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Abstract. Autonomous navigation in harsh and dynamic 3D environ-
ments poses a great challenge for modern Robotics. This work presents a
novel traversability analysis and path-planning technique that processes
3D pointcloud maps to generate terrain gradient information. An analysis
of terrain roughness and presence of obstacles is applied on the perceived
environment in order to generate efficient paths. These avoid major hills
when more conservative paths are available, potentially promoting fuel
economy and reducing the wear of the equipment and the associated
risks. The proposed approach outperforms existing techniques based on
results in realistic 3D simulation scenarios, which are discussed in detail.
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1 Introduction

Forest maintenance is a labor-intensive, time-consuming, expensive, and ulti-
mately hazardous activity, making it a prime candidate for automation. This
requires reliable unsupervised navigation, which is a sizeable challenge consider-
ing that forests are highly unstructured, dynamic environments. As such, R&D
efforts have been increasing, tackling key issues such as autonomous maintenance
and management in fully [1] and semi-unstructured [2] forests, as well as more
delicate environments including orchards [3] and plantation fields [4].

This work proposes an innovative path planning technique that uses the con-
cept of mechanical effort [5] to generate efficient paths for a UGV, avoiding steep
sections of terrain to potentially improve fuel economy and reduce mechanical
wear by minimizing the mechanical effort that the robot is subject to. For this
purpose, a 2D costmap is used to represent the perceived environment, on which
traversability analysis and successive path planning is then performed. The pro-
posed method was tested and compared against existing techniques on a realistic
3D Gazebo1 simulation environment providing a solid basis for discussion.

Existing literature on navigation and traversability analysis focuses on meth-
ods such as Elevation Maps [6], 2.5D-NDT [7], Octomaps [8] and fusion of com-
plex physics-based planning with simplified approaches [9] to represent the fore-

1 http://gazebosim.org/
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Fig. 1. Proposed System architecture. Green boxes: novel modules; Yellow boxes: mod-
ified modules; Red boxes: off-the-shelf modules used “as is”.

seeable environment in a discrete way. Typically, traversability estimation is ap-
plied on these discrete representations by assigning costs to distinct portions of
terrain. These include probabilistic [10], semantic segmentation [11] and neural
network (NN) depth maps [12] approaches. Finally, classical planning algorithms,
e.g. A* [13], recent methods, e.g. D* Lite [14], or those based on NNs [15], can
generate a plan leading the agent to its target destination.

2 System Architecture

Fig. 1 presents an overview of the architecture developed, consisting of:
1. A pre-processing module responsible for down sampling the input data;
2. A traversability analysis block responsible for generating traversability maps;
3. A navigation technique that uses its contents to generate and execute paths.
All modules have been developed using ROS2 and run concurrently.

Pre-Processing In this module, a 3D global pointcloud map of the environ-
ment available a priori (whose generation is out of the scope of this work) is
filtered to remove points outside the robot’s workspace. The raw pointcloud is
decimated using a 3D voxel grid with a configurable downsample factor, which
significantly reduces the number of points (up to 6.5×), depending on density.

Grid Map Construction This module is responsible for creating a 2D grid
map. It takes as input the decimated pointcloud that has been processed before
and creates a grid of configurable size and resolution where each 3D point is
projected and assigned to a particular grid cell according to its location in space.

Vertical Cropping of Data Having then centered the decimated pointcloud
in the robot’s frame of reference, all points that are outside of a configured

2 Robot Operating System – http://ros.org.
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(a) Cropbox with a limit on the Z-axis. (b) Cell by cell analysis of vertical axis.

Fig. 2. Cropping heuristics. The one illustrated in (b) was ultimately selected.

(a) Pointcloud to be an-
alyzed.

(b) Costmap before ap-
plying cropping heuristic.

(c) Costmap after apply-
ing cropping heuristic.

Fig. 3. Impact of applying the 3D vertical cropping heuristic on the 2D costmap repre-
sentation (X-Y plane), which outlines existing obstacles more clearly (see black cells).

3D box with no limit along the Z vertical axis are filtered. This is depicted in
Fig. 2(a), where we can observe that if we also crop along the Z-axis up to a
certain height, it would result in the elimination of relevant information for path
planning, such as trees on higher ground. Afterwards, the pointcloud is filtered
vertically by performing a cell-wise analysis, where the lowest point (i.e. ground
level) in each cell is found, and only points that stand up to a given amount
above it are included. This heuristic is demonstrated in Fig. 2(b).

In Fig. 3, we illustrate the impact of applying the heuristic on the generated
costmap. The main goal is to reduce the number of points to be analyzed and
consequently reduce the complexity and computational cost of the entire process.

Gradient Map Computation In this step, the terrain is analyzed using the
gradient. For cells that contain more than one point, we apply the median on the
set of points in that cell, and only then we apply the gradient to the resulting
pointcloud, generating a map that estimates the overall roughness of the terrain.

Considering that our goal is to minimize traversing effort and fuel consump-
tion, it is important to note that there is a strong correlation between the gra-
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(a) Gradient Map. (b) Pointcloud map (top view).

Fig. 4. Output representation of the gradient analysis stage.

dient of a terrain and the energy consumption that it requires to be traversed,
as it provides information of the direction of greatest variation.

Since it is not possible to employ a function that describes the entire point
distribution, we make use of an approximation of the gradient, computed using
second order accurate central differences, and the resulting gradient values are
clipped to a configurable threshold, i.e.:

∇f(xm, yn) =

{
∇f(xm, yn), ∥∇f(xm, yn)∥ < ∇th

∇th, otherwise
, (1)

where ∇f(xm, ym) represents the gradient in a given cell and ∇th represents
the clipping threshold. This allows us to exclude both hills and depressions that
exceed this configurable inclination limit. Fig. 4 illustrates this step.

Evident Obstacle Detection In this stage, we analyze the filtered pointcloud
generated from the vertical heuristic applied previously (see Figs. 1 and 2(b)).
We compute the mean, variance and range of the heights of all points that
form each cell, and apply the following heuristic that marks a cell as an evident
obstacle:

obstacle =


true,


µ(x,y) > µth

σ2
(x,y) > σ2

th

(max(x,y) −min(x,y)) > γ

false, otherwise

, (2)

where µth, σ
2
th and γ are the given thresholds for the mean, variance and range

of the sample, respectively. By combining these, we are able to predict with a
high degree of certainty the presence of obstacles.

Fig. 5 illustrates the output of this step in a forest scenario. It becomes clear
that the algorithm considers tree trunks as evident obstacles while discarding
tree tops, thus generating a traversable 2D gridmap that would otherwise be
unattainable.
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(a) Top view. (b) Side view.

Fig. 5. Evident obstacles detection on a forest scenario.

Terrain Roughness Estimation This module estimates terrain roughness
using the previously generated gradient map. For this, we use the definition of
mechanical effort γ = ∥∇f(x, y)∥ · cos θ from [5], where θ is the angle between
the vector that connects the position of the robot with the position of the cell
we are currently analyzing and the gradient vector in that cell.

The terrain roughness estimation module takes as input the gradient map
and modifies it according to the mechanical effort equation, thus generating a
2D gridmap, in which the traversability cost increases as the robot’s direction
of movement aligns with the gradient and vice-versa.

Data Fusion Finally, this module outputs a single 2D global costmap that in-
corporates all the useful information contained on the evident obstacles costmap
and the terrain roughness costmap. All cells identified as evident obstacles are
marked as non-traversable (cost = 100) in the final costmap, and the remain-
ing ones are marked with an integer ranging from 0 to 99, where 50 represents
traversing even terrain, 0 represents the lowest possible traversing cost, and 99
the maximum possible cost of traversing a cell that is not an obstacle.

3 Experimental Evaluation

We have designed three realistic simulation scenarios in Gazebo to evaluate the
performance of the proposed method. Fig. 6 represents Scenario 1, which in-
cludes steep hills, making this an appropriate benchmarking scenario, rewarding
path safety and mechanical effort over traveled distance and travel time, while
still taking them into account. A second version of this scenario was designed,
which we call Scenario 1 remapped, having the same spatial configuration, but
with a 20% increase in height values, leading to a major difference: some slopes
exceed the angular limits of the UGV, becoming untraversable.
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Starting Pose

Goal

(a) Top view of Scenario 1.

Starting Pose

Goal

(b) Side view of Scenario 1.

Fig. 6. First experimental scenario from two different perspectives, with starting pose,
goal point and expected approximate path for our technique in yellow.

Starting Pose

Goal

(a) Top view of Scenario 2.

Starting Pose
Goal

(b) Front view of Scenario 2.

Fig. 7. Second experimental scenario from two different perspectives, with starting
pose, goal point and expected approximate path for our technique in yellow.

Fig. 7 represents Scenario 2, which besides hilly terrain, also includes a
forest of fully grown pine trees. This poses an added challenge to the candidate
techniques, as the UGV needs to be able to safely navigate within the trees
without colliding with them, while choosing a traversable path to do so.

We have defined the following experimental objectives:

1. Demonstrate that our work manages to create and execute paths with a
lower energetic cost when compared to others.

2. Verify that our method outperforms the method in which it is based.
3. Show that our method can run in real time.

In order to quantify performance and compare methods, we have defined the
following metrics:

Elapsed Time The total time that it takes for the UGV to go from the start-
ing pose to the end goal. A method should minimize the elapsed time without
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compromising other more important factors. This metric helps to sustain objec-
tive 2.

Travelled Distance The distance travelled by the UGV from the starting
pose to the end goal. A technique should be rewarded for reducing the travelled
distance, with some exceptions such as not compromising/worsening some other
important metrics. This metric helps demonstrating objectives 1 and 2.

Mean Map Generation Time The time it takes to generate a new costmap.
For the purpose of this work, we consider that any approach runs in real time
if a new map is generated before the UGV reaches the end of the current one.
This represents the difference between the UGV navigating known or unknown
terrain. This metric helps demonstrating objectives 2 and 3.

Positive Height Variation The cumulative vertical distance travelled by the
UGV. In general, a technique should attempt to minimize this metric, as the
positive gradient of the terrain is the main factor affecting fuel economy. This
metric helps to demonstrate objective 1.

Mean Effort The mean effort that a technique faces while executing the given
path. This metric is measured by averaging all the absolute UGV’s pitch orien-
tation (θ) values along the executed trajectory. It gives us an indication of the
mean vertical travelling angle, which has a direct correlation with the effort of
the chosen path. The candidate techniques should aim at minimizing it. This
metric helps to demonstrate objective 1.

Path Riskiness Index The path riskiness index metric indicates how risky
the travelled path is. In this context, we define a “risky” situation as one where
the UGV travels while exceeding any of its angular limits, and we quantify it as
the percentage of time that the UGV exceeded said limits in the travelled path.
This metric should be minimized and it helps demonstrating objective 2.

Roll Danger Index The mean percentage of roll-related risk that the UGV
takes during the execution of its path. The absolute roll values are filtered with
the following sigmoid function:

RDI =
1

1 + e−(0.5ϕ−13)
, (3)

which de-linearizes the penalty curve of the UGV’s inclination. Considering the
roll angle limit to be 35◦, it is almost equally safe to travel with between 5◦-
10◦of inclination. However, the same does not apply to the 5◦ difference between
25◦-30◦of inclination, because the stability of the vehicle rapidly decreases when
approaching its angular limits. The sigmoid filter in (3) describes this behavior.
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Pitch Danger Index The mean percentage of pitch-related risk that the UGV
takes during the execution of its path. Using the same rationale, the absolute
pitch values are filtered through the following sigmoid function:

PDI =
1

1 + e−(0.25θ−6)
. (4)

Failure Rate We define the failure rate as the percentage of times that the
path planner aborts the whole mission due to one of the following reasons:

– It has not been able to follow the selected path (e.g. an internal error in the
navigation module).

– It has not been able to create a valid or feasible plan to the targeted goal.
– The specified timeout for the mission has been exceeded.
– The UGV rolled over.

This metric keeps track of failed runs, providing a solid measure of a system’s
reliability and robustness, helping to demonstrate objective 2.

4 Results and Discussion

Our system is compared against Lourenço2020 [5], which introduced the origi-
nal concept of mechanical effort, and move base naive, which applies the ROS
navigation stack3 with no observation sources and empty costmaps, following a
straight path to the goal that, although expected to underperform other tech-
niques, establishes a baseline for benchmarking. In this section, we discuss the
findings of running the three methods on the scenarios described previously. To
this end, 50 navigation trials were conducted in each scenario and a statisti-
cal analysis of the results is presented. In these experiments, our system uses a
200×200m global costmap, while Lourenço2020 uses a 15×15m local costmap.

Table 1 and Fig. 8 present the results of the experiments in Scenario 1. Instead
of traversing straight to the goal, which would represent a shorter elapsed time
and travel distance at the cost of major risk (especially pitch related risk) and
significantly higher mechanical effort, our system chooses the more conservative
and levelled path available, which is around the hill. By doing so, it is able to
significantly reduce the effort associated to that trajectory and potentially the
fuel consumption, considering its relationship with terrain gradient (see [16]).

The pitch danger index is significantly lower than in other techniques, while
the roll danger index is not that low, especially when compared to move base naive.
This is justified since while the UGV travels around the hill, it tries to minimize
the travelled distance without incurring in excessive risk, thus travelling on side
slopes for the majority of the path, due to the morphology of the terrain in that
area. By doing so, it only travels on average at 12.8% the maximum inclination
allowed, while Lourenço2020 travels at a considerably higher 26.6%, because it
detects the presence of a significant slope ahead, but is unable to find a better

3 http://wiki.ros.org/move_base
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(a) 50 trajectories projected on the X-Y
plane with our system.
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(b) 50 trajectories projected on the X-Y
plane with Lourenço2020 [5].
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(c) 50 trajectories of height as a function
of time with our system.

0 50 100 150 200 250 300
time (s)

10

5

0

5

10

15

z (
m

)

Mean Height Curve
+ 3

3
Starting Point

End Point

(d) 50 trajectories of height as a function
of time with Lourenço2020 [5].

Fig. 8. Resulting plots from 50 runs in Scenario 1 (Fig. 6) with our system in the left,
and Lourenço2020 [5] in the right.

path due to its short sensory horizon. Therefore, it travels sideways on the slope
while attempting to find a better path, a behavior that is not ideal, considering
that it tends to increase the danger and riskiness indexes and the elapsed time.

Table 2 shows the results from running the same experiment in the remapped
Scenario 1. We can see that by slightly increasing the slope angles, the other
systems perform drastically worse, while ours presents similar results to Scenario
1. The large failure rates observed are no surprise, as this scenario penalizes any
technique that chooses to ignore its large hills, reinforcing the importance of
avoiding the steepest sections of terrain and ultimately showing the robustness
and reliability of our system, while also supporting objectives 1 and 2.

Lastly, Table 3 and Fig. 9 presents the results of the experiments in Scenario
2 (Fig. 7), arguably the most demanding scenario, considering not only that the
UGV must avoid every tree in its path, but it should also choose the path with
the lowest effort associated. The paths chosen by our technique do not lead to
any situations where the inclination of the terrain is such that the UGV exceeds
the roll and pitch limits, i.e. the path riskiness index is always zero.
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Table 1. Results from 50 runs in Scenario 1 (Fig. 6). Best values highlighted in bold.

Metrics Lourenço2020 move base naive Our System

Failure Rate (%) 84.000 2.000 2.000
Mean Effort (º) 18.661± 1.828 12.805± 0.205 5.601± 0.060
Pitch Danger Index (%) 38.592± 4.892 25.406± 0.335 2.814± 0.142
Up Variation (m) 15.240± 1.886 8.877± 0.036 8.183± 0.088
Travelled Distance (m) 112.387± 8.066 84.958± 0.068 171.887± 0.343
Path Riskiness Index (%) 4.291± 4.094 0.517± 0.650 0.932± 0.212
Roll Danger Index (%) 26.580± 4.648 0.042± 0.137 12.843± 0.695
Mean Map Generation Time
(seconds @ points)

8.2 @ 40.1k N/A 18.3 @ 287k

Elapsed Time (s) 343.582± 14.886 87.014± 12.689 174.368± 4.184

Table 2. Results from 50 runs in Scenario 1 remapped. Best values highlighted in bold.

Metrics Lourenço2020 move base naive Our System

Failure Rate (%) 100.000 90.000 10.000
Mean Effort (º) N/A 17.172± 0.902 7.004± 0.301
Pitch Danger Index (%) N/A 32.131± 1.199 5.807± 0.653
Up Variation (m) N/A 11.586± 0.050 10.319± 0.476
Travelled Distance (m) N/A 87.873± 0.399 175.689± 1.894
Path Riskiness Index (%) N/A 12.558± 0.853 2.839± 1.134
Roll Danger Index (%) N/A 0.807± 1.413 12.788± 2.581
Mean Map Generation Time
(seconds @ points)

8.9 @ 40.5k N/A 18.3 @ 287k

Elapsed Time (s) N/A 25.299± 2.510 173.037± 31.038

Table 3. Results from 50 runs in Scenario 2 (Fig. 7). Best values highlighted in bold.

Metrics Lourenço2020 move base naive Our System

Failure Rate (%) 58.000 92.000 6.000
Mean Effort (º) 11.024± 3.500 15.188± 0.100 3.595± 0.066
Pitch Danger Index (%) 9.326± 8.016 23.300± 0.565 0.794± 0.015
Up Variation (m) 7.879± 0.496 7.035± 0.066 3.714± 0.045
Travelled Distance (m) 80.226± 9.643 58.299± 0.497 85.586± 0.493
Path Riskiness Index (%) 1.353± 5.998 0.767± 0.701 0.000± 0.000
Roll Danger Index (%) 0.297± 0.297 0.909± 0.469 0.020± 0.001
Mean Map Generation Time
(seconds @ points)

12.1 @ 42.4k N/A 20.2 @ 358k

Elapsed Time (s) 340.362± 123.149 182.514± 193.306 88.266± 12.011

Our system substantially outperforms the remaining ones in every single
metric except in the travelled distance, which was slightly higher4. However,
that small increase in travel distance resulted in a significant difference in the
mean effort and vertical variation, the main variables of interest for our objective,
therefore posing a very reasonable trade-off.

As stated before, the consistency and robustness of our technique is patent
in the results presented, especially in the failure rate and mean effort. Moreover,
our system significantly outperforms Lourenço2020 [5] in Mean Map Generation

4 A video of our system in Scenario 2 is available at https://youtu.be/2wSMTPBg0ZU.
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(a) 50 trajectories projected on the X-Y
plane with our system.
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(b) 50 trajectories projected on the X-Y
plane with Lourenço2020 [5].
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Fig. 9. Resulting plots from 50 runs in Scenario 2 (Fig. 7) with our system in the left,
and Lourenço2020 [5] in the right.

Time. This metric is expressed in seconds @ points, providing the time it took
to generate each map and the number of points that it contains, on average.

5 Conclusion

This work proposes a novel traversability analysis and path planning technique
based on the mechanical effort concept introduced in [5]. It categorizes terrain
according to the effort required to traverse it, while identifying key evident obsta-
cles, thus generating efficient paths that avoid obstacles and major hills, poten-
tially minimizing fuel consumption. A concurrent pipeline of obstacle detection
and terrain roughness estimation is implemented and the system is optimized to
execute in real time while performing a global analysis. This potentially allows
a robot to plan in real-time far beyond its observable range if given an a pri-
ori map of the environment. Finally, the implemented system has been tested
against other methods in a 3D realistic simulation engine, yielding very positive
results and proving to be a strong competitor against other techniques.
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We have accomplished the experimental objectives proposed, while also suc-
cessfully addressing one of the weaknesses stated by Lourenço et al. [5], i.e. the
map generation frequency was improved by 3 to 5 times for the scenarios tested.
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