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Abstract 15 

The production and consequently the consumption of the pulp of the fruit of the palm 16 

tree Bactris guineensis occurs extensively in Colombia. The majority of the fruit is formed by 17 

waste (peel and core), producing high residual biomass. Thus, it is necessary to find a practical 18 

utilization of these peels, making the production and consumption of the fruit of the palm tree 19 

Bactris guineensis highly sustainable. This study produced activated biochar chemically 20 

activated using ZnCl2 and utilized it as an effective adsorbent. The high micropollutant uptake 21 

is because of the high porosity and good specific surface area (SBET= 625 m2 g-1). Under basic 22 

conditions, propranolol adsorption was favored for an adsorbent dosage of 0.7 g L-1. The 23 

adsorbent showed fast kinetics, with the equilibrium influenced by the concentration. 24 

Avrami's model showed a satisfactory fit having a t0.95 ranging from 47.8 to 179.3 min. 25 

Equilibrium data were best adjusted to the Liu isotherm model. The values of Qmax increased 26 

with the temperature, reaching up to 161.3 mg g-1 (45°C). The thermodynamic data showed 27 

G° < 0 for 298-328 K (adsorption process favorable) H°= + 7.403 kJ mol-1 (endothermic; 28 

magnitude compatible with physical adsorption), and S°= +115.2 J K-1 mol-1 (releases of water 29 

molecules of the adsorbate before it being adsorbed in the carbon surface). The biochar 30 

chemically activated with ZnCl2, produced from the leftover peels of Colombian palm fruits, 31 

is therefore inferred to be a promising option as an adsorbent for the treatment of effluents 32 

containing the medication propranolol hydrochloride.  33 

Keywords: Adsorption; Residue; Activated biochar, adsorption thermodynamics, nonlinear 34 

Van't Hoff equation. 35 
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1. Introduction 42 

Emerging micropollutants have attracted the scientific community's attention in recent 43 

years, as they are released in different sectors of society and can be detected in domestic, 44 

industrial, and, mainly, hospital effluents [1]. These residual compounds contaminate water 45 

resources and the soil, directly affecting the aquatic biota, the animals that consume this 46 

water, and even the plants. Therefore, in addition to techniques that remove these 47 

compounds, their long and medium-term effects must be studied [2,3]. Added to this, the 48 

United Nations (U.N.) has focused on sustainable development, which advocates the 49 

emergence of new environmental legislation policies on the global contamination of water 50 

resources, enabling studies on these ecological contaminants [1,4,5]. The class of drugs within 51 

emerging pollutants is a serious problem because while continuous discharges are released 52 

into the environment, they do not have environmental regulations [6–8]. It should be noted 53 

that even at low concentrations, these drugs may be quite hazardous to the aquatic biota, 54 

especially over an extended period [9–12]. 55 

The consumption of drugs used for hypertension has grown in recent years; propranolol 56 

hydrochloride (C16H21NO2.HCl) is widely used worldwide, where the human body does not 57 

absorb a large part eliminated in the urine [13]. Propranolol (PROP) is highly persistent in the 58 

environment and has a long duration after consumption, with 4-hydroxypropranolol as its 59 

main metabolite [14,15]. Conventional processes used in the treatment of effluents partially 60 

remove this contaminant [13,16], the remainder being discharged into water bodies, highly 61 

harmful to various organisms such as the green algae S. vacuolatus [17]. In Brazil, PROP has 62 

been detected in surface, drinking, and effluents from water and sewage treatment plants 63 

[18,19]. Due to this problem, several techniques have been studied, mainly in removing and 64 

degrading this compound [1,20–23]. Adsorption has the advantage of applying new 65 

adsorbents from plant residues, mainly for producing carbon-based materials [24–27]. 66 

Normally, these carbonaceous materials, formed basically by carbon, have a good surface area 67 

and excellent pore development, some of the important characteristics of a good adsorbent 68 

[28,29].  69 

The Bactris guineensis palm is an important fruit tree in the Colombian Caribbean 70 

extending to Central America. This fruit tree has great economic importance [30]. Popularly 71 
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known as corozo, its round and small fruits have a pulp with high nutritional value and can be 72 

consumed fresh and in the preparation of drinks, jellies, and even wines [31,32]. A single plant 73 

produces an average of 30 kg per year of fruit, reaching an annual productivity of 750 kg ha-1 74 

[30], generating large volumes of residual biomass corresponding to bark and seeds. In 75 

addition, studies have reported that dark-colored pulp has an antioxidant action [31,33]. 76 

However, no studies reported residual biomass as a carbon precursor for preparing adsorbent 77 

material and possible application in removing emerging contaminants. 78 

The activation process is one of the major steps to ensure that the adsorbent is able to 79 

remove or adsorb more molecules by creating pores and augmenting the textural proprieties 80 

[34]. Different activators can be used from salts, bases, and acids; among all the salts, the ZnCl2 81 

performs best, presenting a higher specific surface area and pore formation [35]. Therefore, 82 

enhancement of the textural proprieties is one of the most desired modifications that be done 83 

to the adsorption studies. In special, this modification technique tends to increase the 84 

adsorption capacity of the raw materials, allowing the molecules to diffuse more easily onto 85 

the pore and surface of the material [36]. 86 

Therefore, this use used the bark as the residual biomass of the Bactris guineensis fruit to 87 

prepare biochar chemically activated with zinc chloride (ZnCl2) and subsequent use as an 88 

adsorbent. The main objective is to bring a new application for this residual biomass since it 89 

presents a large volume and high annual consumption in Latin countries such as Colombia. 90 

Another point is the problem of emerging contaminants such as propranolol, which has a small 91 

variety of adsorbents aimed at its removal. First, the pristine biomass and biochar material 92 

were characterized using different characterization techniques. Then activated biochar was 93 

used to remove the drug for hypertension propranolol hydrochloride. Next, adsorbent dosage 94 

and pH studies were carried out. Then kinetic and isothermal studies were determined, where 95 

the experimental data were fitted to specific mathematical models. Last, the thermodynamic 96 

parameters of adsorption were estimated. 97 

2. Materials and methods 98 

2.1 Chemical employed 99 
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The chemicals and reagents (further described) were all obtained from Sigma-Aldrich-USA 100 

in analytical grade. In order to adjust the pH, 0.1 M of HCl and NaOH were used. For activation 101 

in the carbonization step, zinc chloride salt (ZnCl2) was used. The propranolol hydrochloride 102 

was used (chemical formula: C6H21NO2.HCl; molecular weight: 295.807 g mol-1) as adsorbate 103 

[1]. In order to obtain different concentrations of PROP, a stock solution was prepared. In this 104 

case, 1 g L-1 of PROP was dissolved in methanol due to the low solubility of the drug; in the 105 

end, a 1000 mg L-1 contraction solution was generated. Working solutions with different 106 

concentrations were attained by diluting the stock solution with deionized water and 107 

adjusting the solutions' pH using 0.1M NaOH or HCl (Digimed pHmeter, DM 20, Brazil). 108 

 109 

2.2 Precursor gathering, pyrolysis, and characterization 110 

 The material gathered for pyrolysis and the characterization are specified in the 111 

Supplementary Material. In sum, the Bactris guineenses were obtained from a local producer 112 

in Barranquilla, Colombia. First, the fruit peel was separated, dried, and ground. After that, 113 

the powder was mixed with the activating agent (ZnCl2) and pyrolyzed using a quartz reactor 114 

at N2 atmosphere at 923.15 K. After that; the pyrolyzed material was washed with an HCl 115 

solution and dried. Finally, the source and pyrolyzed material were characterized through 116 

Fourier-transformed infrared spectroscopy, scanning electron microscopy, X-ray 117 

diffractometry, and N2 adsorption and desorption isotherms (only for the pyrolyzed material). 118 

2.3 Adsorption experiments with propanolol 119 

All samples were continuously stirred at 150 rpm utilizing a thermostatic stirrer. The 120 

PROP concentration was determined through spectrophotometry using a UV micro 1240 121 

(Shimadzu, Japan). The equipment was set to work at 255 nm, corresponding to the 122 

propanolol's maximum absorption wavelength. All assays were conducted in triplicates to 123 

guarantee the results' reliability; after each test, the samples were centrifuged at 5000 rpm 124 

for 15 min, separating the solid phase from the liquid phase; for details, see Supplementary 125 

material [37–42]. 126 

 127 
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3. Results and Discussion 128 

3.1. Characterization results of the source and pyrolyzed material 129 

During the pyrolysis step, a good part of the lignin and cellulose is converted into 130 

volatile material, influencing the final yield and increasing the specific surface area [43]. Due 131 

to this process, the final carbonaceous skeleton formed basically by carbon presented a yield 132 

close to 29 %. This result agrees with other research using ZnCl2 in proportions of 1:1. The 133 

biomasses used in this study were: jabuticaba residues [44], açai residues [45], fruits of the 134 

invasive species Hovenia dulcis [46] and cassava peels [47]. When using KOH as an activating 135 

agent, the authors reported a yield close to 64% [48]. The biochar developed from Bactris 136 

guineensis residues obtained a satisfactory surface area of 625 m2 g-1 (Figure 1a). Figure 1b 137 

allows classifying the isotherms as type I (IUPAC); these structures correspond to micro and 138 

mesoporous materials [49,50]. The H4-type hysteresis slit is typical of structures with pores 139 

with diameters equal to those obtained in this study [50]. The results corroborate the 140 

developed carbonaceous material's pore volume (0.4223 cm3 g-1). Analyzing the textural 141 

properties of the adsorbent is essential because they strongly influence the adsorption 142 

performance [51]. When observing structures composed of lignin and cellulose and 143 

carbonized with ZnCl2, we observed similar characteristics to this study [52–54]. 144 

<Fig.1> 145 

Figure 2 makes it possible to identify the main functional groups present on the surface 146 

of the materials. It is possible to observe that most groups remained after carbonization with 147 

a lower intensity. The bad at 3441 cm-1 (biochar) and 3445 cm-1 (biomass), the O-H bonding 148 

occurs [55]. The bands at  2922 and 2854 cm-1 (BC) and 2923 and 2855 cm-1 (biomass) are 149 

assigned to asymmetric and symmetric C-H stretch bonds, respectively [56]. The band at the 150 

1738 cm-1 region is assigned to C=O bonds in ketones, and aldehydes are found in the biomass 151 

precursor [58]. However, in biochar, the disappearance of the C=O bond corroborates the loss 152 

of volatile material during pyrolysis [57]. 153 

The carboxylate stretching vibrations correspond to the band at 1631 cm-1 (biochar) 154 

and 1641 (biomass) [59]. The band at 1451 cm-1 in the biomass can be assigned to the C-H 155 

bending of lignocellulosic material or ring modes of aromatics in lignin [57,60]; this band 156 
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vanished in the biochar material. On the other hand, the bands at 1379 cm-1 (carbon 157 

precursor) and 1383 cm-1 (biochar) can be assigned to C-H bending [57,60]. The band at 1254 158 

cm-1 (carbon precursor) is assigned to the C-O stretching of phenol present in lignin [29, 61]. 159 

The bands at 1107 cm-1 (carbon precursor) and 1153 and 1114 cm-1 (biochar) are assigned to 160 

attributed to C-O-C of ether and C-C-O of esther stretching [29], and the peak at 1043 cm-1 161 

(carbon precursor) is attributed to C-O stretching of phenolic groups or carboxylate [29; 61]. 162 

]. The band at 897 cm-1 (carbon precursor) and 801 cm-1 (biochar) are attributed to the C-H 163 

bending of aromatics [29].   The FTIR results of this work are similar to those obtained by 164 

Bouchelta et al. [58] by carbonizing date fruit waste. 165 

<Fig.2> 166 

 Figure 3 corresponds to the XRD patterns of the source and pyrolyzed samples. 167 

Firstly, the long diffraction band between 15 and 30 corresponds to the presence of 168 

amorphous carbon [62]. This band undergoes changes after carbonization, where its width 169 

decreases and its intensity increases, which may be related to a more organized structure 170 

formed after the pyrolysis; however, the biochar material is still amorphous. Amorphous 171 

arrangements are usually disorganized and irregular. However, they have empty spaces in 172 

their organization, which can be occupied by adsorbate molecules, supporting the adsorption 173 

[24]. 174 

<Fig.3> 175 

The high temperature employed together with the activation provided apparent 176 

morphological modifications to the surface of the materials (Fig. 4). Initially, the irregular 177 

particles of different sizes had a uniform and smooth surface (Fig. 4a). However, when they 178 

were carbonized, they started to contain numerous irregularities and protuberances (Fig. 4b). 179 

Materials formed by lignin and cellulose tend to have irregular and disorganized 180 

morphological structures, such as tree bark [63–66], fruit residues [44,67–70] and seeds of 181 

forest species [71–74]. These irregularities are alternately distributed and present cavities and 182 

empty spaces, which can be highly favorable for adsorption [46,70]. 183 

<Fig.4> 184 

3.2. Study of adsorbent dosage and pH 185 
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 The optimal BC dosage (Figure 5) was determined using 25 mg L-1 of PROP. In the 186 

process of increased dosage from 0.5 to 1 g L-1, the capacity decreases from 75 to 51 mg g-1, 187 

while the removal shows the opposite behavior, increasing from 70 to 96%. The curves are 188 

crossed at 0.7 g L-1 dosage, presenting a q value of 64 mg g-1 and a removal percentage of 64 189 

%, which is fairly good. Therefore, 0.7 g L-1 of BC was utilized for the next adsorption 190 

experiments. When using ionic liquid iron nanocomposite as an adsorbent in the removal of 191 

PROP, it was observed that increasing the dosage from 0.05 to 0.5 g L-1 generated an increase 192 

in removal from 30 to 90 % [75]. 193 

<Fig.5> 194 

  The effect of the pH of the solution was analyzed according to Figure 6. Initially, 195 

when the adsorbate solution pH is acidic (pH 3), the adsorption capacity is 30.6 mg g-1; when 196 

raising the pH to 6, the capacity drops to 26.8 mg g-1. From pH 6, the capacity increases until 197 

reaching the capacity of 33.56 mg g-1 at pH 8. Then the capacity suffers a slight decrease up to 198 

pH 10. This behavior confirms that the incremental change of the solution pH, close to 8, 199 

favors the adsorption of the PROP. This result corroborates the study by Ali et al. [75], whereby 200 

by raising the pH from 3 to 11, the adsorption capacity of PROP rises to a pH close to 9 and 201 

then decreases again. PROP presents constant acidity being a secondary amine (pKa=9.5). 202 

Therefore, the charges of the β-blockers present in the solution are mostly positive, favoring 203 

adsorption at high pH. At pH > 8, the amine is released by hydrolysis and precipitated due to 204 

its low solubility, making adsorption above this value unfeasible [76]. Added to this, the point 205 

of zero charge of the adsorbent was 6.5, so when the pH is at this value, the charges on the 206 

surface are equal to zero. When the pH value is above 6.5, the surface is negatively charged; 207 

when the pH is below 6.5, the surface of the adsorbent is positively charged. Therefore, 208 

electrostatic repulsion occurs under acidic conditions, and electrostatic attraction occurs 209 

under basic conditions. In this study, pH 8 was fixed for further experiments. 210 

<Fig.6> 211 

3.3. Propranolol adsorption kinetics 212 

  By means of three concentrations, the performance of the carbonaceous material 213 

in the PROP uptake and the time to attain the equilibrium were analyzed according to the 214 

kinetic curves represented in Figure 7.  215 
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 The experimental kinetic data were adjusted to the Pseudo-first-order (PFO), 216 

Pseudo-second-order (PSO), and Avrami fractional-order (AFO) models (see Table S1). The 217 

AFO presented the bested values of R2
adj, followed by the PSO and PFO. This same tendency 218 

was obtained for the statistical parameter SD (mg g-1), with the lowest values reached by the 219 

AFO, followed by the PSO and PFO [77–80]. Also, to confirm the best kinetic model, the BIC 220 

analysis was carried out. The values of BIC for AFO were always lower than PFO and PSO. 221 

Therefore, the BIC of the two models can be conclusive for BIC < 2 (the two models have 222 

no significant differences) or BIC  10 (indicates that the model with the lowest BIC is surely 223 

the best-fitted) [37,38]. On the other hand, for 2 < BIC < 6, the model with a lower BIC value 224 

has a possibility of being the best-fitted model, or  6 < BIC < 10, the model with a lower BIC 225 

value has a strong possibility of being the best-fitted model [37,38]. The BIC for PFO and 226 

Avrami were always higher than 10; therefore, PFO does not explain the kinetic results 227 

properly [37,38]. The BIC between PSO and Avrami was higher than 10 for Co PROP of 50 and 228 

75 mg/L, being AFO the best kinetic model [37,38]. However, for Co 25 mg L-1 PROP, the BIC 229 

between PSO and AFO was 7.063, with a high likelihood that the optimum kinetic model is the 230 

AFO. Therefore, AFO satisfactorily explains the kinetic data considering the set of the three 231 

concentrations of PROP [37,38]. 232 

 Another important piece of information shown in Table S1 is the values of t1/2 and 233 

t0.95 [38], which are defined as the time necessary to attain 50% and 95% of the maximum 234 

sorption capacity described by the model curve. Considering that AFO was the best-fitted 235 

kinetic model, it was observed that t1/2 for the uptake of PROP onto the BC ranged from 4.354 236 

min (Co 25 mg/L) to 15.02 min (Co 75 mg/L), and t0.95 for the uptake of PROP onto BC ranged 237 

from 47.82 (Co 25 mg/L) to 179.3 min (Co 75 mg/L). These results show that increased sorption 238 

capacity leads to increased time to attain equilibrium. Considering that the isotherms were 239 

performed with Co up to 150 mg/L of PROP, thus, it is advisable to employ a contact time of at 240 

least 240 min to perform the adsorption equilibrium experiments. Therefore, it is possible to 241 

conclude that the batch system may operate for around 15 min at a higher concentration 242 

before the need for regeneration.  243 

 When analyzing the kinetic behavior of PROP by other adsorbents in the literature, 244 

we observed that there are fast and slow kinetics cases. For example, when analyzing the 245 

adsorption of PROP on montmorillonite clay, the authors observed that about 96% of the drug 246 
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had already been removed in the first minute, confirming the high affinity of the adsorbent 247 

with the adsorbate [76]. Conversely, using Na-mica-4 and C18-mica-4, the authors took 24 248 

hours to achieve 97 % removal in river water samples synthetically contaminated with PROP 249 

[81]. Finally, when using granular activated carbon, the authors reported 88% and 68 % 250 

removal in 90 min [82] and 180 min [83], respectively. 251 

<Fig.7> 252 

3.4. Isothermal studies and estimation of thermodynamic parameters of adsorption 253 

Isothermal studies were carried out at temperatures of 298, 308, 318, and 328 K, which 254 

resulted in the construction of four equilibrium curves (Fig. 8). These data help elucidate the 255 

interaction between BC and PROP and allow to calculate the parameters of thermodynamics 256 

of adsorption (G°, H°, and S°). The curves were constructed by varying the concentration 257 

from 25 to 150 mg L-1 of PROP. As a result, all curves show identical and favorable behavior 258 

for L-shaped adsorption [84].  259 

<Fig.8> 260 

The experimental equilibrium data fit the Langmuir, Freundlich, and Liu models (see 261 

Table S2). When analyzing the adjusted determination coefficients (R2
adj), it was verified that 262 

their values were closer to 1 using the Langmuir isotherm at the temperature of 298K. Liu for 263 

the temperature of 308 to 328 K. This statistical parameter was followed by SD, whose lowest 264 

values were obtained by the Langmuir model at 298 K, and Liu from 308 to 328 K. It was 265 

evident that the Freundlich isotherm model had the lowest values of R²adj and higher values 266 

of SD for all the temperatures, indicating that Freundlich isotherm model is not adequate to 267 

model the equilibrium data. Therefore, the BIC was utilized to verify what is the best isotherm 268 

model because it can be conclusive when BIC < 2 (the difference between the two models is 269 

not statistically significant) or BIC 10 (indicates that the model with the lowest BIC is surely 270 

the best-fitted) [37,38]. At 298 K, the BIC between the Langmuir and Liu models was 1.606, 271 

indicating no relevant differences between the two isotherm models; both models can 272 

represent the equilibrium at 298 K. On the other hand, for 308, 318, and 328K, the BIC 273 

between Liu and Langmuir were 70.70, 73.35, and 82.99, respectively, inferring that 274 
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undoubtedly, the Liu isotherm model is the best-fitted equilibrium model for representing the 275 

equilibrium data from 308 to 328 K. Considering that at 298 K, the differences of Liu and 276 

Langmuir were not significatively different, it could be stated that for the 298-328 K, the Liu 277 

model is the best equilibrium model to represent the experimental equilibrium data. 278 

Also, it was observed that for both Langmuir and Liu isotherm models, the values of 279 

Qmax increased with the temperature. Considering that the Liu isotherm model best described 280 

the equilibrium data, it could be stated that the Qmax varied from 124.5 at 298 K to 161.3 mg 281 

g-1 at 328 K. The increasing maximum sorption uptake with the temperature is due to the 282 

driving force gradient that increases with the adsorbate concentration [85]. To be more 283 

precise, the temperature increase can affect the mass transport mechanism by changing the 284 

external and internal mass transfer mechanism [36]. The external mass transfer depends on 285 

the film formed between the adsorbent and the aqueous phase, named the boundary layer. 286 

This layer can be affected by external forces such as velocity and temperature; thus, increasing 287 

the temperature diminishes the mass transfer resistance [86]. As the internal mass transfer is 288 

based on pore and surface diffusion, these phenomena are also a function of the textural 289 

proprieties and the experimental conditions. The temperature increase tends to increase pore 290 

diffusion, according to Willke-Chang [87], which also affects surface diffusion. Although 291 

studies analyzing the adsorption of PROP are few compared to other emerging pollutants, 292 

some studies confirm results similar to those obtained in this study. For example, when 293 

analyzing the adsorption of PROP in bentonite clay, the authors observed that the capacities 294 

increased from 0.298 to 0.426 mmol g-1 with the increase in temperature from 293 to 313 K 295 

[1]. 296 

When analyzing the maximum capacity obtained by the model (161.3 mg g-1) and 297 

comparing it with other reports, it is concluded that the residual peels of the carbonized 298 

Bactris guineensis fruits have a high potential for application concerning effluents containing 299 

PROP. When bentonite clay was employed as an adsorbent, a capacity of 0.468 mmol g-1 for 300 

the concentration of 0.05 to 3 mmol L-1 of PROP was observed [1]. The maximum capacity of 301 

6.2 x 105 μmol g-1 was obtained using Montmorillonite as an adsorbent, varying the 302 

concentration from 0.5 to 80 mg L-1 [76]. With nanocomposite, the capacity was 105.26 μg g-303 

1 for a concentration of 10-70 μg mL-1 [75]. Using corn husk biochar, the authors reported a 304 

capacity of 6.67 μmol m-2 for a concentration of 0.800-30 mg L-1 [88]. Finally, a Qmax of 287 mg 305 
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g-1 was reported using p-doped mesoporous carbon with a concentration of 100 mg L-1 [89]. 306 

A study on a fixed bed system with magnetic tire char reported a capacity of 22.58 mg g-1 [90]. 307 

This means that the developed adsorbent can compete on par with other adsorbents in 308 

removing PROP and providing an application for the residue. 309 

 310 

The thermodynamic parameters were obtained based on the equilibrium constants 311 

obtained from the equilibrium isotherms using the nonlinear Van't Hoff equation (Table S3) 312 

[37–42]. 313 

The 𝐾𝑒
0

 was obtained through the best-fit isotherm fitted in the 298-328 K interval (Liu) 314 

[37–42]. The thermodynamic parameters were obtained as described in the Supplementary 315 

Material [37–42]. The 𝐾𝑒
0 values augmented from 5.234.104 to 6.886.104 as the temperature 316 

increased from 298 to 328 K, confirming that the adsorption process is endothermic. 317 

Conversely, ΔG0 decreased from -26.92 (298 K) to -30.38 kJ mol-1 (328 K), indicating that the 318 

adsorption of PROP in the carbonaceous adsorbent was favorable and spontaneous. However, 319 

∆H0 is positive (7.403 kJ mol1), indicating an endothermic process. The magnitude of ∆H0 is 320 

compatible with the physical interactions of the PROP with BC. These interactions may be van 321 

der Waals forces, - interactions [38]. Based on this study, the adsorption process is physical 322 

adsorption. Furthermore, ΔS0 +115.2 J mol-1 K-1 suggests that the PROP was hydrated before 323 

being uptaken by the adsorbent, and releasing hydration waters increased the entropy when 324 

PROP molecules were adsorbed. In the literature, the study of the propranolol uptake from 325 

aqueous solutions in thermally treated bentonite clay also confirmed the behavior of an 326 

endothermic nature [1]. 327 

 328 

3.5. Proposed reaction mechanism 329 

 One can suggest an adsorption mechanism by taking into account the outcomes of the 330 

adsorbent's characterization, speciation, and standard enthalpy change's magnitude. First, the 331 

FT-IR results should be considered to propose a bare minimum adsorption surface. In this case, 332 

classical groups for activated biochar were found: C-H, C=O, OH (phenolic), and aromatic rings. 333 

Considering that the point of zero charge of the adsorption is 6.4, thus for solution pH > 6.4, 334 

the adsorbent surface will be negatively charged (see Fig S.1). Another important factor is the 335 
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speciation of the adsorbate, in this case, the PROP, has two states one neutral and other 336 

protonated, due to the amine group (see Fig S.2). Last, the thermodynamic magnitude H°, 337 

indicates the nature of the bond, in this case being classified as physical interaction. Taking 338 

into consideration all the aspects of the system is possible to propose the mechanism, 339 

according to Figure 9. The PROP is expected to be adsorbed on the surface due to hydrogen 340 

bonds, Van de Waals interaction, or ion-π interaction. 341 

<Fig.9> 342 

4. Conclusion 343 

Residual peels of the edible fruit Bactris guineensis, native to the Colombian Caribbean, 344 

were successfully charred with zinc chloride. For the literature, this study provides a new use 345 

for this residue, where carbonization with zinc chloride makes it possible to obtain an 346 

adsorbent with good textural characteristics and with great potential for adsorption in 347 

solutions contaminated with PROP. The adsorbent showed good superficial characteristics 348 

(SBET=625 m2 g-1; VT= 4.223x10-1 cm3 g-1). The dosage of 0.7 g L-1 and the pH of 8 favored the 349 

adsorption of the drug on the activated charcoal surface. The system equilibrium was 350 

influenced by the concentration, being faster at the lowest concentration (25 mg L-1) and 351 

longer at the highest concentration (75 mg L-1). According to t0.95 obtained from the Avrami-352 

fractional model, the time to attain 95% saturation ranged from 47.82 (25 mg L-1) to 179.3 min 353 

(75 mg L-1). Avrami's model represented the kinetic data well. The increase in temperature in 354 

the system confirmed a favoring of the adsorbate with the adsorbent. With the maximum 355 

capacity obtained (161.3 mg g-1) at 328 K based on the Liu isotherm model. The 356 

thermodynamic parameters confirmed a physical and endothermic process (∆H0 = 7.403 kJ 357 

mol-1). 358 

Therefore, applying the residual biomass generated by the Bactris guineensis palm fruit 359 

production chain as biomass for producing activated biochar has great potential. Its use as an 360 

adsorbent in solutions containing propranolol hydrochloride can be used successfully and 361 

efficiently. Future perspectives are to develop new coals with this biomass, applying possible 362 

new activating agents. Analyzing the adsorption capacity of these new biochars with other 363 

emerging pollutants is also possible. A pilot study in a fixed bed column is highly necessary for 364 
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possible large-scale applications. Therefore, the analysis of the adsorbent through continuous 365 

systems must also be studied. With this, parameters such as the amount of adsorbent mass, 366 

flow rates, and concentrations must be analyzed. After analyzing and defining the studies in 367 

continuous systems, it is necessary to overcome the barrier between the scientific society and 368 

society, in this case, the industries. At first, when the skin is left over from consumption along 369 

with other remains of the same species, it would be interesting to create collection points in 370 

large markets in the largest cities. In addition, the entire industrial process that generates the 371 

waste must be willing to supply this waste. Thus, the residues from two sources should be 372 

sent to a processing industry, where rotary kilns with the activating agent are used to generate 373 

activated carbon. Finally, it is necessary to create charcoal pellets to ensure material 374 

resistance and possible application in other industrial processes and water treatment. 375 
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Fig. 1. N2 adsorption-desorption isotherms (a) and desorption pore size distribution (b). 727 
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 729 

Fig. 2. FT-IR spectra precursor and BC. 730 
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 733 

Fig. 3. XRD patterns for precursor and BC. 734 
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 737 

Fig. 4. SEM images of precursor material (A) and activated biochar (B). 738 
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Fig.5. Biochar adsorbent dosage on PROP uptake. Conditions: C0 = 25 mg L-1, adsorbate volume 50 mL, 743 

natural solution pH, t = 120 min, 298 K. 744 
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Fig.6. Effect of pH on PROP uptake. Conditions: adsorbate solution 50 mL, C0 = 25 mg L-1, adsorbent 748 

dosage 0.7 g L-1, contact time 120 min, 298 K. 749 
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 752 

 753 

Fig. 7. Avrami fraction order kinetic model for the uptake of PROP onto activated biochar. Conditions: 754 

adsorbent dosage 0.7 g L-1, initial pH = 8, adsorbent volume 25 mL, initial PROP concentration 25 mg L-755 
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 760 

 761 

Fig.8. Liu equilibrium curves for the uptake of PROP on activated biochar at different temperatures. 762 

Conditions: initial PROP pH 8, adsorbent dosage 0.7 g L-1, contact time 300 min. 763 
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 766 

Fig.9. Proposed adsorption mechanism of PROP onto the adsorbent 767 
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