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Abstract 
 
Aim: To test the feasibility and accuracy of a new attention-based deep learning (DL) method for right 
ventricular (RV) quantification using 2D echocardiography (2DE) with cardiac magnetic resonance 
imaging (CMR) as reference. 
Methods and results: We retrospectively analyzed images from 50 adult patients (median age 51, 
interquartile range 32-62 42% women) who had undergone CMR within 1 month of 2DE. RV 
planimetry of the myocardial border was performed in end-diastole (ED) and end-systole (ES) for 8 
standardized 2DE RV views with calculation of areas. The DL model comprised a Feature Tokenizer 
module and a stack of Transformer layers. Age, gender and calculated areas were used as inputs, 
and the output was RV volume in ED/ES. The dataset was randomly split into training, validation and 
testing subsets (35, 5 and 10 patients respectively). 
Mean RVEDV, RVESV and RV ejection fraction (EF) were 163±70ml, 82±42ml and 51±8% 
respectively without differences among the subsets. The proposed method achieved good prediction 
of RV volumes (R2=0.953, absolute percentage error [APE]=9.75±6.23%) and RVEF 
(APE=7.24±4.55%). Per CMR, there was 1 patient with RV dilatation and 3 with RV dysfunction in the 
testing dataset. The DL model detected RV dilatation in 1/1 case and RV dysfunction in 4/3 cases.  
Conclusions: An attention-based DL method for 2DE RV quantification showed feasibility and 
promising accuracy. The method requires validation in larger cohorts with wider range of RV size and 
function. Further research will focus on the reduction of the number of required 2DE to make the 
method clinically applicable. 
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Introduction 1	
Two-dimensional echocardiography (2DE) is the first line imaging technique for right ventricular (RV) 2	
evaluation as it widely available, portable and cost-effective (1). However, assessment of RV on 2DE 3	
is largely qualitative in clinical practice and suffers from inadequate accuracy and reproducibility (2, 4	
3). Even when multiple 2DE quantitative indices are used, RV volumes cannot be directly and 5	
accurately calculated (3). Three-dimensional echocardiography (3DE) allows for quantitative RV 6	
assessment via calculation of RV volumes without geometric assumptions, but is commonly limited by 7	
poor image quality and requires special equipment and training (4). Cardiac magnetic resonance 8	
imaging (CMR) represents the gold standard for quantitative RV assessment (5, 6). However, CMR 9	
scanners are neither widely available nor portable; in 2019, only 5 CMR studies were performed for 10	
every 1,000 echocardiograms in the Medicare population (7). To bridge the gap between RV 11	
evaluation by 2DE and CMR, we sought to develop a novel, non geometric-, deep learning (DL)-12	
based method for accurate and readily available 2DE RV quantification. In the current study, we 13	
tested the feasibility and accuracy of the proposed DL method. 14	
 15	
Methods 16	
Cohort  17	
We retrospectively identified 50 adult patients who underwent 2DE and CMR within 30 days as part of 18	
routine cardiac care between 6/2020 – 9/2021 at Columbia University Irving Medical Center (CUIMC). 19	
In all cases, both CMR and 2DE were performed as part of an initial diagnostic evaluation and neither 20	
imaging modality was used for follow-up assessment. We excluded patients with prior cardiac surgery 21	
of the RV, tricuspid or pulmonic valve repair or replacement, complex congenital heart disease, more 22	
than small pericardial effusion, cardiac tamponade, atrial fibrillation at the time of either study, severe 23	
RV dysfunction or inadequate imaging quality. The study was approved by the CUIMC Institutional 24	
Review Board and informed consent was waived. 25	
 26	
2DE image acquisition and pre-processing  27	
Echocardiographic images were obtained by experienced sonographers with standard of care Philips 28	
Epic (7C and CVx) and i33 ultrasound systems. Scanning was performed according to the 29	
comprehensive protocol of the CUIMC Echocardiography Laboratory and the American Society of 30	
Echocardiography recommendations with a minimum of 22 anatomic views per study (8). The 31	
endocardial-myocardial RV interface was traced in end-systole (ES) and end-diastole (ED) by a 32	
single cardiologist [PNK] with expertise in cardiovascular ultrasound in the following 8 standardized 33	
views using a commercially available Syngo Dynamics workstation (Siemens): parasternal long axis 34	
(PLAX), RV-Inflow, parasternal short axis at the level of the aortic valve (PSAX-AV), base (PSAX-35	
base), mid (PSAX-mid) and apex of the left ventricle (PSAX-distal), standard four-chamber (Four-C) 36	
and subcostal four chamber (Sub-C). If the standard four-chamber view was not available or had poor 37	
image quality, a focused apical RV view was used. An area was automatically calculated for each 38	
tracing by the workstation. The cardiologist was blinded to the CMR results.  39	
Additional RV tracing measurements were performed for a subset of the patients (training subset, 40	
n=10, please see implementation subsection below) by [PNK] and independently by [ML] in order to 41	
evaluate for intra- and interobserver reliability respectively. 42	
2DE detection of RV dilatation and dysfunction was qualitative, according to the judgement of 43	
experienced cardiologists. However, quantitative indices of RV dilatation (RV basal diameter in Four-44	
C view) and dysfunction (tricuspid annular plane systolic excursion [TAPSE] and peak systolic RV 45	
tissue Doppler [RVS’]) were calculated add hoc. We used a left ventricular ejection fraction of 50% as 46	
cutoff for left ventricular dysfunction.  47	
 48	
Cardiac MRI image acquisition  49	
Cardiac MRI studies were performed with breath holding and electrocardiogram gating using a Signa 50	
1.5 Tesla MRI scanner (General Electric, Milwaukee, WI) with either sixteen or eight-channel phased 51	
array. Short-axis cine images were acquired using a steady-state free precession pulse sequence 52	



with the following typical parameters: TR 3.0 ms, TE 1.0 ms, flip angle of 60°,  16 views per segment, 1	
field of view 35 x 35 mm, acquisition matrix 256 x 256, slice thickness 8 mm with no gap, and receiver 2	
bandwidth 125 kHz.  3	
	4	
	5	
Cardiac MRI image analysis  6	
CMR analysis was performed using cvi42 v5.11 (Circle Cardiovascular Imaging, Calgary) by one of 7	
four experienced cardiac radiologists with between 3 and 17 years of experience independently 8	
reading studies. Cine loops were used to select images at end-diastole and end-systole. End-diastole 9	
and end-systole were defined independently for both the right and left ventricles as the phases with 10	
the largest and smallest volumes, respectively. Endocardial segmentation was performed by manual 11	
tracing of each end-diastolic and end-systolic short-axis view and used to calculate right and left 12	
ventricular volumes. Four chamber cine images were used as a reference to help define the 13	
atrioventricular valves and apical planes. Right ventricular ejection fraction (RVEF) was calculated 14	
from end-diastolic and end-systolic volumes (RVEDV − RVESV)/RVEDV). By convention, 15	
trabeculations and papillary muscles were considered part of the ventricular blood pool in both systole 16	
and diastole. We applied gender specific CMR cutoffs for RV dilatation and dysfunction as proposed 17	
by Petersen et al (9). 18	
 19	
Deep learning architecture  20	
Areas derived from 2DE RV planimetry along with their corresponding cardiac phase (ED or ES), 21	
patient age and gender were used by a DL algorithm, namely a Feature Tokenizer (FT) and 22	
Transformer model, in order to predict CMR RV volumes (Figure 1). Age and gender were selected 23	
as input variables since they are available on every 2DE study and also determine normal RV cutoffs 24	
for volumes and RVEF. RVEF was then calculated from RV volumes using the formula (RVEDV-25	
RVESV) / RVEDV. In summary, the FT-Transformer is a DL algorithm for tabular data where all 26	
categorical and numerical inputs (features) are tokenized and then forwarded to cascaded 27	
Transformer layers (10). A separate input variable specified the cardiac phase of the calculated areas 28	
(ED or ES). 29	
 30	
In more detail, the Feature Tokenizer module turns inputs x into embeddings T ∈ Rh x w. The 31	
embedding for a feature xi  is obtained by: 32	
  Ti = Bi + fi (xi) ∈ Rw fi : Xi → Rw  33	
where Bi is the ith feature bias, fi (num) is the element-wise multiplication of xi (num) with vector Wi(num) ∈ 34	
Rw (numerical features) and fi (cat) is a lookup table with Wi (cat) ∈ RSi  × w for xi (cat)  (categorical 35	
features). The module can be described overall as: 36	
                    Ti (num) = Bi (num) + xi (num) · Wi (num)    ∈ Rw 37	
                            Ti (cat) = Bi (cat) + ei

TWi(cat)    ∈ Rw 38	
            T = stack [T1 (num), . . Tk (num), T1 (cat), . . Tk (cat)]   ∈ Rh x w 39	
where ei

T is a one-hot vector for the corresponding categorical feature.    40	
 41	
In the Transformer module, the embedding of [CLS] token (classification token) is appended to T, 42	
and L transformer layers F1, . .FL are applied (11):        43	
													T0	=	stack	[	[CLS],	T	]	 											Ti	=	Fi	(Ti−1)  44	
 45	
The final representation of the [CLS] token is used for both RVEDV and RVESV prediction:  46	
											Ypred	=	Linear(	ReLU(LayerNorm	(TL	[CLS]))	)	47	
	48	



Normalization (12), removal of first Normalization, Feed Forward and Multi-Head Self-Attention 1	
(MHSA) (13) were implemented in each Transformer layer as described by Gorishniy et al (10). 2	
 3	
Implementation  4	
The cohort of 50 patients was randomly split into training (n=35), validation (n=5) and testing (n=10) 5	
datasets with equal number of ED and ES volumes corresponding to the same patients. The mean 6	
squared error loss function was used for training. We trained for 500 epochs with batch size=1. The 7	
hyperparameters were chosen using the random search method. 8	
 9	
Statistical analysis & DL method evaluation  10	
Baseline characteristics were compared between groups using the Kruskal-Wallis ANOVA test for 11	
continuous variables and Pearson’s χ² test for categorical variables. Intraclass correlation coefficients 12	
(ICC) were calculated to evaluate the intra- and inter-observer reliability of measured RV tracings for 13	
the testing dataset using a 2-way fixed and a 2-way random effects model respectively. In both cases, 14	
an absolute agreement criterion was applied. ICC values of less than 0.5, 0.5-0.75, 0.75-0.9 and 15	
above 0.9 were used to indicate poor, moderate, good and excellent reliability, respectively. All tests 16	
were two-sided and p<0.05 was considered as statistically significant. STATA 17.0 BE (StataCorp 17	
LLC, Texas USA) was used for statistical analyses. Python programming language was used for 18	
implementation of the DL algorithms. 19	
 20	
Predicted RV volumes and calculated RVEF were compared to CMR-derived RV volumes and 21	
RVEF (ground truth). State of the art machine learning algorithms for tabular data, namely XGBoost, 22	
CatBoost and Tab-Transformer (14), were also used to predict RV volumes based on the same 2DE 23	
planimetered areas. We compared predicted RV volumes against CMR-calculated volumes by 24	
using the R2 coefficient, the absolute percentage error (APE) and performed Bland-Altman analysis. 25	
All state of the art methods were implemented according to the recommended values by Gorishniy 26	
et al (10). Predicted RV volumes and calculated RVEF were plotted against the CMR reference 27	
values (ground truth).  28	
 29	
Results 30	
 31	
Baseline characteristics  32	
Table 1 summarizes the baseline clinical, echocardiographic and CMR characteristics of the study 33	
cohort. Patients had median age 51, interquartile range 32-62 and 42% were women. Twenty patients 34	
(40%) had a clinical history of heart failure and 6 (12%) had prior left sided cardiac surgery. Seven 35	
patients (14%) had hypertrophic cardiomyopathy and 6 (12%) had simple congenital heart disease 36	
(atrial/ventricular septal defect, anomalous coronary artery, bicuspid/unicuspid aortic valve). There 37	
were no significant differences in clinical characteristics between the training (n=40) and testing 38	
(n=10) subsets (Table 1). 39	
 40	
By 2DE, 28% of patients had left ventricular systolic dysfunction. RV dilatation and dysfunction were 41	
identified in 20% and 16% of patients respectively, using 2DE. No patient had severe RV dilatation or 42	
dysfunction. Mean RV basal diameter was 3.8±0.8 cm. TAPSE and RVS’ were 18.8±5.6 mm and 43	
11.8±2.5 cm/s, respectively. The testing subset did not include any patient with RV dilatation by 2DE, 44	
however this difference was not statistically significant (p=0.317). 45	
 46	
The mean time interval between 2DE and CMR was 9.9±5.6 days (median 6 days, interquartile range 47	
2-20 days). By CMR, mean RVED and RVES volume was 163±70 ml and 86±45 ml, respectively. 48	
Mean RVEF was 50±8 %. Six patients (12%) had RV dilatation and 9 (18%) had RV dysfunction. 49	
According to the same cutoffs, there was no difference in RV dilatation or dysfunction between the 50	
training and testing subsets (13% vs. 10% and 18% vs. 20% respectively). 51	
 52	



Final hyperparameters 1	
The final hyperparemeters of the DL model are shown in Supplementary Table 1 and are compared 2	
to the respective values from the initial study that introduced its design. 3	
 4	
Accuracy 5	
The proposed DL method for RV volume prediction achieved good accuracy with R2=0.953 (Figure 6	
2A) and absolute percentage error [APE]=9.75±6.23%. It also outperformed state of the art machine 7	
learning algorithms for tabular data, namely XGBoost (R2=0.684, APE=19.14±17.16%), CatBoost 8	
(R2=0.749, APE=20.10±17.91%) and Tab-Transformer (14) (R2=0.810, APE=16.22±13.17%) (Table 9	
2). Similar accuracy was achieved for RVEF with APE=7.24±4.55% (Figure 2B) (Table 3). Bland-10	
Altman analysis, presented as mean bias ± 95% limits of agreement, also revealed good agreement 11	
between CMR and the proposed method for RVED (1.27±23.35ml) and RVES (-2.61±19.63ml) 12	
volumes, and RVEF (-1.97±7.04%) (Figure 3).  13	
 14	
Using CMR-derived RV volumes and RVEF, there was 1 patient with RV dilatation and 3 with RV 15	
dysfunction in the testing dataset (n=10). Of note, qualitative 2DE analysis did not show any patient 16	
with RV dilatation in the testing dataset and 2 patients with RV dysfunction were detected of whom 17	
none had RV dysfunction by CMR. Therefore, there was no correlation at all between qualitative 2DE 18	
analysis and CMR (0% accuracy for both dilatation and dysfunction). The FT-Transformer correctly 19	
classified the 1 patient with RV dilatation and did not detect any other patients with RV dilatation 20	
(100% diagnostic accuracy).  The FT-Transformer correctly identified the 3 patients with RV 21	
dysfunction by CMR (100% sensitivity) and additionally detected a 4th patient that did not have RV 22	
dysfunction by CMR (75% specificity) yielding a diagnostic accuracy of 90%.  23	
 24	
Intra- and interobserver variability 25	
The results of intra- and interobserver reliability analyses of measured RV tracings from 8 different 26	
2DE views in ED and ES are shown in Supplementary Tables 2 and 3, respectively. Measurements 27	
from the subcostal views showed poor intra- and interobserver reliability in both ES and ED. 28	
Parasternal short axis views of the RV at the mid and distal level showed poor to moderate 29	
intraobserver reliability in both ES and ED. On the contrary, only the parasternal mid axis view 30	
showed moderate interobserver reliability in ED. Measurements in all other views and cardiac phases 31	
showed in general good to excellent intra- and interobserver reliability. 32	
 33	
 34	
Discussion 35	
 36	
Machine learning applications, specifically DL, are increasing exponentially in cardiovascular 37	
medicine (15), and particularly in cardiovascular imaging (16). To our knowledge, we report the first 38	
non-geometric-based, DL method for volumetric and functional 2DE quantification of the RV. 39	
Specifically, we used a tabular FT-Transformer for the prediction of RV volumes -and therefore, 40	
RVEF- from eight planimetered 2DE views. Our results suggest an accuracy that is close to that of 41	
CMR and better compared to other state of the art DL algorithms. Importantly, the proposed method 42	
showed significantly improved diagnostic accuracy for the identification of RV dilatation and 43	
dysfunction compared to qualitative 2DE.  44	
 45	
RV dysfunction was previously thought of as a bystander of other cardiopulmonary diseases, such as 46	
pulmonary hypertension, valvular or congenital heart disease (17-21). Today, its importance is well 47	
established and it is considered a strong and independent predictor of mortality (20, 22, 23). 48	
Furthermore, RV dysfunction is common; recent studies suggest that it is found in approximately 1 49	
out of 5 people who undergo cardiac evaluation in the US (24, 25). Accurate RV size and function 50	
evaluation via non-invasive imaging is therefore critical for the timely diagnosis and treatment 51	
guidance of RV dysfunction. 52	



 1	
CMR is the gold standard for RV evaluation, as it allows for accurate, reproducible and quantitative 2	
assessment of the complex RV shape without geometric assumptions (5, 6, 26). Despite its 3	
advantages though, CMR is not widely available; only 582 physicians provided CMR services in 45 4	
states for the Medicare B population in 2017 (27) and annual CMR volume represents only 0.5% of 5	
the respective volume of echocardiograms in the US (7). Major barriers to expansion of CMR use are 6	
expensive infrastructure, specialized personnel and the high cost of CMR studies themselves.  7	
 8	
On the other hand, 2DE is widely available, with over 23,000 echocardiograms performed in 2019 per 9	
100,000 Medicare beneficiaries (7). The major limitations of 2DE RV evaluation in daily practice are 10	
low accuracy, poor reproducibility and inability to calculate RV volumes and RVEF (1, 2, 28). In a 11	
quality control study, 15 readers performed 2DE RV evaluation for 12 patients and results were 12	
compared to CMR. RV dilatation and low RVEF were missed in 4 out of 10, and 3 out of 10 times, 13	
respectively. When multiple 2DE quantitative indices were used (e.g. TAPSE, RVS’), accuracy 14	
improved but was not close to that of CMR. In addition, grading of RV dilatation and dysfunction 15	
remained problematic; mild or moderate RV dysfunction were correctly identified only 57% of time; 16	
and mildly or moderately dilated RV size only 47% of time (3). This lack of accuracy in 2DE RV 17	
evaluation can lead to under-diagnosis of RV dilatation/dysfunction, delay in treatment and potentially 18	
adverse clinical outcomes. Additionally, it constitutes the follow up of patients with RV dysfunction 19	
who receive specific therapy unreliable (29). 3DE can provide quantitative RV assessment without 20	
geometric assumptions, but has failed to bridge the gap between echocardiography and CMR in daily 21	
clinical practice, as it requires special equipment, advanced training and is significantly limited by 22	
image quality (4). In response to this unmet need for better RV evaluation, the National Heart, Lung 23	
and Blood Institute in collaboration with the National Institute of Biomedical Imaging and 24	
Bioengineering have recommended the development of new imaging methods of the RV (30). 25	
 26	
A number of previous 2DE quantitative methods that used geometric assumptions to calculate RV 27	
volumes resulted in poor accuracy and reproducibility compared to CMR, most likely because of the 28	
geometrically complex RV shape (31, 32). A knowledge-based 2DE method to quantify RV volumes 29	
has also been proposed with reported good accuracy and reproducibility. The method interpolates 30	
between manual tracings from seven 2DE views by referencing against an online database of CMR-31	
derived RV shapes (33). However, this method is tedious and time-consuming, requiring tracings 32	
from at least 6 different views and was not adopted for daily clinical practice. Recently, a DL was 33	
used for the first time to predict RVEF from 2DE (34). Although this study represents a very important 34	
step, it does not perform RV volume quantification and its overall accuracy was similar to 2DE. 35	
 36	
The results of our pilot study suggest an agreement between the proposed DL method and CMR that 37	
is similar to the agreement between 3DE and CMR for RV evaluation (reported as -2.3±27.4ml and 38	
5.2±19.0ml for RVED and RVES volumes per Bland-Altman analysis) (35). Therefore, the proposed 39	
DL method could break new ground in non-invasive RV evaluation, by offering widely available and 40	
accurate RV quantification based only on 2DE. Furthermore, it would potentially function as a 41	
gatekeeper for CMR and allow for more appropriate clinical follow up without the need for serial CMR 42	
imaging. 43	
 44	
 45	
Limitations 46	
We recognize 2 main limitations in the current pilot study. First, the cohort used was small and with 47	
only a small percentage of patients with dilated and dysfunctional RVs. Secondly, clinically 48	
established methods for quantification of left ventricular function such as the modified Simpson’s rule 49	
and global longitudinal strain require tracings from two and three 2DE views respectively (36). Tracing 50	
of the endocardial-myocardial interface from 8 different views that is used in our method is time-51	
consuming, can result in poor reliability as we noted from subcostal and mid-distal parasternal short-52	



axis views. Lastly, our results are based on CMR and 2DE that were performed within 30 days 1	
(median 6 days).  Multimodality imaging is ideally performed on the same day or as close as possible 2	
to minimize physiological changes. However, experts in the field have previously used an interval up 3	
to 30 days in several studies combining 2DE and CMR (37-39). 4	
 5	
Future directions 6	
The results provide a strong foundation to expand the work in a larger dataset with further training 7	
and testing in much larger sample that will allow more robust performance statistics and an external 8	
validation cohort.  Additionally we aim to implement DL models or other statistical methods for 9	
reduction of the number of required 2DE views to a maximum of 3 by analyzing which views carry the 10	
most importance. Finally, we aim to test the reproducibility of the method and investigate whether it 11	
can be combined with automated or semi-automated segmentation to reduce the manual burden from 12	
the physician.  13	
 14	
Conclusions 15	
In summary, the current study suggests that quantitative RV evaluation via a non-geometric, DL 16	
method using traced 2DE RV areas is feasible and increases diagnostic accuracy compared to 17	
qualitative 2DE for the detection of RV dilatation and dysfunction. Further research will aim at 18	
validating the method in larger cohorts with greater variation in RV size and function, as well as 19	
reducing the number of required 2DE views. 20	
 21	
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Figures 
 
Graphical abstract 
2DE views of the RV are planimetered manually in ED and ES. Calculated areas are entered in the 
DL model along with age and gender. The DL model is trained to approximate CMR-derived RV 
volume in ED and ES. RVEF is then simply calculated from the RV volumes. 
 
2DE = 2D echocardiography, 3D = 3 dimensional, CMR = cardiac magnetic resonance imaging, RV = 
right ventricle, ED = end diastole, ES = end systole, DL = deep learning 
 
 
Figure 1. Attention-based deep learning architecture used for prediction of CMR RV volumes by 
traced 2DE RV areas. Features are turned into embeddings before a stack of Transformer layers is 
applied. 
 
2DE = 2D echocardiography, CMR = cardiac magnetic resonance imaging, RV = right ventricle 
 
 
Figure 2. Predicted A) RVED and RVES volumes and B) RVEF vs. ground truth (CMR) using the 
proposed attention-based deep learning architecture 
 
RVED = right ventricular end diastolic, RVES = right ventricular end systolic, CMR = cardiac magnetic 
resonance imaging 
 
 
Figure 3. Bland-Altman analysis for predicted RVED (A) and RVES (B) volume, as well as RVEF (C) 
vs. CMR 
 
RV = right ventricle, RVED = right ventricular end diastolic, RVES = right ventricular end systolic 
RVEF = RV ejection fraction, CMR = cardiac magnetic resonance imaging 
 



Tables 
Table 1. Baseline clinical and imaging characteristics (presented as mean±SD or frequency (%) ) 
 

Clinical Data 
All  

(n=50) 
Training 
(n=40) 

Testing  
(n=10) 

p-
value 

Clinical     
Female gender 21 (42) 16 (40) 5 (50) 0.567 
Age 47±18 48±18 46±17 0.698 
Coronary artery disease 11 (22) 9 (23) 2 (20) 0.864 
Diabetes  7 (14) 6 (15) 1 (10) 0.684 
Paroxysmal atrial fibrillation 6 (12) 5 (13) 1 (10) 0.828 
Hypertrophic cardiomyopathy 7 (14) 5 (13) 2 (20) 0.541 
Simple congenital heart 
disease (ASD,VSD, 
Bicuspid/unicuspid AV, ACA) 6 (12) 5 (13) 1 (10) 0.828 
Heart failure 19 (40) 14 (38) 5 (50) 0.449 
Prior cardiac surgery 6 (12) 5 (13) 1 (10) 0.828 
Echocardiography     
LV systolic dysfunction 14 (28) 11 (28) 3 (30) 0.750 
   Mild 3 (6) 2 (5) 1 (10)  
   Moderate 8 (16) 6 (15) 2 (20)  
   Severe 3 (6) 3 (8) 0 (0)  
RV basal diameter [cm]  
(4-chamber)  3.8±0.8 3.9±0.7 3.8±0.9 0.698 
RV dilatation 10 (20) 10 (26) 0 (0) 0.317 
   Mild 6 (12) 6 (15) 0 (0)  
   Moderate 4 (8) 4  (10) 0 (0)  
RV dysfunction 8 (16) 6 (15) 2 (20) 0.843 
   Mild 7 (14) 5 (1) 2 (20)  
   Moderate 1 (2) 1 (2) 0 (0)  
TAPSE [mm] 18.8±5.6 18.6±5.8 19.4±5.3 0.808 
RVS’ [cm/s] 11.8±2.7 11.8±2.6 11.9±1.8 0.634 
FAC [%] 46±10 46±10 44±13 0.357 
TR moderate or more 5 (10) 5 (13) 0 (0) 0.239 
CMR     
Time between TTE & CMR 
[days] 9.9±5.6 10±10 8±8 0.488 
RVEDV [ml] 163±70 164±76 160±39 0.628 
RVESV [ml] 86±45 83±45 79±28 0.913 
RVEF [%] 50±8 50±8 52±8 0.913 
RV dilatation # 6 (12) 5 (13) 1 (10) 0.828 
RV dysfunction # 9 (18) 7 (18) 2 (20) 0.854 

 
* not available for 15 patients  
^ all patients were in normal sinus rhythm at the time of TTE and CMR 
# gender-specific cutoffs were applied



 
Table 2. Quantitative comparison of the predicted RV volumes between the proposed and state of the 
art machine learning methods. 
 

Method R2 Score APE (%) mean 
(±SD) 

p-value 

Proposed 0.953 9.75 (±6.23) — 
TabTransformer 0.810 16.22 (±13.17) 0.13 

CatBoost  0.749 20.10 (±17.91) <0.001 
XGBoost 0.684 19.14 (±17.16) 0.053 

 
APE = absolute percentage error, SD = standard deviation. p-values were obtained from the Wilcoxon signed-
rank test (α = 0.05). 
 
 
 



Table 3. Quantitative comparison of the calculated RVEF between the proposed and state of the art 
machine learning methods. 
 

Method APE in RVEF (%) mean 
(±SD) 

p-value 

Proposed 7.24 (±4.55) - 
TabTransformer  11.42 (± 8.22) 0.160 

CatBoost  19.15 (± 11.03) 0.006 
XGBoost  24.21 (± 20.90) 0.038 

 
APE = absolute percentage error, SD = standard deviation. p-values were obtained from the Wilcoxon signed-
rank test (α = 0.05). 
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Supplementary Table 1. Hyperparameters used in the final DL model for 
prediction of RV volumes by traced 2DE RV areas 
	

Parameter Used in our 
method 

Recommended by 
Gorishniy et al. 12 

#Layers 3 6 
Feature embedding size 16 512 

Residual Dropout 0.3 0.2 
Attention Dropout 0.3 0.5 

FFN Dropout 0.3 0.5 
FFN Factor 4/3 4/3 

Learning Rate 0.01 LogUniform[3e-5,3e-4] 
Weight Decay 0 LogUniform[3e-6,3e-3] 

Optimizer Adamax AdamW 
	
2DE	=	2D	echocardiography	



Supplementary Table 3. Intraclass correlation coefficients for interobserver reliability of measured 
RV tracings.  Based on 2-way random effects model and absolute agreement 
 

A. End Diastole 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RV tracing  Type  Intraclass 
correlation 

95% Confidence Interval F test with true 
value 0 

Lower 
Bound 

Upper 
Bound Value Sig 

PLAX Single 0.975 0.909 0.993 77.57 <0.001 
Average 0.987 0.952 0.997   

RVinflow Single 0.937 0.782 0.983 32.45 <0.001 
Average 0.967 0.878 0.991   

PSAX_AV Single 0.936 0.781 0.983 31.11 <0.001 
Average 0.967 0.877 0.991   

PSAX_base Single 0.862 0.473 0.965 18.32 <0.001 
 Average 0.926 0.642 0.982   

PSAX_mid Single 0.648 0.040 0.901 4.33 0.020 
 Average 0.786 0.077 0.947   

PSAX_distal Single 0.944 0.781 0.986 42.15 <0.001 
 Average 0.971 0.877 0.993   

Four_C Single 0.930 0.723 0.982 34.66 <0.001 
 Average 0.964 0.839 0.991   

SubC Single 0.282 -0.352 0.752 1.80 0.197 
 Average 0.440 -1.08 0.858   



 
B. End systole 

 

	

RV tracing  Type  Intraclass 
correlation 

95% Confidence Interval F test with true 
value 0 

Lower 
Bound 

Upper 
Bound Value Sig 

PLAX Single 0.956 0.836 0.988 40.85 <0.001 
Average 0.977 0.910 0.994   

RVinflow Single 0.931 0.750 0.982 25.78 <0.001 
Average 0.964 0.857 0.991   

PSAX_AV Single 0.926 0.732 0.981 30.37 <0.001 
Average 0.961 0.845 0.990   

PSAX_base Single 0.916 0.285 0.983 51.47 <0.001 
 Average 0.956 0.443 0.991   

PSAX_mid Single 0.836 0.470 0.956 10.30 0.001 
 Average 0.911 0.639 0.977   

PSAX_distal Single 0.974 0.906 0.993 82.21 <0.001 
 Average 0.987 0.951 0.996   

Four_C Single 0.913 0.709 0.977 22.46 <0.001 
 Average 0.954 0.829 0.988   

SubC Single 0.368 -0.334 0.797 2.09 0.144 
 Average 0.538 -1.004 0.887   



Supplementary Table 2. Intraclass correlation coefficients for intraobserver reliability of measured 
RV tracings.  Based on 2-way fixed effects model and absolute agreement. 
 

A. End diastole 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RV tracing  Type  Intraclass 
correlation 

95% Confidence Interval F test with true 
value 0 

Lower 
Bound 

Upper 
Bound Value Sig 

PLAX Single 0.891 0.452 0.975 27.59 <0.001 
Average 0.798 0.247 0.949   

RVinflow Single 0.679 0.021 0.915 8.68 0.002 
Average 0.809 0.043 0.955   

PSAX_AV Single 0.851 -0.032 0.972 43.99 <0.001 
Average 0.920 -0.065 0.985   

PSAX_base Single 0.760 -0.069 0.952 32.40 <0.001 
 Average 0.863 -0.148 0.975   

PSAX_mid Single 0.455 -0.139 0.824 2.79 0.071 
 Average 0.625 -0.323 0.903   

PSAX_distal Single 0.570 0.021 0.868 4.27 0.021 
 Average 0.726 0.040 0.929   

Four_C Single 0.720 -0.076 0.937 16.59 <0.001 
 Average 0.837 -0.164 0.967   

SubC Single 0.362 -0.378 0.798 2.03 0.154 
 Average 0.532 -1.218 0.888   



B. End systole 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RV tracing  Type  Intraclass 
correlation 

95% Confidence Interval F test with true 
value 0 

Lower 
Bound 

Upper 
Bound Value Sig 

PLAX Single 0.882 0.230 0.975 32.68 <0.001 
Average 0.937 0.374 0.987   

RVinflow Single 0.831 0.257 0.960 17.94 <0.001 
Average 0.907 0.409 0.979   

PSAX_AV Single 0.860 -0.015 0.973 44.76 <0.001 
Average 0.925 -0.031 0.986   

PSAX_base Single 0.658 -0.088 0.922 17.32 <0.001 
 Average 0.794 -0.195 0.960   

PSAX_mid Single 0.561 -0.048 0.870 5.45 0.009 
 Average 0.719 -0.102 0.937   

PSAX_distal Single 0.407 -0.162 0.800 2.58 0.087 
 Average 0.578 -0.388 0.889   

Four_C Single 0.682 -0.064 0.922 11.52 0.001 
 Average 0.811 -0.138 0.959   

SubC Single 0.454 -0.262 0.833 2.50 0.094 
 Average 0.624 -0.712 0.909   


