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Abstract

The integration of unmanned aerial vehicles (UAVs) in future communication networks has received

great attention, and it plays an essential role in many applications, such as military reconnaissance, fire

monitoring, etc. In this paper, we consider a UAV-aided video transmission system based on mobile

edge computing (MEC). Considering the short latency requirements, the UAV acts as a MEC server to

transcode the videos and as a relay to forward the transcoded videos to the ground base station. Subject to

constraints on discrete variables and short latency, we aim to maximize the cumulative utility by jointly

optimizing the power allocation, video transcoding policy, computational resources allocation, and UAV
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flight trajectory. The above non-convex optimization problem is modeled as a Markov decision process

(MDP) and solved by a deep deterministic policy gradient (DDPG) algorithm to realize continuous

action control by policy iteration. Simulation results show that the DDPG algorithm performs better

than deep Q-learning network algorithm (DQN) and actor-critic (AC) algorithm.

Index Terms

UAV, mobile edge computing, video transcoding, utility, DDPG.

I. INTRODUCTION

Recently, many forest fires have created new challenges in monitoring the fire conditions.

Dynamically monitoring real-time panoramic images of the affected area is essential for fire-

fighters [1]. Unmanned aerial vehicles (UAVs) can be a promising solution owing to their unique

advantages, such as low cost, high mobility, and the ability to capture high-definition videos [2].

In general, the affected area in deep forest is far from available communication facilities. It

is vital to have effective and stable communication with the ground base station. Fortunately,

many excellent works (e.g., [3], [4]) have been conducted on the UAV-aided relaying system,

providing quick and on-demand wireless connections for the area without network coverage. In

addition, a dynamic transcoding policy is considered to accommodate mobile users’ dynamic

nature better. Although it is a task that consumes large amounts of computational resources,

mobile edge computing (MEC) is regarded as a promising scheme [5]. It is a great attempt to

leverage the technology of the UAV in MEC networks, which has been shown to be substantial

[6]–[9]. MEC makes more personalized video transcoding services for users with low latency.

Although UAVs have several advantages in wireless communication, the lack of energy has

become a significant bottleneck limiting the further development of UAV-aided communication

systems [7]. Therefore, it is meaningful to improve the energy efficiency. Considering the video

quality, the system’s utility [10], [11] is established as the main variable to be discussed.



Many works (e.g., [12]–[14]) have used traditional techniques to deal with the problem, which

requires acquiring environmental information such as channel conditions and other equipment

locations before the UAV takes off [15]. However, the actual deployment environment of the

UAV is complex and variable, and many environmental variables cannot be acquired in advance.

Therefore, it is practically significant to make immediate decisions while interacting with the

environment. In recent years, the rapid development of deep learning has brought a breakthrough

in reinforcement learning (RL), and their combination, i.e., deep reinforcement learning (DRL),

has overcome the limitations of complex environments and significantly accelerated the training

speed of agents.

To address these challenges, we investigate a UAV-aided MEC network for video streaming.

It has robust research significance and application value in achieving maximum system’s utility

by jointly optimizing the power allocation, video transcoding policy, computational resources

allocation, and UAV flight trajectory. The main contributions of our work are as follows:

• We propose a UAV-aided MEC network for video streaming. The observation UAVs (OUAVs)

capture real-time panoramic images of the monitoring area with a fixed trajectory. A relay

UAV (RUAV) is deployed to relay and transcode the videos according to a dynamic transcod-

ing policy. The dynamic selection of transcoding policy is a computationally intensive task.

Subject to constraints on short latency, we jointly optimize the power allocation of all UAVs,

transcoding policy, computational resources allocation, and flight trajectory of the RUAV to

maximize the system’s utility.

• We formulate the non-convex optimization with different practical constraints into a Markov

decision process (MDP). The approach identifies the distances as states; power allocation,

computational resources allocation, moving directions and transcoding policy as actions;

and the system’s utility as the reward. Faced with the continuity of action space, we apply

the deep deterministic policy gradient (DDPG) algorithm to learn the near-optimal policy.

• A Python-based simulator is developed in the simulation to implement the proposed al-



gorithm. In addition, we simulate the deep Q-learning network algorithm (DQN) and the

actor-critic (AC) algorithm for comparison. The results show that the proposed DDPG

algorithm can achieve higher cumulative utility.

The rest of this paper is arranged as follows. Section II provides the related work. Section III

introduces the UAV-aided video transmission system based on MEC and formulates the problem.

MDP and the DDPG-based framework are presented in Section IV. In Section V, we present the

simulation results and discuss them to demonstrate the effectiveness and superiority of proposed

the DDPG algorithm. Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Energy Efficiency in UAV-Aided Communication Systems

The disadvantages of limited batteries accompany the widespread presence of UAV-aided

communication systems, and enhancing energy efficiency has become a hot topic. In UAV-aided

communication systems, the energy consumption of UAVs is mainly composed of communication

energy consumption for signal processing and flight energy consumption to overcome gravity

and air resistance [12]. For the communication energy consumption, we can adapt the energy

consumption model [16] that has been extensively validated in ground communication. Another

fortunate thing is that the flight power of the rotary-wing UAV was modeled as the sum of

constant blade profile power, induced power, and parasite power through a rigorous mathematical

derivation [12], thereby providing an excellent basis for the study of UAV energy efficiency.

Recently, there have been many works (e.g., [13], [14], [17]) focusing on the energy efficiency

issue in UAV-aided communication systems. Wang et al. presented a UAV-aided data collection

sensor network in [13]. The energy consumption was minimized by path planning and power

allocation for data uploading. Constrained by communication power and fuel consumption, Zhang

et al. maximized the energy efficiency through power control and UAV trajectory design [14].



Conversely, the variables in the communication system are optimized by traditional optimiza-

tion algorithms, which require the acquisition of environmental information before the departure

of the UAV. As for the UAV communication system, various studies have applied the DRL

approaches to solve the joint trajectory optimization and resource allocation problems [11],

[17]–[19]. With DQN algorithm, Zhan et al. in [17] aimed to reduce the energy consumption

by jointly optimized trajectory and task completion time allocation. Nasr-Azadani et al. in [18]

adopted AC algorithm to jointly optimize the user association and UAVs’ trajectories. In [11] and

[19], efficient trajectory designs have been proposed by employing the multi-agent algorithm.

To summarize, most of these existing works try to maximize energy consumption or energy

efficiency of UAV-aided systems, nevertheless, these methods cannot be directly used in dynamic

adaptive streaming transcoding scenarios.

B. UAV-aided Video Streaming

Since UAVs can capture video streaming from a bird’s-eye view via their equipped high

definition camera, they play an even more critical role in video streaming applications such

as military reconnaissance, natural disaster monitoring, etc. [20]. Nowadays, UAV-aided video

streaming has caught great attention in academia. A UAV-aided video streaming system was

studied by Zhan at al. [21], in which the transmit power, bandwidth, and flight path were

jointly optimized to maximize energy efficiency. Medeiros et al. in [22] proposed an energy-

aware swarm-based and mobility prediction scheme for UAV video delivery. Simulation results

showed a high quality of experience (QoE) while minimizing energy consumption.

In video streaming applications, video transcoding, which processes the adaptive bitrates of

a video and provides the adaptive video streaming to users, is essential. With MEC, Liu et al.

proposed a joint approach to improve the transcoding performance while satisfying the resource

and latency constraints [23]. Li et al. [24] showed high energy efficiency in video streaming with

a joint caching and transcoding policy compared to another two policies without transcoding.



The above papers demonstrate that transcoding services at the edge nodes effectively reduce

video service latency and improve QoE. However, to our best knowledge, very little attention has

been paid to video transcoding in UAV-aided communication systems. Meanwhile, transcoding

policies they consider all statically transcode the original videos into several fixed levels, ignoring

the potential mismatch between the actual transmission rate of users and bit rate sets of transcoded

videos. The low latency of the video is also an aspect that must be taken into account.

C. UAV-Aided MEC Networks

In order for users to better match their transmission rate with low latency, transcoding service

is considered for UAV-aided video streaming. Although it is a computationally intensive task,

the maturity of UAV-aided MEC technology provides us with a promising solution. Liu et al. in

[6] took DRL as the tool to minimize the delay for both communication and computation in a

maritime UAV swarm MEC network. In [7], Zhao et al. cooperatively optimized the trajectories

and computational task allocation to reduce execution latency and energy consumption.

Different from [6], [7], the UAVs are used not only as MEC servers but also as relays in

[8], [9]; thus, the performance of the network can be further improved by dynamically adjusting

the locations. Xu et al. investigated a UAV-aided relaying and MEC network [8], and the task

completion time was minimized by addressing joint optimization issues. To address the energy

consumption minimization problem, Liu et al. proposed a three-stage alternative algorithm in

[9].

In general, existing researches on UAV-aided video streaming (e.g., [21], [22]) do not consider

video transcoding. However, dynamic video transcoding is very valuable for high QoE, and it

is not practical to avoid discussing MEC systems [5]. In addition, few researches on UAV-aided

MEC networks investigate the system’s utility compared to energy consumption and latency (e.g.,

[6]–[9]). Meanwhile, UAV-aided relaying and MEC networks to enable emergency services need

to be studied. Therefore, we attempt to investigate a video transmission scenario based on MEC,
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Fig. 1. System model for the UAV-aided MEC network.

where the UAV’s video transcoding task is performed to maximize the system’s utility. The non-

convex problem is modeled as an MDP and solved using a DRL approach. Finally, we obtain

the system’s cumulative utility.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, a system overview is provided first. Then, we present the communication, video

transcoding, and energy consumption models. Finally, we formulate the optimization problem.

For clarity, the frequently used notations related to the system model are summarized in Table I.

A. System Overview

The UAV-aided video transmission system based on MEC is shown in Fig. 1. It is composed

of a ground base station (GBS) and multiple UAVs. We aim to complete video collection in

dangerous areas and complete communication with the GBS through RUAV. The OUAVs are

deployed as a monitoring node, shooting videos with a fixed trajectory, and transmitting the

video to the RUAV. The RUAV receives the video and transcodes it to realize smooth playback

of the video under different channel conditions. When video transcoding is completed, the RUAV

forward the transcoded video to the GBS. We assume that such communication scenarios may



TABLE I

SUMMARY OF KEY NOTATIONS RELATED TO SYSTEM MODEL.

Notations Description Notations Description

δ the elemental slot length, T = Nδ QoEk the user quality-of-experience

dOk2R[n] the distance between RUAV and OUAV dR2B [n] the distance between RUAV and GBS

hOk2R[n] channel gain of OUAV-RUAV link hR2B [n] channel gain of RUAV-GBS link

ω0 the bandwidth of UAV, ω0 = ω
K+1

rOk2R[n] the offloading rate of OUAV-RUAV

rR2B [n] the transmission rate of RUAV-GBS tO,k the offloading time

EO the energy consumption to offload bk[n] the CPU cycle required to transcode

ak[n] computational resources radio tc,k the transcoding time

Ecomp the energy consumption to transcode tr,k the forwarding time

ER the energy consumption to forward PF [n] the propulsion power consumption

EF the propulsion energy consumption tD the system latency

pk[n] the transmit power of kth OUAV pR[n] the transmit power of RUAV

occur in forest fires, environmental protection monitoring, or battlefields where the real-time

footage of hard-to-reach core areas is needed for further work. However, in the close range of

these scenarios, the necessary communication facilities are difficult to establish or maintain, and

the communication quality may be not guaranteed or it may even be impossible to form an

effective communication link.

The time slot structure of the communication system is shown in Fig. 2. The OUAVs follow a

fixed circular trajectory, and the flight period T is divided into N equal time slots, i.e., T = Nδ,

where δ denotes the elemental slot length. Since the slot is small enough, the position of the

UAVs can be considered unchanged, and each slot is further divided into three sub-slots. The

tasks in each sub-slot are as follows: 1) Video transmission between the OUAVs and the RUAV.

2) Video transcoding by the RUAV. 3) Video transmission between the RUAV and the GBS.

The set of OUAVs is denoted as K. In general, a 3D Cartesian coordinate system is utilized

in our model. To simplify the problem, the trajectory of the UAVs over T can be linearly
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Fig. 2. The time slot structure of the communication system.

discretized into N positions. The coordinates of the kth OUAV and RUAV are denoted by

qOk
[n] = [Xk[n], Yk[n], Hk], where k ∈ K = {1, 2, . . . , K}, n ∈ N = {1, 2, . . . , N} and

qR[n] = [XR[n], YR[n], HR]. The flight height of all UAVs is constant and the position of the

GBS is qB = [XB, YB, 0], so the distance between the kth OUAV and the RUAV is

dOk2R[n] =

√
(XR[n]−Xk[n])

2 + (YR[n]− Yk[n])
2 + (HR −Hk)

2. (1)

The distance between the RUAV and the GBS is

dR2B[n] =

√
(XR[n]−XB)

2 + (YR[n]− YB)
2 +H2

R. (2)

B. Communication Model

As shown in Fig. 1, we consider a computational offloading issue for each OUAV, i.e., the

kth OUAV transmits the original video to the RUAV. With few obstacles, the OUAV-to-RUAV

channel is usually characterized by line-of-sight (LoS) link, the free-space path loss model [25],

[26] is adopted. The channel gain of the OUAV-to-RUAV channel can be expressed as

hOk2R[n] = β0d
−2
Ok2R

[n] =
β0

(XR[n]−Xk[n])
2 + (YR[n]− Yk[n])

2 + (HR −Hk)
2 , (3)

where β0 denotes the channel power at reference distance d0 = 1m.

For the RUAV-to-GBS channel, the buildings, trees, and other structures can bring excessive

path loss on top of the free space path loss. The path loss of which is averaged over this case, i.e.,



line-of-sight (LoS) and non-line-of-sight (NLoS) channels, and given in a probabilistic manner

[27]–[29], which can be expressed as

PLR2B[n] = 20 log

(
4πfcdR2B[n]

vc

)
+ ηLoSPLoS + ηNLoSPNLoS, (4)

where fc denotes the carrier frequency, vc is the speed of light. PLoS and PNLoS = 1−PLoS are

the probability of LoS and NLoS, respectively. According to [29], PLoS is written as a Sigmoid

function of the elevation angle θ,

PLoS(θ) =
1

1 + a exp [−b (θ − a)]
, (5)

where a and b are S-curve parameters that depend on the specific environment (e.g., urban and

rural). The value of θ is calculated by

θ = 180π−1 arctan

 HR√
(XR[n]−XB)

2 + (YR[n]− YB)
2

 . (6)

At last, ηLoS and ηNLoS in (4) are the additional mean losses of LoS and NLoS links, respectively.

Assuming that all the OUAVs operate in an orthogonal frequency division multiple access

(OFDMA) mode, there is no interference from OUAVs to the GBS. The available bandwidth ω

of the system is divided equally into K+1 shares (K OUAVs and 1 RUAV). Then, the available

bandwidth of a UAV is ω0 =
ω

K+1
. The transmit power of the kth OUAV for video transmission

to the RUAV is pk[n]. Then, the offloading rate of the OUAVs to the RUAV can be expressed as

rOk2R[n] = ω0 log2

(
1 +

pk[n]hOk2R[n]

N0

)
, k ∈ K, (7)

where N0 is the natural noise at the RUAV. The video transmission rate from the RUAV to the

GBS is given by

rR2B[n] = ω0 log2

(
1 +

pR[n]

PLR2B[n]N0

)
, (8)

where pR[n] is the transmit power of the RUAV for video transmission to the GBS.



C. Video Transcoding Model

Video transcoding is a computationally intensive task that demands many CPU resources to

realize the conversion between the source and target bit rates of video [5]. Due to the complex

and variable channel conditions, the RUAV chooses the appropriate transcoding rate according

to the channel conditions to avoid the excessive transcoding time, which causes video playback

lag. Assume that the original video p captured by the kth OUAV can be converted from the

original code rate to M levels, i.e., c = {c1, c2, . . . , cM}. Typical video captured by OUAV has

a uniform original bit rate of 2.75 Mbps and is transcoded by the RUAV’s dynamic selection

policy to a bit rate of ck. According to [30], the CPU computation cycle required to transcode

the video captured by the kth OUAV at time slot n is given by

bk[n] = ξck
ς [n], (9)

where ξ and ς are hardware-related constants.

For the RUAV, its computational resources are limited, and it is assumed that the maximum

computational resource is fmax. The proportion of computational resources allocated by the

system for each OUAV is ak[n]; then, the time consumed by transcoding can be written as

tc,k =
bk[n]

ak[n]fmax

. (10)

where
∑K

k=1 ak[n] = 1, indicating that all videos transmitted per time slot are comparable to the

maximum computational capacity of the RUAV.

D. Energy Consumption Model

The energy consumption of the system in this paper is composed of four parts, which are

the energy consumption of each OUAV to offload the original video to the RUAV, the energy

consumption of the RUAV to transcode video, the energy consumption of the RUAV to forward

video to GBS, and the propulsion energy consumption of the OUAVs and RUAV.



1) The size of original video captured by the kth OUAV is Dk[n], therefore, the time consumed

by offloading is written as

tO,k =
Dk[n]

rOk2R[n]
. (11)

Hence, the energy consumption of the OUAVs to offload the original video to the RUAV is

written as EO =
∑K

k=1 pk[n]tO,k.

2) The time consumed by transcoding has beeen given by (10), hence, the energy consumption

of the RUAV to transcode video [31] can be expressed as

Ecomp =
K∑
k=1

jR (ak[n]fmax)
sR tc,k, (12)

where jR and sR are the energy consumption coefficients associated with the CPU of the RUAV

at unit bits.

3) Assuming that the size of the video after transcoding is D′
k[n], the time required for the

RUAV to forward this video to the GBS is

tr,k =
D′

k[n]

rR2B[n]
. (13)

Hence, the energy consumption of RUAV to forward video to GBS is ER =
∑K

k=1 pR[n]tr,k.

4) The rotary-wing UAV needs a certain amount of propulsion to maintain its flight state, and

the propulsion power of the RUAV can be written as [12]

PF [n] = Pblade

(
1 +

3v2[n]

U2
tip

)
︸ ︷︷ ︸

blade profile

+Pinduced

(√
1 +

v4[n]

4v40
− v2[n]

2v20

) 1
2

︸ ︷︷ ︸
induced

+
1

2
d0ρsAv

3[n]︸ ︷︷ ︸
parasite

, (14)

where Pblade and Pinduced denote the blade profile power and induced power; Utip and v0 are the

tip speed of the rotor blade and mean rotor induced velocity; d0 and ρ are the fuselage drag

ratio and air density; s and A are the rotor solidity and rotor disc area. v[n] is the average speed

of the UAVs, calculated as the Euclidean distance of the position,

v[n] =
∥qR[n]− qR[n− 1]∥

δ
. (15)



Since the OUAVs move according to fixed trajectories and speeds, the propulsion energy con-

sumption of OUAVs is constant. Hence, merely the propulsion energy consumption of RUAV is

optimized, which can be expressed as EF = PF [n]δ.

Considering that the video captured by different OUAVs can be offloaded, transcoded and

forwarded simultaneously, the system latency is the maximum value of the total latency in

offloading, transcoding and forwarding, which is given by

tD = max
k

(tO,k + tc,k + tr,k). (16)

E. Problem Formulation

We aim to maximize the system’s utility with low latency by jointly optimizing the power

allocation of the OUAVs and the RUAV, the video transcoding policy, the computational re-

sources allocation, and the flight trajectory of the RUAV. To maximize video quality and video

transmission rate, the system’s utility is defined as a linear summation of energy efficiency and

QoE,

η[n] =

∑K
k=1 rOk2R[n] + rR2B[n]

EO + Ecomp + ER + EF

+
K∑
k=1

QoEk, (17)

where rOk2R[n] is the offloading rate between the kth OUAV and the RUAV, rR2B[n] is the video

transmission rate between the RUAV and the GBS, EO, Ecomp, ER, and EF are the energy

consumption of each link. QoEk is the user QoE of the video after transcoding, which can be

modeled as a natural logarithm function related to the bit rate as follows [32]

QoEk = ln

(
ck
cmin

)
, (18)

where cmin is the minimum bit rate threshold, ck ∈ c = {c1, c2, . . . , cM} is the video code rate.



As a result, The optimization problem is formulated as

max
pk,pR,

ak,qR,D′
k

N∑
n=1

η[n], (19a)

s.t.
∥qR[n]− qR[n− 1]∥

δ
≤ vmax, (19b)

pmin
k ≤ pk[n] ≤ pmax

k , (19c)

pmin
R ≤ pR[n] ≤ pmax

R , (19d)

K∑
k=1

ak[n] = 1, n ∈ N , (19e)

tD ≤ δ, (19f)

where equation (19a) denotes the optimization objective of the system, i.e., the system’s utility.

Equation (19b) is the mobility constraint of the RUAV, which means that the average speed

cannot exceed the maximum speed of the RUAV. Equations (19c) and (19d) impose a limitation

on the video transmit power for the OUAV and RUAV, respectively. Equation (19e) indicates the

computational resources scheduling constraint, and the sum of computational resources allocated

for each OUAV cannot exceed the total computational resources of the RUAV’s CPU. Constraint

(19f) ensures that the system latency does not exceed the time slot, as shown in Fig. 2.

IV. PROPOSED DDPG-BASED FRAMEWORK

The optimization problem mentioned above is a dynamic optimization problem, which de-

mands a sequence of sequential decisions to optimize the objective while satisfying the con-

straints. Conventional resource allocation methods, such as static optimization and game theory,

have difficulty solving the problem, because they attempt to figure out the near-optimal policy by

maximizing the immediate reward in the current state. In the following sections, the problem (19)

is modeled as an MDP, and then, we adopt DDPG to solve the MDP. For clarity, the frequently

used notations related to the MAP and DDPG are summarized in Table II.



TABLE II

SUMMARY OF KEY NOTATIONS RELATED TO MDP AND DDPG.

Notations Description Notations Description

S the state space A the action space

r the reward P the transition distribution

γ the discount factor αC the learning rate of the critic

τ the factor of soft update B the capacity of the replay buffer

αA the learning rate of the actor Tanh the activation function

A. Markov Decision Process

The MDP consists of ⟨S,A, r⟩, where S is the state space, A is the action space, and r denotes

the reward. The automatically learned UAV in RL is called the agent. The other elements of the

MDP are described in detail as follows.

1) State space: Based on (3), (4), (7), (8) and (17), the distances between each OUAV and the

RUAV and the distance between the RUAV and GBS are the most influential factor in the utility

of the system. The distance between the communicating entities causes changes in the channel

state information, which directly or indirectly affects the transmission rate, energy and QoE. The

agent will choose the appropriate action policy according to the change of distance. Therefore,

in the MDP, the distance is directly adopted as state. The state space S can be expressed as

S = {dO12R[n], dO12R[n], . . . , dOK2R[n], dR2B[n]} , (20)

where dO12R[n], dO12R[n], . . . , dOK2R[n] are the distances between each OUAV and the RUAV,

respectively. dR2B[n] is the distance between the RUAV and GBS.

2) Action space: The action space A consists of five parts which is given by

A = {pk[n], pR[n], ak[n], qR[n], c} , (21)

where pk[n] is the transmit power of the OUAVs to the RUAV, pR[n] is the video transmit power



of the RUAV to the GBS, ak[n] is the proportion of computational resources allocated to each

OUAV, qR[n] is the moving direction of the RUAV, and c is the transcoding policy. Meanwhile,

the constraints of (19b)-(19f) need to be satisfied.

3) Reward: The goal of the optimization problem is to maximize the system’s utility in UAV-

aided MEC network, so we define the system’s utility within each time slot as the reward.

ransn = ρ1

∑K
k=1 rOk2R[n] + rR2B[n]

EO + Ecomp + ER + EF

+ ρ2

K∑
k=1

QoEk, (22)

where ρ1 and ρ2 are the prices of each system’s utility item orderly obtained from network

training [33]. ransn implies that the reward at time slot n of the agent is generated based on state

sn and action an.

Since the agent can only obtain the system’s utility of the current state, for the agent to make

a policy that maximizes the cumulative reward, we define the state-value function to represent

the cumulative utility from the current state to the termination state.

V (sn) = E

{
N∑
i=n

γN−iraisi

}
, γ ∈ [0, 1], (23)

where γ ∈ [0, 1] denotes the discount factor reflecting the importance of future reward values.

If γ = 0, it means that only current rewards are considered; while the rewards in all states

throughout the process have the same importance when γ = 1. (23) can be further rewritten as

the Bellman equation,

V (sn) = E
{
ransn + γV (sn+1)

}
, γ ∈ [0, 1]. (24)

Similarly, the Bellman equation for the action-value function is given by

Qπ(sn, an) =
∑
a∈A

π(a | s)
[
ransn + γmax

a∈A
Qπ(sn+1, an+1)

]
, γ ∈ [0, 1], (25)

where π(a | s) is the mapping of states to actions, representing the action selection policy of

the agent in different environments.
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B. DDPG-based Framework

Considering that the state-action space of is continuous, the DDPG algorithm in DRL is

adopted to achieve continuous control of the UAV. Since DDPG is a policy gradient algorithm,

which derives the value expectation without optimal action selection, it is applicable to the

continuous state-action space. Meanwhile, DDPG is an off-policy, which is beneficial for UAVs

to train through off-line data. In addition, DDPG is also a deterministic policy, i.e., the same

policy takes the same action in the same state. Therefore, the DDPG algorithm has higher

learning efficiency, better convergence, and stability.

The structure of the DDPG-based framework is shown in Fig. 3. The DDPG algorithm consists

of two deep neural networks (DNNs), an actor network and a critic network, to solve the problem

of Q-value instability during learning. The actor network outputs continuous actions, and then

the continuous actions are fed into the critic network along with the states. The actor network

approximates the action, thus eliminating the need to find the action that maximizes the Q-

value function in the case of non-convex optimization. As shown in Fig. 3, there are four



network models in the DDPG: two structurally identical actor networks, the actor evaluation

network and the actor target network, and two structurally identical critic networks, the critic

evaluation network and the critic target network. The critic and actor networks are elaborated in

the following.

1) Critic: Similar to the structure of DQN, critic contains the target network and the evaluation

network. The evaluation network computes the evaluation of the action-value function based on

the states and actions.

Qφe
C
(sn, an) = ωs

Csn + ωa
Can + beC ≈ Q (sn, an) , (26)

where φe
C is the evaluation network parameter of critic, ωs

C and ωa
C are the neural network

weights, and beC is the neural network bias. The target network calculates the target value of

the action-value function based on ransn and sn+1, and action an+1 is generated from the target

network of the actor.

Qφt
C
(sn, an) = E

[
ransn + max

an+1∈A
γQφt

C
(sn+1, an+1)

]
, (27)

where φt
C is the target network parameter of critic. The loss function of the critic evaluation

network is defined as the mean squared error between the target value and the evaluation value,

which can be written as

loss (φe
C) =

(
ransn + γQφt

C
(sn+1, an+1)−Qφe

C
(sn, an)

)2
. (28)

The parameters of evaluation network are updated by gradient descent which is given by

φe
C = φe

C + αC∇φe
C
loss (φe

C) , (29)

where αC is the learning rate of the critic. Instead of updating the parameters by gradient descent,

the parameters of target network are replaced by the parameters of evaluation network by

φt
C = (1− τ)φt

C + τφe
C , (30)



where τ is a positive number less than 1. Since the target network is not updated in a single

step, the magnitude of the target network can be controlled by (30) to ensure the stability of the

training.

2) Actor: Similar to the critic, the actor contains the target network and the evaluation network.

The target network calculates the target action and the target value of the action-value function.

The evaluation network is utilized to calculate the performed action to obtain the maximum

feedback from the critic. The larger the Qφe
C

obtained from the feedback, the smaller the loss.

Therefore, we take the opposite of the mean of the action-value returned by the evaluation

network as the loss function which is given by

loss (φe
A) = −

1

B

B∑
i=1

Qφe
C
(si, ai) , (31)

where B is the capacity of the replay buffer. Similar to the critic network, the parameters of the

evaluation and target networks are updated as follows

φe
A = φe

A + αA∇φe
A
loss (φe

A) , (32)

φt
A = (1− τ)φt

A + τφe
C , (33)

where αA is the learning rate of the actor.

In the end, to enable the actor to select the continuous action, we adopt the Tanh function

as an activation function for the output layer of the actor network. We limit the output value

range between 0 and 1 and multiply it with the maximum value in the range required by the

environment as the final output action,

[a1, a2, . . . , aY ] = Tanh (ωe
Asn + beA) ·Ga, (34)

where Y is the dimension of the action space. ωe
A and beA are the neural network parameters,

i.e., φe
A = [ωe

A, b
e
A], ω

e
A is the neural network weight, and beA is the neural network bias. Ga is

the maximum value of the output action, which is utilized to control the output of the neural

network to meet the environmental requirements. Since DDPG is a deterministic policy, unlike



the conventional random policy, which is inherently exploratory, an additional exploration policy

needs to be set up. In this paper, we introduce the behavior policy [34], which adds random noise

ϑn to the output of the action from the actor evaluation network to change the deterministic-

valued actions performed by the agent into random-valued actions a′n = an + ϑn.

The samples for RL are collected in chronological order and are strongly correlated. Therefore,

the samples do not satisfy the requirement of an independently identical distribution for neural

network training. To tackle this challenge, an experience replay buffer is needed to break the

correlation between the samples. The replay buffer is a finite-size buffer that stores sample tuples(
sn, an, r

an
sn , sn+1

)
obtained from the interaction between the agent and the environment. When

the parameters of the actor-critic network need to be updated, a mini-batch of samples is randomly

selected from the replay buffer by uniform random sampling to accelerate the convergence of

the neural network.

C. Overall Algorithm

The specific approach for the issue is summarized in Algorithm 1. At the beginning of the

DDPG algorithm, the replay buffer D, the weights of actor and critic in the RUAV are initialized.

Notice that the training procedure comprises of E episodes, each of which consists of N steps.

Generally, at the beginning of each episode, we first initialize the state sn and action an. Then,

in each step n, the action of RUAV at state sn is generated by its online actor network with

a random noise ϑn. Based on the action taken above, the RUAV sets its moving direction and

transmission power. Additionally, resource allocation and transcoding policy are dynamically

selected. Then, the tuple < sn, a
′
n, r

an
sn , sn+1 > is stored in the replay buffer D. After sampling

from the replay buffer D, the online networks of actor and critic can be updated. The target

networks of actor and critic are updated in (30) and (33).

In general, the computational complexity of the DDPG algorithm is related to the dimensions of

the input state and action, the neuron numbers in each neural network layer, and the layer numbers



Algorithm 1 DDPG utility-oriented optimization algorithm

begin
Initialize replay buffer D, the number of steps N , and training episodes E; structures of

networks, i.e., φe
C , φt

C , φe
A, φt

A, αC , αA, γ and τ .

for e=1:E do
Initialize state space S, action space A, a random noise ϑn for action exploration;

for n=1:N do
Input sn into the actor network and generate the action an;

Select action a′n = an + ϑn according to the current policy and exploration noise;

Execute action a′n, observe new state sn+1 and reward ransn ;

Update replay buffer: D ←< sn, a
′
n, r

an
sn , sn+1 > ∪ D;

if replay buffer is full then
Sample a mini-batch from D;

Update actor and critic network parameters:

φe
C = φe

C + αC∇φe
C
loss (φe

C), φ
e
A = φe

A + αA∇φe
A
loss (φe

A)

for j=1:t do
Update target actor and critic network parameters:

φt
C = (1− τ)φt

C + τφe
C , φt

A = (1− τ)φt
A + τφe

C

end

end

end

end

end



of the neural network [6]. Meanwhile, both actor and critic networks should be considered. When

the neural network parameters converge after N epochs and E episodes, the computational

complexity can be expressed as O
(
NE

(∑GA−1
g=0 ug

Au
g+1
A +

∑GC−1
g=0 ug

Cu
g+1
C

))
, where GA and

GC denote the layer numbers of the actor and critic networks and ug
A and ug

C denote the neuron

numbers in the actor and critic networks in the gth layer, respectively.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical results are provided to evaluate the performance of the proposed

DDPG algorithm. First, we describe the simulation parameters. Then, we present benchmark

schemes, followed by results and discussions.

A. Simulation Setup

This paper investigates the effectiveness of a UAV-aided video transmission system based on

MEC to improve utility performance. We, therefore, choose a basic system model to study the

novel scheme, where a RUAV and two OUAVs (i.e., K = 2) are deployed with a maximum flight

speed vmax ∈ {10, 20, 30} m/s. However, the proposed scheme and algorithm can be applied

to a more complex case with multiple OUAVs. Each OUAV follows a fixed circular trajectory,

with a flight radius rO = 200 m. In the actual scenario we consider, one GBS is located in [0, 0,

0] m. It is assumed that the flight height of RUAV HR ∈ {80, 90, 100, 110, 120} m. We define

the flight height ratio (FHR) of the RUAV and OUAVs as FHR = HR

Hk
∈ {0.5, 1, 2, 3}.

For default system parameters, the bandwidth of the system is ω ∈ {700, 800, 900} KHz

[26]. The channel gain is β0 = 1.42 × 10−4 at the reference distance d0 = 1 m and the noise

power spectral density is set as N0 = 1.99 × 10−10 mW. Considering a complex suburban

environment, the S-curve parameters are set as a = 4.88 and b = 0.43 under fc = 2 GHz with

the excessive path-loss coefficient ηLoS = 0.1 dB and ηNLoS = 21 dB [28]. The transmit power

of the UAV is P ∈ [0, 200] mW. The minimum time slot of the system is δ = 1 s. Meanwhile,



we select a video with an original code rate of 2.75 Mbps (1080p) as the original video [30].

The RUAV transcodes the original video to five levels, i.e., c ∈ {0.3, 0.8, 1.3, 1.8, 2.3} Mbps.

The correlation coefficients of the CPU calculation cycle are ξ = 1.54 and ς = 0.08 [30], and

the energy consumption coefficients of the CPU are jR = 10−27 and sR = 3 [31]. The maximum

CPU frequency of the RUAV is fmax = 10 GHz. And other simulation parameters of propulsion

energy consumption are referred to [12].

B. Benchmark Schemes

To verify the effectiveness of the proposed algorithm, i.e., the DDPG algorithm, a widely used

DQN algorithm [17] is also utilized to search the near-optimal policy for MDP. However, DQN

can only control discrete actions resulting in the loss of many actions in the discretization of

continuous variables. Furthermore, the AC algorithm [18] is also simulated, which is similar to

DDPG in structure, but the AC updates the neural network parameters continuously. The actor

generates the mean and variance when calculating the policy and samples the normal distribution

to realize the decision of continuous action. For reinforcement learning settings, we set E = 400

episodes with N = 400 steps each in the training stage. Due to the continuous policy and the

environment with no end point, we manually abort the training process and reset the OUAVs,

RUAV, and environment every episode. As the replay buffer has a capacity of 20,000 and training

will not start until the buffer is full, the random policy is utilized for the first 20,000 steps and

training is started at each step afterwards. The actor and critic neural networks of RUAV are

implemented based on the Tensorflow framework, with αA ∈ {1 × 10−6, 1 × 10−5, 5 × 10−5},

αC ∈ {2× 10−3, 2× 10−4, 2× 10−5}, and γ ∈ {0.8, 0.9, 1}.

C. Results and Discussions

The effectiveness and convergence of the DDPG algorithm are demonstrated and discussed in

the following. The learning curves of different learning rates αA and αC and discount factor γ



(a) (b) (c)

Fig. 4. The convergence performance. (a) With different actor learning rates. (b) With different critic learning rates. (c) With

different discount factors.

are shown in Fig. 4. The changing trend of the three algorithms, as well as the corresponding

results during the training period, are shown in Fig. 5, Fig. 6, and Fig. 7. The RUAV’s flight

trajectories are shown in Fig. 8.

1) Impact of DRL Parameters: As shown in Fig. 4(a), the learning rate of the actor, i.e.,

αA, has an impact on the effectiveness and convergence. The dark lines indicate the mean value

of the average utility, while the lighter areas take into account the standard error based on the

mean value and reflect the differences in the curves [35]. DDPG converges at approximately

350 episodes (400 steps per episode) and achieves the highest utility in all learning rates when

the learning rate is 1 × 10−5. If the learning rate increases to 5 × 10−5, the learning process

fluctuates considerably and achieves lower utility after convergence. In contrast, the fluctuation

of the training process is reduced when the learning rate is equal to 1 × 10−6, but the utility

decreases significantly. Therefore, in all subsequent simulations, αA is fixed at 1× 10−5.

Fig. 4(b) shows the comparison of convergence with different learning rates of the critic, i.e.,

αC . If the learning rate is 2×10−4, DDPG reaches stability at approximately 350 episodes. If the

learning rate decreases to 2× 10−5, DDPG achieves lower utility after convergence. For αC =

2× 10−3, the learning speed will become slower, not reaching stability until approximately 300



episodes, and the average utility obtained is relatively low. Therefore, αC is fixed at 2 × 10−4

in all subsequent simulations for the highest utility.

Fig. 4(c) shows the comparison of convergence performance with different discount factors γ.

The discount factor indicates the importance of future returns, a discount factor of 1 indicates

that all future returns have the same importance, and 0 indicates that only the returns in the

current state are considered. As shown in Fig. 4(c), when γ = 0.001, i.e., approaching 0, the

reward does not rise well and remains essentially the same as the initial reward value, which is

caused by its failure to focus on the future return. If the discount factor is 0.9, DDPG reaches

stability at approximately 350 episodes and maintains stable utility in the subsequent training

process. If the discount factor is increased to 1, DDPG achieves lower utility after convergence.

This is because that the neural network focuses too much on the reward of future states, which

affects the correct judgment of the agent in the current state. If the discount factor is decreased

to 0.8, the learning suffers a violent oscillation and reaches stability for more than 310 episodes.

This means that the lower discount factor reduces the neural network’s perception of future

returns, which affects the agent’s ability to make policies that maximize utility.

2) Evolution of Different Algorithms: Fig. 5 shows the average utility of the different

algorithms when HR = Hk = 80 m. Since the neural network structures of DDPG and AC are

similar, the same learning rate is used in the training process. It is observed that DQN has the

lowest average utility after convergence, AC has a slight improvement, and DDPG achieves the

highest utility. This is because that DQN can only control discrete actions, and the optimization

variables of the system include a variety of continuous actions, such as the power allocation of

the UAVs and the RUAV’s flight trajectory. A large number of efficient action choices are lost in

the process of discretizing the above continuous variables. AC has a significantly lower rate of

increase in utility and achieves a utility slightly lower than DDPG. The apparent reason is the

instability of the training process caused by the correlation between each sample. In addition,

the loss function of critic is involved in the update of the actor neural network, which reduces



Fig. 5. The utility performance of different algorithms.

Fig. 6. The utility performance of different bandwidths and maximum flight speeds.

the convergence speed of the algorithm. To solve this problem, the training samples are sampled

by certain priorities in the replay buffer, which improves the stability of training, and the actor

directly optimizes the value of states, making the algorithm easy to converge. The algorithm

without random noise (NoNoise in Fig. 5) performs worse than the proposed DDPG algorithm,

demonstrating the efficiency of the behavior policy.

3) Impact of Maximum Flight Speed and Bandwidth: We obtain the average utility for



(a) (b)

Fig. 7. The utility performance w.r.t the fight height. (a) With different algorithms. (b) With different FHR.

different bandwidths and maximum flight speeds in Fig. 6. Interestingly, the average utility

obtained is surprisingly consistent for different maximum speeds of 10 m/s and 20 m/s. However,

the average utility performs poorly when the maximum flight speed reaches 30 m/s, which is an

interesting issue that has been studied in depth in [12]. Zeng et al. verified that as the flight speed

increased, the propulsion power consumption firstly decreased and then increased with the flight

speed. Two particular UAV speeds with high practical interests, i.e., the maximum-endurance

speed (vme, nearly 10 m/s) and the maximum-range speed (vmr, nearly 20 m/s) were found

numerically. With vME , and vmr, the propulsion power consumption is close to the optimal value

compared to 30 m/s. Considering the longer flight distance and shorter task completion time,

let vmax = 20 m/s. Additionally, the effect of bandwidth on utility is enormous, and increasing

bandwidth brings an increase in utility. Nevertheless, too high bandwidth places higher demands

on the hardware and risks wasting resources. ω = 800 KHz is regarded as a trade-off scheme.

4) Impact of Height of UAVs: Fig. 7(a) shows the average utility versus flight height for

different algorithms when HR = Hk. From the figure, we have the following conclusions. First,

at the same flight height, the average utility of DDPG is the highest, followed by AC and DQN.



The reasons are described in Fig. 5. Second, the average utility gradually decreases as the flight

height of the RUAV increases. As the flight height of the UAV increases, the channel conditions

between the UAV and GBS deteriorate, thus affecting the communication quality and utility.

Therefore, more transmit power needs to be consumed to ensure that the channel capacity can

complete the transmission of the video.

Fig. 7(b) shows that the flight height ratio (FHR) of the RUAV and OUAVs has an impact on

the average utility in our DPPG algorithm. When the RUAV and OUAVs are at the same height,

the average utility is the highest. Moreover, it can be seen that the average utility increases

rapidly with the height of the OUAVs and the RUAV approaches. The height difference of the

OUAVs and the RUAV directly affects the transmit power between them according to (3) and

(7). Similar to Fig. 7(a), the average utility gradually decreases as the flight height of the RUAV

increases. In actual scenario, the flight height of OUAVs may be reduced considering the clarity

of the video, so it makes sense to consider the change in utility caused by the height difference

between OUAVs and RUAV.

5) UAV Trajectory Analysis: Fig. 8(a) demonstrates the trajectories of RUAV obtained by

DDPG, DQN, and AC algorithms with the UAV flight duration T = 126 s and T = 63 s. The

flight height is fixed at HR = Hk = 80 m. The initial position of the RUAV is set as (-800, 0).

Two OUAVs follow a clockwise circular trajectory and the centers of the trajectory are (-1200,

0) and (-1200, -400). Because of the long distance from the GBS, the RUAV with DDPG tries

to move toward the GBS within the communication range, which is not achieved with DQN

and AC algorithms. From Fig. 8, it can be seen that the RUAV flies similar trajectories under

different flight duration. The result shows that the RUAV keeps the same ”thought process” in

seeking a trade-off between receiving video from OUAVs and forwarding video to the GBS.

Supplementarily, when T = 126 s, the RUAV possesses a longer learning period to adapt to

changes in the channel environment several times.

The flight trajectory with DDPG can be observed in detail in Fig. 8(b) with some key points
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Fig. 8. The UAV flight trajectories. (a) With different algorithms. (b) With DDPG in detail.

that has been marked. During the OUAVs’ two clockwise flights (T = 126 s), the RUAV’s

trajectory with DDPG can be divided into six segments:

• From a to b, the RUAV follows the OUAVs downward to receive the original video better.

When the OUAVs change the state to fly upward, the RUAV briefly hovers at b to obtain

the intent of the OUAVs.

• From b to d, the RUAV flies slowly upward and adjusts the distance between itself and the

GBS to communicate better. Then, RUAV flies rapidly upward to follow the OUAVs flying

upward to d.

• From d to A, when the OUAVs start moving to the right, the RUAV follows upward and

approaches the GBS significantly to the right through autonomous learning. Then the OUAVs

commence a new round of flights.

• From A to B, the RUAV continuously approaches the GBS and approaches the downlinked

OUAVs by flying upward.

• From B to D, the RUAV realizes that it is too far from the OUAVs and compensates by



flying to the left, even slightly downward.

• From D to E, the RUAV follows the OUAVs upward. After hovering for a moment, the

RUAV flies to F like d to A and completes the whole mission at T = 126 s.

VI. CONCLUSION

This paper considered a utility-oriented optimization scheme for a UAV-aided video trans-

mission system based on MEC. In the constructed system, the OUAVs shot videos in a fixed

trajectory, and the RUAV transcoded the videos and sent the transcoded videos to GBS. We max-

imized the utility of the communication system by jointly optimizing the power allocation, the

transcoding policy, the computational resources allocation, and the flight trajectory of the RUAV.

Considering the dynamic characteristics of wireless channels, the above-mentioned problem was

modeled as an MDP and solved by the DDPG algorithm. The simulation results demonstrated

the effectiveness and superiority of the DDPG algorithm compared with other approaches. The

utility of the system and the flight trajectory of the UAV have also been demonstrated. In future

research, we will consider the issues of multi-agent and physical layer security.
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