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A B S T R A C T   

Supply network (SN) robustness has become an important issue in SN management. In this paper, we refer to SN 
as robust, if it maintains its performance in the presence of uncertainty in SN parameters, namely uncertain 
changes in customer demand. A customer forecasts its demand in terms of requested quantity and time of de-
livery. This forecasted demand can be changed until a certain time. After that, the customer is committed to its 
demand. However, a manufacturer has to order materials in advance to produce its product without knowing the 
exact changes in customer demand. The materials can be ordered either from a standard supplier, or, from an 
emergency supplier, if there is not enough material in stock and/or there is not enough time for a delivery from 
the standard supplier. We define a new concept of fuzzy scenarios that comprise uncertain changes in customer 
demand. These changes are specified by linguistic terms and modelled using fuzzy numbers. The robustness of an 
SN is measured in a novel way as the variance of costs incurred in all fuzzy scenarios. This means that the robust 
SN maintains its cost in the presence of uncertain changes in customer demand. A novel fuzzy multi-objective 
optimisation model is developed, which determines quantities of materials to be ordered by a manufacturer 
from a standard supplier and times of ordering. The objectives considered simultaneously embed all fuzzy sce-
narios and include the minimisation of total SN cost, the maximisation of robustness and the minimisation of 
shortages. Various experiments are carried out to analyse the relationship between SN parameters and SN per-
formance. Results obtained by applying the SN model demonstrate that robustness can be increased and 
shortages can be decreased, but, as expected, at a higher SN cost. In the case of the high ratio of the unit purchase 
cost from the emergency supplier to the unit surplus cost, a considerable increase of robustness and a decrease of 
shortages can be achieved. Finally, it is shown that the model can be applied to large-scale SNs.   

1. Introduction 

In today’s global supply networks (SNs) identifying, understanding 
and managing various types and sources of uncertainty that can affect 
SNs have become very important. Traditional supply chains (SCs) 
emphasise the linear flow of products from suppliers to customers, while 
SNs focus on the web of connections. Still, these two terms are used 
interchangeably in the literature. In this paper, in line with the problem 
under consideration, we are going to use the term SN. Different concepts 
have been introduced to address SN behaviour and performance in the 
presence of uncertainty. One of them often used in the SN context is 
robustness (Monostori, 2018). 

Generally, an SN is considered to be robust if it has consistent per-
formance in an uncertain environment with very little variation in its 

output (Christopher & Rutherford, 2004). Robust optimisation provides 
good and stable solutions when dealing with uncertain parameters 
(Bertsimas & Thiele, 2004). Mulvey et al. (1995) classifiedrobust opti-
misation based on two concepts, solution robust and model robust. A 
solution was defined as robust if it remained “close” to the optimal so-
lution for all values of uncertain input data, and a model was robust if it 
remained “almost” feasible for all values of uncertain data. Uncertainty 
in SN optimisation has often been treated using a scenario-based opti-
misation method and concepts of probability theory. Each scenario is 
typically represented by uncertain SN parameters and their realisation. 
The scenario is assigned a corresponding probability of its occurrence. 
Scenarios have been developed to represent various SN uncertainties 
including: SN hazards (Klibi & Martel, 2012), suppliers’ disruptions 
(Gaonkar & Viswanadham, 2007), future economic states (Rahmani 
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et al., 2013), uncertain future demand/return of products (Kaya et al., 
2014) or social-distancing status during the Covid-19 pandemic (Per-
dana et al., 2020). However, in the real world, it is not always possible to 
specify a probability distribution of uncertain parameters. 

The development of our model is motivated by a real world manu-
facturer’s problem; however, as many companies face similar issues, the 
model has been constructed to be generic. The problem is that the 
customer forecasts its demand with respect to both quantity and time 
when the quantity is required and can alter its demand until a certain 
time, when the demand becomes fixed and can no longer be changed. 
The manufacturer has to order materials to produce its product without 
knowing the exact quantities and times that will be required. The 
manufacturer has to determine how many materials to order, and when, 
from a standard supplier in such a way as to be able to fully satisfy a 
fixed customer demand. Holding higher quantities of materials in stock 
increases the SN cost and materials can even become obsolete. However, 
if there is not enough material ordered from the standard supplier and/ 
or there is not enough time for a delivery from the standard supplier, the 
materials have to be ordered from a more expensive emergency supplier 
with a shorter lead time. In order to try to address the manufacturer’s 
problem, we introduce a new concept of fuzzy scenarios that comprise 
descriptions of changes in both demanded quantity and time of delivery. 
These changes in forecasted customer demand are specified in our 
research using linguistic terms, such as “more quantity than forecasted”, 
“at earlier time of delivery than forecasted”, etc. This approach can be 
very convenient to use in practice. 

We develop a novel multi-objective SN optimisation model, which 
minimises the total SN cost, maximises SN robustness, i.e., variations of 
costs incurred in all fuzzy scenarios, and minimises the shortages of 
materials in the presence of changes in customer demand. We consider 
the SN to be robust, if it maintains its cost in the presence of uncertainty 
in changes in customer demand. The fuzzy scenarios are embedded in 
the objectives. Various experiments are carried out which provide an 
insight into a trade-off between SN cost, robustness and shortages in the 
presence of fuzzy changes in customer demand. The impact of different 
probabilities of these fuzzy changes on SN performance is investigated. 
The model’s computational requirements are analysed as well. 

The novelties proposed in this research are as follows: (1) A new 
concept of fuzzy scenarios is defined to model uncertainty in changes in 
customer demand, where changes include both those of requested 
quantity and time. Instead of dealing with the crisp historical data of 
demand changes and their probabilities, we define scenarios of demand 
changes using imprecise linguistic terms, which makes the approach 
more applicable in practice. To the best of our knowledge, scenario- 
based optimisation models developed so far have included crisp his-
torical data with corresponding probabilities only and not linguistic 
terms. (2) A new measure of SN robustness is proposed as the variance of 
costs incurred in all fuzzy scenarios. (3) Experiments carried out bring 
useful managerial insights into SN performances, including cost, 
robustness and shortages, and a link/trade-off between them. The 
impact of different SN parameters and scenario probabilities on SN 
performance and order decisions are analysed. 

The rest of the paper is organised as follows. The literature review is 
presented in Section 2. Section 3 contains the problem statement, while 
Section 4 describes a fuzzy scenario-based multi-objective optimisation 
model for the real-world SN. Section 5 provides the results and their 
analysis, and Section 6 outlines some practical and managerial insights 
obtained. Section 7 presents the conclusion and directions for future 
work. 

2. Literature review 

Various optimisation models for SNs have been developed in recent 
years. The literature review is focused on three approaches to optimi-
sation that consider uncertainty and are relevant to this research: robust 
SN optimisation, scenario-based SN optimisation and fuzzy SN 

optimisation. 
A robust SN optimisation approach which has included both model 

robustness (almost feasible) and solution robustness (near to optimality) 
has been widely used. Different models for finding a trade-off between 
solution robustness and model robustness have been developed. For 
example, in the area of aggregate production planning (APP), Leung and 
Wu (2004) considered an uncertain manufacturing environment and 
proposed a robust optimisation model to minimise the total production 
cost. Mirzapour Al-e-hashem et al. (2011) developed a robust, multi- 
objective, mixed-integer, non-linear programming model. The objec-
tives were to minimise the total SN cost and to maximise the customer’s 
satisfaction level by minimising shortages, in such a way as to fulfil the 
product demand. Two objective functions were defined, where the first 
objective represented solution robustness, capturing the firm’s desire for 
low costs and its degree of risk aversion, while the second objective 
represented model robustness, penalising solutions that failed to meet 
demand in a scenario or violated constraints such as capacity. 

Some researchers have mainly concentrated on solution robustness. 
For example, Leung et al. (2007) investigated a production planning 
problem for perishable products and provided a robust solution for 
coping with different economic environments, with respect to cost 
minimisation, including setup, production and labour costs. Kazemi 
Zanjani et al. (2010) addressed a multi-period, multi-product sawmill 
production planning problem under uncertainties in the quality of raw 
materials. A robust production plan was proposed regarding the mini-
misation of backorder size (i.e., service level) variability. Two robust 
optimisation models were proposed with a different variability of 
customer service level. A trade-off between the expected backorder/ 
inventory cost and the decision-maker risk-aversion level was consid-
ered. Alem and Morabito (2012) applied robust optimisation for lot- 
sizing and cutting stock for a furniture production planning. The au-
thors found out that solution robustness could be achieved with a small 
probability of constraint violation, when there were uncertainties in the 
objective function coefficients only. Lim (2013) obtained a robust plan 
for the optimal bundle of price and order quantity for the retailer under 
uncertainties in demand and purchase costs. The author analysed the 
robustness of this solution by comparing it with deterministic case so-
lutions in terms of the gains and losses in different uncertain settings. 
More recently, Fazli-Khalaf et al. (2019) considered laboratories and 
hospitals in a blood SN. Two methods were proposed to find robust and 
risk-averse solutions related to transportation decisions, when facing 
emergency situations. 

The scenario-based approach has typically been used to model un-
certainty in parameters, where various realisations of parameters with 
associated probabilities have formed scenarios. For example, Pan and 
Nagi (2010) used scenarios to represent a collection of demands over 
time periods. The authors developed an optimisation model for an SN 
design in which the objective function included the weighted sum of 
solution robustness and model robustness. Rahmani et al. (2013) 
modelled all the uncertainties, including customer demand, production, 
inventory and subcontracting costs, in scenarios. They presented a 
robust mixed-integer programming optimisation model to determine a 
robust production plan for a multi-period, multi-product, multi- 
machine, two-stage production system. It was concluded that the pro-
posed robust model was efficient in any system that required the mini-
misation of the total cost and low fluctuations when facing uncertainties. 
Baghalian et al. (2013) proposed a new stochastic mathematical 
formulation of a multi-product SN. Their work described supply uncer-
tainty through scenarios and presented demand uncertainty as a random 
variable with a known disruption function. Kaya et al. (2014) formed 
scenarios to handle uncertainties in demand and returns of parts and 
products. They developed both a two-stage stochastic optimisation 
model and a robust optimisation model for capacity planning, and 
production and inventory decisions in a closed-loop manufacturing 
system for modular products. Salehi et al. (2017) applied such an 
approach to a blood SN design for dealing with a natural disaster, and 
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proposed a robust two-stage, multi-period stochastic model. They 
generated scenarios for the demand of blood units of different types and 
their derivatives. Scenarios have also been used to describe disruptions, 
as in Jabbarzadeh et al. (2018). The authors modelled a closed-loop SC 
under the risk of disruption, using a stochastic, robust optimisation 
approach to determine facility locations and lateral transshipment 
quantities that minimised the total SC cost. 

Apart from using probability distributions and scenarios to model 
uncertain parameters in SNs, an alternative approach based on fuzzy sets 
has been investigated. Uncertainty in SN parameters has been modelled 
using imprecise linguistic terms which are specified based on manage-
rial experience and judgement (e.g., Niknejad & Petrovic, 2017). 
Various fuzzy SN optimisation models have been developed. For 
example, Petrovic et al. (1999) proposed a fuzzy optimisation model for 
a serial SN with fuzzy demand and fuzzy supply. In addition, Liang 
(2008) developed a fuzzy model for integrated multi-product and multi- 
time period production/distribution planning with the fuzzy objectives 
of the minimisation of total cost and delivery time. Mahnam et al. (2009) 
developed a fuzzy model for an assembly SN in which the uncertainties 
in customer demand variability and in the reliability of external sup-
pliers were modelled using linguistic terms. Fuzzy sets have also been 
used in modelling multi-objective optimisation problems. For example, 
Mohammed and Wang (2017) adopted the fuzzy optimisation approach 
to tackle a distribution planning problem for a food SN under multiple 
uncertainties in costs, demand and capacity levels of facilities, with 
multi fuzzy objectives such as the minimisation of transportation costs, 
CO2 emissions, the distribution time of products and the delivery rate. 
Mohammed et al. (2019) presented a fuzzy multi-objective program-
ming model for SN design problems to determine the optimal number of 
facilities. The objectives included the minimisation of costs and envi-
ronmental impacts and the maximisation of SC resilience. Mohammed 
(2019) developed an integrated fuzzy multi-objective approach for 
solving a two-stage supplier selection and order allocation problem in a 
meat SC, aiming to minimise the total costs, environmental impacts, 
travel time and, at the same time, to maximise social impact. 

In the papers reviewed above, concepts of solution robustness, 
scenario-based modelling and fuzzy optimisation have been used sepa-
rately. SN robustness has been handled as a crisp optimisation objective, 
while scenario-based modelling has used a crisp realisation of uncertain 
SN parameters. Fuzzy SN optimisation models have dealt with fuzzy 
objectives and/or fuzzy constraints. This paper presents a novel model 
which combines these concepts in the following way. Imprecise lin-
guistic terms are used to describe uncertain changes in demand and to 
generate fuzzy scenarios. A fuzzy scenario comprises fuzzy values of 
changes in both demand quantity and demand delivery time. Our fuzzy 
optimisation model considers multi-objectives, including SN cost, 
robustness and shortages. The robustness objective is focused on main-
taining the SN cost in the presence of fuzzy changes in customer de-
mand. The model is based on a new measure of SN robustness which 
calculates the standard deviation of SN costs incurred in all fuzzy 
scenarios. 

3. Problem statement 

This research is motivated by a real-world SN problem faced by 
Malvern Tubular Components (MTC), UK. The company produces pipe 
and tubing assemblies and supplies various industries including energy, 
utilities, transportation and aerospace. However, the problem under 
consideration is relevant to manufacturers in general, in particular, 
those that are first-tier suppliers or are in “the middle of SNs”. In 
addressing this problem, we adopted the terminology used in MTC. 

MTC supplies subsequent members of SN, who act as its customers. 
Its problem is to determine the quantity of materials to order from its 
suppliers, and when it should take place, in order to fully satisfy 
customer demand. A customer forecasts its demand in terms of quantity 
and time when it is required, at the beginning of a planning period. The 

planning period comprises the “forecast” and the “fixed” period. The 
customer is not committed to the order during the forecast period and 
may change demand before it becomes fixed, i.e., before the fixed period 
starts. Typically, the fixed period is up to two weeks before the time 
when demand quantity is required, because the manufacturer’s pro-
duction time is two weeks. Therefore, in order to have the required 
materials (raw materials and components) ready and at a lower cost, the 
manufacturer has to purchase the materials in advance, before the de-
mand becomes fixed. Materials are purchased from a number of stan-
dard suppliers. Each supplier has a different lead time and price. A 
supplier with a longer lead time offers a lower price. Generally, it is 
assumed that the suppliers’ capacity is sufficient to produce orders from 
the manufacturer and deliveries are on time. Therefore, suppliers’ de-
livery performance is not an issue. 

Currently, the manufacturer applies a made-to-stock policy and uses 
a “buffer stock” of materials for production, to fulfil customer demand. 
Materials are purchased in advance from the standard suppliers. Before 
the demand becomes fixed, customers are able to change the demand 
quantity and/or required time. If there are not enough materials in stock 
and not enough time to restock using the standard suppliers, the 
manufacturer has to approach emergency suppliers. These companies 
have a lead time of up to two weeks, so can meet production needs, but 
are more costly. However, on the other hand, if the manufacturer buys 
too many materials in advance (from the standard suppliers), this causes 
a high surplus cost and might eventually lead to stock obsolescence and 
a high holding cost. It is, therefore, a complex task to determine the 
required stock as demand quantity and required time of delivery are 
uncertain. 

We define fuzzy scenarios to capture uncertainty in changes in 
customer demand in terms of demand quantity and required time of 
delivery. In order to make the SN robust, its cost has to be maintained in 
the presence of uncertainty in changes in demand. The proposed model 
determines the quantity of materials to be ordered from the standard 
suppliers and the time of ordering in such a way as to minimise the SN 
cost, maximise SN robustness and minimise SN shortages. The decision 
what to order and when is to be made at the beginning of a planning 
period which starts when the customer places a forecasted demand for 
one type of product. 

The following assumptions are made in line with the characteristics 
of the real-world problem under consideration:  

▪ Customer demand must be satisfied.  
▪ All suppliers are reliable in both quantity and time of delivery.  
▪ Suppliers have sufficient capacities for providing ordered 

materials.  
▪ The manufacturer has sufficient production capacity.  
▪ Each order must be purchased from one supplier only, i.e., it 

cannot be split. 

4. Fuzzy scenario-based multi-objective optimisation 

The following notations are used: 
Indexes  

r  Materials r = 1,⋯,R  
s  Scenarios s = 1,⋯,S   

Decision variables  

xr  Quantity of material r to be ordered from the standard supplier in the planning 
period  

yr  The time to order material r from the standard supplier in the planning period   
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Parameters  

D  Forecasted demand quantity at the beginning of planning period 
T Forecasted demand time at the beginning of planning period 
lr  Lead time of the standard supplier for material r (in weeks)  
mr  Unit purchase cost of material r from the standard supplier  
cr  Unit purchase cost of material r from the emergency supplier (cr > mr)

θr  Quantity of material r required for the manufacturing of one product  
πr  Unit penalty cost for the surplus of material r  
hr  Holding cost of unit quantity of material r per unit time period (one week)  

q̃s  
Fuzzy change in demand quantity in scenario s 

t̃s  Fuzzy change in demand time in scenario s (in weeks) 

ps  Probability of scenario s  
vi  Tolerance for achieving optimal objective’s value or violating fuzzy constraint, 

where i refers to a fuzzy set in an objective or a constraint 
V Tolerance factor for all fuzzy objectives and fuzzy constraints  

Other variables  

φ+
s  Surplus of materials purchased from the standard supplier in scenario s 

φ−
s  Shortage of materials purchased from the emergency supplier in scenario s 

ws  Total cost of scenario s 
α Degree of satisfaction with objectives’ values achieved and constraints 

fulfilment.  

4.1. Fuzzy scenarios 

Uncertainty faced by the manufacturer is caused by changes that a 
customer can make in both quantity and time of forecasted demand. 
Typically, the company purchase manager will review the customer’s 
previous demand and can specify that a certain customer, for example, 
usually orders more quantity than forecasted or requires a similar time of 
delivery as forecasted. We define a new concept of fuzzy scenarios to 
describe uncertainty when customer demand is for Less, About the same 
or More quantity, and it is required Earlier, At about the same time or Later 
than forecasted. There are nine fuzzy scenarios, where each scenario 
consists of two uncertain changes: change in quantity qs and change in 
time ts, as presented in Table 1. For example, Scenario 1 is “the 
requested quantity is Less than forecasted and it is requested Earlier than 
forecasted”. 

Table 1 
Fuzzy scenarios which represent uncertainty in demand change.   

Change in quantity q̃s  

Change in time ̃ts  
Less About the same More 

Earlier Scenario 1 Scenario 2 Scenario 3 
At about the same time Scenario 4 Scenario 5 Scenario 6 
Later Scenario 7 Scenario 8 Scenario 9  

1 

0 -D 

Less About the same More 

Change in quantity

Membership degree 

Fig. 1. Membership functions of change q̃s in demand quantity.  

1

0-T 

Earlier 
At about the 
same time Later 

Change in time

Membership degree 

Fig. 2. Membership functions of change ̃ts in demand time.  
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The linguistic terms are modelled using fuzzy sets. Change in de-
mand quantity is described by three linguistic terms: Less, About the same 
and More which are modelled using fuzzy numbers presented in Fig. 1. 
The term About the same is modelled using a symmetric triangular fuzzy 
number which assumes changes ± p0. Terms Less and More are modelled 
using semi-trapezoidal fuzzy numbers. The minimum change can be -D, 
i.e., the demand is changed from D to 0. It is certainly Less, with degree 
of belief 1, if the change is between –D and Ql and it has decreasing 
degrees of belief that it is Less from Ql to Ql + pl. Term More is defined in 
a similar way, where the maximum increase in demand can be Du. Pa-
rameters Ql, pl, p0, Qm, pm,and DU are determined subjectively by the 
purchase manager. 

The change in demand quantity is Less, i.e., the fixed order quantity 
is Less than the forecasted demand in scenarios s = 1, 4,7 (as presented 
in Table 1). The membership function is defined as: 

μ̃
qs
(q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if − D ≤ q ≤ Ql

1 −
q − Ql

pl
, if Ql < q < Ql + pl

0, if Ql + pl ≤ q 

The fixed order quantity is About the same as forecasted demand in 
scenarios s = 2,5,8, (as presented in Table 1) and it is defined as: 

μ̃
qs
(q) =

⎧
⎪⎪⎨

⎪⎪⎩

1 +
q
p0
, if − p0 ≤ q ≤ 0

1 −
q
p0
, if 0 < q ≤ p0 

The fixed order quantity is More than the forecasted demand in 
scenarios s = 3, 6, 9 (as presented in Table 1) and it is defined as: 

μ̃
qs
(q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if q ≤ Qm − pm

1 −
Qm − q

pm
, if Qm − pm < q < Qm

1, if Qm ≤ q ≤ DU 

Similarly, a change in demand time is represented using three lin-
guistic terms: Earlier, At about the same time and Later (shown in Fig. 2). 
Their membership functions are defined in the same way as the mem-
bership functions for changes in demand quantity. 

Each fuzzy scenario is associated with a corresponding crisp proba-
bility that can be determined based on historical data and the corre-
sponding frequency distribution or specified by the purchase manager 
based on his/her experience. 

4.2. Costs 

The following costs are incurred:  

▪ Purchase cost incurred using the standard supplier for order of 
quantity xr of r materials: 

∑R

r=1
mrxr    

▪ Holding cost incurred in scenario s = 7, 8, 9, when the fixed 
demand time is Later than the forecasted time and the order for 
material r is already made using the standard supplier; this 
means that quantity xr is in inventory for T+ts − yr − lr time 
periods: 

∑R

r=1
hrxr

(

T + t̃s − yr − lr

)

▪ Shortage cost for φ−
s quantity incurred in scenario s = 1, 2, 3, 6, 

9, when the fixed demand time is Earlier than forecasted and the 
order is made using the emergency supplier and/or the fixed 
demand quantity is for More than forecasted; this means that 
the order is made using the standard supplier, and the emer-
gency supplier is used for the additional quantity: 

∑R

r=1
φ−

s θrcr    

▪ Surplus cost for φ+
s quantity incurred in scenario s = 1, 2, 3, 4, 

7, when the fixed demand quantity is for Less quantity than 
forecasted and the order is already made using the standard 
supplier and/or the fixed demand time is Earlier than forecasted 
and, therefore, the emergency supplier has to be used although 
the order is already made using the standard supplier: 

∑R

r=1
φ+

s θrπr 

The costs incurred in the nine scenarios are presented in Table 2. 
For example, in Scenario 3, when the fixed demand is for More 

quantity and Earlier than forecasted, the cost includes the shortage cost, 
because the order has to be made to the emergency supplier. However, 
the surplus cost is incurred too, because, at the beginning of planning 
period, the order is made to the standard supplier and it arrives, but later 
than needed. 

4.3. Fuzzy multi-objective optimisation model 

To address the problem under consideration, we have used a multi- 
objective optimisation approach. In addition to the standard objective, 
which is cost minimisation, two additional objectives are included: 
maximisation of SN robustness and minimisation of shortages. We 
measure robustness as the variance of the costs incurred in all the sce-
narios. The aim is to generate a robust solution which will perform well 
and incur a reasonable cost in all the uncertainty in scenarios. Shortages 
impact the manufacturer’s capability to operate when there is uncer-
tainty in customer demand changes. Therefore, we calculate the sum of 
shortages of materials relative to demand in all the scenarios. Generally, 
higher robustness should incur a higher cost and reduce shortages. Also, 
a higher number of shortages should incur a higher cost. Therefore, a 
trade-off between SN cost, robustness and shortages has to be made. 
However, relationships between these SN performances in the presence 
of different changes in customer demand are not clear. 

The problem is to find the quantity of material r, xr, to be ordered 
from the standard supplier, and the time of ordering, yr, in the planning 
period, in such a way as to optimise the following objectives: 

Fuzzy multi-objective optimisation model 
Objective 1. To minimise the cost: 
To minimise the expected total cost calculated as the sum of the 

purchase cost of all materials r, mrxr, and the cost ws of all scenarios s 

Table 2 
Costs incurred in scenarios.   

Change in quantity q̃ s  

Change in time ̃t s  
Less About the same More 

Earlier Scenario 1: 
Shortage 
Surplus 

Scenario 2: 
Shortage 
Surplus 

Scenario 3: 
Shortage 
Surplus 

At about the same time Scenario 4: 
Surplus 

Scenario 5: 
– 

Scenario 6: 
Shortage 

Later Scenario 7: 
Holding 
Surplus 

Scenario 8: 
Holding  

Scenario 9: 
Holding 
Shortage  

D. Petrovic et al.                                                                                                                                                                                                                                



Computers & Industrial Engineering 160 (2021) 107555

6

f2 =
∑R

r=1
mrxr +

∑S

s=1
psws (1) 

Objective 2. To maximise robustness: 
To minimise the variance of cost ws incurred in all scenarios s 

f2 =
∑S

s=1
ps[ws −

∑S

j=1
pjwj]

2 (2) 

Objective 3. To minimise shortages: 
To minimise the expected shortages φ−

s relative to demand quantity 

and changes in demand quantity, D+ q̃s, in all scenarios s 

f 3 =
∑S

s=1
ps

φ−
s

D + q̃s

(3)  

subject to: 

D + q̃s = xr

/

θr − φ+
s + φ−

s (4)  

yr + lr ≤ T + t̃s (5)  

xr, yr,φ+
s ,φ−

s ,ws ≥ 0, s = 1, 2,⋯, S, r = 1, 2,⋯,R (6)  

where 

ws =
∑R

r=1
hrxr

(

T + t̃s − yr − lr

)

+
∑R

r=1
φ−

s θrcr +
∑R

r=1
φ+

s θrπr (7) 

Constraint (4) ensures that customer demand quantity and uncertain 
changes in demand quantity must be satisfied in each scenario; the sum 
of customer demand quantity and uncertain changes in demand quantity 
is equal to the sum of the quantity of materials purchased from the 
standard supplier and either a shortage of materials requiring purchase 
from the emergency supplier or the surplus of materials. Constraint (5) 
means that all materials ordered from the standard supplier should 
arrive before the forecasted customer demand time and uncertain 
change in time. Constraint (6) introduces non-negativity of the vari-
ables. Equation (7) represents the cost of each scenario consisting of the 
holding cost, the shortage cost incurred by ordering from the emergency 
supplier and the surplus cost (penalty cost for surplus of materials). 

Due to the fuzziness of changes in customer demand, including the 
quantity and time, constraints (4) and (5) and equation (7) become fuzzy 
too. By re-arranging the fuzzy parameters, they become as follows: 

xr

θr
− φ+

s + φ−
s − D = q̃s (8)  

yr + lr − T ≤ t̃s (9)  

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr =
∑R

r=1
hrxr̃ts (10) 

The fuzzy multi-objective model given above is a non-linear pro-
gramming optimisation model with the following decision variables: 
quantities, xr, and times of ordering materials from the standard sup-
plier, yr. 

4.4. Transformation of the fuzzy multi-objective model to a crisp single- 
objective model 

Various approaches to solving fuzzy mathematical programming 
models and fuzzy multi-objective models have been proposed in the 
literature (Baykasoglu & Gocken, 2008; Zimmermann, 2001). We 
adapted the method presented by Niknejad and Petrovic (2014) to 
transform the fuzzy optimisation model given in Section 4.3 into a crisp 
optimisation model. First, tolerances for violation of fuzzy constraints 

are defined. Then, a satisfaction degree with regards to achieving the 
optimal objectives’ values and with regards to satisfaction of the fuzzy 
constraints is introduced. In this way, the original fuzzy optimisation 
model is transformed into a crisp model which maximises the satisfac-
tion degree. Finally, a standard solver is used to find the optimal solution 
of the obtained crisp optimisation model. 

In our fuzzy multi-objective model, both constraints and objectives 
are fuzzy and need to be transformed into the corresponding crisp 
counterparts. 

Each fuzzy constraint g is transformed into a crisp constraint by 
introducing tolerance v of violating the constraint and the satisfaction 
degree α ∈ [0,1]of satisfying the constraint. The procedure for trans-
forming a fuzzy constraint into a crisp constraint is given in Appendix A. 
It is illustrated using as an example of one of the fuzzy constraints of the 
model. 

The fuzzy multi-objectives are handled in a similar way as the fuzzy 
constraints by introducing the satisfaction degree α. This method is 
proposed by Zimmermann (2001). If the optimisation problem is to 

minimise fuzzy objective ̃f(x), then it can be transformed into the crisp 
maximisation problem in which the satisfaction degree α has to be 
maximised. Therefore, the new crisp optimisation problem is to find the 
maximum α with added constraint (12): 

Maximise α, α ∈ [0, 1] (11) 

Such that 

f (x) ≤ f min +(1 − α)(f max − f min) (12)  

where fmin and fmax are the minimum and maximum values of objective 
̃f (x), respectively. In this crisp optimisation problem, the satisfaction 
degreeα reaches its maximum, α = 1, when f̃(x) = fmin, because the 

problem is to minimise the fuzzy objective ̃f(x). The satisfaction degree α 
reaches its minimum, α = 0, when f̃(x) = fmax. It decreases monoto-
nously from value 1 to value 0. 

In our model, the minimum and maximum values of the three fuzzy 
objectives are determined as presented in Appendix B. 

Finally, using the procedures described in Appendix A and B, the 
fuzzy multi-objective model is transformed into the single-objective 
crisp optimisation model of maximising the satisfaction degree α as 
follows: 

Crisp single-objective maximisation model 

Maximise α, α ∈ [0, 1] (13) 

Such that 

f1 ≤ f min
1 +(1 − α)(f max

1 − f min
1 ) (1i)  

f2 ≤ f min
2 +(1 − α)(f max

2 − f min
2 ) (2i)  

1 − α ≥
∑

s=1,4,7
psφ−

s

(

1 − (1 − α)
(

1 −
1

D + Ql

)

− (1 − α)v7

)

(3i)  

1 − α ≥
∑

s=2,5,8
psφ−

s

(
1

D − p0
− (1 − α)

(
1

D − p0
−

1
D

)

− (1 − α)v8

)

(3ii)  

1 − α ≥
∑

S=3,6,9
psφ−

s

(
1

D + Qm − pm
− (1 − α)

(
1

D + Qm − pm
−

1
D + Qm

)

− (1

− α)v9

)

(3iii) 

The crisp constraints above are derived from three objectives, f1, f2 
and f3, given in (1), (2) and (3), respectively. They are obtained 
following the procedure described in Appendix B. The first two crisp 
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constraints (1i) and (2i) are derived from objectives f1 and f2, respec-
tively, and the subsequent three crisp constraints (3i), (3ii) and (3iii) 
from fuzzy objective f3. 

The crisp constraints from (8i) to (8vi) represent fuzzy constraint (8) 
and are obtained using the procedure given in Appendix A. 

xr

θr
− φ+

s +φ−
s − D ≤ − D+(1 − α)(Ql − ( − D) )+ (1 − α)v1, s = 1, 4, 7, r

= 1, 2,⋯,R
(8i)  

xr

θr
− φ+

s +φ−
s − D ≥ Ql + pl − (1 − α)pl − (1 − α)v1, s = 1, 4, 7, r

= 1, 2,⋯,R (8ii)  

xr

θr
− φ+

s +φ−
s − D ≤ − p0 +(1 − α)p0 +(1 − α)v2, s = 2, 5, 8, r = 1, 2,⋯,R

(8iii)  

xr

θr
− φ+

s +φ−
s − D ≥ p0 − (1 − α)p0 − (1 − α)v2, s = 2, 5, 8, r = 1, 2,⋯,R

(8iv)  

xr

θr
− φ+

s +φ−
s − D ≤ Qm − pm +(1 − α)pm +(1 − α)v3, s = 3, 6, 9, r

= 1, 2,⋯,R (8v)  

xr

θr
− φ+

s +φ−
s − D ≥ DU − (1 − α)(DU − Qm) − (1 − α)v3, s = 3, 6, 9, r

= 1, 2,⋯,R
(8vi) 

The crisp constraints (9i), (9ii) and (9iii) represent fuzzy constraint 
(9) where M is a very large number. They are obtained using the 

procedure given in Appendix A. 

yr + lr − T ≤ − T +(1 − α)(Te − ( − T) )+ (1 − α)v4 + |M*(s − 1)*(s

− 2)*(s − 3) |, s

= 1, 2, 3, r = 1, 2,⋯,R (9i)  

yr + lr − T ≤ − p’
0 +(1 − α)p’

0 +(1 − α)v5 + |M*(s − 4)*(s − 5)*(s − 6) |, s

= 4, 5, 6, r = 1, 2,⋯,R
(9ii)  

yr + lr − T ≤ Tm − p’
m +(1 − α)p’

m +(1 − α)v6 + |M*(s − 7)*(s − 8)*(s

− 9) |, s

= 7, 8, 9, r = 1, 2,⋯,R
(9iii) 

The crisp constraints from (10i) to (10vi) represent fuzzy equation 
(10). They are obtained using the procedure given in Appendix A. 

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr

≤
∑R

r=1
hrxr [ − T +(1 − α)(Te − ( − T) )+ (1 − α)v4 ], s = 1, 2, 3 (10i)  

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr

≥
∑R

r=1
hrxr [Te + pe − (1 − α)pe − (1 − α)v4 ], s = 1, 2, 3 (10ii)  

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr

≤
∑R

r=1
hrxr

[
− p’

0 +(1 − α)p’
0 +(1 − α)v5

]
, s = 4, 5, 6 (10iii)  

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr

≥
∑R

r=1
hrxr

[
p’

0 − (1 − α)p’
0 − (1 − α)v5

]
, s = 4, 5, 6 (10iv)  

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr

≤
∑R

r=1
hrxr

[
Tm − p’

m +(1 − α)p’
m +(1 − α)v6

]
, s = 7, 8, 9 (10v)  

ws −
∑R

r=1
hrxr(T − yr − lr) −

∑R

r=1
φ−

s θrcr −
∑R

r=1
φ+

s θrπr

≥
∑R

r=1
hrxr [TU − (1 − α)(TU − Tm) − (1 − α)v6 ], s = 7, 8, 9 (10vi)  

xr, yr,φ+
s ,φ

−
s ,ws ≥ 0 (14) 

The crisp model obtained is a mixed-integer non-linear optimisation 
model with a real decision variable α, integer xr and real yr. 

Tolerances vi, i = 1,…,9, used in crisp constraints from (1i) to (10vi), 
are set as follows. Tolerance factor V is introduced to calculate accept-
able violations of the fuzzy constraints. It is determined empirically; the 
higher the tolerance factor V, the higher the tolerance for the fuzzy 
constraints’ violation. For example, V = 0.1, 0.2 and 0.3 mean that 10%, 
20% and 30% of the constraint violation are acceptable, respectively. 
Tolerances vi, i = 1,…,9, are calculated as the product of the corre-
sponding membership functions of the fuzzy constraints, i.e., the sup-
ports of membership functions and tolerance factor V. For example, let 
us consider the case when the change in customer demand is for Less 
quantity than forecasted (see Fig. 1); the support of the corresponding 
membership function is (Ql +pl) − ( − D). In this case, the tolerance for 
the violation of fuzzy constraint (8) that ensures that customer demand 
is satisfied when a change in quantity is for Less quantity than forecasted 
is calculated as v1 = ((Ql + pl) − ( − D) )*V. Further on, when, for 
example, V = 0.1, it means that 10% of the constraint violation is 
acceptable; this implies that tolerance v1 = ((Ql + pl) − ( − D) )*0.1. 
When V = 0.2, tolerance v1 is extended to ((Ql + pl) − ( − D) )*0.2, or 
when V = 0.3, tolerance v1 is extended even more by 
((Ql + pl) − ( − D) )*0.3. Similarly, if customer demand is for About the 

Calculate tolerances , i = 1,…,9, for fuzzy 
constraints and achievement of objectives’ values (eq. 
(15)) 

Fuzzy multi-objective optimisation problem with 

objectives (1) (2) (3) and constraints (4) to (7) 

Rearrange fuzzy constraints (4), (5), (7) into 

constraints (8) to (9) 

Triangular and trapezoidal membership functions to 

represent demand changes, see Figure 1 and Figure 2 

Start 

Estimate minimum and maximum objective values 
, (eq. (A.7)), , (eq. (A.10))  
, (eq. (A.11)), , (eq. (A.13))  
, (eq. (A.14)), , (eq. (A.15)) 

Solve crisp single objective maximisation problem with 
objective (13) and constraints (1i) to (10vi) and (14) 

End 

Fig. 3. Flow chart of the proposed method.  
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same quantity as forecasted (see Fig. 1), the support of the corresponding 
membership function is 2*p0. Therefore, v2 = (2*p0)*V. The remaining 
tolerances vi are set in the same manner as follows: 

v1 = ((Ql + pl) − ( − D) )*V  

v2 = (2*p0)*V  

v3 = (DU − (Qm − pm))*V  

v4 = (Te + pe − (− T))*V  

v5 = (2*p0’)*V  

v6 =
(
TU − (Tm − p’

m)
)
*V  

v7 = (1 −
1

(D + Ql)
)*V  

v8 = (
1

D − p0
−

1
D
)*V  

v9 = (
1

D + Qm − pm
−

1
D + Qm

)*V (15) 

A flow chart of the proposed method is given in Fig. 3. 

5. Analyses of results 

Carefully designed experiments are carried out to gain a better un-
derstanding of the impact of SN parameters and multi-objectives on SN 
cost, robustness and shortages. SN hypothetical parameter values in line 
with the real-world manufacturer data are given in Table 3. 

The obtained crisp optimisation model is run using AIMMS 
(Advanced Integrated Multidimensional Software). This is a general- 
purpose software for building decision support and optimisation appli-
cations. We used a standard laptop Processor Intel(R) Core(TM) i7- 
5500U CPU @ 2.40 GHz, 2401 Mhz, 16.0 GB (RAM). 

The impact of the following parameters on SN cost, robustness and 
shortages is investigated: (1) tolerance factor V for violating the con-
straints, (2) unit purchase cost from the emergency supplier, (3) unit 
surplus cost and (4) scenarios’ probabilities. Furthermore, in order to 
analyse the impact of the multi-objective setting, within each experi-
ment, the model is run for four cases: (a) Case 1 + 2 + 3 − which in-
cludes all three objectives, (b) Case 1 + 2 − which includes the cost and 
robustness objectives, (c) Case 1 + 3 − which includes the cost and 
shortages objectives and (d) Case 1 − which includes the cost objective, 
only. Finally, experiments are carried out to analyse computational re-
quirements of the proposed model. 

5.1. Impact of tolerances for violating the constraints 

The aim of the first experiment is to analyse the impact of the 
tolerance factor on SN cost. We considered different tolerance factors, V 
= 0.1, 0.2 and 0.3, which imply 10%, 20% and 30% of achievement of 
objectives’ values and violation of the constraints. Their impact on the 
costs incurred in the four cases (a) to (d) defined above is given in Fig. 4. 

We may conclude that the total cost incurred depends on the toler-
ance factor V. When V = 0.1, the costs incurred in the four cases are 
smaller than when V = 0.2, and are similar to the costs when V = 0.3. As 
the tolerance factor V is subjectively determined and setting V = 0.3 
would allow a high constraints violation, we decided to set V to 0.1 in 
the rest of the experiments. The orders recommended by the model 
when V = 0.1 for all four cases are given in Table 4. It might be 

Table 3 
SN parameter values.  

Number of materials R  6 
Number of scenarios S  9 
Lead time of the standard supplier for 

material rlr  
12 

Unit purchase cost of material r from the 
standard supplier mr  

7 

Unit purchase cost of material r from the 
emergency supplier cr  

28 

Quantity of material r required for one 
product θr  

1 

Unit penalty cost for the surplus of 
material rπr  

18 

Holding cost of unit quantity of material r 
per week hr  

4 

Forecasted demand quantity D 200 
Forecasted demand time T 24 weeks 
Fuzzy change in demand quantity Less ̃qLess  

[− D, − D, Ql, Ql + pl] 
= [− 200, − 200, − 150, − 150 +
150*0.5] 
= [− 200, − 200, − 150, − 75]  

Fuzzy change in demand quantity 
About the same q̃About the same  

[− p0,0,p0] = [− 100, 0, 100]  

Fuzzy change in demand quantity More 

q̃More  

[Qm − pm, Qm, DU, DU] 
= [150–150*0.5, 150, 200, 200] 
= [75, 150, 200, 200]  

Fuzzy change in demand time Earlier ̃tEarlier  
[− T, − T, Te, Te + pe] 
= [− 24, − 24, − 12, − 12 + 12*0.5] 
= [− 24, − 24, − 12, − 6]  

Fuzzy change in demand time At about the 

same ̃tAtabout the same time  

[− p0’,0,p0’] = [− 8, 0, 8]  

Fuzzy change in demand time Later ̃tLater  
[Tm − pm’, Tm, TU, TU] 
= [12–12*0.5, 12, 20, 20] 
= [6, 12, 20, 20]  

Probabilities of 9 scenarios p1=p2=p3=p5=p6=p7=p8=p9 = 0.11, 
p4=0.12   

0
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80000
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120000

0.1 0.2 0.3

To
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Tolerance factor V 
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1+2+3
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Case 1+3

Case 1

Fig. 4. Total cost incurred for different tolerance factors.  
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interesting to observe that in this particular SN including robustness as 
Objective 2 increased the order considerably (from 49 or 50 to 106). In 
all four cases, yr = 0, r = 1,…,6, i.e., it is recommended to order all the 
materials at the beginning of planning period. 

5.2. Impact of the unit purchase cost from the emergency supplier 

The aim of these experiments is to analyse the impact of the unit 
purchase cost from the emergency supplier on SN performance. The 
experiments are run for three different unit purchase costs from the 
emergency supplier cr, cr = 28, cr = 70 and cr = 130. The unit surplus 
cost is the same in all three experiments, πr = 18. The ratio cr

πr 
in the three 

experiments is 1.6, 3.9 and 7.2, respectively. Incurred cost, robustness 
and shortages are presented in Figs. 5, 6 and 7, respectively. With 
respect to our measure of robustness, the smaller the variance the more 
robust the solution. With respect to shortages relative to demand 
quantity, the smaller the shortages the higher the SN capability to 
handle changes in customer demand. 

We can observe that the total cost in all the experiments is the highest 
when all three optimisation objectives are included (Case 1 + 2 + 3). 
Furthermore, when the ratio cr

πr 
is high, i.e., when the unit purchase cost 

from the emergency supplier cr is high compared to the unit surplus cost, 

Table 4 
Order quantities when V = 0.1.   

Order quantity 

Material r Case 1 + 2 + 3 Case 1 + 2 Case 1 + 3 Case 1 

1 106 106 50 49 
2 106 106 50 49 
3 106 106 50 49 
4 106 106 50 49 
5 106 106 50 49 
6 106 106 50 49  

0
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120000
140000
160000

28 70 130

To
ta
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Unit purchase cost from the emergency supplier (cr) 
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1+2+3

Case
1+2

Case
1+3

Case 1

Fig. 5. Total cost for different unit purchase costs from the emergency supplier cr and πr = 18.  
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Fig. 6. Robustness for different unit purchase cost from the emergency supplier cr and πr = 18.  
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Fig. 7. Shortages for different unit purchase costs from the emergency supplier cr and πr = 18.  
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Table 5 
Order quantities when the unit purchase costs from the emergency supplier are cr = 70 and cr = 130 and the unit surplus cost isπr = 18, r = 1,…,6.   

Order quantity  

cr = 70  cr = 130  

Material r Case 1 + 2 + 3 Case 1 + 2 Case 1 + 3 Case 1 Case 1 + 2 + 3 Case 1 + 2 Case 1 + 3 Case 1 

1 331 290 305 340 366 303 320 384 
2 331 290 305 340 366 303 320 384 
3 331 290 305 340 366 303 320 384 
4 331 290 305 340 366 303 320 384 
5 331 290 305 340 366 303 320 384 
6 331 290 305 340 366 303 320 384  

0
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Unit penalty cost for surplus (πr) 
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Fig. 8. Total cost for different unit surplus costs πr and cr = 70.  
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Fig. 9. Robustness for different unit surplus costs πr and cr = 70.  
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Fig. 10. Shortages for different unit surplus costs πr and cr = 70.  
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(cr = 70 and cr = 130, and cr
πr 

= 3.9 and cr
πr 

= 7.2, respectively), the costs 
incurred in all four cases are higher compared to the costs when the ratio 
cr
πr 

is smaller (cr = 70, and cr
πr 
= 1.6) (Fig. 5). 

Furthermore, a higher impact of the three objectives on SN perfor-
mance, including total cost, robustness and shortages, can be observed 
when the ratio cr

πr 
is high, i.e., the unit purchase cost from the emergency 

supplier cr is high (cr = 70 and cr = 130). Robustness is higher when it is 
included as Objective 2 as in Case 1 + 2; this means that the variance of 
the costs incurred in all the scenarios is smaller compared to the other 

cases (Case 1 + 2 + 3, Case 1 + 3 and Case 1) (Fig. 6). Also, when the 
ratio cr

πr 
is high, a smaller number of shortages is achieved when the 

shortages are considered as Objective 3 as in Case 1 + 3 (Fig. 7). This 
means that the higher percentage of demand quantity is satisfied using 
the standard supplier, i.e., the smaller percentage of demand quantity 
has to be satisfied using the emergency supplier. 

Furthermore, when cr = 70 and cr = 130, the total cost when both 
robustness and shortages are optimised simultaneously (Case 1 + 2 + 3) 
is considerably higher than in other cases. This implies that maximising 
the robustness and minimising shortages of an SN simultaneously can be 
costly. 

Table 5 presents the orders recommended when the unit cost from 

Table 6 
Impact of different scenario probabilities on the costs and decisions on order 
quantity and order time, whenπr = 18 and cr = 28.  

Case Scenarios’ probabilities Total 
cost 

Order 
quantity 

i p1 = 0.33 p4 = 0.34 p7 = 0.33 (scenarios 1, 4, 7 
for Less quantity) 

25,434 58 

ii p2 = 0.33 p5 = 0.34 p8 = 0.33 (scenarios 2, 5, 8 
for About the same quantity) 

57,403 106 

iii p3 = 0.33 p6 = 0.34 p9 = 0.33 (scenarios 3, 6, 9 
for More quantity) 

88,666 106 

iv p1 = 0.33 p2 = 0.34 p3 = 0.33 (scenarios 1, 2, 3 
for Earlier time) 

19,237 106 

v p4 = 0.33 p5 = 0.34 p6 = 0.33 (scenarios 4, 5, 6 
for At about the same time) 

40,284 106 

vi p7 = 0.33 p8 = 0.34 p9 = 0.33 (scenarios 7, 8, 9 
for Later time) 

67,389 106 

vii p1 = p2 = p3 = p5 = p6 = p7 = p8 = p9 = 0.11 p4 =

0.12 (all 9 scenarios) 
57,007 106  

Table 7 
Impact of different scenario probabilities on the costs and decisions on order 
quantity and order time, whenπr = 18 and cr = 70.  

Case Scenarios’ probabilities Total 
cost 

Order 
quantity 

i p1 = 0.33 p4 = 0.34 p7 = 0.33 (scenarios 1, 4, 7 
for Less quantity) 

137,195 331 

ii p2 = 0.33 p5 = 0.34 p8 = 0.33 (scenarios 2, 5, 8 
for About the same quantity) 

127,606 331 

iii p3 = 0.33 p6 = 0.34 p9 = 0.33 (scenarios 3, 6, 9 
for More quantity) 

114,300 331 

iv p1 = 0.33 p2 = 0.34 p3 = 0.33 (scenarios 1, 2, 3 
for Earlier time) 

28,277 331 

v p4 = 0.33 p5 = 0.34 p6 = 0.33 (scenarios 4, 5, 6 
for At about the same time) 

124,903 331 

vi p7 = 0.33 p8 = 0.34 p9 = 0.33 (scenarios 7, 8, 9 
for Later time) 

215,009 333 

vii p1 = p2 = p3 = p5 = p6 = p7 = p8 = p9 = 0.11 p4 

= 0.12 (all 9 scenarios) 
126,481 331  
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Fig. 11. The computation time required for handling different numbers of materials.  

(a) Fuzzy number  where  is for Less quantity 

(b) Fuzzy number  where  is for About the same quantity

(c) Fuzzy number  where  is for More quantity 
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emergency supplier cr is high, cr = 70 and cr = 130. The orders are 
considerably higher in all the cases; for example, orders are for 340 and 
384 quantities, in Case 1, respectively, compared to orders when cr is 
lower, cr = 28; when the orders are for 49 quantities in Case 1 (Tables 4 
and 5, respectively). This is expected as the high orders lead to less use of 
the emergency supplier due to its high cost. 

5.3. Impact of the unit surplus cost 

These experiments are carried out to analyse the impact of the unit 
surplus cost on SN performance. The experiments are run for three 
different unit surplus costs, πr = 10, πr = 18 and πr = 50, when the unit 
emergency purchase cost is cr = 70. The ratio cr

πr 
is 7, 3.9 and 1.4, 

respectively. The incurred cost, robustness and shortages are presented 
in Figs. 8, 9 and 10, respectively. 

In these experiments, we notice that improving robustness and 
reducing shortages can be costly. For example, the total costs when 
robustness and shortages are included as Objectives 2 and 3, respectively 
(Case 1 + 2 + 3), are highest when the ratio cr

πr 
is low, i.e., the unit surplus 

cost πr is high (πr = 18 and πr = 50), compared to Case 1 + 2, Case 1 + 3 
and Case 1 (Fig. 8). 

We can conclude that including robustness as Objective 2 in Case 1 +
2 leads to better SN robustness than when it is not considered, such as in 
Case 1 + 3 and Case 1, only when the ratio cr

πr 
is high (πr = 10, or πr = 18 

and cr
πr 

= 7 and cr
πr 
= 3.8, respectively) (Fig. 9). This can be explained as 

follows. The high unit emergency purchase cost, cr = 70, results in a 
small number of shortages and the emergency supplier is rarely used. At 
the same time, when the unit surplus cost πr is low (πr = 10, or πr = 18), 
its impact on the total cost is small. Therefore, the cost variance in all 
scenarios is small, which means that robustness is high. With respect to 
shortages, we can conclude that there are fewer shortages when the 
minimisation of shortages is included as Objective 3 (Case 1 + 3) 
compared to other cases, only when the ratio cr

πr 
is high (Fig. 10), i.e., the 

unit surplus cost is low (πr = 10 and πr = 18). When the ratio cr
πr 

is not 
high, i.e., cr

πr 
= 1.4 and the unit surplus cost πr = 50 is similar to the unit 

emergency purchase cost cr = 70, orders are decreased due to the high 
unit surplus cost and, consequently, the number of shortages is 
increased. 

5.4. Impact of scenarios’ probabilities 

In all the experiments presented in the previous sections, it is 
assumed that the probabilities of all possible changes in demand quan-
tity and time are equal. However, in practice, the purchase manager 
might have a subjective experience about which customers are likely to 
change their forecasted demand and how. Therefore, experiments pre-
sented in this section are designed to investigate the impact of the 
changing probabilities of the scenarios on the decision to be made, i.e., 
the order quantity and the order time. In two sets of experiments, the 
unit purchase cost from the emergency supplier cr is set to cr = 28 and cr 
= 70, respectively, and the unit surplus cost is πr = 18. All other pa-
rameters are set to the same values as shown in Table 3. All three ob-
jectives, namely the cost, robustness and shortages, are included in the 
model. In each experiment, the probabilities of nine scenarios are set as 
follows. In Case i, when cr = 28 (Table 6) and cr = 70 (Table 7), the 
purchase manager is almost sure that the actual demand quantity placed 
by the customer will be Less than the forecasted demand quantity, the 
probabilities of scenarios 1, 4 and 7 are set to be 0.33, 0.34 and 0.33, 
respectively. In this case, the customer can make any changes in the 
demand time. It is worth mentioning that the sum of these scenarios’ 
probabilities equals to 1. In Case iv, when the purchase manager is 
almost sure that the actual demand time placed by the customer will be 
Earlier than forecasted, the probabilities of scenarios 1, 2 and 3 are set to 
be 0.33, 0.34 and 0.33, respectively. The customer can make any change 

in the demand quantity. Similar explanations can be provided for other 
experiments. Given the short planning period and long lead time in these 
experiments, the model suggests that orders should be made at the 
beginning of the planning period. 

Results obtained in the two sets of experiments are given in Tables 6 
and 7. The following conclusions can be made:  

(a) The scenarios’ probabilities can have an impact on the quantities 
and times of ordering, in particular when the ratio cr

πr 
of the unit 

purchasing cost from the emergency supplier cr to the unit surplus 
cost of materials πr is not high. For example, when cr = 28 and πr 
= 18, the recommended order quantity is xr = 106 in all cases, but 
drops to xr = 58 when the purchase manager is almost sure that 
the customer will require Less quantity than forecasted. When this 
ratio is high, for example, cr = 70 and πr = 18, then the model 
recommends higher order quantities from the standard supplier 
( 331). However, the impact of the scenarios’ probabilities on the 
order quantities is not evident in all the cases.  

(b) The scenarios’ probabilities have a big impact on the total cost 
incurred. When the ratio cr

πr 
of the unit purchasing cost from the 

emergency supplier to the unit surplus cost of materials is not 
high, for example, when cr = 28 and πr = 18, the cost incurred 
when the purchase manager is almost sure that the customer will 
place the fixed order Later than forecasted, is 3.5 times higher 
compared to the cost incurred when it is likely that the customer 
will place the fixed order Earlier (see Cases vi and iv, Table 6). In 
the former Case, when the emergency supplier has to be used, 
both the holding cost and shortage cost are incurred. Also, the 
impact on the total cost is higher when the purchase manager is 
almost sure that the customer will require More quantity than 
forecasted, compared to Less quantity than forecasted, because a 
bigger purchase has to be made from the emergency supplier. The 
ratio of the two total costs incurred is 3.45 (see Cases i and iii, 
Table 6). Furthermore, when the ratio cr

πr 
of the unit purchasing 

cost from the emergency supplier to the unit surplus cost of ma-
terials is high, for example, when cr = 70 and πr = 18, the impact 
of the scenarios’ probabilities on the total cost becomes even 
more evident. For example, when the purchase manager is almost 
sure that the customer will place the fixed order Later than 
forecasted, the total cost incurred is 7.6 times higher than the cost 
incurred when the purchase manager is almost sure that the 
customer will place the fixed order Earlier (see Cases iv and vi, 
Table 7). Interestingly, the total cost is smaller if it is likely that 
the customer will place the fixed order for More rather than Less 
quantity. This is because, in the former case, the higher quantity 
ordered from the standard supplier at the beginning of the 
planning period leads to a lower quantity of materials purchased 
from the emergency supplier with a high unit purchase cost. 
However, there is a higher surplus cost. 

5.5. Computational requirements 

In order to assess the computational requirements of the proposed 
model, we are changing the number of materials from 6 to 2000 and 
record the required computation time. As expected (Fig. 11), the 
computation time increases with the increase of the number of materials 
ordered. However, even when number of materials is 2000, it only takes 
57.52 s to make the computation. Therefore, it can be concluded that the 
proposed model can be used effectively in real-world SN decision- 
making problems with a high number of suppliers/materials to be 
ordered. 

6. Practical and managerial insights 

We carried out various experiments in order to get an insight into SN 
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behaviour in the presence of uncertainty in changes in customer demand 
quantity and time. The impact of different parameters on the SN per-
formance measures is analysed. The following conclusions are made:  

• Different tolerances for constraints’ violation have an impact on SN 
performances. In particular, their impact on SN robustness is evident. 
The setting of a suitable tolerance value depends on various SN pa-
rameters and can be determined empirically.  

• The robustness metric can be defined as the variance of the costs 
incurred in different scenarios. It should be considered as an objec-
tive in the multi-objective SN model.  

• As expected, robustness and shortages can be costly. The proposed 
model can be used to calculate possible improvements of robustness 
and reductions of shortages at the price of a higher SN cost.  

• The unit purchase cost from the emergency supplier, the unit surplus 
cost, and, in particular, their ratio are identified as important factors 
that have an impact on SN cost, robustness and shortages. The impact 
is higher when this ratio is high, i.e., when the unit purchase cost 
from the emergency supplier is much higher than the unit surplus 
cost. In this case, including the objectives of robustness and shortages 
into the optimisation model can lead to a considerable improvement 
of these two SN performances. 

• Scenarios’ probabilities can have a considerable impact on the rec-
ommended order quantity and the total cost incurred. The impact is 
more evident when the ratio of the unit purchase cost from the 
emergency supplier and unit surplus cost is high.  

• The model can be applied to large-scale SNs with a high number of 
suppliers/materials to be ordered. 

7. Conclusions and directions for further research 

We consider an SN and different SN performance measures, 
including cost, robustness and shortages. A new concept of fuzzy sce-
narios is defined, which represent uncertainty in changes in demand 
quantity and demand time. Uncertain values of these changes are 
described by imprecise linguistic terms and modelled using fuzzy sets. 
We define a new measure of robustness as the variance of the cost 

incurred in different scenarios. We develop a novel fuzzy multi-objective 
optimisation model which considers all the fuzzy scenarios. Each 
objective optimises one of the SN performances, namely total cost, 
robustness and shortages. 

Various experiments are carried out to provide a practical and 
managerial insight into the relationship between SN parameters and SN 
performance including cost, robustness and shortages. Results obtained 
by applying the SN model proved that robustness can be increased and 
shortages minimised at a higher SN cost. In the case of the high ratio of 
the unit purchase cost from the emergency supplier to the unit surplus 
cost, including the objectives of robustness and shortages into the SN 
optimisation model can lead to a considerable increase of robustness and 
a decrease of shortages. Also, in this case, the recommended order’s 
quantity and the total SN cost are increased. Finally, it is demonstrated 
that the model can be applied to large-scale SNs. 

Potential future work includes: (1) developing a procedure for 
generating the fuzzy sets which describe scenarios based on historical 
data, (2) expanding the model to accommodate uncertainty in proba-
bilities of scenarios which will be specified using linguistic terms, for 
example, probability is high or probability is around 0.5, (3) expanding 
the model to include multi-products and batch discounts and (4) 
comparing the results obtained using the model to decisions made by the 
manufacturer to identify potential benefits of the model. 
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Appendix A. Transformation of a fuzzy constraint into a crisp constraint 

We consider three types of fuzzy constraints: (1) g(x) ≤ ̃b, (2) g(x) ≥ b̃ and (3)g(x) =
̃b, where ̃b is a fuzzy triangular number or a fuzzy semi- 

trapezoidal number. 

(1) Fuzzy constraint g(x) ≤ ̃b, where ̃b is a triangular fuzzy number [b1,b2,b3], is transformed into the following crisp constraint: 

g(x) ≤ b1 +(1 − α)(b2 − b1)+ (1 − α)v (A.1)  

where v is the tolerance for constraint violation and α is degree of constraint satisfaction. 
If the constraint satisfaction is fully relaxed, α = 0, then g(x) ≤ b2 + v. 
If there is no relaxation of constraint satisfaction, α = 1, then g(x) ≤ b1. 

Fuzzy constraint g(x) ≤ ̃b, where ̃b is a semi-trapezoidal fuzzy number [b1,b1,b2,b3], is transformed into the crisp constraint using the same formula 
(A.1). 

(2) Fuzzy constraint g(x) ≥ ̃b , where ̃b is a triangular fuzzy number [b1,b2,b3], is transformed into the following crisp constraint: 

g(x) ≥ b3 − (1 − α)(b3 − b2) − (1 − α)v (A.2)  

where v is the tolerance for constraint violation and α is degree of constraint satisfaction. 
If the constraint satisfaction is fully relaxed, α = 0, then g(x) ≥ b2 − v. 
If there is no relaxation of constraint satisfaction, α = 1, then g(x) ≥ b3. 

Fuzzy constraint g(x) ≥ b̃, where ̃b is a semi-trapezoidal fuzzy number [b1, b1, b2, b3], is transformed into the crisp constraint using the same 
formula (A.2). 

(3) Constraint g(x) = ̃b is transformed into two constraints, g(x) ≤ ̃b and g(x) ≥ ̃b . They are transformed into the crisp constraints following the 
procedure described above. 
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In all these cases tolerance v is set to v = (b3 − b1)V, where V is the tolerance factor. 
Following this procedure, fuzzy constraints (8), (9) and fuzzy equation (10) of the fuzzy model are transformed into the crisp constraints. For 

example, let us consider fuzzy constraint (8): 
xr

θr
− φ+

s + φ−
s − D = q̃s 

In scenarios s = 1, 4 and 7, change in demand quantity q̃ s is Less than forecasted and modelled by a semi-trapezoidal fuzzy number [b1, b1, b2, b3] 
= [ − D, − D,Ql,Ql + pl]. Fuzzy constraint (8) for these scenarios is transformed into two crisp constraints, (8i) and (8ii), as follows: 
xr

θr
− φ+

s +φ−
s − D ≤ − D+(1 − α)(Ql − ( − D) )+ (1 − α)v1, r = 1, 2,⋯,R  

xr

θr
− φ+

s +φ−
s − D ≥ Ql + pl − (1 − α)(Ql + pl − Ql) − (1 − α)v1, r = 1, 2,⋯,R  

where v1 = (b3 − b1)V = (Ql +pl +D)V. 

Further on, in scenarios s = 2, 5 and 8, change in demand quantity q̃ s is About the same as forecasted, and is modelled by a triangular fuzzy number 
[− p0,0, p0]. Fuzzy constraint (8) is transformed into two crisp constraints, (8iii) and (8iv), as follows: 
xr

θr
− φ+

s +φ−
s − D ≤ − p0 +(1 − α)p0 +(1 − α)v2, r = 1, 2,⋯,R  

xr

θr
− φ+

s +φ−
s − D ≥ p0 − (1 − α)p0 − (1 − α)v2, r = 1, 2,⋯,R  

where v2 = 2p0V. 
A similar transformation of fuzzy constraint (8) into crisp constraints is done for scenarios s = 3, 6 and 9, where change in demand quantity is More 

than forecasted, leading to crisp constraints (8v) and (8vi). 

Appendix B. Determining the minimum and maximum values of the three objectives 

The minimum and maximum values of objective f1 
The minimum cost is incurred when there is no change in quantity or time in the forecasted demand and, therefore, it is equal to the purchasing of 

Dθrquantity. 

f1
min =

∑R

r=1
mrDθr (A.3) 

The maximum cost is incurred in one of the three scenarios: (a) scenario 3, when the customer’s fixed demand is Earlier and for More quantity than 
forecasted and it incurs both the shortage and the surplus costs, or (b) scenario 7, when the customer’s fixed demand is Later and for Less quantity than 
forecasted and both the holding and the surplus costs are incurred or (c) scenario 9, when the customer’s fixed demand is Later and for More quantity 
than forecasted and both the holding and the shortage costs are incurred (see Table 2). However, considering that the unit surplus cost is generally 
lower that the unit purchasing cost from the emergency supplier, the cost incurred in scenario 7 is lower than the cost incurred in scenario 9, and is, 
therefore, not considered here. 

The cost of scenario 3 includes the emergency purchasing costs for More quantity that is fixed Earlier, and, also, the surplus cost, because the order 
is initially made to the standard supplier. The order arrives, but later than needed. Therefore, 

Standard purchase cost + scenario 3 cost =

∑R

r=1
mrDθr +

∑R

r=1
cr(D+DU)θr +

∑R

r=1
πrDθr (A.4) 

The cost of scenario 9 includes the emergency purchasing costs for More demand, and the order from the standard supplier. However, this order is 
needed Later than forecasted and, consequently, incurs the holding cost. Therefore, 

Standard purchase cost + scenario 9 cost =

∑R

r=1
mrDθr +

∑R

r=1
crDUθr +

∑R

r=1
hrDθr(T + TU − lr) (A.5) 

Finally, the maximum cost is the maximum of these two costs: 

f max
1 = max{

∑R

r=1
mrDθr +

∑R

r=1
cr(D+DU)θr +

∑R

r=1
πrDθr,

∑R

r=1
mrDθr +

∑R

r=1
crDUθr +

∑R

r=1
hrDθr(T + TU − lr)} (A.6) 

The minimum and maximum values of objective f2 
The minimum robustness is achieved when all the scenarios incur the same cost, i.e., the variance of the scenario costs is 0. 

f2
min = 0 (A.7) 
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The maximum robustness is achieved when the variance of all scenario costs ws, s = 1,…,9 is the maximum. We approximate the variance to be the 
maximum when the cost of one scenario reaches its minimum and the cost of another scenario reaches its maximum, with equal probabilities. The 
minimum of all the scenario costs, ws, is incurred in scenario 5 when the quantity and the time of fixed and forecasted demand are similar. Therefore, 

min ws = 0, fors = 5 (A.8) 

The maximum costs ws of all scenarios is incurred either in scenario 3 or in scenario 9, as discussed when calculating f1
max. It is assumed that the 

probability of scenario 5 is 0.5 and the probability of both scenario 3 and scenario 9 is 0.5. 
Therefore, 

f2
max = 0.5*(variance of cost in scenario 3+ variance of cost in scenario 9)

= 0.5*

(
∑R

r=1
cr(D + DU)θr +

∑R

r=1
πr(D + DU)θr

)2

+ 0.5*

(
∑R

r=1
crDUθr +

∑R

r=1
hrDθr(T + TU − lr)

)2

(A.9) 

The minimum and maximum values of objective f3 
The minimum and maximum shortages relative to demand quantity are: 

f3
min = 0 (A.10)  

f3
max = 1 (A.11) 

However, objective f3 =
∑S

s=1ps
φ−

s

D+̃qs 
is fuzzy and, therefore, it has to be transformed into the corresponding crisp objective. First, fuzzy division φ−

s

D+̃qs 

is calculated for all scenarios s = 1,2,…,9 when the change in demand quantity q̃s is described as Less, About the same and More as follows. 
In scenarios s = 1, 4, 7, the change in demand quantity ̃qs is for Less quantity; this is modelled as a semi-trapezoidal fuzzy number( − D, − D,Ql,Ql +

pl). Therefore, D + q̃s is also a semi-trapezoidal fuzzy number (0, 0,D + Ql,D + Ql + pl). Consequently, 1
D+̃qs 

becomes a semi-trapezoidal fuzzy number 

( 1
D+Ql+pl

, 1
D+Ql

, 1
0,

1
0). We conveniently set the boundaries which involve division by 0 to 1 (Fig. A.1 (a)). 

In scenarios s = 2, 5, 8, the change in demand quantity q̃s is About the same; this is presented as a triangular fuzzy number ( − po,0,p0). Therefore, 

D + q̃s becomes a triangular fuzzy number (D − po,D,D+p0) and 1
D+̃qs 

becomes a fuzzy number 
(

1
D+p0

, 1
D,

1
D− p0

)

(Fig. A.1(b)). 

In scenarios s = 3, 6, 9, the change in demand quantity ̃qs is for More quantity; this is modelled as a semi-trapezoidal fuzzy number(Qm − pm,Qm,DU,

DU), and, therefore, D + q̃s becomes (D+Qm − pm,D+Qm,D+DU,D+DU) and 1
D+̃qs 

becomes a semi-trapezoidal fuzzy number ( 1
D+DU

, 1
D+DU

, 1
D+Qm

, 1
D+Qm − pm

)

(Fig. A.1(c)). 
Therefore, fuzzy objective 3 in (3) can be transformed into a crisp objective as follows: 

f3 ≤ f min
3 +(1 − α)(f max

3 − f min
3 )

∑S

s=1
ps

φ−
s

D + q̃s

≤ 0 + (1 − α)(1 − 0)

∑S

s=1
psφ−

s
1

D + q̃s

≤ 1 − α (A.12) 

Following the procedure given in Appendix A, fuzzy constraint (A.12) is transformed into the following three crisp constraints for different sce-
narios s = 1,…,9. They are given in the crisp optimisation model as constraints (3i), (3ii) and (3iii): 

1 − α ≥
∑

s=1,4,7
psφ−

s

(

1 − (1 − α)
(

1 −
1

D + Ql

)

− (1 − α)v7

)

(A.13)  

1 − α ≥
∑

s=2,5,8
psφ−

s

(
1

D − p0
− (1 − α)

(
1

D − p0
−

1
D

)

− (1 − α)v8

)

(A.14)  

1 − α ≥
∑

S=3,6,9
psφ−

s

(
1

D + Qm − pm
− (1 − α)

(
1

D + Qm − pm
−

1
D + Qm

)

− (1 − α)v9

)

(A.15)  

where v7, v8, v9 are violations introduced for three different changes in demand quantity ̃qs: Less, About the same and More than forecasted given in Eq. 
(15). 
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