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The quantiication of emotional states is an important step to understanding wellbeing. Time series data from multiple

modalities such as physiological and motion sensor data have proven to be integral for measuring and quantifying emotions.

Monitoring emotional trajectories over long periods of time inherits some critical limitations in relation to the size of the

training data. This shortcoming may hinder the development of reliable and accurate machine learning models. To address

this problem, this paper proposes a framework to tackle the limitation in performing emotional state recognition: 1) encoding

time series data into coloured images; 2) leveraging pre-trained object recognition models to apply a Transfer Learning

(TL) approach using the images from step 1; 3) utilising a 1D Convolutional Neural Network (CNN) to perform emotion

classiication from physiological data; 4) concatenating the pre-trained TL model with the 1D CNN. We demonstrate that

model performance when inferring real-world wellbeing rated on a 5-point Likert scale can be enhanced using our framework,

resulting in up to 98.5% accuracy, outperforming a conventional CNN by 4.5%. Subject-independent models using the same

approach resulted in an average of 72.3% accuracy (SD 0.038). The proposed methodology helps improve performance and

overcome problems with small training datasets.

CCS Concepts: · Computing methodologies → Neural networks.

Additional Key Words and Phrases: Afective Computing, Emotion Recognition, Gramian Angular Field, Transfer Learning,

Artiicial Intelligence

1 INTRODUCTION

Monitoring and quantifying emotional states can potentially enable people to improve their wellbeing and self

management as they understand their life stressors. Computational methods to infer emotional states based on

physiological and environmental measurements require further exploration as with recent advances in wearable

and sensor technologies along with machine learning algorithms, the real-time monitoring, collection and analysis

of multi-model signals is becoming increasingly possible. Various ubiquitous sensors can be capitalized on to

monitor physiological changes that afect wellbeing. The use of these sensors to measure diverse data modalities

including Heart Rate (HR), Heart Rate Variability (HRV) and Electrodermal Activity (EDA) may enable real-world

emotion recognition as they directly correlate to the sympathetic nervous system [72], [70].

With the objective to have the most accurate afective classiication model, multiple methods have previously

been investigated starting from conventional signal processing modelling approaches to machine learning
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algorithms, that extract features to allow the model to recognise diferent activities or to more recently deep

learning algorithms that are trained to recognise diferent patterns to distinguish classes.

Most previously employed approaches used traditional supervised machine learning algorithms including

popular classiiers such as support vector machines, decision-trees and K-nearest neighbor. While these models

achieve very good results, a drawback of these approaches are that they entirely rely on the selection of features,

meaning that a poor selection of features will result in a poor performing classiication model, which will in turn

result in a poor assessment of mental wellbeing. This is not desirable in when assessing wellbeing which requires

an accurate evaluation to enable relevant support and interventions.

In the recent years, with the maturity of the deep learning algorithms, tremendous progress has been achieved

in ields such as speech recognition and image classiication. Advances in Deep Learning (DL) present new

opportunities for the inference of mental wellbeing as models can be trained using raw data, alleviating the need

for manual feature extraction which is often domain-driven and may be a time-consuming process. One of the

models that achieved large success working with images are Convolutional Neural Networks (CNNs). CNNs

have traditionally been used to classify 2D data such as images but these networks are also employed towards

extracting features from 1-dimensional sensor data [27]. However, the performance of deep learning models

deteriorates considerably when training data is scarce. This lack of suicient statistical power often hinders

the progress of machine learning applications in monitoring and understanding wellbeing, since collecting

longitudinal and annotated training data is very challenging [45]. This is due to the following reasons:

(1) User availability, incentivisation and willingness to participate in longitudinal studies (or increasing study

drop-outs beyond the irst few months) [44]

(2) Privacy, ethics and data protection issues [104], [64]

(3) Data integrity and accuracy [52]

(4) Costs and availability of monitoring devices [93], [69]

(5) Requirement to set up the device and extract the data by expert personnel needing specialised equipment

[98]

(6) Time consuming nature of real-time self labelling [95]

In order to address challenges 1 and 6, Transfer Learning (TL) is often used to reduce the amount of data

required thereby reducing user dropout and the time consuming nature of studies. Pre-trained models can be

used to encompass methods that discover shared characteristics between prior tasks and a target task, reducing

the necessity for large datasets [61]. Many outstanding models that use CNN were developed over time, such as

VGG, MobileNet, and ResNet. These models can be adapted to be used in other applications without the need for

fully re-training them on the new database by employing transfer learning. Transfer learning is used to improve

a learner from one domain by transferring information from a related domain. This process usually involves

training a base model using labelled data from a diferent domain and transferring the knowledge to the new

target domain [16], [61].

Inspired by these developments, many approaches have been taken in order to adapt time-series data inputs to

CNN-based algorithms in order to improve accuracy. Previous research shows that fast changing, continuous

sensor data such as accelerometer data can be transformed into RGB images which can then be used to train DL

models [87] using algorithms to encode the data into images such as Gramian Angular Field (GAF). Although the

premise of presenting time series data as images is promising in extracting multi-level features and improving

classiication accuracy, most of the previous work only considered encoding univariate time series data as one

image for a single channel of a CNN input [87], [97], [40].

One of the main reasons for the success of deep learning (DL) is that DL models can represent the raw data

well. This research proposes the combination of physiological sensor data with signal-encoded images in a TL

model to tackle the challenging problem of monitoring the trajectory of wellbeing. To ix problems of existing
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models, we propose a novel feature extraction method based on time series imaging and transfer learning that

can efectively extract afective data features.

The contribution of this work is that time-series data is encoded in an image and combined with additional

sensor streams to facilitate translating the highest possible number of informative characteristics through data

fusion. A new CNN-TL-based approach has been developed to alleviate many challenges when classifying small

datasets. We explore the use of signal-image encoding to classify accelerometer data using three techniques;

Gramian Angular Summation Field (GASF), Gramian Angular Diference Field (GADF) and Markov Transition

Field (MTF) [87]. We propose using these images in a novel pre-trained TL model combined with a 1D CNN

trained using physiological sensor data to infer mental wellbeing. The 2D images are converted to the RGB format

in order to proit from pretrained models using transfer learning and adapting prior knowledge towards a new

application which can potentially lead to overall performance improvement compared to only relying on training

using the available data for the problem at hand. This framework uses TL in addition to signal-encoded images to

improve on the performance of conventional deep learning methods for mental wellbeing prediction.

The remainder of the paper is organized as follows: Section 2 provides a review of mental wellbeing classiica-

tion and TL; Section 3 describes and explores the dataset used; Section 4 describes the methodologies of data

transformation and the model implementation; Section 5 shows the results, Section 6 presents the discussion and

Section 7 presents the conclusion and suggestions for future research.

2 RELATED WORK

2.1 Models of Afect

Afect, in psychology, refers to the underlying experience of feeling, emotion or mood and is an integral aspect

of human life [31]. There are many aspects to monitoring afective state including measuring emotions and

stress levels being felt. Where mental health conditions are clinically diagnosed [63], emotions are deined as

psychological states brought on by neurophysiological changes, variously associated with thoughts, feelings,

behavioural responses, and a degree of pleasure or displeasure [18]. Similarly, moods are deined as afective

states typically described as having either a positive or negative valence that in contrast to emotions, are less

speciic, less intense and less likely to be provoked or instantiated by a particular stimulus or event [11]. In

contrast, mental wellbeing is deined as a state of well-being in which an individual realises his or her own

abilities to cope with the normal stresses of life and can be impacted by emotions felt [91].

Experts in assessing psychology have developed diferent theories to classify emotions ranging from small

groups containing items such as happiness and sadness [88] and pain and pleasure [57] to groups containing a

larger number of emotions. There are no universal categories for emotions but the Ekman model [24] is commonly

used, which comprises of 6 basic emotions: sadness, happiness, surprise, fear, anger and disgust, all of which can

be distinguished through facial expressions.

Alternatively, emotions can be measured dimensionally. The two most commonly used dimensions are arousal

(from calm to excited) and valence (from attractive to aversive). Russell [68] describes how the arousal and

valence dimensions are deined in a circle called the circumplex model of afect that can encompass all emotions,

as shown in Figure 1.

The Self-Assessment Manikin (SAM) Scale [15] has traditionally been used to measure valence, arousal and

dominance (from submissive to dominant) using a 9-point pictorial representation of humans. This method

can encourage engagement with its simpler approach, allowing for the quick assessment of afective state.

However, this approach can be challenging when collecting real-time, real-world data as it requires the immediate

completion of the scale, whenever a change in emotions is experienced. While each of the models can be useful to

capture diferent aspects of mental wellbeing, this work focuses on using a simpliied version of SAM to measure

categorical states of mental wellbeing as it provides the greatest opportunity for real-world reporting.
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Fig. 1. Russell’s circumplex model of afect.

2.2 Physiological Sensors to Monitor Mental Wellbeing

Numerous non-invasive physiological sensors can be used to assess real-world mental wellbeing including EDA

and HR [72]. EDA correlates to the sympathetic nervous system [70] and can be used to detect mental wellbeing

while HRV is the variation in time between heartbeats: as HRV is reduced the user is more likely to be stressed

[29]. Previous work had investigated the use of embedded sensors within a wearable device that measured EDA

and HRV during driving [29]. The device took ive minute recordings of physiological sensor data enabling

the model to predict stress at 97.4% accuracy. HRV and EDA were found to be very well statistically associated

demonstrating these non-invasive sensors have the capability to accurately infer mental wellbeing.

Previous research has also developed a wearable device that measured ElectroCardioGram (ECG), EDA and

ElectroMyoGraphy (EMG) of the trapezius muscles [92]. 18 participants wore the device while completing three

stressor tasks with a perceived stress scale questionnaire completed before and after each task. Stressed and

non-stressed states were classiied with an average accuracy of almost 80%. However, as this study was conducted

in a controlled environment it is not known how well the model would generalize in real-world environments,

where physiological signals may be impacted by more than just stress.

Skin temperature has also been explored to infer stress as it indicates acute stressor intensity [30]. A further

study investigated a wearable device that measured EDA, skin temperature and motion. The devices were provided

to six participants with dementia for two months with the ground truth labels obtained from clinical notes [42].

Stress was then assigned into one of ive integer levels where accuracy ranged from 9.9% to 89.4% between the

levels while F1-Scores ranged from 1.4% to 26.8% demonstrating a high level of false positives and false negatives.

The wide variation of accuracy is due to the low stress threshold as when the threshold was increased there were

fewer classiications of stress thus increasing accuracy.

Once physiological data has been collected from the devices, diferent models must be explored to assign class

labels. There are two main types of neural networks: Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs). They are structurally diferent and are used for fundamentally diferent purposes.
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CNNs have convolutional layers to transform data, whilst RNNs reuse activation functions from other data points.

CNNs are feed forward networks that like RNNs do not require features to be irst extracted although unlike

RNNs they extract local and positional invariant features rather than diferent patterns across time.

Previously, RNN Long Short-Term Memory (LSTM) networks have been used to classify mental wellbeing

as they capture long-term temporal dependencies. An LSTM network with a stack autoencoder to decompose

the combined EEG signals was used to infer emotions from 32 participants. This approach of using the context

correlations of the EEG feature sequences resulted in increased performance, achieving 81.1% accuracy [96].

Furthermore, previous work has fused raw EEG signals with videos of participants to improve model accuracy

when inferring wellbeing [51]. The model achieved 74.5% accuracy by using temporal attention to ignore the

redundant information. LSTM networks have also been used to classify EDA, skin temperature, motion and

phone usage data to infer stress achieving 81.4% accuracy, outperforming other support vector machine and

logistic regression models [83]. Raw EEG signals have been used to train a LSTM network achieving 85.45% in

valence [4] and to classify stress in construction workers with 80.32% accuracy using a gaussian support vector

machine model [37]. Dynamic Time Warping (DTW) has similarly been paired with K nearest neighbour machine

learning classiier to infer emotions achieving between 65.6% and 94% across diferent datasets [3].

CNNs have also been used to infer mental wellbeing. A CNN has been trained to classify four emotions

(relaxation, anxiety, excitement and fun) using EDA and blood volume pulse data [53]. DL algorithms were

compared with standard feature extraction and selection approaches concluding DL outperformed manual ad-hoc

feature extraction as it produced signiicantly more accurate afective models, even outperforming models that

were boosted by automatic feature selection. Additionally, a CNNmodel using channel selection strategy has been

trained using EEG data collected from 32 participants watching 40 1-minute excerpts of music videos to elicit

emotions [65]. The channel selection strategy used the channels with the strongest correlation with valence to

generate the training set. The model classiied four possible emotions: (1) high arousal and high valence (2) high

arousal and low valence (3) low arousal and high valence (4) low arousal and low valence. Using the EEG data,

this channel selection approach achieved 87.27% accuracy, improving the accuracy by nearly 20%. A CNN and an

RNN have been combined to allow raw data to be classiied more accurately automating feature extraction and

selection [39] [38]. Physiological, environmental and location data was used to train the model to infer emotions

resulting in the combined model outperforming traditional DL models by over 20%. This work concluded that the

CNN model matched or outperformed models with the features pre-extracted showing the beneits of DL.

Gramian Angular Fields have been used to measure emotions, however most of this work has focused on the

use of EEGs and not wearable sensors such as HRV or EDA that can be used in the wild outside of controlled

experiments [66], [100]. Furthermore, previous work shows that signal-image encoding techniques may not

be best suited for fast-changing physiological data such as HRV or EDA [1]. Overall, while previous work has

combined multiple physiological sensors for monitoring mental wellbeing [105], there has been little exploration

of signal-image encoding techniques or the use of accelerometer data, which may hold the potential to further

increase performance.

2.3 Transfer Learning

One of the biggest challenges in developing accurate DL models is the implicit practical requirement to collect a

large labelled dataset. TL [61] is a common approach in machine learning to mitigate the problem occurring due

to the scarcity of data. Caruana [16] introduced multi-task learning that uses domain information contained in

the training signals of related tasks. It is based on the ability to learn new tasks relatively fast, alleviating the

need for large datasets by relying on previous, similar data from related problems. TL capitalizes on a likely large

dataset stemming from a related problem to pre-train a model, and subsequently adapt that model for the needs

of a problem with a (potentially smaller) diferent dataset [85]. CNNs are commonly used in TL approaches, being
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initially trained on a vast dataset and then having the last fully-connected layer removed and further trained on a

smaller target dataset. A pre-trained CNN alleviates the need for a large dataset while simultaneously decreasing

the time required to train the model. The premise of TL is to improve the learning of a target task in three ways

[80]: (1) improving initial performance, (2) producing sharp performance growth, (3) potentially resulting in

higher training performance.

Inter-subject TL approaches using physiological signals have previously been used to detect driver status

[46] and seizures [19]. Furthermore, an inter-subject TL approach has been used with ECG signals to infer

mental state achieving 79.26% compared with a baseline of 67.90%, demonstrating the potential for TL to improve

afective model performance with small physiological datasets [26]. Similarly, the possibility for TL to be used to

personalise afective models has previously been explored and has helped personalise EEG signals, improving

model accuracy by 19% [103] and 12.72% [48] using an inter-person approach while also reducing the amount of

data required to train the models. However, relying on inter-subject TL approaches relies on an initial dataset

with a vast number of users, which remains challenging to collect in real-world environments.

TL can be used to help alleviate scarce data as by using decision trees, data from similar subjects can be used to

improve accuracy by around 10% although if data from dissimilar subjects is used it can have a negative impact

on the model accuracy [54]. To ensure negative TL that degrades the performance of the model does not occur, a

conditional TL framework has been developed that assesses an individual’s transferability against individual’s

data within the dataset. The conditional TL model identiied 16 individuals who could beneit from 18 individuals

data within the EEG dataset, improving classiication accuracy by around 15% [49].

TL has also been utilised in a subject-independent approach combining physiological features from ECG and

EDA signals to train a CNN to classify stress [67]. The results show that TL resulted in an accuracy increase

of between 1-4%. Transfer Learning has also been utilised with HR signals to improve the accuracy of stress

recognition [2]. However, better results can often be obtained by combining multiple physiological signals for

emotion recognition using a transfer learning approach [62]. This demonstrates previous work has explored the

use of TL for afective classiication using physiological sensors but does not show consideration of transforming

time-series data to images and using a TL approach.

The inference of emotions from images and videos has also beneited from TL approaches. When using models

pre-trained on the ImageNet dataset and testing using images of faces expressing seven emotions an accuracy of

55.6% was achieved compared with a baseline performance of 39.13% [59]. Additionally, audio and video have

been explored to infer six emotions where the source task was gender classiication and the target task was

emotion classiication as many features such as energy, frequency and spectral are similar across both gender

classiication and emotion classiication. This TL approach improved base line accuracy by 16.73% [60].

Another TL approach trained a DBN structure on a large database designed for acoustic phoneme recognition

and transferred the knowledge learned for PTSD diagnosis. This helped increase the classiication accuracy of

PTSD using speech by 13.5% [7]. Similarly, a sparse autoencoder-based feature TL approach has been developed to

infer emotions from speech using the FAU AiboEmotion Corpus dataset [10]. The autoencoder approach to ind a

common structure in a small target base dataset and apply the structure to source data improved unrated average

recall from 51.6% to 59.9% with only 50 data instances used [22]. Whispered speech has also been explored to infer

emotions applying three TL approaches; denoising autoencoders, shared-hidden-layer autoencoders, and extreme

learning machines autoencoders. Extreme learning machines autoencoders provide good generalisation extremely

fast [34], enhancing the prediction accuracy on a range of emotion tasks achieving up to 74.6% arousal [21].

Speech has also been explored to improve PTSD diagnosis using TL and deep belief networks. The TL approach

improved model accuracy from 61.53 to 74.99% [8]. Furthermore, deep belief TL networks have been used to

improve the accuracy of emotion recognition through speech cross-language [47]. TL for emotion recognition

has also been used to infer wellbeing from text [73]. As no large text-based afective datasets existed it was

hypothesised that the social media domain, speciically the large amount of public tweets from Twitter, would be
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similar enough to transfer knowledge of content, style, and structure to the mental health domain. Therefore, an

RNN with full weight transfer where the base model was trained using a Twitter dataset to classify tweets as

positive or negative valence achieved an overall accuracy of 78% for all four classes where the standard RNN

achieved 72%.

Hitherto, TL has most commonly been used to train images as large ImageNets have been used to developed

pre-trained models such as VGGNet [74], Inceptionv3 [76] and mobileNetv3 [33] that contain pre-trained object

classiication models. The pre-trained CNN models were employed to compute mid-level image representations

for object classiication in PASCAL VOC images [25], leading to signiicantly improved results. TL has facilitated

training new models in the visual domain using pre-trained CNNs [71]. However, modelling emotions using

time series data such as HRV, HR, EDA or acceleration cannot be visually interpreted. Sensor data must irst be

transformed to translate the raw sensor data to images, for example using techniques such as GASF, GASF and

MTF.

Recently TL has been utilised with signal-image encoding approaches such as GASF and GADF for post-stroke

rehabilitation assessment, where it was shown that TL helped further increase model performance beyond that

of only signal-image encoding [13] to 98.53% accuracy. Similarly, a drought-based prediction system combined

signal-image encoding with TL to further improve results [79] as well as a water pollutants classiier [56] and an

occupancy prediction system which achieved 99.42% accuracy, outperforming the comparative 1D CNN. This

demonstrates the beneits of both signal-image encoding as well as TL to further improve accuracy. Overall,

TL shows promise to improve classiication performance when using small datasets, however there has been

little consideration of the use of TL with signal-image encoding techniques to improve performance of mental

wellbeing recognition.

3 DATA COLLECTION: ENVBODYSENS

Experiment setup: EnvBodySens is a dataset that has been previously collected by [53] that consists of 26 data iles

collected from 26 healthy female participants (average age of 28) walking around the city centre in Nottingham,

UK on speciic routes. The participants were asked to spend no more than 45 minutes walking in the city center.

Data was collected in similar weather conditions (average 20◦C), at around 11am.

Participants were asked to continuously report how they felt based on a 5-point predeined emotion scale as

they walked around the city centre experiencing general daily life stressors such as loud environmental noises

and crowded environments. The 5-step SAM Scale for Valence from Banzhaf et al. [9] was adopted using a

smartphone app developed for the study, simplifying the continuous labelling process. This allowed participants

to report their subjective state of mental wellbeing using ive on-screen buttons to represent the 5-point Likert

scale ranging from very positive, positive, neutral to poor and very poor. The screen auto sleep mode on the

mobile devices was disabled, so the screen was kept on during the data collection process. Data from six users

were excluded due to logging problems. For example, one user was unable to collect data due to a battery problem

with the mobile phone and another user switched the application of accidentally.

Sensors: The dataset is composed of non-invasive physiological data (HR, EDA, body temperature, acceleration)

sampled at 8Hz, environmental data (noise levels, Ultra Violet (UV) and air pressure) also sampled at 8Hz,

time stamps and self reports. The data was logged by the EnvBodySens mobile application on Android phones,

connected wirelessly to a Microsoft wrist Band 2 [55] that was provided to participants to collect the physiological

and environmental data.

The EnvBodySens dataset resulted in 29965 samples for state 1, 35333 samples for state 2, 106210 samples

for state 3, 77103 samples for state 4 and 106478 samples for state 5. Figure 2 shows the EDA (mean 1455.2kΩ,

SD 2870.5kΩ) and HR (mean 74.5BPM, SD 11.8BPM) for all participants when experiencing each of the ive

self-reported states of valence from 1 being most positive to 5 being most negative.
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Fig. 2. EnvBodySens EDA data for reported emotional states from 1 (positive) to 5 (negative).

The distribution in Figure 2 demonstrates that as users record poorer states of wellbeing, the average EDA

value decreased. The EDA data collected behaves as expected with the median EDA value gradually decreasing

as users experience worsening wellbeing.

Fig. 3. EnvBodySens HR data for reported emotional states from 1 (positive) to 5 (negative).

However, Figure 3 shows wellbeing levels do not impact the distribution of HR like EDA; instead the distribution

of HR remains relatively similar for all wellbeing states. Reported wellbeing state 2 has the highest distribution

of HR reaching over 120 Beats Per Minute (BPM) even though this is the second most relaxed state. As users

experienced worsening wellbeing the upper adjacent values are reduced, which is unexpected as when users

experienced poor wellbeing they are more likely to have increased HR [77]. The outlier HR data in states 1 and

2 that go beyond 180BPM are most likely artifacts of the data due to sensor error, demonstrating that there is
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little change in HR over the 5 states of wellbeing. This demonstrates that HR alone as used in most commercial

wearables, may not be suicient to monitor afective state, requiring additional data modalities such as HRV and

EDA. Overall, the EDA data behaves as expected while there is little to distinguish HR during the diferent states

of wellbeing.

Fig. 4. Information Gain of each physiological and environmental feature.

Figure 4 shows the Information gain for each of the physiological and environmental features. Information gain

is a feature selection algorithm that calculates the reduction in entropy from the transformation of the dataset.

It can be used for feature selection by evaluating the Information gain of each variable in the context of the

self-reported wellbeing state. EDA is shown to be a strong feature followed by air pressure and body temperature

and should be used for the classiication of wellbeing. UV and HR are also shown to be beneicial features

with noise and motion being the least beneicial. This demonstrates in line with previous work the beneits of

combining multiple data streams when classifying mental wellbeing [94], [38] and highlights environmental

factors may be beneicial in afective monitoring.

Figure 5 shows a correlation matrix between the variables EDA, HR, air pressure, noise, UV, motion, body

temperature and the self-reported label. The igure shows there is a statistically strong correlation (|R|>=0.3

[81]) between the label and EDA (R=-0.52) showing EDA has the highest statistical association towards mental

wellbeing. Body temperature and HR follow with lower correlations of 0.2 and -0.11 respectively. This shows that

physiological data has the largest correlation with wellbeing with environmental data having a lower correlation

suggesting the physiological data will be most beneicial for classiication. There is also a statistically strong

correlation between air pressure and body temperature suggesting there is may be possible to train using only

one of these features although as the correlation is R=-0.48 it may still prove beneicial to explore training using

both modalities.

During the data collection process, 5345 self-report responses rated from 1 (most positive) to 5 (most negative),

where suicient samples for each rating were collected (1-8.44%, 2-9.95%, 3-29.91%, 4-21.71%, 5-29.99%). Data

was successfully collected from all classes but class imbalance from an individual’s dataset may impact the

performance of the model. The number of samples collected by each user for each class was explored to ensure

there wasn’t signiicant bias. Each user successfully collected data for each of the ive classes showing similar

patterns to the complete dataset, with the majority of users collecting more data for classes 3, 4 and 5. Therefore,

the percentage of the data each user collected per class was calculated with an average standard deviation was

0.15 showing that while there is a small class imbalance, no user has a signiicant class imbalance that would
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Fig. 5. Correlation matrix showing the correlation between each of the features and the self-reported wellbeing label.

impact the classiication model. No single user collected signiicantly more or less data than the average user

with the number of samples collected between users having a standard deviation of 0.01 with the size of each

user’s dataset ranging from 3.1% to 6.8% of the total dataset.

4 METHODS

Using the aforementioned dataset, we propose a DL approach to help improve accuracy when classifying mental

wellbeing using signal-image encoding to transform accelerometer data into images and then applying a CNN-

TL-based approach combined with a separate 1D CNN trained using the remaining physiological sensor data.

4.1 Modality Transformation

An image is comprised of pixels which can be conveniently represented in a matrix with a colour image containing

three channels; red, green and blue for each pixel, compared with grayscale images that contain only one channel.

Transforming time series data into images can help extract multi-level features [87] and improve classiication

accuracy [97], [40].

This study aims to explore the use of signal-image encoding with time series data for mental wellbeing

classiication. Therefore the continuous, fast changing datastream of accelerometer data must irst be transformed

into images. It is not plausible to transform the physiological data into images due to its static nature where

HR and EDA can often remain constant for several seconds resulting in no data being encoded. Therefore, this

physiological data will be used to train a separate 1D CNN and the two models will be concatenated. Three

methods of modality transformation using accelerometer data are utilised: GADF, GASF and MTF.

Wang and Oates transformed time series data into images using Gramian Angular Field (GAF) [87]. First, the

data was normalised between -1 and 1 by applying 1. The normalised data is then encoded using the value as the

angular cosine and the time stamp as the radius r with 2, where � is the angle polar coordinates, ti is the time
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stamp, N is a constant factor to regularize the span of the polar coordinate system and �̃ represents the re-scaled

time series data [97].

�̃�−1 =
(�� −max(�)) + (�� −min(�))

max(�) −min(�)
(1)

{
� = arccos (�̃� ) ,−1 ≤ �̃� ≤ 1, �̃� ∈ �̃

� = ��
�
, �� ∈ N

(2)

���� =

[
cos

(
∅� + ∅�

) ]
(3)

= �̃ ′ · �̃ −
︁
� − �̃ 2

′

·
︁
� − �̃ 2 (4)

���� =

[
sin

(
∅� − ∅�

) ]
(5)

=

︁
� − �̃ 2

′

· �̃ − �̃ ′ ·
︁
� − �̃ 2 (6)

The normalized data is then transformed into polar coordinates instead of the typical Cartesian coordinates.

After transformation, the vectors are transformed into a symmetric matrix called the Gramian Matrix. There are

two ways to transform the vectors into a symmetric matrix: GASF and GADF as shown from 3 to 6 where ∅ is

the angle polar coordinates. These methods preserve the temporal dependency, with the position moving from

top-left to bottom-right with time.

� =



�� � |�1∈�� ,�1∈� �
· · · �� � |�1∈�� ,��∈� �

�� � |�2∈�� ,�1∈� �
· · · �� � |�2∈�� ,��∈� �

...
. . .

...

�� � |��∈�� ,�1∈� �
· · · �� � |��∈�� ,��∈� �



(7)

Alternatively, images can be generated using MTF where the Markov matrix is built and the dynamic transition

probability is encoded in a quasi-Gramian matrix as deined in 7. Given a time series � and its � quantile bins

each �� is assigned to the corresponding bins, � � ( � ∈ [1, �]). A � X � Markov transition matrix (� ) is created by

dividing the data into � quantile bins. The quantile bins that contain the data at time stamp � and � (temporal

axis) are �� and � � . The information of the inter-relationship is preserved by extracting the Markov transition

probabilities to encode dynamic transitional ields in a sequence of actions [87]. A comparison of identical X, Y, Z

and total acceleration data transformed as GASF, GADF and MTF can be seen in igure 6.

4.2 Transfer Learning

This work proposes the novel combination of a 2D CNN utilising TL with signal-encoded images and a 1D CNN

model to improve the accuracy of mental wellbeing classiication from the EnvBodySens dataset. TL irst requires

a pre-trained model; for this work multiple pre-trained object recognition networks have been explored. Given

that the majority of pre-trained models for TL have been trained on images, it is beneicial to train these networks

using signal encoded images from the continually changing motion data and not the physiological data which

can often remain static resulting in little data being encoded.

The general process of transfer learning is to pre-train the model in the source domain with suicient data, and

then ine-tune the parameters in the target domain with sparse data to achieve the purpose of reducing training

data, enhancing the generalization ability of the model, and improving accuracy. This process works when the

features are generic, meaning suitable to both base and target tasks, instead of speciic to the base task [84].

ACM Trans. Comput. Healthcare



12 • Woodward, et al.

Fig. 6. An example of raw accelerometer data (X, Y, Z and average motion) transformed using MTF, GASF and GADF.

Given the relatively limited sample size for this experiment, it is easy to cause over-itting problems resulting

in poor model accuracy. Transfer learning is ideally suitable to utilise state of the art pre-trained networks that

have been optimised on large amounts of data for long periods of time. The lower layers which are trained on the

large ImageNet are retained, and the top layers of the network are retrained for the smaller target dataset, in this

case to classify mental wellbeing. When training our own data set, we only need to add our own classiication

layer to the last layer of the extracted model, and only need to adjust the parameters of the last layer to realize

migration learning.

We leverage pre-trained object recognition models to the images encoding the sensory data streams. Even

though the pre-trained models were designed for object recognition rather than time-series classiication, the

vast datasets the models were trained with makes them ideal for detecting patterns within images. Previous

research has explored time-series image-encoding and transfer learning has similarly used pre-trained models

designed for object recognition [14], [86], [12]. However, previous work has not explored image encoding for

mental well-being recognition where increases in accuracy can have a signiicant real-world impact.

4.3 Image Encoding Model

To generate the images for the signa;-image encoding approach, the accelerometer data from the EnvBodySens

dataset was transformed into images using GADF, GASF and MTF, resulting in a total of 17,750 images for each

encoding technique. When training using TL, the source pre-trained model is imported without its last layer, with

dense layers then added to enable the new model to learn more complex functions from the new data. Therefore,

the generated images are used as input to train the 2D CNN consisting of 2 convolutional layers, polling layer,

dropout layer and fully connected layer over 10 epochs to classify 5 states of wellbeing by exploring 7 pre-trained

models (Xception, VGG19, ResNet, NasNet, DenseNet, DenseNet V2 & MobileNet) to apply the TL approach.

While much work on afective computing uses recurrent neural networks such as LSTMs, the CNN used

in this approach is indicated to enable the TL approach as CNNs are particularly appealing towards learning

spatial features. CNNs have traditionally been used to classify images and speech, however their application

has been expanded to classify raw sensor data [53], [41]. Furthermore LSTMs are often not successful for short-

time, frequently changing, and non-periodical data [43], where CNNs outperform recurrent networks while

demonstrating longer efective memory [6] and run faster than LSTMs [90]. Previous work shows one-dimensional

CNN outperforming LSTM networks for mental wellbeing recognition from physiological sensor data [94] and
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when detecting emotions from EEG signals with the LSTM models being less stable, less accurate and taking

longer to train [102]. For those reasons, we decided not to explore further the use of LSTMs in this study

4.4 Physiological Data Model

An additional 1D CNN model was trained using the remaining physiological sensor data from the EnvBodySens

dataset (HR, EDA, body temperature, acceleration, noise, UV and air pressure). The proposed 1D CNN has three

layers; an input layer, an output layer and a hidden layer. An overlapping sliding window strategy has been

adopted to segment the time series data with a window size of 100 and a step of 20 chosen experimentally, by

trying diferent window sized from 10 to 400. The training input data is represented as � = [�1, �2, . . . . . . � � ],

where the number of training samples is j and y is the output vector [28]. When � is the sigmoid activation

function, w1 and w2 are weight matrices between the input and hidden layer and the hidden and output layer

respectively. Finally, �1 and �2 represent the bias vectors of the hidden and output layer respectively [101]:

ℎ = � (�1� + �1] (8)

� = � (�2ℎ + �2) (9)

Batch normalisation has been used within the network to normalise the inputs of each layer so they have a

mean of 0 and standard deviation of 1 this enables the models to train quicker, allows for higher learning rates and

makes the weights easier to initialise [35]. A dropout layer with a rate of 0.5 was added before the maxpooling

layer to prevent overitting by randomly ignoring selected neurons during training [75]. The pooling layers then

subsample the data, reducing the number of weights within that activation. Finally, the fully-connected layers

where each neuron is connected to all the neurons in the previous layer are used to calculate class predictions

from the activation.

4.5 Concatenated Model

The two models (2D CNN trained using accelerometer signal encoded images & 1D CNN trained using physiolog-

ical sensor data) are frozen and then the concatenated feature vector is fed into two fully-connected layers to

classify the 5 states of wellbeing as shown in igure 7.

Hold-out validation using a 20% test split has been used to test the model using around 284,000 sensor data

samples for training and 71,000 for testing. Additionally, Leave-One-participant-Out Cross-Validation (LOOCV)

has also been utilised to test the signal-image encoding approach on a subject-independent basis. This is where

the model is trained with 19 users’ data then tested on the remaining user’s data (19926 average data samples) to

better simulate how the model would be used in the real-world to infer an individual’s wellbeing.

5 RESULTS

The EnvBodySens dataset has been used to explore the multi-class problem of classifying ive emotional states

using the signal-image encoding model. Seven pre-trained models (Xception, VGG19, ResNet, NasNet, DenseNet,

DenseNet V2 & MobileNet) were used to explore the TL approach for the three methods of signal-image

transformation (GADF, GASF & MTF). This approach transformed the motion data from the EnvBodySens dataset

to images to train a 2D CNN which was then paired with a 1D CNN trained using the remaining time series

data from the EnvBodySens dataset. The inal testing accuracy using the 20% test data split are reported for each

model in Table 1.
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Fig. 7. Combinatory model consisting of 1D CNN trained using raw physiological sensor data (top) and a 2D CNN using a

transfer learning approach trained using accelerometer encoded images (botom).

Table 1. Comparison of accuracy for diferent pre-trained deep learning models adapted for mental wellbeing classification

through TL.

GASF GADF MTF

Physiological All Physiological All Physiological All

Xception 0.975 0.96 0.977 0.971 0.972 0.956

VGG19 0.984 0.952 0.98 0.94 0.964 0.95

ResNet 0.963 0.955 0.978 0.937 0.964 0.972

NasNet 0.977 0.965 0.983 0.963 0.967 0.964

DensetNet 0.975 0.977 0.985 0.971 0.97 0.977

MobileNetV2 0.981 0.97 0.981 0.954 0.979 0.97

MobileNet 0.98 0.967 0.968 0.955 0.974 0.959

No TL 0.98 0.974 0.974 0.963 0.975 0.968

5.1 Comparison of Data Modalities

The data modalities were investigated to explore which modalities most contributed towards the classiication

of mental wellbeing. When all sensor data (HR, EDA, UV, body temperature, air pressure and noise) was used

to train the 1D CNN combined with the signal-image transformed motion data, the model achieved accuracies
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between 93.7% and 97.7% as shown in Table 8. The 1D CNN was also trained using only physiological data (HR

& EDA) to examine the impact not including environmental data has on model performance. When using the

signal-image encoding approach for motion data and a 1D CNN trained using only physiological data, the model

accuracy increased to the highest achieved accuracy of 98.5% when using GADF to transform the motion data

and DenseNet to perform TL, as shown in igure 8. Furthermore, when comparing the highest accuracy for each

pre-trained CNN the physiological model consistently outperformed the model trained using all modalities. This

demonstrates the importance of physiological data when determining wellbeing state, unlike environmental data

which resulted in more misclassiication errors, in particular class 5 the poorest mental wellbeing state.

Fig. 8. Confusion matrix for DenseNet model trained using HR, EDA and GADF (let), GASF (middle) and MTF (right)

encoded motion data.

To evaluate whether the signal-image encoding approach improvesmodel performance all sensor data (HR, EDA,

noise, UV, body temperature, air pressure and accelerometer data) was used to train the 1D CNN model without

performing TL or signal-image encoding. The 1D CNN achieved 93% accuracy, an overall reduction in accuracy

compared with the signal-image encoding model. Furthermore, when the same 1D CNN was trained again using

only physiological data, the model achieved 94% accuracy, a 4.5% reduction in accuracy. This demonstrates that

image encoding can increase overall model accuracy but performance is highly dependent on the additional sensor

modalities used to train the network. Additionally, to explore whether simpler models can classify wellbeing a

generalised linear model, naive bayes and logistic regression model were all trained with the sensor data. The

models were trained using automatic feature engineering and tested using a 20% test split. The generalised linear

model achieved the worst accuracy of 55% compared with Naive bayes achieving 83% accuracy and Logistic

regression achieving 84%. This highlights the beneits of deep learning to achieve the highest accuracy compared

with simple classiiers likely due to the complex nature of wellbeing states.

5.2 Comparison of Pre-trained Models

The results show TL has little impact on performance but to explore whether the high accuracy achieved was

inluenced by the pre-trained model used in the TL approach, other pre-trained CNNs were tested using the same

GASF, GADF and MTF transformed images. As shown in table 1 DensNet achieved the highest accuracy for the

GADF transformed data although VGG19 achieved the highest accuracy for GASF data and MobileNetV2 for MTF

data. This demonstrates that the pre-trained model selected has little impact on performance with the average

variance between the best and worst performing model for all 3 image encoding techniques being only 1.77% for

the physiological models and 2.87% for the models trained using all sensor data. Figure 9 shows the F1-scores and

error bars for each of the TL approaches using GASF encoded images for models trained using only physiological

data and all data modalities. While the signal-image encoding had much greater performance gains than TL, the

use of pre-trained models has not suiciently demonstrated the potential to further increase accuracy.
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Fig. 9. Chart showing the GASF physiological and all data models F1-Score with error bars.

5.3 Comparison of Signal-Image Encoding Techniques

The use of signal-image encoding demonstrated the capability to increase afective modelling beyond tradi-

tional deep learning classiiers where the technique used also impacted model performance. GASF and GADF

outperformed MTF for each pre-trained model, where GADF achieved the highest performance for four of the

pre-trained models and GASF for the remaining three. The average accuracy for the GADF physiological model

was 97.9% compared with 97.6% for GASF and 97% for MTF showing negligible variations in performance between

the diferent techniques.

5.4 Subject-Independent Models

As the GADF signal-encoding technique slightly outperformed the other encoders, it was used to explore subject-

independent physiological models. Table 2 shows the accuracy achieved for each of the 20 users when the model

was tested using LOOCV with each individual’s physiological data. The accuracies range between 36.4% for user

1 and 77.7% for users 16 and 17. The outlier low accuracy for user 1 is due to corrupt EDA data which continually

recorded null readings. The remaining users demonstrate more consistent accuracies and while lower than when

tested using hold-out validation, they demonstrate the possibility of inferring wellbeing on an individual basis.

The subject-independent models were also trained without the TL approach while still transforming signals into

images to explore whether performance improvements were due to the TL approach. A 2D CNNwas implemented

to train the signal encoded images which was concatenated with the 1D CNN trained using the physiological

data. The results show TL increased average accuracy by 0.55% for all users which falls within the margin of error,

demonstrating no overall performance improvement. However, the TL approach never degraded the performance

of individuals’ models and achieved up to a 4% increase in accuracy.

6 DISCUSSION

A new CNN-TL-based approach towards afective state classiication has been introduced that goes beyond

previous signal-image encoding frameworks by incorporating TL in addition to a separate 1D CNN. This research

demonstrates that a signal-image encoding approach can improve the performance in which ive afective states

can be classiied, achieving up to 98.5% accuracy using hold-out validation and an average of 72.3% using LOOCV.
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Table 2. Comparison of subject-independent classification accuracy.

User Accuracy User Accuracy

1 0.364 11 0.709

2 0.698 12 0.734

3 0.702 13 0.723

4 0.683 14 0.738

5 0.666 15 0.749

6 0.752 16 0.777

7 0.736 17 0.777

8 0.706 18 0.753

9 0.737 19 0.690

10 0.636 20 0.763

This outperforms many previous real-world afect recognition systems [17], [58], [32], [99] including a previous

stacked machine learning approach using the same EnvBodySens dataset which achieved an accuracy of 86%

[38] and a combined CNN and RNN using the same dataset that achieved 94.9% accuracy [39].

The results have demonstrated that the integration of signal-image encoding as part of the newly proposed

methodology, extending standard deep learning algorithms, can improve the classiication of afective state. In

particular, the combinatory approach of encoding accelerometer data as images using GADF, GASF and MTF

and subsequently combining this model with a 1D CNN trained using physiological data, has improved the

overall model accuracy. The proposed framework increased model accuracy by 4.5%, which is similar to related

research work that has used signal-image encoding. A related study exploring the classiication of human activity

recognition increased by 4.5% using the signal-imaging TL approach [14],similarly coal-rock interface recognition

increased by 7.1% [78] and eucalyptus region classiication accuracy increased by up to 4.2% when compared

with state-of-the-art models in the research literature [23]. Collectively, these empirical indings demonstrate

that signal-image encoding and TL can be used to further improve deep learning classiication models suggesting

its use is most beneicial to increase the accuracy of well-performing models as used in this work.

While transfer learning marginally impacted overall performance by 0.04% -0.11% compared to the non-TL

signal image encoding models, the signal-image encoding demonstrated the ability to further reliably increase

afective modelling accuracy compared to the standard 1D CNN without signal-image encoding. As the signal-

image encoding increased accuracy to 98% there is little room for improvement due to it being diicult to about

bringing further improvement above 98%. Furthermore, the use of TL frequently outperformed the non-TL

models showing its beneits even if marginal. The signal-image encoding was shown to provide greater gains

in accuracy with the encoding technique used having a minor impact in model accuracy demonstrating GADF

was most efective for the majority of the models. Similarly, the pre-trained model used to perform TL had

a limited impact on model performance with an average diference of 2.32% between the diferent models. In

comparison, TL slightly improved performance by an average of 0.55% when testing using subject-independent

models, demonstrating the transformed images had a greater impact on model performance than TL.

Furthermore, solely using physiological and motion data resulted in the highest accuracy (98.5%), outperforming

models additionally trained using environmental data. This suggests that environmental factors such as noise

and UV are more challenging to use for afect recognition even when paired with physiological data. The reduced

performance may be due to the intricate information in the environmental data already being captured inherently

in the physiological and motion data for example poor weather having a negative impact on mood.

ACM Trans. Comput. Healthcare



18 • Woodward, et al.

When testing using LOOCV the subject-independent accuracies are lower than subject-dependent accuracies.

The average accuracy of the subject-independent physiological models excluding user 1 was 72.3% (SD 0.038),

compared with 98.5% for the subject-dependent model both using GADF to transform the signals and a DenseNet

pre-trained model. This likely relects that diferent individuals have diferent patterns of physiology when

experiencing the same state of wellbeing and that similar levels of activity are perceived diferently in terms of

valence [82] demonstrating similar results as other studies [36], [50], [5].

Classifying mental wellbeing is a challenging proposition that usually requires large real-world datasets

that can be challenging to collect. Signal-image encoding and transfer learning resulted in the best prediction

performance of mental wellbeing. This developed approach helps further increase classiication accuracy beyond

traditional deep learning methods resulting in more reliable real-world inference. This approach demonstrates

the ability to accurately classify 5 emotional states outperforming traditional deep learning networks such as

LSTM [96], [51], [83] and CNN [65]. This approach outperforms other approaches to classify mental wellbeing

using ECG signals which achieved 79.26% [26]. Similarly, this framework outperforms previous work using

EDA and HRV sensors that achieved accuracies between 70-75% when classifying 4 emotions [53], 74% when

classifying 5 emotions from EDA[89] and 95% when measuring stress [20]. This demonstrates the beneits of

using the signal-image encoding approach to classify 5 emotional states with high accuracy. This increase in

performance is highly beneicial for afective computing as the outputs from the model can be used to initiate

interventions to help improve mental wellbeing.

Overall, this work demonstrates that by using the proposed approach it is possible to capitalise on two

modalities to accurately classify wellbeing on a 5-point Likert scale. The results have demonstrated that signal-

image encoding approaches are appropriate for modeling afective states especially when training data is scarce.

This approach has outperformed previous classiication models using the same EnvBodySens dataset built on

ad-hoc extracted features [38] and 2 dimensional CNNs [39]. These indings showcase the potential for signal-

encoded images to improve afective multimodal modeling. In this work we have addressed research challenges 1

(User availability, incentivisation and willingness to participate in longitudinal studies) by helping to demonstrate

the potential to develop highly accurate classiication model with a limited number of participants and 6 (Time

consuming nature of real-time self labelling) by leveraging pre-trained models and data reducing the amount

of labelled data required to train a model. We believe that this approach has the potential to make longitudinal

studies more accessible and appealing to participants, as it reduces the burden of participation. The remaining

challenges will need to be considered and investigated in further research work that is beyond the scope of this

study.

7 CONCLUSION AND FUTURE WORK

Recent developments are producing sensory datasets as people are going about their daily activities. However,

accurately classifying these limited datasets can be a challenging proposition. A scenario of wellbeing classiication

using small multimodal datasets has been presented. Although these types of time series datasets can help us

understand people’s wellbeing, current recognition techniques are not eicient enough to tackle data scantiness.

This research has demonstrated the advantages of employing a combinatory TL, signal-image encoding approach

for raw multimodal sensor data modelling. We demonstrate how this approach can be practically implemented

on a small afective dataset.

We have performed a comparative study of methods based on the combination of image-based time series

representations and deep transfer learning models. In particular, we assessed, for the irst time in the context of the

afective recognition, the efectiveness of GASF, GADF and MTF representations combined with a TL approach.

The proposed framework using signal encoded images with a 1D CNN. Accelerometer data was transformed

into RGB images using GADF, MTF and GASF and was subsequently used to train a 2D CNN using pre-trained
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models to apply a TL approach. This model was concatenated with a 1D CNN architecture trained using raw

physiological sensor data. This novel framework expands upon previous work by applying signal-image encoding

to increase model performance, in particular for afective computing where lies great potential as signal-image

encoding has had little exploration and collecting large labelled datasets can be extremely challenging.

There are several future directions to further study the signal-image encoding approach used in this research.

First, this work has only explored 1D CNNs, in the future it would be worth evaluating whether other architectures

could further improve classiication accuracy. Additionally, this framework could be evaluated beyond the

classiication of mental wellbeing using alternative datasets to evaluate performance in other time-series domains

such as human activity recognition.
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