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Abstract—As stress continues to be a major health concern, there is growing
interest in developing effective stress management systems that can detect and
mitigate stress. Deep Neural Networks (DNNs) have shown their effectiveness in
accurately classifying stress, but most existing solutions rely on the cloud or large
obtrusive devices for inference. The emergence of tinyML provides an opportunity
to bridge this gap and enable ubiquitous intelligent systems. In this paper, we
propose a context-aware stress detection approach that uses a microcontroller to
continuously infer physical activity to mitigate motion artifacts when inferring
stress from heart rate and electrodermal activity. We deploy two DNNs onto a
single resource-constrained microcontroller for real-world stress recognition, with
the resultant stress and activity recognition models achieving 88% and 98%
accuracy respectively. Our proposed context-aware approach improves the
accuracy and privacy of stress detection systems while eliminating the need to
store or transmit sensitive health data.

Introduction

I n recent years, stress has become a major health
concern affecting individuals across different age
groups and professions. Stress can lead to a wide

range of physical and mental health issues, such as
anxiety, depression, and cardiovascular disease [8].
As a result, there is a growing interest in developing
effective stress management systems that can detect
and mitigate stress in real-world environments, with
many adopting artificially intelligent methods.

Advances in deep learning are resulting in ever
expanding capabilities and applications ranging from
voice assistants to autonomous driving. However, the
successful deployment of a Deep Neural Network
(DNN) relies upon two stages: training and inference.
Much of the literature focuses on the development
and training of DNNs but not the real-world inference.
This is often due to the fact that DNNs are difficult
to employ, as AI-based solutions commonly require
a large amount of computational power. This is often
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achieved using cloud-based solutions or systems that
are impractical for deployment.

The edge computing paradigm allows small devices
to be placed close to the end-user at the point of
data collection, such as sensors, etc., to quickly and
locally process data. For example, microcontrollers en-
able embedded systems in a wide range of real-world
applications such as fitness trackers, smart home de-
vices, industrial sensors, and medical devices. The
emergence of edge computing and DNNs paves the
way for ubiquitous intelligent systems. In recent years,
the use of edge computing devices has increased
significantly; this is due to the many advantages that
edge computing offers over traditional centralised ar-
chitectures. Some of the main advantages of edge
computing include the following:

• Lower latency
• Increased privacy
• Improved scalability

DNNs have shown their effectiveness in accu-
rately classifying stress, but most existing solutions
rely on the cloud for inference. Edge computing has
the potential to aid real-world stress recognition, as
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bridging these capabilities to embedded devices can
reduce the amount of data stored and transmitted,
hence increasing the privacy of sensitive health data.
Photoplethysmography (PPG) sensors enable the non-
invasive monitoring of Heart Rate (HR). Automatic
analysis of PPG has rendered it valuable in clinical and
non-clinical settings. However, tracking heart rate with
PPG is difficult due to motion artifacts, which are major
causes of signal degradation, as they obscure the lo-
cation of the heart rate peak in the spectra. Therefore,
context recognition in the form of detecting physical
activity is essential to improve the performance of
stress detection. By integrating exercise recognition,
stress detection systems can become more reliable by
mitigating any motion artifacts from the signal.

Human Activity Recognition (HAR) is the task of
inferring actions carried out by a person and is an
increasingly popular research topic with the potential
to improve healthcare, which can allow for more ac-
curate stress detection. However, to implement such
systems on a large scale, efficient and low-power in-
telligent algorithms that can run on low-cost, resource-
constrained microcontrollers should be developed.

AI on the Edge research is still in its infancy and
the trade-off between classification accuracy and em-
bedded device constraints must be assessed. Most
edge computing research frequently uses larger de-
vices, such as Raspberry Pis or smartphones; how-
ever, many real-world applications, such as wearable
devices for stress recognition, require smaller electron-
ics as they are to be worn on-body. These tiny mi-
crocontrollers offer an ideal opportunity for real-world,
on-device inference. However, they do present addi-
tional challenges, as they are resource- and power-
constrained. In this paper, we present the deployment
of a novel multimodal multi-model approach applied
to context-aware stress detection, where stress in-
ference only occurs if no physical activity is inferred
from a separate classification model. All of which is
performed on-device using an ultra-low power, low-cost
and resource-constrained microcontroller. This tinyML
approach applied to both models will demonstrate the
potential of using multiple models while also leveraging
several input modalities. The contributions of this work
are as follows:

• The novel combination of two models to provide
real-time contextual activity recognition informa-
tion to improve the accuracy of stress inference.

• The deployment of the context-aware multi-
model approach on an ultra-low power,
resource-constrained microcontroller for real-
world on-device inference.

The remainder of the paper is organised as follows;
Section 2 outlines the background, Section 3 discusses
the methodology, Section 4 outlines the results, Sec-
tion 5 offers a discussion, and Section 6 concludes.

Background
Many existing DNNs have high computational cost
and memory requirements and, therefore, rely on cen-
tralised servers. However, it is more efficient to process
the data on-device close to the data source. This
section highlights previous research in HAR as well as
stress detection, while also relating such technologies
back to edge computing.

Human Activity Recognition
Extensive research has shown the proficiency of
sensor-based configurations at classifying HAR. Wear-
able sensors attached to users are commonly used for
data collection, these sensors include accelerometers,
gyroscopes and magnetometers and are often embed-
ded within smartphones and smartwatches.

Sensor-based HAR is a time-series classification
problem. Deep Learning (DL) enables high-level fea-
ture representations to be automatically learned from
raw data. Both convolutional neural networks (CNN)
and long short-term memory (LSTM) networks have
shown promise for HAR. CNNs have been widely used
to learn spectral patterns of sensor signals, whereas
LSTMs have been used to capture temporal depen-
dencies.

HAR is a common application area when devel-
oping machine learning on low-power devices, as a
CNN-based feature learning approach for HAR has
been developed [12]. This approach used IMU data
from 20 healthy subjects to classify walking, walking
upstairs, walking downstairs, sedentary, and sleeping,
achieving 96.4% accuracy. A considerable computa-
tional speedup was achieved using the proposed ap-
proach compared to SVM and MLP. The model was
deployed onto a smartphone for real-world use. A 1D
CNN-based method for human activity recognition has
also been developed [7]. Activity data was collected
using a smartphone’s IMU, including walking, running,
and standing still. Acceleration data were converted to
vector magnitude data and used as input to the 1D
CNN achieving an accuracy of 92.71%.

Approaches have been developed to improve clas-
sification on constrained microcontrollers. Optimisation
techniques, such as pruning and quantisation have
enabled model size to reduced by 10 times without
severely impacting model accuracy [4]. However, the
techniques developed have had little testing on-device
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to evaluate real-world performance. Despite numerous
approaches claiming to develop new approaches for
edge computing, few have deployed and tested their
models on-device to explore the real-world impact.
However, Ghibellini et al. [3] have shown the possibility
of classifying human activities on the edge using an
ultra-low power microcontroller using quantisation. A
1D CNN was used to develop a classification model
to infer three activities (running, falling, and normal
state). The model was deployed on an Arduino BLE 33
Sense and achieved 97% accuracy with quantisation
reducing the model size by 53%. Similarly, a CNN has
been used to classify five specific movements in bed
(agitation, idle, in bed, out of bed, and bed movement)
for the elderly [9]. The model was deployed to an
nRF52 development board achieving 88.96% accuracy.
However, the data used in this study were collected
from only one person, creating bias.

While edge computing includes powerful devices
such as smartphones, the use of ultra-low power mi-
crocontrollers show greater potential due to the abil-
ity to add external sensors such as for physiological
monitoring. Furthermore, although HAR research has
made extensive use of smartphones for on-device pro-
cessing, it is not feasible to use a smartphone for the
processing of external sensors, such as physiological
sensors required for stress detection.

Stress recognition
Non-invasive physiological sensors such as Electro-
Dermal Activity (EDA) and Heart Rate (HR) present
a significant opportunity to assess stress in the real-
world due to their direct correlation with the sym-
pathetic nervous system. EDA and HR have been
shown to detect poor mental wellbeing, such as stress,
using a 1D CNN with 92.3% accuracy, outperforming
comparative models such as LSTM [11]. Similarly,
EDA and Heart Rate Variability (HRV) were used in
a wearable device to measure stress during driving
[5]. The wearable device took measurements over a 5-
minute period to detect stress levels with an accuracy
of 97.4% and found that HRV and EDA are highly
valuable. EDA and HR signals have also been used
to infer stressed and relaxed states using K Nearest
Neighbour and Fisher discriminant analysis, achieving
95% accuracy stating that 5-10 second intervals are
suitable for real-time stress detection [1].

The ability to use non-invasive sensors to mea-
sure HR and EDA allows small devices to accurately
determine stress levels in real-time and should be
further utilised to detect stress. However, physiological
signals do not account for the context in which devices

are used, as context can play a significant role in
perceived stress levels meaning additional sensors are
required. In particular, physical activity can significantly
alter human physiology including HR and EDA [10],
showing consideration is needed to not infer stress
when exercising to avoid false positives. Therefore, we
propose an edge computing approach to infer stress
only when no physical activity is detected.

The ability to classify sensor data using small mi-
crocontrollers offers many opportunities for real-world
inference due to their small footprint. However, edge
computing still faces many challenges such as the
constrained nature of the devices and the high memory
requirement of AI models. It is a challenging proposi-
tion to overcome many of these challenges; however,
advances in software techniques such as quantisation
and the use of context aim to improve the classification
of models on limited hardware. Overall, while there
has been much research on effective DL models for
stress classification, they have rarely been deployed
on microcontrollers, and there has been no consider-
ation of how human activity context could improve the
performance of stress modelling.

Methodology
This work outlines our tiny Machine Learning (tinyML)
multimodal multi-model approach combining an activity
recognition classifier with stress detection. The multi-
model context-aware system consists of the following
key components:

• Inertial Measurement Unit (IMU) sensors - The
built-in IMU of the Arduino Nano 33 Sense is
used to collect 3-axis accelerometer data for
human activity recognition.

• HR and EDA sensors - These external sensors
connect to the microcontroller to provide physi-
ological signals for stress detection.

• HAR model - A CNN classifies each incoming
accelerometer sample as either resting or active.

• Stress detection model - A separate CNN acts
on physiological data to classify stress, but only
once resting state is inferred.

• Microcontroller - The Arduino Nano 33 Sense
provides computing power, sensor connectivity
and executes both models.

We assume the wearable sensors offer clean un-
affected signals and consistent placement across par-
ticipants. For modelling, we assume the CNN architec-
tures generalise well to new data based on validation
results. The model architectures are constrained to
relatively simple 1D CNNs given the hardware limita-
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FIGURE 1. The proposed system containing the HAR model (top) and stress model (bottom), along with the internal logic.

tions. Only a single context factor of physical activity
was used to trigger stress classification rather than
exploring multiple contextual variables.

Evaluation is performed by simultaneously collect-
ing all sensor data streams but withholding the physio-
logical data from the stress model until inactive periods
are detected, mirroring real-world operation. The same
datasets are used for both training and evaluation.

Datasets
In order to complete the multi-model context-aware
approach, a dataset was required for both the HAR
and stress recognition to train the classifiers.

HAR dataset We used the WISDM: Wireless Sen-
sor Data Mining dataset [6]. The dataset contains 3-
axis accelerometer data sampled at 20Hz for walking,
jogging, climbing upstairs, climbing downstairs, sitting,
and standing. Data was collected from 29 participants
using an Android phone in their front trouser leg
pocket.

Preprocessing the data was required as the data
was recorded using an Android phone, and the times-

tamp was recorded using the phone’s up-time. Some
rows of data had a timestamp, but no attached data.
These rows were removed during the cleaning pro-
cess.

Due to the requirement of only needing to infer
when the user is performing physical activity or resting,
we condensed the classes into exercise and rest. Walk-
ing, jogging, climbing upstairs and climbing downstairs
were combined into the exercise class, while standing
and sitting were combined to form the rest class.

Stress dataset A lab-based stressor experiment has
been conducted in which participants’ stress response
was stimulated using the Montreal stress test [2].
This experiment induced stress in 20 healthy partici-
pants aged 18-50 between June and September 2019
as approved by Nottingham Trent University Human
Ethics Board, application number 600. Participants
wore hand-held non-invasive sensors on their fingers.
The sensors recorded HR Beats Per Minute (BPM),
raw HR amplitude, HRV, and EDA, each sampled at
30Hz to collect physiological data while experiencing
relaxed and stressed states of mental wellbeing.
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To allow the effects of stress and mental arithmetic
to be investigated separately, the experiment had three
test conditions; rest, control, and experimental. Each
participant was initially briefed before completing a 3-
minute rest period where participants looked at a static
computer screen where no tasks were displayed. This
was followed by 3 minutes of the control condition,
where a series of mental arithmetic questions were
displayed which participants answered, followed by
another 3-minute rest period. The participants then
completed the stressor experiment where the difficulty
of the questions increased and the task time limit
was adjusted to be 10% less than the average time
taken to answer questions during the training, taking
it just beyond the individual’s mental capacity. The
time pressure along with a progress bar showing their
progress compared with an artificially inflated average
were both designed to induce stress during the 10-
minute experiment. A similar number of samples were
collected from both relaxed and stressed data, helping
to reduce bias in the classification model.

Micocontroller
The Arduino Nano 33 Sense is a small form factor,
ultra-low power, and cost-effective microcontroller. It is
based on the ARM Cortex-M4 32-bit processor, which
is an energy-efficient microcontroller that is well-suited
for a wide range of applications. Although the Cortex-
M4 processor is capable of performing advanced cal-
culations and processing, it has limited processing
power.

In addition to its processing power limitations, the
Arduino Nano 33 Sense also has limited memory with
only 256KB of SRAM, which can make it difficult to
store larger samples and complex models. This means
that methods such as model compression and quanti-
sation are required to reduce the size of their models
and make them more suitable for deployment. We have
therefore utilised TensorFlow Lite for Microcontrollers
to develop small models capable of fitting on the
microcontroller. While there are other microcontrollers
that are more powerful, the Arduino Nano 33 Sense is
an extremely low-cost microcontroller enabling much
wider deployment and also has extensive support for
TensorFlow Lite for Microcontrollers.

Sensors
A non-invasive sensor-based approach presents the
most significant opportunity to assess stress, as sen-
sors can be easily connected to microcontrollers and
used inconspicuously in the real-world.

HR sensors are commonly used within wearable

computing systems as they can be embedded within a
wide range of devices due to their small footprint and
provide insights into the autonomous nervous system.
Therefore, the same PPG sensor used in the Montreal
stressor data collection experiment was connected to
the microcontroller to measure HR.

Similarly, the same EDA sensor from the data
collection experiment has been connected to the mi-
crocontoller. EDA is often used to train affective models
to classify stress as it is directly related to the sympa-
thetic nervous system, which controls rapid involuntary
responses to dangerous or stressful situations.

Finally, motion data measures movement through
accelerometers, gyroscopes, and magnetometers
which can be used to measure physical activity.
The Arduino Nano 33 Sense has an LSM9DS1 IMU
which includes a 3D digital linear acceleration sensor.
This in-built accelerometer has been utilised for the
real-world HAR inference.

Classification Features
Feature extraction is typically a crucial process when
developing classification models. However, the mem-
ory limitations of the Arduino 33 Sense limit the ability
to extract complex features.

Due to the constrained nature of the microcon-
troller, the only feature used from the PPG sensor was
the raw HR amplitude along with the raw EDA values.
Additional features such as BPM and HRV were ex-
amined, but when the model was trained using these
features, it was too large to fit on the microcontroller
in addition to the HAR model due to the limited 1MB
of flash memory.

Similarly, for the activity recognition model, the
raw 3-axis accelerometer values were used from the
Arduino Nano 33 Sense on-board IMU sensor.

FIGURE 2. Person wearing the HR and EDA sensors con-
nected to an Arduino Nano 33 Sense.
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Network Architecture
DNNs provide higher accuracy compared to classic
machine learning approaches and their sample-by-
sample streaming capabilities better match real-time
edge processing. Previous research shows the bene-
fits of using CNNs for both HAR and stress detection.
While LSTM networks are frequently used to clas-
sify time-series data, previous work shows CNNs can
outperform LSTMs for time-series classification such
as stress recognition [11]. Furthermore, our testing
showed the resultant model size remains smaller when
using 1D CNN, making them ideal for tinyML applica-
tions.

HAR Model A one-dimensional Convolutional Neural
Network (1D CNN) was selected for the HAR model
due to its high performance and smaller model sizes
compared to LSTM. A CNN is composed of convolu-
tional layers that employ a filter to slide over the one-
dimensional time series data. The CNN architecture
consists of a single convolutional layer, a dropout
layer with a rate of 0.2 to prevent overfitting followed
by three dense layers, and a softmax output layer.
The high accuracy and automated feature learning of
CNNs makes it better suited for generalised mobility
detection, despite its higher complexity.

Stress Model Similarly, a 1D CNN was selected for
the stress detection model. The original input data is
partitioned into segments of fixed length. These data
are segmented over an overlapping sliding window with
an experimentally chosen window size of 256 samples
and a step size of 24, after testing various window
sizes ranging from 16 to 2056. The network architec-
ture consists of two 1-dimensional convolutional layers,
followed by max-pooling operations. Batch normali-
sation layers are incorporated, as well as a dropout
layer with a rate of 0.2 to avoid overfitting, prior to the
softmax activation function.

To reduce model size, the stress model was tested
using only one convolutional layer. However, this re-
sulted in a significant accuracy sacrifice of approxi-
mately 27%. Thus, two convolutional layers must be
in the network architecture to achieve significant accu-
racy.

Model Quantisation
The Arduino Nano 33 Sense is a powerful and versatile
microcontroller that is capable of performing a variety
of machine learning tasks on-device. However, due
to its limited memory, it is often necessary to use
techniques such as model quantisation to reduce the

size of machine learning models and make them more
suitable for deployment.

Two commonly used policies for post-training quan-
tisation (PTQ) are int8 and float16 quantisation, which
are both methods to reduce the precision of floating-
point numbers used in machine learning models. In a
standard machine learning model, floating-point num-
bers are typically represented using 32 bits, which
can make the model large and memory intensive. By
using float16 quantisation, the number of bits used to
represent each floating-point number is reduced to 16
bits. For the int8 method, the number of bits is reduced
from 32 to 8, thus a maximum model reduction by
a factor of 4. However, this means representing the
model parameters as full 8-bit integers, truncating them
at the decimal place.

It was necessary to ensure that both models could
fit onto the target board, namely the Arduino Nano 33
Sense. To do so, PTQ of varying policy (int8, float16
and float32 / unquantised) were tested. By introducing
a smaller space for the data to occupy, the informa-
tion incurs a rounding error from the original value.
Typically, as a consequence of this, the accuracy of
a model is reduced. An acceptable accuracy sacrifice
varies depending on the application.

Results
An iterative process was adopted during development,
which meant setting some performance targets. The
results should be more significant than a guess, as
this demonstrates that the model performs beyond
randomness. Therefore, the accuracy should be more
significant than one standard deviation in a normal
distribution. As both models are binary classifiers, this
puts our target accuracy at 68%.

The stress model was initially tested using float16
quantisation, but this meant using 92% of the available
storage. Therefore, to ensure that both models could fit
on the microcontroller, they each required quantisation,
with the HAR model requiring float16 quantisation
and the stress model int8 quantisation. In this case,
the accuracy of the HAR model was only reduced
by 0.34% while the latency was reduced from 102
to 70 ms. Similarly, int8 quantisation had no impact
on the accuracy of the stress model, but decreased
latency and reduced memory usage. Therefore, a
minor accuracy sacrifice was deemed appropriate to
demonstrate two models on a single microcontroller
while still performing at a high level of significance.

Upon model deployment, the stress and HAR mod-
els achieved an accuracy of 88% and 98% respectively,
both using hold-out validation with a 20% test split. A
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Stress Model
Class Precision Recall F1
Non-Stress 0.86 0.95 0.90
Stress 0.94 0.83 0.88

Latency Accuracy 0.88
3642ms Model Size (.h file) 1.1MB

HAR Model
Class Precision Recall F1
Rest 0.97 0.92 0.94
Exercise 0.99 1.00 0.99

Latency Accuracy 0.98
26ms Model Size (.h file) 152KB

TABLE 1. Performance metrics for the stress (top) and phys-
ical activity (bottom) classification models.
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FIGURE 3. Graph of performance metrics over varying quanti-
sation policies of the HAR model (a) and the stress model (b).
Latency was unavailable for float32 and float16 quantisation
for the stress model due to its large model size.

further breakdown of the performance metrics for each
model can be found in Table 1.

The resulting models were able to detect both phys-
ical activity and stress with high precision. This enabled
the final context-aware approach to be deployed on
the Arduino Nano 33 Sense, where physical activity is
continuously inferred. Thence, once no physical activity
is detected, stress is inferred.

Robust evaluation of the multi-model context-aware
system requires validating both the individual model
accuracies as well as the overall workflow. Hold-out
validation allows reporting performance on unseen
data in an unbiased manner. However, evaluating the
models separately does not fully validate the system’s
real-world operation. To address this, we also per-

formed end-to-end validation with live sensor streams.
The activity recognition model classifies incoming mo-
tion data and only triggers stress classification during
periods of inactivity. This end-to-end approach ensures
models are evaluated with live data capturing noise
and artifacts. The classifiers were run concurrently as
designed rather than separately to validate the activity
context modelling and switching logic.

The end-to-end validation of the multi-model sys-
tem with live sensor data streams confirmed the ex-
pected performance based on the hold-out testing
of individual models. The activity recognition model
operated with high accuracy on motion data, properly
classifying periods of activity versus inactivity. During
these classified inactive states, the stress detection
model was selectively triggered as intended and output
predictions within the expected accuracy range re-
ported during hold-out testing. The overall workflow of
selective stress classification based on activity context
was successfully validated. No problems were encoun-
tered with concurrency, data flows, or model switching
logic. Latency remained low and suitable for real-time
operation. This end-to-end validation on live data from
multiple sensors confirmed that the integrated system
performs as designed based on the individual model
metrics.

Discussion
In this paper we have examined the feasibility of
running a context-aware HAR model that triggers a
stress detection model all performed independently
on an Arduino Nano 33 Sense. Our results confirm
the potential to run two classification models on a
resource-constrained, low-cost microcontroller. Each of
the models achieved high accuracy (0.98 and 0.88 for
activity recognition and stress detection respectively),
demonstrating the potential for real-world inference.
This demonstrates similar results for HAR [9], how-
ever, our results demonstrate improved performance
for rest compared to [9] that achieved 67.3% for the
respective idle class, demonstrating the benefits of
binary classification. Furthermore, many studies do not
report on key metrics such as latency [3] or model
size [9] which are key considerations when deploying
on microcontrollers. Most research at the edge for
HAR relies on smartphones where model sizes can be
larger such as 16MB for an activity recognition CNN
[12], which is not comparable to the deployment on
resource-constrained microcontrollers.

Context plays an important role in stress detection,
as the activity in which an individual is engaged can
significantly impact physiology. In particular, physical
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activity can drastically alter both HR and EDA, which
are common biomarkers for stress detection. There-
fore, our work combining a HAR classification model
with stress detection on a microcontroller provides a
novel approach for context-aware stress detection that
can help improve the reliability of real-world stress
inference.

However, limitations were encountered; in particu-
lar, the limited memory of the Arduino Nano 33 resulted
in the use of simpler models. Initially, a CNN with 4
convolutional layers was used for stress detection that
achieved 95.6% accuracy, a 7.6% increase over the
2 layer CNN; however, this used 97% of the micro-
controller’s available dynamic memory when using int8
quantisation. Therefore, the number of convolutional
layers was reduced to two layers, reducing the model
size by 67%. To further reduce the size of the stress
model, the model was trained using only one convo-
lutional layer; however, this reduced the accuracy to
61.8%, a 26.7% reduction in accuracy. The model was
tested using float16 quantisation with 2 convolutional
layers but this used 92% of the microcontroller’s avail-
able storage. Therefore, 2 convolutional layers were
used to train the model and int8 quantisation was used
to ensure a suitable model size. We also explored
the use of LSTM networks, but the models performed
worse and larger than comparative CNNs. Additionally,
only raw HR and EDA data were used to classify
stress. Additional features, such as BPM and HRV,
made the model too large to deploy to the microcon-
troller with the additional HAR model, demonstrating
the trade-offs required for real-world deployment.

Figure 3 illustrates the latency and model size of
the HAR model reduce using float16 and int8 quanti-
sation, while accuracy remains uniform. This demon-
strates the benefits of quantisation when deploying
onto ultra-low power hardware. However, the HAR
model was limited to a minimum of float16 quantisation
due to the inconsistent nature of the WISDM dataset.
The expected IMU (LSM9DS1) input data would range
between [0, 1], however training data were rarely be-
tween these values. Most training samples had a high
range and interquartile range, implying a need for
complex scaling for reliable integer results. Therefore,
if int8 quantisation was used, this could incur a high
preprocessing cost in the final implementation.

These limitations demonstrate the challenging na-
ture of running two classification models on a single
microcontroller. While it is possible, careful considera-
tion must be taken to reduce model size while retaining
performance. In the future, new microcontrollers with
increased memory may simplify deployment with in-
creasingly complex models.

Overall, this tinyML context-aware classification ap-
proach has the potential to improve numerous domains
beyond stress detection. The capability to run one clas-
sification model, which can provide context to a second
more complex model running on-device, is a novel
approach that can help increase model performance
and reduce power consumption.

Conclusion
In this work, we have demonstrated how a classifi-
cation model can be used to provide context to a
second model on the edge using an ultra-low power
and low-cost microcontroller. Here, we have examined
how activity recognition can be used to help reduce
motion artifacts in real-world stress detection, but this
framework has many potential real-world applications.

In the future, our goal is to further deploy this
approach and test this context-aware approach in other
domains. The use of new microcontrollers with more
memory and alternative quantisation methods will also
be explored to enable on-device inference from more
complex models.
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