T.LIAN ET AL.: SUPCON LEARNING WITH ID-LABEL EMBEDDINGS FOR AU REC 1

Supervised Contrastive Learning with
Identity-Label Embeddings for Facial Action
Unit Recognition

Tangzheng Lian Department of Computer Science
lian.tangzheng@kcl.ac.uk Computing and Informatics Research
David Adama Centre

Nottingham Trent University

David.adama@ntu.ac.uk '
Nottingham, UK

Pedro Machado
pedro.machado@ntu.ac.uk

Doratha Vinkemeier
doratha.vinkemeier@ntu.ac.uk

Abstract

Facial expression analysis is a crucial area of research for understanding human emo-
tions. One important approach to this is the automatic detection of facial action units
(AUs), which are small, visible changes in facial appearance. Despite extensive research,
automatic AU detection remains a challenging computer vision problem. This paper ad-
dresses two central difficulties: the first is the inherent differences in facial behaviour
and appearance across individuals, which leads current AU recognition models to overfit
subjects in the training set and generalize poorly to unseen subjects; the second is repre-
senting the complex interactions among different AUs. In this paper, we propose a novel
two-stage training framework, called CL-ILE, to address these long-standing challenges.
In the first stage of CL-ILE, we introduce identity-label embeddings (ILEs) to train an ID
feature encoder capable of generating person-specific feature embeddings for input face
images. In the second stage, we present a data-driven method that implicitly models the
relationships among AUs using contrastive loss in a supervised setting while eliminating
the person-specific features generated by the first stage to enhance generalizability. By
removing the ID feature encoder and ILEs from the first stage after training, CL-ILE
becomes more lightweight and readily applicable to real-world applications than models
using graph-based structures. We evaluate our approach on two widely-used AU recogni-
tion datasets, BP4D and DISFA, demonstrating that CL-ILE can achieve state-of-the-art
performance on the F1 score.

1 Introduction

The automatic detection of human facial expressions is a significant area in affective com-
puting with diverse applications including Human-Computer Interaction [4, 33], psychol-
ogy [1, 19], and medicine [9, 12]. One widely studied facial expression descriptor is the
Facial Action Coding System (FACS) [13]. FACS comprises a small set of visible Action
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Figure 1: a) Ilustration of the idea of ILEs. Examples of face images are sampled from the
BP4D dataset with the same AU annotations but from different subjects; b) Illustration of
the implementation of contrastive loss in the second training stage of CL-ILE.

Units (AUs) that can be combined to characterize a broad range of facial expressions render-
ing it a long-established research topic in both affective computing and computer vision.

Gender, age and individual variations in facial shape significantly influence the detected
intensity and occurrence of AUs [7], thereby explaining why existing AU classifiers fre-
quently exhibit suboptimal performance when tested on subjects not included in the training
set. Expanding the training dataset may seem like an intuitive solution to this challenge, but
the labour-intensive nature of expert AU annotation makes it unfeasible. Although previous
methods have endeavoured to mitigate individual bias during training, they typically neces-
sitate a time-consuming multi-task learning framework [38, 42] and supplementary training
data [37, 38].

Besides gaining insights into AU discriminative features, comprehending the relation-
ships among AUs can offer valuable information for AU recognition [34]. For instance,
a smile often involves the co-occurrence of AU6 (Cheek Raise) and AUI2 (Lip Corner
Puller), whereas AU1 (Inner Brow Raiser) and AU4 (Brow Lowerer) are mutually exclu-
sive based on their definitions and visual characteristics. Therefore, detecting AUs is often
viewed as a multi-label classification task. Although some studies have explored utilizing
AU co-occurrence by designing network structures such as Graph Convolutional Networks
(GCN) [20, 27, 28] or general Graph Neural Networks (GNN) [24], these approaches often
entail high computational costs. Other works concentrate on learning AU relationships based
on facial regions [14, 31], but they do not explore the correlations in AU annotations.

In this paper, we introduce CL-ILE, a two-stage training framework for AU recognition in
a supervised setting that incorporates identity-label embeddings (ILEs) and contrastive loss.
In the first training stage, we augment AU label embeddings by incorporating an additional
dimension representing the subject index, resulting in the creation of ILEs. As shown in Fig.
1(a), each subject is associated with a unique set of AU embeddings. Thus, even when the
input face images have identical AU annotations, the AU embeddings will vary based on the
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respective identities. In the second stage, as illustrated in Fig. 1(b), we employ contrastive
loss, where the feature embedding serves as the anchor, pushing away from inactive AU
embeddings while pulling towards active AU embeddings during training to implicitly learn
the correlations among AUs. During the process of learning AU relationships, we mitigate
the influence of the ID feature embedding generated by the ID feature encoder in the first
stage by minimizing its similarity to the feature embedding produced by the feature encoder
in the second stage. The contributions of our work can be summarized as follows: (i) We
present a novel and effective approach for addressing individual bias in AU detection that
exhibits improved generalizability across subjects (ii) We utilize contrastive loss to learn
AU label correlations in a data-driven manner during training, providing a simpler yet more
powerful alternative to certain graph-based methods. (iii) We demonstrate the effectiveness
of our approach compared to state-of-the-art methods on the BP4D and DISFA datasets.

2 Related work

In this section, we will discuss the current methods in identity-aware AU recognition, AU
correlation modelling and the development of contrastive learning.

Identity-aware AU recognition. Research in identity-aware AU recognition can be di-
vided into two main branches. The first branch involves learning person-specific models for
test set subjects by transferring knowledge from the training set. Wang et al. [40] proposed
a personalized generative adversarial recognition network for recognizing multiple facial ac-
tion units by transferring facial images from a source domain to a target domain. Likewise,
Chu et al. [7] proposed the Selective Transfer Machine, which trains personalized Support
Vector Machine (SVM) classifiers for individual subjects. However, those methods need to
be fine-tuned every time a new subject is added. The second branch aims to develop AU
detection systems capable of learning generalized AU features by mitigating individual bias,
thus avoiding overfitting the training set. Zhang et al. [42] proposed an adversarial training
framework (ATF) that minimizes the AU loss while maximizing the identity (ID) loss to re-
duce the influence of personal identity. Tu ef al. [38] proposed multi-task network cascades
with the specialized face clustering task to decrease individual bias using translation transfor-
mation in the feature space. However, these methods can be computationally expensive due
to their reliance on multi-task learning. Another approach is LP-Net [31], which uses nor-
malized facial landmarks as person-specific features and attempts to eliminate their impact
by making global AU features orthogonal to them. This method assumes that facial land-
marks can accurately represent person-specific features, which may not always hold true.
Our method was inspired by the anti-person-specific module proposed in PIAP-DF [37].
They addressed this issue by introducing a feature encoder that generates person-specific
features and makes the general feature encoder orthogonal to it. In contrast, our method
introduces identity-label embeddings that explicitly ensure the model learns person-specific
features, even when subjects have the same AU annotation, without using additional training
data.

AU correlation modelling. AU recognition is often treated as a multi-label classifica-
tion task due to the co-occurrence of AUs. Various methods have been proposed to lever-
age the relationships among AUs to enhance performance. Graph-based methods such as
GCN [20, 27, 28] and general GNN [24] have been proposed to explicitly model these re-
lationships. However, these methods can be computationally demanding as they require an
additional network for AU relationship modelling. Alternatively, some researchers have used
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AU correlation statistics calculated from the AU recognition dataset as prior knowledge for
training [29, 43], but they only considered pairwise AU correlations. Chen et al. [6] proposed
a supervised hierarchical contrastive learning framework to model three kinds of correlations
among AUs (i.e., unary, binary, and multivariate) and they treat each AU with the same la-
bel from different subjects as positive samples in a minibatch and pull their representations
together. However, this approach may not be intuitive as it forces features from different sub-
jects to be consistent. Instead, we introduce an additional training stage in advance to train
an encoder that generates person-specific features with ILEs, which are then eliminated. Fur-
thermore, our proposed AU correlation learning module does not include additional network
structures and can implicitly learn correlations across multiple AUs during training.

Contrastive learning is a cutting-edge technique for representation learning, initially
developed in the context of unsupervised or self-supervised learning [15, 18]. The funda-
mental idea of contrastive loss is to define an anchor sample, positive samples, and negative
samples, and then optimize the embedding space by minimizing the distance between the
anchor sample and positive samples while maximizing the distance between the anchor sam-
ple and negative samples. Recently, SupCon [22] was proposed to apply contrastive loss
in a supervised setting in image classification by choosing one image-level representation
of an image as the anchor and pushing the representation of the anchor close to its positive
samples (e.g., augmentations of the anchor or images with the same label as the anchor in
the minibatch). However, SupCon is specifically designed for single-label image classifica-
tion and is not directly applicable to multi-label classification tasks, such as AU recognition.
The challenge of adapting SupCon to multi-label classification lies in defining positive and
negative samples, as images in this task are annotated with multiple labels, which are often
highly correlated. Our approach is inspired by [2], which successfully leverages contrastive
loss in multi-label classification and captures the label correlations to enhance the predictive
performance. However, our model differs from theirs in terms of encoder structures and
includes an identity learning module, which is tailored for AU recognition.

3 Methodology

3.1 Overview

Given a facial image I € R¥>*#>W the goal of AU recognition is to predict the probabilities of
each AU occurring in the image. This task is a multi-label classification problem since mul-
tiple AUs can coexist in the same image. Therefore, the output of an AU recognition model
can be represented as a vector of probabilities P = {p° € R}f:l, where C is the number of
AU classes and p¢ represents the probability of the c-th AU occurring in the image.

Our proposed method, CL-ILE, aims to mitigate inherent differences among individuals
while capturing intricate correlations among AUs. CL-ILE comprises two training stages,
as illustrated in Fig. 2. The first stage primarily focuses on training an ID feature encoder,
F!P_ which generates person-specific features, F/D | from the input facial image. In contrast,
the second stage aims to train a general feature encoder, Fe‘gc, by minimizing the similarity
between F, ef;h and F, elrfl)b during training.

For each facial image with a subject ID in the batch, CL-ILE initially processes it through
the backbone network for feature extraction. In the first training stage, CL-ILE utilizes
the feature maps produced by the backbone to train F!? and ILEs. In the second train-

ing stage, both subject ID and ILEs are discarded since we only require F/2 for generating


Citation
Citation
{Ma, Chen, and Yong} 2019

Citation
Citation
{Zhao, Chu, Deprotect unhbox voidb@x protect penalty @M  {}la Torre, Cohn, and Zhang} 2015

Citation
Citation
{Chen, Chen, Luo, Huang, Hua, Wang, and Liang} 2022

Citation
Citation
{Hadsell, Chopra, and LeCun} 2006

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, and Krishnan} 2020

Citation
Citation
{Bai, Kong, and Gomes} 2022


T.LIAN ET AL.: SUPCON LEARNING WITH ID-LABEL EMBEDDINGS FOR AU REC 5

LID

1D matching
D

Label Embeddings

1D matching AU{""-"
AUSUb —
sim(") 2 —
=l Subject 7 Feature maps 1 0
Subject_1 H 0 1
. A ) » 0 0
Subject_6 [+] 1D F )
[N o ‘ ‘ Fenc ‘/' emb AU xC 1 Lpep | 1
N' | Subject_N o { L 0 0
= Subject 5| [R5) . | Loren ) )
Subject_2| m FeGn c ‘\ A Uf
\
. " G
Subject 3 Subject 4 | 4’%% > Femb . . )
9:%/ AU; .
e‘\{/o : AUPred AuLabel
AU
LC:mtra ¢

xC

Figure 2: An overview of our proposed framework.

F!D " Following the completion of the second training stage, F/2 is also discarded, and our

approach produces FS. and a set of AU embeddings that demonstrate enhanced generaliz-
ability and capture AU correlations. These are subsequently employed for making predic-
tions during validation. For the underlying network architecture in CL-CLE, we have chosen
ResNet18 [17] with the last pooling and fully connected layers removed. The resulting fea-
ture maps are utilized as feature representations for subsequent encoding. The output of the
backbone network consists of 512 feature maps, each measuring 7x7 in size. These are then
flattened into 49 representations, each of dimension 512. Subsequently, we input these 49
representations of the input image into a feature encoder to generate the feature-level em-
bedding. We have found that Transformer Encoder layers [39] are both simple and effective
as feature encoders. Therefore, in the second training stage, we employ Transformer En-
coder layers as the network architecture for both F!2 and FS., sharing the same network
parameters, to generate F'0 and FS, in the latent space.

In contrast to traditional AU recognition models, our approach emphasizes representation
learning. Consequently, the probability of the c-th AU, p¢, is not generated by the final linear
layer of a classification network. Instead, we compute p¢ by taking the inner product of Fe%b

and AU;, ;.

3.2 Training Stage I

In the first training stage, the objective is to obtain a feature encoder capable of generating
person-specific feature embeddings. To achieve this, we introduce ID label embeddings
(ILEs) as trainable parameters initialized with Gaussian distributions and normalized during
training. The shape of the ILEs is N x C x D, where N represents the number of subjects in
the training set, C represents the number of AU classes, and D represents the dimension of
the embeddings. During this stage, we retain the subject ID of the input image to ensure the
network’s awareness of the identities. Once we obtain F!2 from F!P, we search the ILEs
to retrieve the set of AU embeddings corresponding to the identity of the input image. The
goal in this stage is to learn distinct person-specific features. Thus, we propose an ID loss

that encourages the aggregation of different AU embeddings belonging to the same subject
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while pushing apart AU embeddings of the same kind associated with different subjects in
ILEs during training. The ID loss can be formulated as:

YV XS, [sim(ILE; ;,ILE;)|

Lip =log : 7
Y5 XN, [sim(ILE; , ILE )|

ey

where the sim(-) function represents cosine similarity, ILE; represents the mean across all
AUs of subject i, ILE ; represents the mean of AU j across all identities, and /LE; ; represents
the feature vector of a specific AU j for the subject i . Additionally, we apply the widely
used Binary Cross Entropy (BCE) loss function for AU classification. The BCE loss can be
expressed as:

1 & : '
Loce ==z Y. we |yelogs (Fify,- AUS™ ) + (1 = yo)log (1=s (Flp, -AUS™ ) )| @
c=1

Here, y. denotes the ground truth label for the c-th AU, w, is the weight calculated by Selec-
tive Learning [16] using the uniform distribution and s(-) represents the sigmoid function.
Consequently, the final loss for the first training stage can be expressed as:

Ly ZAEBCE+(1—7L)£1D 3)

Here, A is a hyperparameter that controls the weight between £;p and Lpcg.

3.3 Training Stage I1

In the second training stage, the backbone and feature encoder networks retain the same
structure and parameters as in the first stage. However, during training at this stage, we do
not retain the subject ID. Instead, we freeze and save the network parameters from stage
one, utilizing only the output F!? during stage two training. The objective in this stage is
to eliminate person-specific features and acquire a generalized model. To achieve this, we

apply Lo, from Eq. (4) during training to reduce the cosine similarity between Fe(;lb and
F grfb, where B is the batch of samples.
1 .
Lomn = B Y loglsim(Fany, Fany)| )
<Felrf1)b7Fe§51b)EB

Moreover, we have introduced contrastive loss [2, 5] in a supervised setting to model
AU correlations. The central idea is that AU embeddings should exhibit proximity when
their AU labels frequently co-occur and distance when their AU labels seldom co-occur. The
contrastive loss encourages the clustering of correlated AU embeddings and the separation
of unrelated ones. In the multi-label AU recognition scenario, we designate the feature em-
bedding as the anchor sample, positive AU embeddings as the positive samples, and negative
AU embeddings as the negative samples. The Lcynq can be formulated as follows:

1 Z 1 Z g exp(sim (Fe?nvaU;?) /7)
|B| 1B |P(y)| € exp(sim (FG AUCG) /7)

(FG y PEP(y) c=1 emb’

emb>’

&)

EContra =
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where P(y) represents the subset of positive AU labels, AU f denotes the p-th AU embedding
and 7 is the scaling parameter . The loss function for the second training stage combines the
Lpcg from Eq. (2), Loqn, and Leontra, as follows:

£2 = 2fl EBCE + )VZ»COrth + 213 EC{)ntm (6)

where A1, A5 and A3 are weights to balance different losses.

4 Experiments

4.1 Implementation Details

Our framework is trained in two stages. Before the two stages, we pre-trained our backbone
ResNet18 with weights from ImageNet [23] and saved it as the feature extractor. The weights
of the backbone remain frozen during both training stages. Upon completing stage one, we
save and freeze F!P and utilize it to obtain F, eIn?b. During stage two training, we discard
F!D preserve Fef;h and AU embeddings, and utilize them for predictions on unseen subjects

during validation. We employed SGD as the optimizer for all networks, using an initial
learning rate of le-4 for the backbone, le-5 for both training stages on BP4D and 5e-5 on
DISFA. The learning rate decreased when the F1 score reached a plateau. A batch size of
64 was used for both BP4D and DISFA. A was set to 0.4 empirically to balance losses in
stage one, while in stage two, A; was set to 1, A, to 0.5, and A3 to 0.4. All embeddings in
our method have a consistent dimension of 512. The scaling parameter 7 in the contrastive
loss is set to 2. The threshold in the sigmoid function for binary classification was set to
0.5. The backbone was trained for 300 epochs, while CL-ILE was trained for 20 epochs on
BP4D and 150 epochs on DISFA. All implementations were conducted using PyTorch [32],
and the models were trained and evaluated on an NVIDIA 3090Ti GPU.

4.2 Datasets&Metrics:

We assess CL-ILE using two prevalent AU datasets, BP4D [41] and DISFA [30]. BP4D
is a spontaneous AU dataset comprising 23 female and 18 male adult participants. Each
participant completed eight sessions with distinct target emotions, and videos from each ses-
sion were recorded, accompanied by frame-level binary AU occurrence labels. Altogether,
around 140,000 frames are annotated with AUs. DISFA contains videos of 27 subjects with
diverse genders and ethnicities, all of whom viewed a 4-minute video while their facial re-
actions were recorded by two cameras on the right and left. In total, approximately 130,000
frames are annotated with discrete AU intensities ranging from 0 to 5. Intensities equal to
or greater than 2 are considered positive. We adhere to the subject-exclusive 3-fold cross-
validation protocol from previous studies [6, 21, 24, 25, 27, 28, 31, 35, 37, 42] and select 8
and 12 AUs that frequently appear in DISFA and BP4D, respectively, for evaluation.

We employ CE-CLM [3] to detect facial landmarks and conduct facial alignment as
the image pre-processing step for both datasets. Subsequently, we normalize and resize all
images to 240 x 240 pixels. During training, we apply random cropping (224x224) and
random horizontal flipping for data augmentation. In our study, we use the prevalent frame-
level F1 score in AU recognition, defined as F 1 = 2% , to ensure a standardized comparison
with previous works. Additionally, Avg. signifies the unweighted mean over all AUs: 12 in
BP4D and 8 in DISFA.
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[ Methot/AUs | 1 2 1 6 7 0 12 14 15 17 23 2  Avg |
DRML' [21] 364 418 430 550 670 663 658 541 332 480 317 300 483
ATF [42] 392 352 459 716 719 790 837 655 338 600 373 418 554

LP-Net' [31] 434 380 542 710 767 838 872 633 453 605 481 542 610
AU-GCNT [27] | 468 385 60.1 [80.1] [795] 848 880 673 520 632 409 528 628
SRERLT [24] 469 453 556 711 784 835 8.6 639 [522] [639] 471 533 629
PIAP [37] [542] [47.1] 540 790 782 [863] 895 661 497 632 [499] 520 641
SupHCL'T[6] | 528 457 [6L6] 795 793 847 869 [676] 514 625 486 523 644
ME-Graph™ [28] | 527 443 [609] [799] [80.1] [85.3] [89.2] [69.4] [554] [64.4] [49.8] [55.1] [65.5]
CLILE (Ours) | [55.1] [521] 550 782 755 834 [88.1] 674 519 505 469 [62.2] [64.6]
Table 1: Comparisons of F1 scores (in %) achieved by state-of-the-art methods and ours
for 12 AUs on the BP4D dataset, where the methods that are identity-aware are marked by
* while the methods that dive into AU relationship modelling are marked by T. The best
and second-best results of each column are indicated in bold font with brackets and brackets

only, respectively.

[ Method/AUs | 1 2 4 6 9 12 25 26 Avg. |
DRML' [21] 173 177 374 290 107 377 385 201 267
ATF [42] 452 397 471 486 320 550 864 392 492
AU-GCNT[27] | 323 195 557 [57.9] [61.4] 627 909 [60.0] 550
SRERL' [24] 457 478 596 471 456 735 843 436 559
LP-Net "1[31] 299 247 [727] 468 496 729 [938] [65.0] 569
ME-Graph' [28] | [54.6] 47.1 [729] 540 [55.7] [76.7] O9L.1 530 [63.1]
PIAPT [37] 502 [51.8] 719 506 545 [797] [941] 572 [63.8]
CL-ILE (Ours) | [58.9] [564] 69.1 [58.5] 544 722 859 473 628

Table 2: Comparisons of F1 scores (in %) achieved by state-of-the-art methods and ours
for 8 AUs on the DISFA dataset, where the methods that are identity-aware are marked by
* while the methods that dive into AU relationship modelling are marked by T. The best
and second-best results of each column are indicated in bold font with brackets and brackets
only, respectively.

4.3 Backbone Selection

Feature extraction serves as the fundamental component of AU recognition, typically accom-
plished through a backbone network. In our endeavour to identify the most efficient back-
bone for AU recognition, we subjected a series of widely recognised architectures to rigorous
testing using the BP4D dataset. We strictly adhered to a 3-fold cross-validation protocol to
ensure the reliability of our results. From our evaluations, as summarized in Table 4, the
top five performing backbone architectures were identified. Among these, ResNet18 distin-
guished itself by consistently demonstrating superior performance metrics, and as a result,
was chosen as the backbone for CL-ILE.

Moving beyond conventional CNN architectures, we also explored the potential of sev-
eral state-of-the-art transformer-based models such as CoAtNet [10], ViT [11], and Twins-
SVT [8]. However, these models, despite their growing popularity in other domains, pro-
duced an F1 score of less than 60.0% in our tests. One possible reason for this underper-
formance might be the inherent design of transformer-based methods. These models are
often tailored for handling large-scale datasets and extracting global features. However, they
might not be adept at finely capturing the localized features in images, where the AUs pre-
dominantly manifest. Consequently, CNN-based architectures, especially those like ResNets
and EfficientNets, continue to dominate as the preferred choices for AU recognition tasks,
with the noteworthy exception of Swin-Transformer [26].
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() (b)
Figure 3: PCA visualization of the ILEs on BP4D (fold 1): a) Each colour represents a
subject in the training set and the number of dots for each colour represents the AUs accord-
ingly; b) Each colour represents an AU and the number of dots for each colour represents the
subjects in the training set accordingly.

Backbone Lijp Lown Lcontra  AV. Arch. Avg.

Ao 7 618 ResNet18 61.8

Ay v v 63.0 Swin-Transformer [26] | 61.7

Ay v v 62.7 ResNet152 61.3

//13 j , j v gi; ResNet50 61.1

CLIE | v VY EfficientNet-B2 [36] | 61.0
Table 3: Ablation experiments on BP4D. Table 4:  Backbone selection on

BP4D.

4.4 Ablation Study

The effectiveness of each component of our framework is assessed in Table 3. To decipher
the contributions of each module, we defined specific stages within our ablation studies,
represented as A through A4, which correspond to configurations with or without certain
integral modules. The model denoted as A in the table refers to the absence of Lo, indi-
cating that only the second training stage and contrastive loss are employed. In this scenario,
A1 attains an average F1 score of 63.0%, representing a 1.2% improvement over the baseline
Ay solely by considering the AU correlations. By introducing the first training stage and
L;p, we observe enhancements of 0.9% and 1.6% when comparing A, to Ag and A4 to A,
respectively.

Additionally, as illustrated in Fig. 3(a) and Fig. 3(b), there is a clear distinction in data
distribution patterns with ILEs. In Fig. 3(a), dots of the same colour predominantly form
cohesive clusters, suggesting strong intra-subject similarities. Conversely, in Fig. 3(b) same
colored dots display a more dispersed pattern, indicating increased inter-subject variance.
These visual observations reinforce the effectiveness of our proposed ILEs and Ljp. Like-
wise, in Fig. 4, the substantial resemblance between the correlation matrix of the ground
truth and CL-ILE demonstrates the effectiveness of our framework in modelling the corre-
lations among AUs. For detailed insights into the derivation of the correlation matrix and
training specifics of parameters A, A1, A,, and A3, readers are directed to our supplementary
materials.
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Similarity: 84.45%
CL-ILE Ground-truth

Figure 4: The correlation matrix of the CL-CLE and ground truth based on BP4D.

4.5 Comparison to the State-of-the-arts

The performance of our method in AU recognition, as illustrated in Tables 1 and 2, sur-
passes existing benchmarks. Notably, CL-ILE ranks second in BP4D and exhibits strong
competitiveness on DISFA. Our model outperforms state-of-the-art techniques on BP4D by
a margin of 0.9% in AU1, 5.0% in AU2, and 7.1% in AU24. Regarding DISFA, it also excels
beyond existing methodologies by 4.3% in AU1, 5.4% in AU2, and 0.6% in AU6. In terms
of AU relation modelling alone, model A; (in Table 3) reaches 63.0% on BP4D, surpass-
ing DRML [21], AU-GCN [27], and SRERL [24] which delve into AU relation modelling.
Furthermore, in the context of identity-aware AU recognition, model A4 (in Table 3) scores
64.3% on BP4D, outperforming LP-Net [31] and PIAP [37], which focus on identity-aware
AU recognition. Lastly, our method is not only more lightweight but also outperforms sev-
eral Graph Neural Network (GNN) based approaches like AU-GCN [27] and SRERL [24].

5 Conclusion

In conclusion, we present a novel two-stage training framework, CL-ILE, which efficiently
handles the complex relationships among AUs and the inherent differences in facial be-
haviour across individuals. By introducing identity-label embeddings (ILEs) in the first stage
and employing a data-driven method with contrastive loss in the second stage, CL-ILE effec-
tively enhances the generalizability of AU recognition models. The removal of the ID feature
encoder and ILEs after training further improves the model’s lightweight nature, making it
more suitable for real-world applications compared to graph-based structures. Evaluations
on two widely-used AU recognition datasets, BP4D and DISFA, demonstrate that our ap-
proach can achieve state-of-the-art performance on the F1 score, signifying its potential to
contribute significantly to the field of facial expression analysis and understanding human
emotions.

While our research presents valuable insights, it also acknowledges certain areas for
improvement. The datasets we used, though respected in the field, may not capture the full
spectrum of individual variability. In addition, our study did not encompass cross-dataset
evaluations due to time considerations. These aspects provide exciting directions for our
future endeavours. We are optimistic about delving deeper into these areas in our subsequent
studies.


Citation
Citation
{Kaili, Chu, and Zhang} 2016

Citation
Citation
{Liu, Dong, Zhang, Wang, and Dang} 2020

Citation
Citation
{Li, Zhu, Zeng, Wang, and Lin} 2019

Citation
Citation
{Niu, Han, Yang, Huang, and Shan} 2019

Citation
Citation
{Tang, Zeng, Zhao, and Zhang} 2021

Citation
Citation
{Liu, Dong, Zhang, Wang, and Dang} 2020

Citation
Citation
{Li, Zhu, Zeng, Wang, and Lin} 2019


T.LIAN ET AL.: SUPCON LEARNING WITH ID-LABEL EMBEDDINGS FOR AU REC 11

References

(1]

(7]

[9]

[10]

[11]

Alex A Ahmed and Matthew S Goodwin. Automated detection of facial expressions
during computer-assisted instruction in individuals on the autism spectrum. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages
6050-6055, 2017.

Junwen Bai, Shufeng Kong, and Carla P Gomes. Gaussian mixture variational autoen-
coder with contrastive learning for multi-label classification. In International Confer-
ence on Machine Learning, pages 1383—-1398. PMLR, 2022.

Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Open-
face 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE International Confer-
ence on Automatic Face Gesture Recognition (FG 2018), pages 59-66, 2018. doi:
10.1109/FG.2018.00019.

Marian Stewart Bartlett, Gwen Littlewort, Ian Fasel, and Javier R Movellan. Real
time face detection and facial expression recognition: Development and applications
to human computer interaction. In 2003 Conference on computer vision and pattern
recognition workshop, volume 5, pages 53-53. IEEE, 2003.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International confer-
ence on machine learning, pages 1597-1607. PMLR, 2020.

Yingjie Chen, Chong Chen, Xiao Luo, Jianqiang Huang, Xian-Sheng Hua, Tao Wang,
and Yun Liang. Pursuing knowledge consistency: Supervised hierarchical contrastive
learning for facial action unit recognition. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pages 111-119, 2022.

Wen-Sheng Chu, Fernando De la Torre, and Jeffery F Cohn. Selective transfer machine
for personalized facial action unit detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3515-3522, 2013.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei,
Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention in
vision transformers. Advances in Neural Information Processing Systems, 34:9355—
9366, 2021.

UmurAybars Ciftci, Xing Zhang, and Lijun Tin. Partially occluded facial action recog-
nition and interaction in virtual reality applications. In 2017 IEEE International Con-
ference on Multimedia and Expo (ICME), pages 715-720. IEEE, 2017.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying con-
volution and attention for all data sizes. Advances in Neural Information Processing
Systems, 34:3965-3977, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.



12

T.LIAN ET AL.: SUPCON LEARNING WITH ID-LABEL EMBEDDINGS FOR AU REC

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

Joy Egede, Michel Valstar, and Brais Martinez. Fusing deep learned and hand-crafted
features of appearance, shape, and dynamics for automatic pain estimation. In 2017
12th IEEE International Conference on Automatic Face Gesture Recognition (FG
2017), pages 689-696, 2017. doi: 10.1109/FG.2017.87.

Paul Ekman and Wallace V Friesen. Facial action coding system. Environmental Psy-
chology & Nonverbal Behavior, 1978.

Xuri Ge, Pengcheng Wan, Hu Han, Joemon M. Jose, Zhilong Ji, Zhongqin Wu, and
Xiao Liu. Local global relational network for facial action units recognition. In 2021
16th IEEE International Conference on Automatic Face and Gesture Recognition (FG
2021), pages 01-08, 2021. doi: 10.1109/FG52635.2021.9666961.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735-1742, 2006. doi: 10.1109/CVPR.2006.
100.

Emily Hand, Carlos Castillo, and Rama Chellappa. Doing the best we can with what
we have: Multi-label balancing with selective learning for attribute prediction. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9729-9738, 2020.

Rens Hoegen, Jonathan Gratch, Brian Parkinson, and Danielle Shore. Signals of emo-
tion regulation in a social dilemma: Detection from face and context. In 2019 8th
International Conference on Affective Computing and Intelligent Interaction (ACII),
pages 1-7, 2019. doi: 10.1109/ACI1.2019.8925478.

Xibin Jia, Yuhan Zhou, Weiting Li, Jinghua Li, and Baocai Yin. Data-aware relation
learning-based graph convolution neural network for facial action unit recognition. Pat-
tern Recognition Letters, 155:100-106, 2022.

Zhao Kaili, Wen-Sheng Chu, and Honggang Zhang. Deep region and multi-label learn-
ing for facial action unit detection. In In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3391-3399, 2016.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning.
Advances in neural information processing systems, 33:18661-18673, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84-90, 2017.

Guanbin Li, Xin Zhu, Yirui Zeng, Qing Wang, and Liang Lin. Semantic relationships
guided representation learning for facial action unit recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 8594-8601, 2019.



T.LIAN ET AL.: SUPCON LEARNING WITH ID-LABEL EMBEDDINGS FOR AU REC 13

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Wei Li, Farnaz Abtahi, Zhigang Zhu, and Lijun Yin. Eac-net: A region-based deep
enhancing and cropping approach for facial action unit detection. In 2017 12th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2017), pages
103-110. IEEE, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-

dows. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 10012-10022, 2021.

Zhilei Liu, Jiahui Dong, Cuicui Zhang, Longbiao Wang, and Jianwu Dang. Relation
modeling with graph convolutional networks for facial action unit detection. In Multi-
Media Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea,
January 5-8, 2020, Proceedings, Part Il 26, pages 489-501. Springer, 2020.

Cheng Luo, Siyang Song, Weicheng Xie, Linlin Shen, and Hatice Gunes. Learning
multi-dimensional edge feature-based au relation graph for facial action unit recogni-
tion. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 1239-1246, 2022.

Chen Ma, Li Chen, and Junhai Yong. Au r-cnn: Encoding expert prior knowledge into
r-cnn for action unit detection. neurocomputing, 355:35-47, 2019.

S Mohammad Mavadati, Mohammad H Mahoor, Kevin Bartlett, Philip Trinh, and Jef-
frey F Cohn. Disfa: A spontaneous facial action intensity database. IEEE Transactions
on Affective Computing, 4(2):151-160, 2013.

Xuesong Niu, Hu Han, Songfan Yang, Yan Huang, and Shiguang Shan. Local relation-
ship learning with person-specific shape regularization for facial action unit detection.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recogni-
tion, pages 11917-11926, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

Ognjen Rudovic, Jaeryoung Lee, Miles Dai, Bjorn Schuller, and Rosalind W. Picard.
Personalized machine learning for robot perception of affect and engagement in autism
therapy. Science Robotics, 3(19):eaa06760, 2018. doi: 10.1126/scirobotics.aa06760.

Zhiwen Shao, Zhilei Liu, Jianfei Cai, Yunsheng Wu, and Lizhuang Ma. Facial action
unit detection using attention and relation learning. IEEE transactions on affective
computing, 13(3):1274-1289, 2019.

Zhiwen Shao, Zhilei Liu, Jianfei Cai, and Lizhuang Ma. Jaa-net: joint facial action unit
detection and face alignment via adaptive attention. International Journal of Computer
Vision, 129:321-340, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105-6114.
PMLR, 2019.



14

T.LIAN ET AL.: SUPCON LEARNING WITH ID-LABEL EMBEDDINGS FOR AU REC

(37]

[38]

(39]

[40]

[41]

[42]

[43]

Yang Tang, Wangding Zeng, Dafei Zhao, and Honggang Zhang. Piap-df: Pixel-
interested and anti person-specific facial action unit detection net with discrete feed-
back learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 12899-12908, 2021.

Cheng-Hao Tu, Chih-Yuan Yang, and Jane Yung-jen Hsu. Idennet: Identity-aware
facial action unit detection. In 2019 14th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2019), pages 1-8. IEEE, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Can Wang and Shangfei Wang. Personalized multiple facial action unit recognition
through generative adversarial recognition network. In Proceedings of the 26th ACM
international conference on Multimedia, pages 302-310, 2018.

Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan, Michael Reale, Andy
Horowitz, Peng Liu, and Jeffrey M Girard. Bp4d-spontaneous: a high-resolution spon-
taneous 3d dynamic facial expression database. Image and Vision Computing, 32(10):
692-706, 2014.

Zheng Zhang, Shuangfei Zhai, Lijun Yin, et al. Identity-based adversarial training of
deep cnns for facial action unit recognition. In BMVC, page 226. Newcastle, 2018.

Kaili Zhao, Wen-Sheng Chu, Fernando De la Torre, Jeffrey F Cohn, and Honggang
Zhang. Joint patch and multi-label learning for facial action unit detection. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
2207-2216, 2015.



