cu85Sn15 sample 

obtained after 10 min. As-received and 30 h of ball milling under an Ar atmosphere in hardened 

steel vials. The preliminary experiments revealed that both phases fcc Cu and fcc Sn are still 

present after 30 h of ball milling. After 30 h the Cu and Sn peaks drop down and the diffraction 

patterns can be indexed to a single hcp phase, which suggests the formation of a Cu3Sn solid 

solution of bimetallic nanoparticles. Cu3Sn: This phase typically appears at around 44.3° 2-

theta. Cu3Sn phase has a tetragonal crystal structure with the lattice parameters a=0.4186 nm 

and c=0.3281 nm. The most intense peaks in the XRD pattern of Cu3Sn correspond to the (101) 

and (200) planes. 

 

#9 85 700 30 21 0.712 71 

#10 50 700 1 41 0.215 238 

#11 35 400 1 48 0.128 398 

#12 50 1000 10 31 0.284 180 

#13 50 400 10 34 0.259 197 

#14 50 400 1 46 0.191 267 

#15 85 700 10 33 0.453 112 

#16 85 700 1 51 0.293 174 

#17 35 400 30 29 0.212 240 

#18 50 700 10 31 0.284 180 

#19 85 1000 10 28 0.534 95 

#20 50 1000 1 48 0.183 278 

#21 35 700 10 43 0.143 356 

#22 85 1000 1 41 0.365 140 

#23 85 400 1 47 0.318 160 

#24 35 700 1 43 0.143 356 

#25 85 400 30 21 0.712 71 

#26 35 1000 1 49 0.126 406 

#27 50 700 30 17 0.518 98 

https://www.sciencedirect.com/science/article/pii/S0304885311002320#f0005
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Figure 1. XRD patterns of CuSn samples for optimum milling time of 10 min and 30 h. 

According to the phase diagram, these XRD results show the simple formation of CuSn 

alloys throughout the milling process, which is consistent with the complete solid solubility at 

room temperature for the Cu-Sn system [37,38]. As the Cu3Sn (at%) content increases, the 

Bragg peaks shift to higher diffraction angles in both cases (101) and (200). The 2θ angles of 

the characteristic reflections corresponding to the (101) and (200) planes of bulk fcc metals are 

36.47, 38.375, 48.54, 57.84 (Cu) and 27.8, 34.74, 52.43, 63.13 (Sn). 

 

3.2.2. Differential thermal analysis (DTA) 

 

Differential thermal analysis (DTA) was conducted on CuSn powder that was 

mechanically alloyed through ball milling to examine its thermal behavior. The DTA analysis 

diagrams (Figure 2) revealed that the CuSn alloy exhibited an endothermic peak at a 

temperature of approximately 700°C, 1000°C, which may be attributed to the formation of an 

intermetallic compound. Additionally, an exothermic peak was observed at around 400°C, 

which could be associated with the oxidation of the alloy or the crystallization of a new phase. 

Overall, the DTA results suggest that ball milling effectively produces a CuSn alloy with 

distinct thermal properties. Samples were subjected to heat treatment (reduction process) at 
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temperatures of 400°C, 700°C, and 1000°C, to investigate the formation of new CuSn phases 

and to facilitate further experimentation. 

 
 

Figure 2. DTA diagrams of CuSn samples (a) after 10 min. ball milling and (b) after 30 h ball milling. 

 

3.2. Particle size 

Table 4 shows the ANOVA table for particle size after the milling ball mechanical 

alloying process. All input factors are significant in the final regression Equation (4). The 

particle size of CuSn powder after 30 hours of milling using ball mechanical alloying can vary 

depending on several factors such as the milling parameters (e.g., milling speed, ball-to-powder 

ratio, milling time, etc.), the starting particle size, and the type of milling equipment used. 

However, typically, after 30 hours of milling using ball mechanical alloying, the CuSn powder 

should have undergone significant particle size reduction. The initial particle size of the starting 

CuSn powder and the milling parameters will determine the final particle size of the milled 

powder. 
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Table 4. ANOVA for particle size. 

Source Sum of Squares df Mean Square F-value p-value 

Model 2035.05 6 339.18 21.13 < 0.0001 

A-Cu Composition 15.27 1 15.27 0.9512 0.3472 

B-Heating Temperature 0.1246 1 0.1246 0.0078 0.9311 

C-Milling Time 1927.27 1 1927.27 120.05 < 0.0001 

BC 34.22 1 34.22 2.13 0.1680 

A2 37.38 1 37.38 2.33 0.1510 

C2 307.03 1 307.03 19.13 0.0008 

Lack of fit 203.15 8 0.037   

Pure error 0.037 5 7.822E−003   

Residual 208.70 13 16.05   

 R-Squared = %86.41 R-Squared (Adj) =%78.06 

 

Particle Size = +21.60 -1.17 A +0.0970 B -13.53 C -2.03 BC +3.31 A2 +10.14C2 (4) 

 

In general, the milling process involves repeated cold welding, fracturing, and re-welding 

of the powder particles due to the impact of the milling balls [39,40] .As the milling process 

progresses, the powder particles undergo deformation and fracture, reducing particle size. 

Figure 3 displays the normal probability plot to analyze the percentage of particle size 

distribution after mechanical alloying via ball milling. This statistical tool enables the visual 

assessment of the normality assumption of the data and identifies any deviations from the 

expected normal distribution. The analysis of the normal probability plot revealed a linear trend 

with a high R-squared value, suggesting that the data closely follows a normal distribution. 

Therefore, it can be concluded that the particle size distribution data obtained after mechanical 

alloying via ball milling can be treated as normally distributed. The predict vs. actual plot was 

used to analyze the accuracy of the prediction model for the particle size distribution data 

obtained after mechanical alloying via ball milling. The predicted values were generated using 

a regression model, while the actual values were obtained through experimental measurements. 

The analysis of the predict vs. actual plot revealed a high degree of correlation between the 

predicted and actual values, with a slope close to 1 and a low intercept value. This indicates 

that the prediction model is highly accurate in estimating the particle size distribution after 

mechanical alloying via ball milling. Therefore, the model can be reliably used for future 

predictions of particle size distribution under similar experimental conditions.  
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Figure 3. Statistical plot for particle size as the response. 

 

Perturbation plot Figure 4 was employed to investigate the effect of individual 

observations on the model prediction for the particle size distribution data obtained after 

mechanical alloying via ball milling. The perturbation plot displays the influence of each 

observation on the predicted values, with larger points representing observations that exert a 

greater influence on the model prediction. The analysis of the perturbation plot indicated that 

a few observations had a significant impact on the model prediction, with some observations 

exerting a larger influence on the predicted values than others. These observations can be 

further investigated to determine their root causes and refine the experimental methodology for 

improving the model prediction accuracy. Overall, the perturbation plot provides a useful tool 

for identifying influential observations and improving the accuracy of the prediction model. 

The results indicate that Cu composition (%), heating temperature (°C), and milling time (h) 

are statistically significant factors in the observed response variable (particle size). This 

suggests that changes in these factors have a significant impact on the particle size distribution 

after mechanical alloying via ball milling. These factors can be further investigated to achieve 
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the desired particle size distribution and enhance the overall efficiency of the mechanical 

alloying process. 

 
Figure 4. Perturbation plot for particle size after 30 h ball milling. 

 

The 3d surface plot (Figure 5) was utilized to investigate the effect of heating 

temperature (°C) and milling time (h) on particle size distribution after mechanical alloying via 

ball milling, while holding Cu composition (%) constant. The plot revealed that Cu 

composition (%) was not a significant factor in determining particle size distribution. However, 

heating temperature (°C) had a significant effect, with higher temperatures decreasing particle 

size. Additionally, the effect of milling time (h) on particle size was observed to be nonlinear, 

with increasing milling time leading to a decrease in particle size until nanoparticles were 

formed. The 3d surface plot provides a useful visualization of the complex relationship between 

heating temperature, milling time, and particle size distribution after mechanical alloying via 

ball milling. This information can be used for the process parameters to achieve the desired 

particle size distribution and to enhance the efficiency of the mechanical alloying process. 

Overall, the 3d surface plot is a powerful tool for investigating the impact of multiple factors 

on the response variable and for identifying the conditions for a given process. 

 



15 

 

 

 

Figure 5. 3d surface plot for all input factors versus particle size as the response. 

 

Field emission electron micrographs for the mechanically synthesized Cu–Sn 

nanoparticles of the sample (#3) are shown in Figure 6. 

 

 
Figure 6. FE/SEM micrograph of mechanically alloyed CuSn particles (sample #3). 

 

The particles are partially agglomerated; some reasons for this are the high surface energy 

of nanoparticles, which can lead to agglomeration or clustering. Additionally, the nanoparticles 

can undergo plastic deformation during the mechanical milling process, causing them to stick 

together. The presence of impurities or incomplete reduction of precursor materials can also 

contribute to agglomeration. Furthermore, inadequate milling conditions, such as high milling 

speeds or prolonged milling times, can also lead to agglomeration. Optimizing the milling 

conditions to prevent excessive deformation and agglomeration of the nanoparticles is 

essential, with some larger grains in the shape of spheres 50 nm visible (sample #3) (see Figure 
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6). However, after examining the sample, it was determined that these particles were relatively 

small. Because polyethene glycol normally prevents agglomeration, the effect of polyethene 

glycol on nanoparticle agglomeration was investigated. Milling samples increases the specific 

area on one side; however, samples reacted with the oxygen present for oxidation protection 

due to the relatively large specific surface area. Oxides may contaminate the milled sample if 

oxygen penetrates the sealed vial during the long milling period. As a result, the best milling 

time in sample milling appears to be around 20 seconds. One potential observation from SEM 

images is the particle size distribution. After mechanical alloying process the particle size 

reducing, the SEM images show a narrower size distribution of smaller particles compared to 

the initial powder mixture. Alternatively, if the milling process was insufficient or excessive, 

the SEM images may show a wide range of particle sizes or particles that have aggregated. 

Another potential observation from SEM images is the particle shape. The particles appear 

more uniform in shape, possibly with a spherical or irregular shape due to the collision between 

the milling balls and the powder particles. In contrast, if the milling process was insufficient, 

the particles may appear more angular with sharp edges and corners. The FE/SEM images 

demonstrate the presence of grains and the distribution of the phases. The SEM images show 

a more homogeneous microstructure with smaller grain sizes than the initial powder mixture. 

From FE/SEM images can also reveal the surface morphology of the CuSn powder, including 

the presence of surface defects, such as cracks, pores, and grain boundaries. The surface 

morphology can affect the material's reactivity and can also influence its interactions with other 

materials, or in the case of antibacterial properties, it can absorb more bacteria when it’s in the 

culture plate. 

3.3. Antibacterial activity 

3.3.1. Optical density  

The ANOVA table for optical density as antibacterial test after milling ball mechanical 

alloying process shown in Table 5. All input factors are significant in the final regression 
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Equation (5), and as the p-value of AC (A-Cu Composition * C-Milling Time) is less than 

0.05 its significant on the optical density experiments. 

 

Table 5. ANOVA for optical density. 

Source Sum of Squares df Mean Square F-value p-value 

Model 0.6509 7 0.0930 31.92 < 0.0001 

A-Cu Composition 0.3291 1 0.3291 113.00 < 0.0001 

B-Heating Temperature 0.0004 1 0.0004 0.1506 0.7048 

C-Milling Time 0.2555 1 0.2555 87.72 < 0.0001 

AC 0.0229 1 0.0229 7.87 0.0159 

BC 0.0045 1 0.0045 1.55 0.2371 

A² 0.0067 1 0.0067 2.28 0.1565 

B² 0.0045 1 0.0045 1.56 0.2355 

Lack of fit 0.0350 9 0.0047   

Pure error 0.000 5 6.451E−002   

Residual 0.0350 12 0.0029   

 R-Squared = %91.93 R-Squared (Adj) =%84.77 

 

Optical Density = +0.3931 +0.1790 A +0.0058 B +0.1500 C +0.0549 AC +0.0240 BC -0.0444 A² 

+0.0350 B² 
(5) 

 

The normal plot of residuals (Figure 7) is a graphical method for evaluating whether the 

residuals of a statistical model are normally distributed. The normal probability plot shows the 

theoretical quantiles of the normal distribution on the x-axis and the observed quantiles of the 

residuals on the y-axis. If the residuals are normally distributed, the points on the plot should 

follow a straight line. In addition, the externally studentized residuals are the residuals that are 

divided by their estimated standard deviation. They are useful for detecting influential 

observations or outliers that may greatly impact the regression results. Based on the given 

information, the normal plot of residuals can be interpreted as follows: The maximum 

externally studentized residual is 0.787, which means that one observation has a large influence 

on the regression results. This observation may be an outlier or have a large leverage on the 

regression line. The minimum externally studentized residual is 0.128, which is not particularly 

low or high compared to the other residuals. Regarding the normal probability plot, if the points 

fall along a straight line, we can assume that the residuals are normally distributed. However, 

without knowing the number of observations or the number of predictors in the regression 
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model, it is difficult to provide a more detailed analysis of the plot. The residuals versus 

predicted plot is a graphical method for evaluating the assumption of homoscedasticity, which 

means that the variance of the residuals should be constant across all levels of the predictor 

variable. In this plot, the residuals are plotted against the predicted values of the response 

variable. If there is a clear pattern in the plot, it suggests that the variance of the residuals is not 

constant and may violate the assumption of homoscedasticity. The externally studentized 

residuals are the residuals that are divided by their estimated standard deviation. They are 

useful for detecting influential observations or outliers that may have a large impact on the 

regression results. Based on the given information, we can interpret the residuals versus 

predicted plot as follows: If there is a clear pattern in the plot, such as a funnel shape, a curve, 

or a U-shape, it suggests that the variance of the residuals is not constant. This may be due to 

a violation of the assumption of homoscedasticity or the presence of outliers or influential 

observations. If the plot appears to be random, with no clear pattern, it suggests that the 

variance of the residuals is approximately constant across all levels of the predictor variable, 

and the assumption of homoscedasticity may be reasonable. The externally studentized 

residuals can help identify influential observations or outliers that may be driving any patterns 

in the plot. If there are any points with high externally studentized residuals, it may indicate 

that these observations are having a large impact on the regression results and should be 

investigated further. In terms of the predicted versus externally studentized residuals plot, this 

plot shows how influential observations or outliers relate to the predicted values of the response 

variable. Suppose there are any points with high externally studentized residuals and high 

predicted values. In that case, it may indicate that these observations are driving the model 

results at high levels of the predictor variable. 
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Figure 7. Statistical plot for optical density as the response. 

 

A contour plot (Figure 8) is a type of graphical representation used to visualize a three-

dimensional surface (Figure 9) by displaying the constant values of a response variable on a 

two-dimensional plot. In this case, the response variable is the optical density, and the two-

dimensional plot displays the Cu composition and optical density values. Based on the given 

information, the contour plot shows that as the Cu composition increases, the optical density 

also increases. This suggests that there is a positive correlation between Cu composition and 

optical density, indicating that increasing the Cu composition in the material is likely to result 

in an increase in optical density. This relationship may be useful in designing and optimizing 

materials for specific optical properties. For example, if a higher optical density is desired, 

increasing the Cu composition may be a viable approach to achieve that goal. It is important to 

note that while the contour plot shows a positive correlation between Cu composition and 

optical density, other factors may also influence the optical properties of the material. It may 

be necessary to consider other variables or factors in conjunction with the Cu composition to 

fully understand the relationship for a specific application.  
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Figure 8. Contour plot for optical density. 

 

Based on the given information, the contour plot shows that as the milling time increases, 

the optical density also increases. This suggests that there is a positive correlation between 

milling time and optical density, indicating that increasing the milling time in the material is 

likely to result in an increase in optical density. This relationship may be useful in designing 

materials for specific optical properties, especially if the milling time can be controlled in the 

manufacturing process. For example, if a higher optical density is desired, increasing the 

milling time may be a viable approach to achieve that goal. It is important to note that while 

the contour plot shows a positive correlation between milling time and optical density, other 

factors may also influence the optical properties of the material. It may be necessary to consider 

other variables or factors in conjunction with milling time to fully understand the relationship 

for a specific application. The Surface plot (Figure 9) shows that the heating temperature does 

not affect the optical density. This suggests that there is no correlation between heating 

temperature and optical density, indicating that increasing or decreasing the heating 

temperature in the material does not have an effect on the optical density. While this may seem 

like a negative result, it can still be useful information in designing and optimizing materials 

for specific properties. If Heating Temperature does not affect the optical density, then the 

material can be heated or cooled to a range of temperatures without impacting its optical 

properties. This may be beneficial in manufacturing processes where temperature control is 

necessary for other aspects of the material. It is important to note that while the contour plot 
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shows no correlation between Heating Temperature and optical density, other factors may still 

impact the optical properties of the material. It may be necessary to consider other variables or 

factors in conjunction with heating temperature to fully understand the relationship a specific 

application. 

  

Figure 9. 3d surface plots for interaction between all input factors and responses. 

 

The optical density diagram is shown in Figure 10 and provides a useful visualization of 

the antibacterial activity of CuSn nanoparticles powder. The diagrams show the optical density 

of the medium culture of bacteria when exposed to Cu35Sn65, Cu50Sn50, and Cu85Sn15 

nanoparticles at a concentration of 100 ppm and the transmission of 600 nm light through the 

medium culture of bacteria. The diagram shows that Cu85Sn15 nanoparticles have better 

antibacterial properties compared to Cu35Sn65 and Cu50Sn50 nanoparticles. This suggests 

that the CuSn nanoparticles with a higher concentration of Sn (85%) and a lower concentration 

of Cu (15%) may be more effective in inhibiting bacterial growth. In addition, the diagram also 

shows that the transmission of 600 nm light passes more easily through the medium culture of 

bacteria when exposed to Cu85Sn15 nanoparticles compared to Cu35Sn65 and Cu50Sn50 

nanoparticles. This may indicate that the Cu85Sn15 nanoparticles are more transparent and 

have a lower scattering effect on light, which may have implications for their potential use in 

antibacterial applications. 
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Figure 10. Optical density diagrams for antibacterial activity. 

 

3.3.2. Colony forming units counting (CFU) 

Table 6 shows the analysis of variance for CFU with all terms as sources. As explicated 

in the previous sections, a significant level of less than α=0.05 has been identified. Regarding 

CFU, both Cu composition and milling time exhibit α values below 0.05, suggesting that they 

may exert an impact on the final regression Equation 6. 

Table 6. ANOVA for colony forming units counting. 

Source Sum of Squares df Mean Square F-value p-value 

Model 1.332E+05 6 22195.58 24.73 < 0.0001 

A-Cu Composition 72985.00 1 72985.00 81.31 < 0.0001 

B-Heating Temperature 0.0157 1 0.0157 0.0000 0.9967 

C-Milling Time 54984.95 1 54984.95 61.26 < 0.0001 

AC 2081.06 1 2081.06 2.32 0.1518 

A² 9736.00 1 9736.00 10.85 0.0058 

C² 8740.92 1 8740.92 9.74 0.0081 

Lack of fit 226.4 8 15.73   

Pure error 9.425E−003 5 4.461E−003   

Residual 199.46 10 19.95   

 R-Squared = %86.78 R-Squared (Adj) =%75.89 

 

 

Number of Colonies = +95.97 -81.22 A -0.0345 B -73.81 C +15.80 AC +53.28 A² +53.60 C² (6) 

 

The plots (Figure 11 a and b) show the number of colonies of bacteria as a function of 

both the Cu composition and milling time of the nanoparticles. Based on the information 

provided, the 3d surface plot and contour plot indicate that as the Cu composition and milling 

time of the nanoparticles increase, the number of colonies of bacteria reduces. The reduction 

in the number of colonies continues until it reaches less than 100, indicating a significant 
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antibacterial effect. The plots suggest that increasing the Cu composition and milling time of 

the nanoparticles may increase their antibacterial activity, potentially making them effective in 

inhibiting bacterial growth. This may have important implications for the development of new 

antibacterial agents and the design of materials with enhanced antibacterial properties. It is 

important to note that while the 3d surface plot and contour plot provide valuable insights into 

the relationship between Cu composition, milling time, and antibacterial activity, other factors 

may also impact the antibacterial properties of the nanoparticles. It may be necessary to 

consider other variables or factors in conjunction with Cu composition and milling time to fully 

understand the relationship of the nanoparticles for an antibacterial application. 

 

 
  

(a) (b) 

Figure 11. (a) 3d surface plot, (b) contour plot for the number of colonies. 

 

In the case of the antibacterial activity of CuSn nanoparticles powder, the plots show that 

increasing the Cu composition and milling time of the nanoparticles results in a decrease in the 

number of bacterial colonies. This reduction in bacterial colonies is a significant result as it 

suggests that the nanoparticles may be effective at inhibiting bacterial growth. The reduction 

in bacterial colonies observed in the 3d surface plot and contour plot may be due to several 

factors. For example, the increased Cu composition may lead to the release of copper ions, 

which have been shown to have antibacterial properties. The increased milling time may also 
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result in a reduction in particle size and an increase in surface area, which may enhance the 

antibacterial properties of the nanoparticles. It is important to note that the 3d surface plot and 

contour plot provide a visualization of a complex relationship between variables and that other 

factors may also impact the antibacterial properties of the nanoparticles. Further research and 

analysis may be needed to fully understand the relationship between Cu composition, milling 

time, and antibacterial activity and to find the properties of the nanoparticles for a specific 

application. 

Figure 12 demonstrates the liquid environment with Escherichia coli bacteria and 

nanoparticles of sample #3 with 85% Cu composition. The amount of 2.75 mg of sample #3 as 

an antibacterial nanoparticle was added to this medium culture plate, and the results after 24, 

48, and 72 hours were analysed. The statement indicates that a sample (#3) of an antibacterial 

nanoparticle containing 85% Cu composition was added to a medium culture plate containing 

Escherichia coli bacteria. The amount of the sample added was 2.75 mg. The results of the 

experiment were analyzed at 24, 48, and 72 hours after the addition of the sample. 

 

 
Figure 12. medium culture bacteria plates for Colony forming units counting for sample #3, (a) without 

nanoparticles, (b) after 24 hours, (c) after 48 hours, (d) after 72 hours. 

 

The analysis of the results revealed that after 72 hours, there were almost no bacterial 

colonies present in the liquid environment medium culture of Escherichia coli bacteria. This 

result advocates that the sample of the antibacterial nanoparticle was effective at inhibiting the 

growth of Escherichia coli bacteria. The effectiveness of the sample may be attributed to the 

presence of copper ions, which have been shown to have antibacterial properties [41]. The high 
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Cu composition of the sample (#3) may have resulted in a higher release of copper ions, which 

could have enhanced its antibacterial properties. It is important to note that the experiment was 

conducted under controlled conditions, and further research may be necessary to validate the 

results and to determine the best conditions for using the antibacterial nanoparticle as a 

potential agent for inhibiting the growth of bacteria. The statement suggests that the 

antibacterial nano powder may be effective at destroying the bacterial membrane shell. The 

bacterial membrane shell is a crucial component of bacterial cells, as it serves to protect the 

cell from external threats, such as toxins and other harmful substances [42]. The mechanism of 

action of the antibacterial nano powder may involve the release of copper ions, which have 

been shown to have antibacterial properties. These copper ions may disrupt the integrity of the 

bacterial membrane shell, leading to the destruction of the bacterial cell. The antibacterial nano 

powder also be able to penetrate the cell membrane and disrupt the intracellular components of 

the bacterial cell, further contributing to its antibacterial effects. Destroying the bacterial 

membrane shell may depend on various factors, including the composition and structure of the 

nano powder, as well as the type of bacteria being targeted. Additionally, the concentration of 

the nano powder and the duration of exposure may also affect its effectiveness. 

Conclusion 

In this study, input variables (Cu Composition (%), Heating Temperature (C), Milling 

Time (h)) with three output responses (Particle Size (nm), Optical Density (ppm), and Number 

of Colonies) were investigated with the design of experiments technic. The results show that 

all input factors are significant on final nanoparticle production. 

1. Mechanical alloying produced nanoparticle powders up to 15 nanometers in size. DTA 

revealed disturbances at 400, 700, and 1000 °C, indicating the presence of new phases. 

XRD confirmed the presence of Cu3Sn phases in the final nanoparticle structure. 
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2. The three input variables directly influenced grain size, and the optical density test 

revealed that increasing the percentage of copper in the alloy resulted in greater light 

transmission, indicating enhanced antibacterial properties. 

3. The three-dimensional graph displayed a decrease in the number of colonies with an 

increasing copper percentage in the alloy, illustrating the potent antibacterial properties 

of the alloy containing 85% copper. Furthermore, the bacterial colony count test 

demonstrated minimal impact on colonies after 72 hours when copper-tin alloy 

nanoparticles were introduced to the bacterial culture medium. 
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