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Resource efficient aortic 
distensibility calculation by end 
to end spatiotemporal learning 
of aortic lumen from multicentre 
multivendor multidisease CMR 
images
Tuan Aqeel Bohoran 1, Kelly S. Parke 2, Matthew P. M. Graham‑Brown 2, Mitul Meisuria 2, 
Anvesha Singh 2, Joanne Wormleighton 2, David Adlam 2, Deepa Gopalan 3, Melanie J. Davies 4, 
Bryan Williams 5, Morris Brown 6, Gerry P. McCann 2,7 & Archontis Giannakidis 1,7*

Aortic distensibility (AD) is important for the prognosis of multiple cardiovascular diseases. We 
propose a novel resource‑efficient deep learning (DL) model, inspired by the bi‑directional ConvLSTM 
U‑Net with densely connected convolutions, to perform end‑to‑end hierarchical learning of the 
aorta from cine cardiovascular MRI towards streamlining AD quantification. Unlike current DL aortic 
segmentation approaches, our pipeline: (i) performs simultaneous spatio‑temporal learning of the 
video input, (ii) combines the feature maps from the encoder and decoder using non‑linear functions, 
and (iii) takes into account the high class imbalance. By using multi‑centre multi‑vendor data from a 
highly heterogeneous patient cohort, we demonstrate that the proposed method outperforms the 
state‑of‑the‑art method in terms of accuracy and at the same time it consumes ∼ 3.9 times less fuel 
and generates ∼ 2.8 less carbon emissions. Our model could provide a valuable tool for exploring 
genome‑wide associations of the AD with the cognitive performance in large‑scale biomedical 
databases. By making energy usage and carbon emissions explicit, the presented work aligns with 
efforts to keep DL’s energy requirements and carbon cost in check. The improved resource efficiency 
of our pipeline might open up the more systematic DL‑powered evaluation of the MRI‑derived aortic 
stiffness.

Clinical backdrop
The aorta is the main artery of the human body operating as a conduit that forwards oxygenated blood to 
peripheral organs and tissues. The elastic buffering capacity of the aortic wall is of vital importance to the car-
diovascular system function as it caters to the transformation of blood flow from pulsatile (as generated by the 
left ventricular contraction) to steady (as required by the periphery)1. However, a progressive loss of the aortic 
wall elasticity manifests itself naturally with  age2. Factors such as  hypertension3,  diabetes4, connective tissue 
 disorders5, protein genetic  variations6, and congenital heart  defects7,8 may further escalate this process. The 
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increased aortic stiffness has been shown to be an early marker of vascular aging and a powerful independent 
predictor of adverse cardiovascular events and mortality in various  cohorts9–13.

Aortic distensibility (AD) is a direct measure of aortic stiffness and is defined as the maximum relative change 
in the aortic lumen cross-sectional area (A) during the cardiac cycle for a given pressure step at fixed vessel length

where PP is the pulse pressure (= systolic blood pressure − diastolic blood pressure), and A max , A min denote the 
maximum and minimum areas,  respectively14,15. AD is inversely proportional to the square of the pulse wave 
 velocity3. Several  reports12,16–18 have highlighted the value of AD as an indicator of aortic stiffness.

Cardiovascular magnetic resonance imaging (CMR) is recognised as the gold-standard non-invasive test for 
quantification of ventricular volumes and mass. Increasingly, CMR is used for the semantic segmentation-based 
calculation of AD from electrocardiogram-gated steady-state free precession (SSFP) cine images acquired in the 
plane perpendicular to the thoracic aorta at the level of the pulmonary artery bifurcation. This calculation in 
achieved by delineating the aortic lumen in the above 2D cine images, working out the minimum and maximum 
areas across the cardiac cycle by multiplying in each area the number of pixels by the pixel dimensions, and then 
combining those with a separately measured PP, as described in Eq. (1). Unlike other modalities used to assess 
aortic stiffness, CMR provides a high-resolution visualisation of the aorta in both spatial and temporal domains. 
Along with the reproducible placement of the imaging plane perpendicular to the vessel, CMR also permits the 
local stiffness evaluation at numerous aorta sections in the same  study3. The CMR assessment of aortic stiffness 
has been validated against invasive intra-aortic pressure  measurements19.

The challenge
However, the image processing-based workflows for calculating AD from aortic cine CMR images are suboptimal 
in current clinical  practice20–22, as they rely on semi-automated methods for the segmentation of the ascending 
aorta (AAo) and descending aorta (DAo) cross-sectional areas throughout the cardiac cycle. As well as being 
time-consuming, the image interpretation step of such pipelines is also subject to intra- and inter-observer vari-
ability. Additionally, the CMR expertise is costly. To enhance the clinical applicability of the CMR-derived AD 
and, thus, foster the efficient management of individuals with increased aortic wall stiffness, fast fully-automated 
methods, which also improve the robustness of the aortic lumen area quantification during the cardiac cycle, 
are needed. The automation to the cine CMR image interpretation analysis in the AD calculation is nonetheless 
challenging due to: (i) the high cross-sectional aortic shape variability across the cardiac cycle, different patients, 
and diverse pathologies, and (ii) the aorta brightness heterogeneity as a result of blood flow. In addition, the 
CMR acquisition protocols are very diverse among different studies and institutions which further adds to the 
task’s  complexity23.

Related work
Two recent papers deployed deep learning (DL)-based approaches to fully automate the aortic lumen segmen-
tation from cine CMR  images24,25. DL or hierarchical representations learning is a rapidly growing branch of 
machine learning in which the models learn complex raw-input-data representations that are tuned to the spe-
cific task at  hand26. The deployment of DL models has been a game changer in computer vision (among a wide 
range of other industries) as it has permitted to achieve or even surpass human-level performance in a number 
of visual tasks including image classification, object detection, and semantic  segmentation27. Recent research 
has highlighted the superb capabilities of DL models to analyse CMR  images28,29. However, the two aorta DL 
studies treated the task at hand as a sparse annotation problem and evaluated their method only on a very limited 
number of cardiac cycle time frames (namely the end diastole (ED) and end systole (ES)) for which the ground 
truth labels were available. The targets of the remaining time frames (that were also used to map the input data 
during training) could not be visually validated and were acquired by pipelines which are likely to suffer from 
registration errors or poor convergence of the active contour algorithm. On top of this, the previous studies either 
completely ignored the temporal continuity inherent in the cine image sequence by treating the image segmenta-
tion task as  static25, or simulated the use of time by stacking the recurrent part after the convolutional  layers24. 
However, correlated spatio-temporal features cannot be learnt when spatial and temporal features are explicitly 
determined in separate regions of the  network30. In addition, the previous papers combined the feature maps 
from the encoder and decoder using simple concatenation. Nonetheless, it has been argued that such a practice 
results in less precise segmentation than when non-linear functions are employed for this  task31. Next, the loss 
function used by previous studies neglected the fact that the region of interest (ROI) class is significantly smaller 
than the background class. Moreover, the previous papers analysed datasets acquired by following a single data 
acquisition protocol on a relatively healthy cohort. Finally, previous work completely ignored the resource effi-
ciency matter of the proposed pipelines. However, this is an important issue as the substantial computation and 
energy demands by DL models go together with a considerable environmental and financial  cost32. Improving 
the efficiency of algorithms should be a high priority in DL research alongside  accuracy32.

Overview of the proposed method
In this paper, we propose to enhance the AD calculation by performing aortic lumen segmentation throughout 
the cardiac cycle using of a novel resource-efficient spatio-temporal DL model, inspired by the bi-directional 
ConvLSTM (BConvLSTM) U-Net with densely connected  convolutions31. Our network is trained from scratch 
and evaluated on an aortic cine CMR dataset that was fully annotated by experts. The present paper is the first 
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work to perform end-to-end (i.e., over the entire cardiac cycle) hierarchical learning and testing of the aortic 
lumen area from cine CMR images. Our approach joins the temporal with the spatial processing of the video 
input by merging the encoder and decoder feature maps through a BConvLSTM (non-linear)  unit33. We employ 
the focal Tversky loss during training which is better suited for problems with a high class imbalance in the  data34. 
We use multi-centre multi-vendor data from a highly heterogeneous patient cohort which significantly adds to 
the generalisation power of the proposed aortic lumen segmentation algorithm. Finally, the network we propose 
in this study is resource-efficient to help promote environmentally friendly and more inclusive DL research and 
practices. We perform quantitative evaluations of the energy consumption and carbon cost during training. It 
is worth noting that resource-efficient approaches are also more well-suited towards deployment in hardware-
constrained platforms, which in turn will open up the more widespread DL-powered evaluation of the CMR-
derived aortic stiffness. To examine the impact brought by each contributing factor, we perform ablation studies.

Results
Model accuracy
Table 1 details the absolute errors in aortic area (in mm2 ) and AD (in mmHg−1 ) as well as the Dice coefficient 
for both AAo and DAo. The proposed method attained lower absolute area and AD errors and higher Dice coef-
ficient values in comparison to both the state-of-the-art (SOTA) and unpruned methods. We have observed every 
model reaching a plateau before 250 epochs. Figures 1, 2 and 3 display the (maximum and minimum) area and 
AD Bland-Altman analysis plots for the proposed, SOTA and unpruned methods, respectively, versus the ground 
truth. It can be seen from the the limits of agreement of the Bland-Altman analysis plots versus the ground truth 
that the maximum and minimum aorta area as well as the AD values predicted by the proposed method had, 
on average, ∼ 3.9 times less fluctuation than the SOTA and unpruned methods. Figure 4 qualitatively compares 
the proposed and SOTA networks for three cases. Case 1 shows an instance where the SOTA method severely 
underestimated the number of pixels that had to be assigned to the aorta. Case 2 is a patient where the SOTA 
method over-segmented the AAo. Case 3 is a rare instance where the DAo is in an abnormal position relative to 
the AAo and for which the SOTA method was unable to identify the AAo. Our method accurately segmented 
both AAo and DAo for all three cases (Table 2).

Table 3 shows the results of the qualitative and quantitative comparisons of ascending and descending aorta 
time-area curves for one cardiac cycle of a representative case. It is apparent that the cardiac cycle phases of 
the proposed and the ground truth curves are in much closer agreement (for both AAo and DAo) than in the 
SOTA cases.

Model resource efficiency
Table 2 gives the predicted carbon dioxide equivalent (CO2eq) emissions (in g), the consumed energy (in kWh) 
and the equivalent distance (in km) a car could travel during the final training (250 epochs) for the proposed, 
SOTA and unpruned models. Also listed in Table 2 are the training time (in h:min:s) and the average inference 

Table 1.  Quantitative end-to-end performance of the proposed method using the absolute errors in aortic 
area and aortic distensibility (AD) and the Dice coefficient. Also provided are the p values obtained from the 
Wilcoxon-signed rank test with Bonferroni correction ( α = 0.05). The mean ground truth area (averaged over 
time and patients) was 678.826 mm2 (SD: 146.329 mm2 ) for the AAo and 370.610 mm2 (SD: 85.109 mm2 ) for 
the DAo. Bold face indicates best performance.

Model

Absolute error in area (mm2) Absolute error in AD (10−3
×mmHg−1) Dice coefficient

AAo DAo AAo DAo AAo DAo

Proposed, mean (± SD) 7.346 (± 2.257) 4.749 (± 2.567) 0.394 (± 0.401) 0.544 (± 0.908) 0.989 (± 0.003) 0.991 (± 0.004)

SOTA24, mean (± SD) 32.323 (± 25.420) 11.809 (± 10.204) 1.088 (± 1.395) 0.942 (± 2.013) 0.965 (± 0.0161) 0.978 (± 0.015)

Unpruned31, mean (± SD) 30.739 (± 21.110) 12.389 (± 7.209) 2.490 (± 2.218) 1.404 (± 1.759) 0.980 (± 0.009) 0.970 (± 0.012)

Proposed Vs  SOTA24 p 
values 1.710× 10

−15
1.539× 10

−14
5.291× 10

−08
9.022× 10

−03
1.710× 10

−15
1.710× 10

−15

Proposed Vs  Unpruned31 
p values 1.711× 10

−15
3.503× 10

−15
7.427× 10

−13
4.888× 10

−07
1.651× 10

−14
1.779× 10

−15

Table 2.  Resource efficiency evaluation of the proposed method using the generated carbon emissions, the 
consumed energy and the equivalent distance a car could travel during the final training (250 epochs). Also 
shown are the training and average inference times. The experiments were conducted on a workstation with an 
NVIDIA RTX A6000 (48GB) GPU. Bold face indicates best performance.

Model CO2 eq (g) Energy (kWh)
Equivalent distance travelled by car 
(km) Training time (h:min:s) Average inference time (ms)

Proposed 2093.571 5.984 17.388 06:46:11 2.768

SOTA24 5785.498 23.184 48.052 35:09:20 7.544

Unpruned31 11031.780 39.574 91.626 63:06:35 12.25
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time (in ms). The proposed method was ∼ 2.8 times more environmentally friendly and it consumed ∼ 3.9 times 
less fuel when compared with SOTA. In addition, it required ∼ 5.2 times less time to train, and its inference time 
was ∼ 2.7 times faster. Our method was also ∼ 5.2 times less polluting and it consumed ∼ 6.6 times less fuel 
when compared with the unpruned method. Lastly, it required ∼ 9.3 times less time to train, and its inference 
time was ∼ 4.4 times faster than the unpruned version.

Ablation study
In this section, we carried out ablation experiments over a number of features of the proposed framework to 
better appreciate their proportionate significance. In particular:

No full labels: is trained using labels obtained by propagating ES and ED labels using non-rigid image 
registration.

Figure 1.  Bland-Altman analysis for graphically comparing the proposed method to the ground truth with 
respect to aorta maximum areas, aorta minimum areas and aortic distensibility (AD) values. Y-axis gives the 
difference between the two methods whereas X-axis represents their mean. Area is measured in mm2 . AD is 
measured in 10−3

×mmHg−1 . SD is the standard deviation.
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No focal Tversky: is trained using Dice coefficient loss, ignoring the severe class imbalance in the data.
No non-linearities: is trained by merging the encoder and decoder feature maps through linear concatenation.
No dense pruning: is trained using three densely packed convolutional blocks in the final encoding step.
No filter pruning: is trained using four times more filters in the convolutional layers than the proposed model.
No BConvLSTM pruning: is trained using BConvLSTM unit in three steps instead of one.
To explore the effect of each factor on model accuracy, we employed the same evaluation metrics that were 

used in Table 1 and the same clinical images and hyperparameters that were used in the proposed framework. 
Table 4 gives the ablation results. It can be seen that not using non-linearities caused the largest drop in AD cal-
culation performance. It is surprising that increasing the model size did not lead to accuracy improvement. This 
was possibly due to overfitting. In addition, not using focal Tversky loss and the full labels had more significant 

Figure 2.  Bland-Altman analysis for graphically comparing the SOTA  method24 to the ground truth with 
respect to aorta maximum areas, aorta minimum areas and aortic distensibility (AD) values. Y-axis gives the 
difference between the two methods whereas X-axis represents their mean. Area is measured in mm2 . AD is 
measured in 10−3

×mmHg−1 . SD is the standard deviation.
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impact on the AAo AD calculation, most likely due to the increased number of false positives caused by sur-
rounding structures. Lastly, it can be seen that the drop in performance for both the absolute error in area and 
Dice coefficient are large and uniform for every row in Table 4, whereas the absolute error in AD is a lot more 
variable. The reason for this is that the AD calculation is more susceptible to maximum and minimum area 
segmentation artefacts, while the segmentation accuracy metrics are averaged over the whole cardiac cycle, thus 
dampening the artefacts’ impact.

Figure 3.  Bland-Altman analysis for graphically comparing the unpruned  method31 to the ground truth with 
respect to aorta maximum areas, aorta minimum areas and aortic distensibility (AD) values. Y-axis gives the 
difference between the two methods whereas X-axis represents their mean. Area is measured in mm2 . AD is 
measured in 10−3

×mmHg−1 . SD is the standard deviation.
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AAo is the ascending aorta, DAo is the descending aorta, SD is the standard deviation and SOTA represents 
the state-of-the-art  method24.

SOTA denotes the state-of-the-art  method24.

Ethical approval and consent to participate
Each study was approved by the UK national research and ethics service and written informed consent was 
obtained from all subjects prior to participation.

Discussion
The elevated aortic stiffness has been linked to an increased risk of cardiovascular diseases. In this study, a novel 
resource-efficient DL model was proposed for the fast, robust, and fully automated segmentation of the AAo and 
the DAo from aortic cine CMR images towards streamlining quantification of AD.

Strengths of this study
This study has a number of strengths compared to previous work. We resolved to not apply the semantic seg-
mentation algorithm to each time frame of the cardiac cycle as a separate entity. Instead, we incorporated 
information related to both space and time into our task by merging the encoder and decoder feature maps in 
the second up-sampling layer through a non-linear function, namely a BConvLSTM. The use of the hyperbolic 
tangent function for combining the output of the forward and backward paths helps the network learn complex 
data  structures31. To address the issue that the foreground is significantly smaller than the background class, we 
employed the focal Tversky loss during training. Following the enhanced credibility of the ground truth targets 
in all cardiac cycle time frames, we performed end-to-end hierarchical learning and testing of the aortic lumen 
area from cine CMR images, rather than focusing on a very limited range of time frames in the cardiac cycle. 
Another strength of this study is that we used multi-centre multi-vendor data from a highly diverse patient cohort 
which significantly adds to the ability of the proposed aortic lumen segmentation algorithm to generalise. The 
site, vendor, and patient heterogeneity when testing a model are crucial to the effective clinical implementation 
and to get approval by accreditation agencies. Unlike the model that motivated this  paper31, our algorithm uses 
a building block that returns the sequence of feature maps over all time steps since we are dealing with video 
inputs. In addition, and in pursuit of a resource-efficient architecture, our algorithm: (i) has four times fewer 
filters in the convolutional layers, (ii) involves BConvLSTM layers in three times fewer steps, and (iii) contains 
only one third of densely packed convolutional blocks in the final encoding step.

Main findings
The AAo and DAo segmentation masks predicted by our model were in close agreement with the semi-automated 
annotations by the CMR experts, as evidenced by the low area errors and the high Dice coefficient values. This 

Figure 4.  Qualitative comparison of the proposed method with the state-of-the-art (SOTA)  method24 in one 
time frame of the cardiac cycle for three representative cases. First column: MRI. Second column: Ground truth 
(semi-automated segmentation). Third column: Segmentation results of the SOTA  method24. Fourth column: 
Segmentation results of the proposed method. The yellow arrows indicate the errors in segmentation. The 
ascending aorta (AAo) is denoted by the red area and the descending aorta (DAo) is denoted by the green area.
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finding corroborates that only one densely packed convolution block in the final layer of the contracting path 
sufficed to learn diverse  features35. The proposed method was compared to other DL models that represent the 
SOTA and unpruned  methods24,31. The quantitative analysis showed that our model outperformed both SOTA 
and unpruned methods in terms of segmentation accuracy, attaining lower aortic area and AD absolute errors 
and higher Dice coefficient values for both AAo and DAo. Furthermore, the limits of agreement of the Bland-
Altman analysis plots versus the ground truth revealed that the maximum and minimum aorta area as well as 
the AD values predicted by the proposed method had, on average, ∼ 3.9 times less fluctuation than the SOTA 
and unpruned methods. These findings are in keeping with recent  studies36, which reported that more powerful 
class-discriminative features can be captured in an efficient manner by tying up the temporal with the spatial 
processing in video inputs. Importantly and as an indication of an enhanced ability to generalise, our method, 
unlike SOTA , was found to accurately segment the aortic areas for a rare (and unseen by the algorithm) case for 
which the DAo was located at an abnormal position with respect to the AAo. Such an infrequent condition can 
be observed in individuals with scoliosis or patients with aortic arch branching and orientation abnormalities. 
Unlike previous  studies24,25, the performance of the evaluated models on the AAo was slightly inferior to that 
on the DAo. A reason for this observation might be that the structures surrounding the AAo seem to be more 
challenging to differentiate between them in our diverse dataset. The consistency of the proposed segmentation 
method across the cardiac cycle was double-checked by demonstrating AAo and DAo time vs. area curves and 
estimating curve distances from the ground truth for a representative case. Finally, the proposed method was 
compared to SOTA and unpruned methods also in terms of resource-efficiency and carbon footprint using the 

Table 3.  Qualitative and quantitative comparisons of ascending and descending aorta time-area curves for 
one cardiac cycle of a representative case. SOTA denotes the state-of-the-art  method24. Bold face indicates best 
performance.

Temporal curve Fréchet distance Hausdorff distance Dynamic time warping (DTW) distance

16.822 16.822 165.424

37.384 37.384 337.390

5.607 4.673 63.552

9.346 6.542 85.048
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Carbontracker  tool37. Our method was found to consume ∼ 3.9 times less fuel and it was ∼ 2.8 less polluting 
during training than SOTA. In addition, it required ∼ 5.2 times less time to train, and its inference time was ∼ 
2.7 times shorter than SOTA. As expected, our method was also ∼ 5.2 times less polluting and it consumed ∼ 6.6 
times less fuel when compared with the unpruned method. Lastly, it required ∼ 9.3 times less time to train, and its 
inference time was ∼ 4.4 times faster than the unpruned version. Ablation studies showed that using BConvLSTM 
non-linearities gave the largest boost in AD calculation accuracy. Increasing the number of model parameters 
led to overfitting. Lastly, not using focal Tversky loss and the full labels had more significant impact on the AAo 
AD calculation, most likely due to the increased number of false positives caused by surrounding structures.

Clinical implications
Previous experiments conducted in our lab have shown that the AD aortic stiffness measure has better reproduc-
ibility than the pulse wave  velocity38. The excellent results presented in this paper allow to significantly reduce 
the time spent on extracting aortic structural and functional phenotypes from CMR data, while also improving 
the reliability of the results. Therefore, our pipeline could provide a valuable resource for exploring genome-wide 
associations of the AD and aortic areas with the cognitive performance for very large-scale biomedical data-
bases (such as the UK Biobank)39,40, which better represent the wider population. Obtaining quantitative CMR 
phenotypes at such a scale remains a challenge nowadays. This type of analysis would enable us to investigate 
possible causal relationships of the aortic measures with aortic aneurysms and brain small vessel disease, as well 
the bidirectional relationship with blood pressure indices. The definition of the responsible mechanisms would 
eventually lead to (i) improved understanding of the factors that contribute to cognitive decline and dementia, 
and (ii) identification of new therapeutic targets. Moreover, the model developed for the AD quantification task 
could be reused as the starting point for various clinically relevant tasks (through transfer learning) to allow 
rapid progress and enhanced performance. The proposed framework could easily be integrated within a CMR 
analysis software. We have shared the code of our image analysis pipeline online (https:// github. com/ tuana qeelb 
ohoran/ Aortic- Diste nsibi lity. git).

For our method to substantially impact routine clinical care, appropriate infrastructure for deployment and 
evaluation within the healthcare centre is needed. This ideally should include ML-ops platforms, pipelines for 
ensuring safety standards through identifying potential (such as methods for recognizing when the algorithm 
is operating in a more complex landscape than the one used for training or model explainability methods that 
highlight decision-relevant parts of feature representations).

Resource efficiency considerations
It was found that the computations required for DL research have grown 300,000-fold from 2012 to  201841, which 
is much faster than the rate at which compute demand has historically increased. These computations require 
staggering amounts of energy for fuelling  them32. Given that electricity usage is correlated with greenhouse gas 
emissions, the associated carbon footprint is also outsized which appears to accelerate global climate  change32. 
Even though the biggest part of this problem is caused by the very large-scale models used in natural language 
processing applications, the energy consumed by typical medical image analysis DL models is far from negligible. 
We estimated that the energy required to train our model was 5.984 KWh, as opposed to 23.183 KWh for the 
SOTA model. The respective generated carbon emissions were equivalent to those produced when a car travels 
a distance of 17.388 km for our model versus 48.052 km for SOTA. However, it is important to understand 
that those figures refer to the final training only. Before the final training run, resolving the optimal model in a 

Table 4.  Ablation over number of features using the proposed framework. “No full labels” is trained using 
labels obtained by propagating ES and ED labels using non-rigid image registration. “No focal Tversky” is 
trained using Dice coefficient loss, ignoring the severe class imbalance in the data. “No non-linearities” is 
trained by merging the encoder and decoder feature maps through linear concatenation. “No dense pruning” 
is trained using three densely packed convolutional blocks in the final encoding step. “No filter pruning” is 
trained using four times more filters in the convolutional layers than the proposed model. “No BConvLSTM 
pruning” is trained using BConvLSTM unit in three steps instead of one. Bold face indicates best performance.

Model

Absolute error in area (mm2) Absolute error in AD (10−3
×mmHg−1) Dice coefficient

AAo DAo AAo DAo AAo DAo

Proposed, mean (± SD) 7.346 (± 2.257) 4.749 (± 2.567) 0.394 (± 0.401) 0.544 (± 0.908) 0.989 (± 0.003) 0.991 (± 0.004)

No full labels, mean (± 
SD) 29.964 (± 25.754) 8.649 (± 7.776) 4.017 (± 3.230) 3.038 (± 2.581) 0.983 (± 0.011) 0.970 (± 0.016)

No focal Tversky, mean 
(± SD) 30.034 (± 28.886) 10.399 (± 6.815) 25.499 (± 148.856) 2.161 (± 1.807) 0.981 (± 0.009) 0.969 (± 0.012)

No non-linearities, mean 
(± SD) 30.589 (± 20.173) 10.367 (± 7.943) 30.761 (± 210.163) 49.617 (± 437.580) 0.980 (± 0.016) 0.967 (± 0.0154)

No dense pruning, mean 
(± SD) 30.034 (± 28.886) 10.399 (± 6.815) 25.483 (± 148.859) 2.134 (± 1.86) 0.981 (± 0.008) 0.969 (± 0.012)

No filter pruning, mean 
(± SD) 28.966 (± 28.717) 9.322 (± 6.152) 10.901 (± 58.238) 1.991 (± 1.701) 0.982 (± 0.009) 0.971 (± 0.012)

No BConvLSTM pruning, 
mean (± SD) 46.811 (± 64.332) 17.288 (± 8.793) 46.502 (± 274.518) 2.116 (± 2.227) 0.971 (± 0.011) 0.962 (± 0.014)

https://github.com/tuanaqeelbohoran/Aortic-Distensibility.git
https://github.com/tuanaqeelbohoran/Aortic-Distensibility.git
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standard development process necessitates multiple training runs due to the need for hyperparameter tuning and 
experimenting with various model architectures. To get a better handle on what the full DL model development 
pipeline might look like in terms of energy usage and carbon footprint, a recent study found that the process 
of building and testing a final paper-worthy DL model required training 4789 models over a 6-month  period42. 
The significance of the dire numbers mentioned above is colossal, especially after taking the worldwide adop-
tion of healthcare DL applications into consideration. Despite the fact that few concerns involving the energy 
usage and carbon footprint of DL research started to  emerge32,37,42, the overwhelming majority of DL research in 
computer vision for healthcare are only concerned with enhancing accuracy while ignoring resource efficiency. 
In this paper, we made energy usage and CO2 eq emissions explicit. We endorse prior calls for making those 
key metrics evaluation criteria alongside accuracy-related measures in DL research, as a means to accelerate 
innovations in DL algorithmic  efficiency32,42–45. The value of DL models should be judged by the amount of intel-
ligence they provide per joule. Such an initiative would ultimately help: (i) reduce the adverse environmental 
impact of DL research during training and development, and (ii) make DL research more inclusive by letting 
more people  participate45. With the spectre of an energy-hungry future looming alongside the escalating rates 
of natural disaster, it is imperative to explore ways to keep DL’s energy usage and carbon cost in  check32. Finally, 
it is worth noting that the resource efficiency element is appealing also because it might increase the portability 
and practicality of our approach by promoting its wider distribution to devices with lower computational power 
and memory, which in turn might open up the more universal and systematic DL-powered evaluation of the 
CMR-derived aortic stiffness.

Study limitations
This study has several limitations. Despite the large and diverse training dataset, our network is likely to produce 
less-accurate results if it is presented with pathologies, ages, ethnic backgrounds, and scanners that have not 
been included in the training set. In fact, this is the main limitation hampering the deployment of any DL model 
in the real world. To deal with this issue to a certain extent, we employed data augmentation techniques that 
simulate various possible data distributions. Altogether, it was illustrated that our pipeline exhibited improved 
ability to generalise to an unseen non-representative case compared to SOTA. Another main limitation of our 
model is that it lacks interpretability due to the intrinsic “black-box” nature of the DL algorithms. Explainable 
tools are a prerequisite for building trust in DL models, and the development of such a module will be a topic of 
future  research46. Furthermore, our model has not been tested against adversarial  attacks47. Even though Car-
bontracker supports a variety of different environments and platforms, there might be small deviations of the 
reported energy consumption and carbon emission values from the true ones. Such deviations might be caused 
by the quality of the estimated carbon intensity of electricity production which varies by geographic location 
(depending on the energy sources that power the local electrical grid) and time throughout the day (as energy 
demand and capacity change). However, all DL experiments in this study were conducted at the same worksta-
tion and time period during the day. In addition, Carbontracker uses “real-time” carbon intensity values which 
are fetched every 15 min during training using the application programming interfaces supported by this tool. 
In this study, the predicted maximum and minimum aortic areas, that were also used for the quantification of 
AD, did not always relate with the diastolic and systolic cardiac cycle phases, respectively, of the handcrafted 
analysis. However, this did not significantly affect the AD measurements. Our study required full annotation of 
all temporal frames in the cine dataset, as opposed to SOTA that required only sparse annotation. However, the 
SOTA method also needs extra resources (people, time) to identify ED and ES phases. It also needs significant 
resources (hardware, time) to perform the very computationally-intensive non-rigid registration. Lastly, the 
annotation in our study was not so time-consuming because it was largely supported by the JIM software that 
performed automated label propagation, which was then verified by the clinicians. Therefore, the consensus on 
the standards is that our study is concerned only with training resources. Finally, other recent fully-automated 
segmentation approaches do  exist48,49, that could potentially perform better than ours in the aortic lumen deline-
ation task from cine CMR images. However, the goal of this work was to propose a DL-based framework that 
surpasses the SOTA methods for this particular task while being more resource-efficient, rather than to carry 
out an exhaustive survey of semantic segmentation, the literature of which is huge.

Conclusion
This paper proposed a novel resource-efficient DL model for the fast, robust, and fully-automated segmentation 
of the AAo and DAo from aortic cine CMR images towards streamlining quantification of AD. When evaluated 
on a large multi-centre multi-vendor dataset from a highly heterogeneous patient cohort, the proposed method 
outperformed the SOTA method in terms of accuracy and at the same time it consumed ∼ 3.9 times less fuel and 
generated ∼ 2.8 less carbon emissions. Notably, the proposed method was even more accurate than the unpruned 
method. Our model could provide a valuable tool for exploring genome-wide associations of the AD and aortic 
areas with the cognitive performance in very large-scale biomedical databases. By making energy usage and 
greenhouse gas emissions explicit, the presented work aligns with efforts to keep DL’s energy requirements and 
carbon cost in check. The improved resource efficiency element of our pipeline might open up the more universal 
and systematic DL-powered evaluation of the CMR-derived aortic stiffness.

Methods
Study population and image dataset
The study population comprises participants from four clinical studies analysed at the University Hospitals of 
Leicester NHS Trust MRI core lab which included AD assessment. These included participants with spontaneous 
coronary artery  dissection50, asymptomatic type 2 diabetes (from  Lydia51 and  DIASTOLIC52 trials), hypertension 
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(the Pathway 2 study) and healthy volunteers (recruited in above  studies50,51). In total, we analysed 424 aortic 
MRI datasets taken from 376 patients. The demographic, anthropometric and clinical characteristics of the par-
ticipants are presented in Table 5. Each study was approved by the UK national research and ethics service and 
written informed consent was obtained from all subjects prior to participation. All methods were performed in 
accordance with the relevant guidelines and regulations.

MRI acquisition
Acquisitions were undertaken on either 1.5T or 3T scanners from three centres using four different MRI scan-
ners: Leicester (Siemens Aera, 1.5T and Skyra, 3T), Cambridge (GE Signa, 1.5T) and Dundee (Siemens Tri-
oTim, 3T). SSFP cine images of the AAo and DAo in a plane perpendicular to the thoracic aorta at the level of 
the pulmonary artery bifurcation were reconstructed to 30-40 phases as previously  described20,38. The typical 
image matrix was 256 × 186 to 256 pixels. The in-plane pixel height and width varied between 1.093mm and 
1.914mm. The slice thickness for cine imaging was 8mm. Brachial blood pressure was measured simultaneously 
to determine pulse pressure.

Data pre‑processing and annotation
The end-to-end data annotation was carried out semi-automatically by experts from the Glenfield hospital in 
Leicester using the Java Image Manipulation Software Version 6 (Xinapse Systems Ltd, Essex, UK)53 as previ-
ously  described20,38. The ascending and descending aorta was analysed by manually contouring the first and last 
phase and every 6th phase in between. Then images were propagated to fill in the other phases of the sequence. 
All phases were then manually checked and adjusted if required. The experts were blinded to the patient details. 
All MRI images and masked images (annotations) were zero-padded to 256 × 256 pixels so that their dimen-
sions match.

Neural network architecture
The proposed architecture (Fig. 5) was inspired by the BConvLSTM U-Net with densely connected  convolutions31. 
It consists of: (i) a contracting path (a.k.a. the encoder) for capturing the context in the image by transforming it 
into a high-level feature representation, and (ii) a symmetric expanding path (a.k.a. the decoder) for interpreting 
the feature maps, enabling precise localisation (where in the image) and producing a full resolution segmentation 
map. There are four down-sampling layers in the encoder and four up-sampling layers in the decoder.

Each encoding step consists of a sequence of two convolutional layers (3 × 3 filters and a ReLU non-linear 
 activation54) followed by a Batch Normalisation (BN)  layer55 and a 2 × 2 max-pooling. BN was employed so 
that the optimiser converges faster when training the network, whereas the max-pooling operation was used 
to aggressively down-sample the feature maps. To reduce over-fitting, dropout  regularisation56 was employed 
in the last two steps of the contracting path before the BN layer. The number of filters that each encoding layer 
computes over the input doubles at each step ([16, 32, 64, 128, 256]).

Each decoding layer consists of a sequence of two convolutional layers (3 × 3 filters and a ReLU non-linear 
activation) apart from the final decoding step that has five convolutional layers. In each step of the expanding 
path, the output of the previous layer is passed onto an up-conv layer (i.e. up-sampling function followed by a 
2 × 2 convolution; this process doubles the size of the feature map) and then combined with the corresponding 
(same-resolution-level) representation in the contracting path using skip connections. The combination of these 
two types of feature maps is a channel-wise concatenation in all steps except for the second up-sampling layer, 
where we propose to merge them in a more complex way using (apart from concatenation also) a  BConvLSTM33 
building block that outputs information about all temporal hidden states. This is to account for the spatiotemporal 
composition of the input. The BConvLSTM building block is made of two ConvLSTMs. ConvLSTM is a variant 
of the traditional LSTM neural network that is specifically designed to process spatial data. By incorporating 
convolutional structures within the LSTM gates, ConvLSTM is capable of capturing spatial dependencies in 
the data. Figure 5 provides a visual representation of the ConvLSTM block operation. The ConvLSTM block’s 

Table 5.  Patient characteristics. Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; CVA, cerebrovascular accident; DM, type 2 diabetes mellitus.

(n = 376)

Age, mean (± SD), y 48 (± 8)

Male, No. (%) 150 (40)

Female, No. (%) 226 (60)

BMI, mean (± SD), kg/m2 31.74 (± 7.41)

SBP, mean (± SD), mmHg 127.33 (± 17.44)

DBP, mean (± SD), mmHg 79 (± 12.59)

Hypertension, No. (%) 197 (52)

Smoking, No. (%) 192 (51)

History of CVA, No. (%) 2 (1)

History of DM, No. (%) 208 (55)

Renal impairment, No. (%) 78 (21)
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distinctiveness lies in its ability to apply convolutional operations within the gates, enabling the capture of spatial 
dependencies in the data. Then, the BConvLSTM output Yj at the time step j is calculated as

where −→H  and ←−H  denote forward and backward hidden state  tensors31, respectively, W
−→
H
y  and W

←−
H
y  denote the 

forward and backward convolution kernels corresponding to the hidden states, b represents the bias term, and 
the hyperbolic tangent was employed to combine the outputs of the forward and backward paths in a non-linear 
way. The mathematical equations for obtaining each of the two hidden state tensors are as follows:

Here, It , Ft , and Ot denote the input, forget, and output gates, respectively, at time t  , while Ct and σ represent the 
cell state and the sigmoid function, respectively, and xt refers to the input at time t  (Fig. 5). The input gate gov-
erns the information that is retained in the cell state. The forget gate regulates the information that is discarded 
from the cell state. The output gate controls the information utilized to compute the output of the LSTM. The 
cell state maintains the internal state of the ConvLSTM. The ∗ operator symbolises the convolution operation, 
and ◦ represents the Hadamard product (element-wise multiplication).

The number of channels reduces in every step of the expanding path ([256, 128, 64, 32, 16, 1]), whereas the 
size of the feature maps progressively increases to reach the input size after the final layer.

Unlike the Azad et al.31 that inspired this work, our method uses a BConvLSTM building block that returns 
the sequence of feature maps over all time steps since the dataset was time distributed. In addition, and in pursuit 
of a more efficient architecture, our method: (i) uses four times less filters in the convolutional layers compared 
to Azad et.al.31, (ii) involves BConvLSTM in only one step, (iii) contains only one densely packed convolutional 
block in the final encoding step.

(2)Yj = tanh(W
−→
H
y ∗

−→
H j +W

←−
H
y
←−
H j)+ b,

(3)It =σ(WXI ∗ Xt +WHI ∗Ht−1 + bI )

(4)Ft =σ(WXF ∗ Xt +WHF ∗Ht−1 + bF)

(5)Ct =Ft ◦ Ct−1 + It ◦ tanh(WXC ∗ Xt +WHC ∗Ht−1 + bC)

(6)Ot =σ(WXO ∗ Xt +WHO ∗Ht−1 + bO)

(7)Ht =Ot ◦ tanh(Ct)

Figure 5.  The proposed deep learning model, including two diagrams that illustrate how the temporal 
dimension is handled.
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Implementation and training
The dataset was randomly split into a training set (272 datasets), validation set (68 datasets) and a testing set 
(84 datasets). For training, we used the Adam  optimiser57 for 250 epochs with a constant learning rate of 0.001 
and a batch size of 120 (approximately 4 patients). The dropout value that we used was 0.5. The initialiser of 
the network was He  Normal58. In order to improve the proposed model’s ability to generalise, online data aug-
mentation techniques were employed. The augmented data were obtained from the original images by applying 
random rotations (by a degree between -30◦ and +30◦ ) and random translations along the x- and/or y-axis in 
either direction (by up to 20 pixels). All hyperparameters were tuned using grid search based on the validation 
accuracy. To address the severe class imbalance between pixel values 0 and 1 in each frame, we utilised the Focal 
Tversky loss function defined as

where γ is the adjustable focussing parameter and Tversky Loss is the Tversky index given by

where p0i is the probability that pixel i belongs to the aorta and p1i is the probability of pixel i being in the 
background  class59,60. In addition, g0i is 1 for the aortic vessel segmentation area and 0 for the background, 
and the opposite is true for g1i . Finally, α and β are variables in Tversky Loss, which control the magnitude of 
the penalties for false positives and false negatives, respectively. To improve model convergence and the recall 
 rate59,60, we trained our model with α = 0.8, β = 0.8 and γ = 1. All the methods were trained using the TensorFlow 
environment.

Model evaluation and statistical analysis
For evaluating the automated segmentation masks produced by our method relatively to the ground truth, we 
employed the Dice coefficient as well as the absolute area error (in mm2 ) and absolute AD error (in mmHg−1 ). 
In addition, we used Bland-Altman analysis for assessing the agreement between (maximum and minimum) 
aorta areas and AD  values61. The temporal fidelity of the segmentation performance across a cardiac cycle was 
assessed both qualitatively and quantitatively using the Fréchet, Hausdorff and dynamic time warping (DTW) 
distances for a representative case. To examine the impact brought by each contributing factor, we performed 
ablation studies. All analyses described above was performed for both the AAo and DAo. The reported results 
refer to the test set.

For evaluating the resource efficiency of our method, we calculated the CO2 eq emissions (in g) and energy 
spent (in kWh) during training using the Carbontracker  method37. Carbontracker is an open-source tool writ-
ten in Python for tracking and predicting the energy consumption and carbon emissions of training DL models 
for a given GPU. To put the carbon footprint produced during model training in context, we also reported the 
equivalent distance travelled by  car62 that would generate the same emission volume. The training and infer-
ence times were also computed. For comparison purposes, all evaluation metrics of the proposed method were 
juxtaposed with those produced by the  SOTA24 and  unpruned31 methods, also trained on the same multi-centre, 
multi-vendor multi-disease CMR dataset following similar training and hyperparameter tuning procedures as 
those described above. To determine if there is a statistically significant difference (at level 0.05) between the 
performances of the proposed and SOTA methods, we used the Wilcoxon signed-rank test with Bonferroni 
correction.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to privacy/ethical 
restrictions. If someone wants to request the data from this study, they should contact Prof. Gerry P. McCann 
at gpm12@leicester.ac.uk.

Code availability
The link to the GitHub repository containing the code of the image analysis pipeline is: https:// github. com/ tuana 
qeelb ohoran/ Aortic- Diste nsibi lity. git.
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