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Abstract—6G has emerged as a feasible solution to enable
intelligent electric vehicle (EV) energy management. It can be
further combined with digital twin (DT) to optimize resource
management under unobservable information. However, the lack
of reliable information timeliness guarantee increases DT incon-
sistency and undermines resource management optimality. To
address this challenge, we investigate DT-empowered resource
management from the perspective of age of information (AoI)
optimization. We utilize AoI as an effective information timeliness
metric to measure DT consistency, and construct an AoI-optimal
DT (AoIo-DT) to assist resource management by providing more
accurate state estimates. A joint optimization algorithm of signal
processing, communication, and computing integration based
on AoI-aware deep actor critic (DAC) with DT assistance is
proposed to achieve balanced tradeoff between DT consistency
and precision improvement of EV energy management. It fur-
ther improves learning convergence and optimality of DAC by
enforcing training with data samples of smaller AoI. Numerical
results verify its performance gain in AoI minimization and EV
energy management optimization.

Index Terms—EV energy management, digital twin, resource
management, information timeliness, 6G.

I. INTRODUCTION

ELectric vehicle (EV) energy management plays an im-
portant role in constructing a smart, low-carbon, and

sustainable city [1]. It explores the dual roles of EV as
load and storage to promote renewable energy accommoda-
tion and reduce carbon emission [2], [3]. The core of EV
management is to train a model to intelligently manage EV
charging/discharging in accordance with dynamic changes of
energy demand and supply [4], [5]. Model training requires
real-time pre-processing, transmission, and computation of
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massive data samples of distributed photovoltaic (PV) out-
put, user load variation, and grid operation state [6], [7].
As a result, EV management optimality is closely coupled
with resource management of communication network, which
imposes new requirements on joint optimization of signal
processing, communication, and computing.

6G with integrated artificial intelligence (AI) and commu-
nication has emerged as a feasible solution. 6G can be further
enhanced by digital twin (DT) to realize network resource
management of signal processing, communication, and com-
puting integration [8]. Particularly, DT facilitates network state
estimation and optimization guidance for resource manage-
ment by building a consistent digital representation of physical
infrastructures [9]–[12]. The accuracy of state estimates relies
on information timeliness, which is fundamentally different
from delay. While delay emphasizes the transmission time of
individual packets, information timeliness covers the full life
cycle of information processing, transmission, computation,
and utilization [13]. Among various information timeliness
metrics, age of information (AoI) provides effective mea-
surement of DT consistency. Specifically, large AoI causes
DT state to severely deviate from actual physical counterpart,
which deteriorates resource management performance as well
as model training precision for EV management. Therefore,
how to optimize AoI for DT to achieve resource management
with integration of 6G signal processing, communication, and
computing has become a key scientific research problem. Key
research challenges are elaborated below.

First, AoI minimization is not always beneficial for model
training. AoI is optimized by allocating more resources for
state data uploading to shorten uploading interval. Fewer
resources are left for uploading data sample of model training,
thereby undermining EV energy management. Second, AoI has
an unignorable impact on AI-based resource management of
6G. The utilization of data sample with large AoI and inaccu-
rate state estimates caused by DT inconsistency significantly
reduces learning performance of AI in 6G. How to incorporate
AoI awareness into AI-based resource management of 6G
remains an open issue. Last but not least, long-term AoI
guarantee is intertwined with the short-term joint optimization
of signal processing, communication, and computing. As DT
is not expected to foresee future state transition, resource
management optimization without thorough understanding of
AoI’s evolution over time is short sighted.

Several studies are devoted to DT empowered model train-
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ing. In [11], Lu et al. designed a DT-based model training
framework to improve reliability and security for comput-
ing in wireless networks. A DT-empowered model training
framework was developed for 5G integrated distribution net-
work to simultaneously optimize training precision and delay
[14]. In [15], Van Huynh et al. jointly optimized offloading
policies and computing resources to achieve fairness-aware
latency minimization in DT aided edge computing network.
In [16], Sun et al. proposed a lightweight DT empowered
6G air-ground network to balance the energy consumption
of unmanned aerial vehicles and the accuracy of local model
and global model. In [17], Lu et al. investigated DT-assisted
6G mobile networks to reduce real-time data processing
burden and privacy rises on edge servers. In [18], Do-Duy
et al. studied a mobile edge computing architecture with
the assistance of DT to minimize latency and highlighted
the impact of the miss-match of digital twin modeling. In
[19], DT was utilized to model the computing capacity of
edge servers and optimize the resource allocation. However,
these studies utilize all resources for loss function reduction,
while the paradox between AoI minimization and model
training precision improvement are not considered. Several
recent studies investigate AoI reduction based on resource
management. In [20], a contract-theoretic caching framework
was proposed to jointly minimize the weighted sum of AoI
and delay. In [21], Zhu et al. addressed the AoI minimiza-
tion problem for air-ground integration by jointly optimizing
bandwidth allocation, trajectory planning and data scheduling.
The limitation of aforementioned studies lies in the ignorance
of joint optimization of model training and AoI. Moreover,
the negative impact of AoI unawareness on AI-based resource
management optimization has not been considered.

Deep actor-critic (DAC) network as a model-free learning
approach of AI has been widely utilized for handling large-
dimensional optimization problem in 6G [22], [23]. In [24],
Wu et al. employed DAC to optimize unloading strategy
and network management for multi-server networks. A DAC-
enabled dynamic multi-channel access optimization policy was
proposed to maximize the expected number of successful
transmissions [25]. However, traditional DAC suffers from
poor learning accuracy when using inaccurate state estimates
and data samples with large AoI. It is important to alleviate the
adverse impact of large AoI on deep neural network training.

To address the above mentioned challenges, a network
resource management framework of 6G signal processing,
communication, and computing integration is developed based
on AoI-optimal DT (AoIo-DT). First, we model DT consis-
tency from the perspective of AoI. The optimization objective
is to jointly minimize AoI and global loss function through
the optimization of device scheduling, channel allocation,
data compression ratio selection, and computation resource
allocation. Then, the long-term constraints of AoI guaran-
tee and energy consumption are separated from short-term
optimization based on telescoping sum and virtual queue
theory. A joint optimization algorithm of signal processing,
communication, and computing based on AoI-aware DAC with
DT assistance is finally proposed as a solution. Contributions
of this paper are presented below.

• Joint Optimization of AoI and Global Loss Function:
The weighted sum of AoI and global loss function is
minimized under a long-term AoI guarantee constraint.
The uploading of state data and model training data
sample is intelligently optimized to balance AoI reduction
and model training performance.

• AoIo-DT-assisted Resource Management of 6G Signal
Processing, Communication, and Computing Integration:
Compared with normal DT, Aolo-DT possesses higher
consistency with physical networks due to improved
AoI optimality and reliability. It provides more accurate
approximation of unobservable sate information such as
channel gain and electromagnetic interference (EMI) for
resource management optimization.

• AoI-aware Learning: DAC is enforced to use samples
with smaller AoI for deep neural network training. Both
learning convergence and optimality are improved by
alleviating the adverse impact of AoI on DAC training.
Moreover, AoI guarantee constraints are converted into
virtual AoI deficit queues and incorporated into optimiza-
tion objective. Large AoI deficit closes the loop on re-
source management to discourage violation of constraints
on long-term AoI guarantees.

The remaining part is organized as follows. Section II
describes system model. Section III presents problem formu-
lation of model training. The proposed algorithm is given in
Section IV. Numerical results are given in Section V. The
conclusion is present in Section VI.

II. SYSTEM MODEL

Fig. 1 shows the proposed network resource management
framework of 6G signal processing, communication, and com-
puting integration based on information timeliness-aware DT.
The objective is to train an EV energy management model
based on the collaboration among device layer, edge layer,
DT layer, and EV energy management layer. The device
layer consists of parked EVs, controllable load, and various
infrastructures including charging pile and distributed PV.
Communication devices are deployed in the device layer to
collect data of operation state and EV energy management
[26]. Devices connected with 6G base stations and power
line communication (PLC) gateways upload collected data
samples to the edge layer. 6G performs well in ultra-high
transmission rate and low latency while PLC possesses in-
comparable advantages in low cost and on-demand coverage.
In the edge layer, a local model of EV energy management
is trained by each edge server. Edge servers also construct
the DT layer by establishing a DT for each device within
its service range. In the EV energy management layer, local
models are aggregated by the controller for global model
training of EV energy management. The global model sup-
ports applications of EV energy management such as demand
response, carbon footprint monitoring, vehicle-to-grid/grid-to-
vehicle (V2G/G2V) control, and flexible load/PV control. The
objective is to achieve a balanced minimization between AoI
and loss function through network resource management of
signal processing, communication and computing integration.
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Fig. 1. The network resource management framework of signal processing,
communication, and computing integration based on information timeliness-
aware DT.

Finally, the global model is used for local model training in
the next iteration.

A. DT Model

Denote the set of I devices as U = {u1, · · · , ui, · · · , uI},
and the set of J edge servers as S = {s1, · · · , sj , · · · , sJ}.
Denote the set of devices available for sj as Uj . sj establishes
a DT for ui based on AoI ρi(t) (seconds) as

DTi(t) = Θ(Mi,Fi(t), ρi(t)), (1)

where t is the index of model training iteration.Mi represents
time-invariant operation data, which is commonly utilized
during the modeling and initialization phases of DT. Fi(t)
represents time-varying state data. AoI quantifies the experi-
enced duration since the last time when DT is synchronized
based on the state data. Larger ρi(t) indicates that Fi of DTi
has not been synchronized for a long time, thereby resulting in
higher DT inconsistency. DT is constructed to master the real-
time operating status of the physical world which is beneficial
for improving resource management adaptability and model
training accuracy.

B. Resource Management Model of 6G Signal Processing,
Communication, and Computing Integration

The resource management of signal processing, communica-
tion, and computing integration involves the joint optimization
of device scheduling, channel allocation, data compression
ratio selection, and computation resource allocation.

1) Device Scheduling: Edge server sj dynamically sched-
ules devices within set Uj to either upload state data or data
sample via allocated channels. The state data are utilized to
synchronize DT for AoI reduction, while the data samples of
EV energy management are exploited for increasing model
precision. Define the device scheduling indicator as ai,j(t) ∈
{0, 1}. sj schedules ui ∈ Uj to upload state data when
ai,j(t) = 0, and to upload data samples when ai,j(t) = 1.

2) Channel Allocation: Denote the multi-mode channel set
of sj as Cj = {cj1, · · · , cjn, · · · , c

j
N}. Define the channel allo-

cation indicator as xi,j,n(t) ∈ {0, 1}. When xi,j,n(t) = 1, n =
1, 2, · · · , N1, cjn represents PLC channel allocated to ui. When
xi,j,n(t) = 1, n = N1 + 1, N1 + 2, · · · , N , cjn represents 6G
channel allocated to ui. The network transmission rate from
ui to sj is

ri,j,n(t) = xi,j,n(t)Bj,nlog
(

1 +
Pi(t)hi,j,n(t)

Ii,j,n(t) +N0

)
, (2)

where Bj,n denotes the bandwidth. Bj,n ∈ {BPLC , B6G},
where BPLC and B6G represent the bandwidths of PLC and
6G. Pi(t) and hi,j,n(t) are the power and channel gain of
data uploading. Pi(t) ∈ {PPLC , P6G}, where PPLC and P6G

represent the transmission power for PLC and 6G. Ii,j,n(t)
and N0 are power of EMI and noise. EMI is caused by the
operation of power electronic devices and electrical equipment.
The Alpha stable distribution [27] with a thick tail is used to
describe EMI power distribution, which is given by

E(ekηIi,j,n) =


exp

(
kµi,j,nη −$i,j,n|η|αi,j,n(1− kκi,j,n

sgn(η) tan(αnπ/2))
)
, αi,j,n 6= 1

exp
(
kµi,j,nη −$i,j,n|η|1− kκi,j,n

sgn(t)(ln |η|)(2/π)
)
, αi,j,n = 1,

(3)

where k represents the imaginary part of the complex number.
αi,j,n ∈ (0, 2] determines the heaviness of distribution tail.
The smaller αi,j,n is, the heavier the tail is. κi,j,n ∈ [−1, 1],
$i,j,n > 0, and µi,j,n are skewness parameter, scale parame-
ter, and positional parameter, respectively.

3) Data Compression Ratio Selection: Denote the data
compression ratio indicator of signal processing as yi(t) ∈
Y = {ymin, · · · , ym, · · · , ymax}, where ymin, ym, and ymax
represent the minimum level, the n-th level, and the maximum
level of data compression ratios, respectively. yi(t) = ym
represents that sj schedules ui ∈ Uj to utilize the m-th
level ratio for data compression. We consider that the data
compression and the transmission of the compressed data are
parallel, i.e., data being compressed at the same time as they
are transmitted. The data transmission rate depends on the
minimum of the compression speed and the channel trans-
mission rate [28]. Since the proposed algorithm dynamically
optimizes the network resource allocation by observing the
evolution of AoI, the impact of data compression delay on AoI
has been naturally taken into data compression ratio account.
Denoting zi,m(t) as the data compression speed when the m-
th level compression ratio is adopted and τ0 as the uploading
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duration of data sample, the uploaded number of EV energy
management data samples is

di(t) =
∑
∀cjn∈Cj

ai,j(t)

⌊
min{zi,m(t),

ri,j,n(t)
yi(t)

}τ0
ψi

⌋
, ui ∈ Uj .

(4)

where ψi (bits) represents the original volume of data samples
before compression.

4) Computation Resource Allocation: Denote the compu-
tation resources allocated by sj for local model training as
fj(t). For local model training, sj replaces the local model
ωj(t) with the global model trained in the previous iteration
ω(t − 1) as ωj(t) = ω(t − 1), and then sj executes local
model training. Define the set of EV energy management data
samples from ui as Di(t) = {αi1, · · · ,αik, · · · ,αidi(t)}. The
accuracy of local model training depends on both local model
parameters and DT model. Denote the loss function of ωj(t)
on the k-th data sample αik as li(ωj(t)αik, DTi) [10], which
is given by

Lj(ωj(t), t) =

∑
ui∈Uj

∑
∀αi

k∈Di(t)
li(ωj(t),α

i
k, DTi)

Dj(t)
.

(5)

Then, ωj(t) is updated based on Lj(ωj(t), t), where Dj(t) is
the total number of data samples received by sj in the t-th
iteration.

The delay of local model training is derived as

τj(t) =

∑
ui∈Uj ξ(yi(t))di(t)

fj(t)
, (6)

where ξ(yi(t)) represents data sample training complexity
under the data compression ratio of ξ(yi(t)). The complexity
is positively related with data compression ratio.

The energy consumed for local model training is derived as

Ej(t) =
∑
ui∈Uj

ξ(yi(t))di(t)βjf
2
j (t),∀sj ∈ S, (7)

where βj is a constant.

C. AoI-Weighted Global Model Aggregation of EV Energy
Management

The central controller, denoted as s0, has to receive all local
models of EV energy management for global model training.
Therefore, τj(t) depends on the largest training delay, i.e.,

τ(t) = max
j
{τj(t)},∀sj ∈ S. (8)

The precision of global model is measured based on global
loss function. To characterize the influence of DT inconsis-
tency on global loss function, the local models are weighted
based on AoI. The local model with a smaller AoI and higher
DT consistency, e.g., ωj(t), is endowed with a larger weight
to improve the global model training performance. The weight
of ωj(t) is given by

λj(t) =
1/[ρ̄j(t− 1) + τ0 + τ(t)]∑J
j=1 1/[(ρ̄j(t− 1) + τ0 + τ(t)]

, (9)

where ρ̄j(t−1) represents the (t−1)-th AoI of DT layer. The
derivation of ρ̄j(t− 1) is elaborated in the next subsection.

The AoI-weighted global model aggregation is performed
as

ω(t) =

J∑
j=1

λj(t)Dj(t)∑J
j=1 λj(t)Dj(t)

ωj(t). (10)

The global loss function is calculated as

L(ω(t), t) =

J∑
j=1

λj(t)Dj(t)∑J
j=1 λj(t)Dj(t)

Lj(ωj(t), t). (11)

D. AoI Updating

After global model aggregation, sj updates the AoI of DTi
as

ρi(t) =

{
τ(t) + τg,

∑J
j=1 ai,j(t) = 0,

ρi(t− 1) + τ0 + τ(t) + τg,
∑J
j=1 ai,j(t) = 1,

(12)

where τg represents the global aggregation delay. Here,∑J
j=1 ai,j(t) = 0 represents the scenario of state data upload-

ing for DT synchronization. AoI at the end of t-th iteration
depends on the local training delay and the global aggregation
delay.

∑J
j=1 ai,j(t) = 1 represents the scenario of data sample

uploading for local training. Since DT is not synchronized in
the t-th iteration, both ρi(t− 1) and τ0 have to be considered
in AoI updating. It is obvious that scheduling devices for data
sample uploading inevitably increases AoI.

The AoI of DT layer is defined as

ρ̄j(t) =
1

|Uj |
∑
ui∈Uj

(ρi(t))
2. (13)

The impact of network resource allocation of signal pro-
cessing, communication and computing integration on model
training delay of EV energy management and AoI evolu-
tion is shown in Fig. 2. As shown in Fig. 2(a) and (c),
the simultaneous processing of EV energy management data
samples uploaded by u1 and u2 causes larger local model
training delay. The controller has to wait for the local model
of s1, which inevitably leads to large AoI. Fig. 2(b) and (d)
demonstrate that if s1 schedules u2 to upload state data, the
AoI of u2 is reduced due to DT synchronization. Furthermore,
the AoI of u1 is also decreased because all computation
resources are allocated to u1 to minimize training delay as well
as waiting delay. Last but not least, a larger data compression
ratio is selected for u3, which enables u3 to upload more data
samples and improve training precision.

III. PROBLEM FORMULATION OF MODEL TRAINING
BASED ON SIGNAL PROCESSING, COMMUNICATION AND

COMPUTING INTEGRATION

A. Problem Formulation

In this paper, we address the model training problem of DT
empowered EV energy management through AoI optimization.
We aim to achieve balanced minimization between global loss
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Fig. 2. The relationship among resource management, training delay, and AoI evolution: (a) Model training delay without resource management; (b) Model
training delay with resource management of signal processing, communication and computing integration; (c) AoI evolution without resource management;
(d) AoI evolution with resource management of signal processing, communication and computing integration.

function and AoI of DT layer through network resource man-
agement of signal processing, communication and computing
integration. Furthermore, both time-averaged AoI reduction
and long-term AoI guarantee are considered to improve AoI
optimality and reliability. Therefore, we formulate the problem
as

min
{ai,j(t),xi,j,n(t),yi(t),fj(t)}

L(ω(T ), T ) +
Vρ
T

T∑
t=1

J∑
j=1

ρ̄j(t),

s.t. C1 : ai,j(t) ∈ {0, 1},∀ui ∈ Uj ,∀sj ∈ S,

C2 :

J∑
j=1

I∑
i=1

xi,j,n(t) = 1,∀cn ∈ C,

C3 :

J∑
j=1

N∑
n=1

xi,j,n(t) = 1,∀ui ∈ Uj ,

C4 : 0 ≤ fj(t) ≤ fj,max(t),∀sj ∈ S,

C5 :
1

T

T∑
t=1

ρ̄j(t) 6 ρ̄j,max,∀sj ∈ S,

C6 :

T∑
t=1

Ej(t) ≤ Emax,∀sj ∈ S, (14)

where Vρ is the weight of AoI. T is the total number
of iterations. C1, C2 and C3 are the constraints of device
scheduling and channel allocation. C4 represents that the
resources allocated by sj should be lower than fj,max(t). C5

represents that the time-averaged AoI of DT layer should be
no less ρ̄j,max. C6 indicates that the energy consumed over T
iterations should be within the energy budget Emax.

B. Problem Decoupling and Transformation based on Tele-
scoping Sum Theorem and Virtual Queue

It can be noted that several challenges prevent the es-
tablished problem from being solved directly. Specifically,
the formulated problem is NP-hard because L(ω(T ), T ) de-
pends on resource management strategies of signal processing,
communication and computing integration over T iterations.
Moreover, L(ω(T ), T ) is also coupled with C6 and C7. To
provide a feasible solution, we propose a two-stage prob-
lem transformation approach. First, L(ω(T ), T ) is decoupled
based on the telescoping sum as

L(ω(T ), T ) =
1

T

[ T∑
t=1

L(ω(t), t)−
T∑
t=1

L(ω(t− 1), t− 1)
]
.

(15)

Second, the coupling between L(ω(T ), T ) and C6, C7

is addressed based on virtual queue [29] without foreseeing
future information. Virtual deficit queues of AoI and energy
corresponding to C6 and C7 are respectively constructed as

Gj(t+ 1) = max
{
Gj(t) + ρ̄j(t)− ρ̄j,max, 0

}
, (16)

Nj(t+ 1) = max
{
Nj(t) + Ej(t)− Emax, 0

}
. (17)

C6 and C7 hold automatically as long as virtual queues are
mean rate stable [30].

Define Φ(t) as Φ(t) = 1
T

[
L(ω(t), t) +

Vρ
∑t
m=1

∑J
j=1 ρ̄j(m)

]
. Lyapunov drift-plus-penalty is

defined as

4VK(G(t)) =V E[Φ(t)|G(t)] +
1

2

J∑
j=1

[
G2
j (t+ 1)−G2

j (t)
]
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+
1

2

J∑
j=1

[
N2
j (t+ 1)−N2

j (t)
]
. (18)

V is a weight to trade off queue fluctuation and minimization
of Φ(t).

Therefore, (14) is converted to minimize the upper bound
of 4VK(G(t)), i.e.,

min
aj(t),xj(t),yj(t),fj(t)

Πj(t) = V
[ 1

T
Lj(ωj(t), t)

+ Vρρ̄j(t)
]

+Gj(t)ρ̄j(t) +Nj(t)Ej(t),

s.t. C1 ∼ C5, (19)

where aj(t) = {ai,j(t)|ui ∈ Uj}, xj(t) = {xi,j,n(t)|ui ∈
Uj , cjn ∈ Cj}, and yj(t) = {yi,m(t)|ui ∈ Uj}.

IV. JOINT OPTIMIZATION ALGORITHM OF SIGNAL
PROCESSING, COMMUNICATION, AND COMPUTING

INTEGRATION BASED ON AOI-AWARE DAC WITH DT
ASSISTANCE

We propose a feasible solution to (19), which realizes
integrated signal processing, communication and computing
for resource management.

A. Markov Decision Process Model

We model (19) as a Markov decision process (MDP).
1) State Space Construction With DT Assistance: The state

space is constructed as Sj(t) = {Gj(t), Nj(t), ρ̄j,max,ρj(t−
1),dj(t − 1),h′j(t), I

′
j(t)}, which contains both observable

and unobservable information. The observable information
includes Gj(t), Nj(t), ρ̄j,max, ρj(t−1) = {ρi(t−1)}, dj(t−
1) = {di(t−1)}, ∀ui ∈ Uj . Channel gain h′j(t) = {h′i,j,n(t)}
and EMI power I ′j(t) = {I ′i,j,n(t)} are unobservable owing to
the limitation of device processing ability and the concern of
signaling overhead [31]. Therefore, they are approximated by
AoIo-DT.

2) Action Space Discretization: The action space of re-
source management of signal processing, communication, and
computing integration Aj(t), is constructed as the combina-
tion of aj(t), xj(t), yi(t), and fj(t). We discretize fj(t) into
H levels, H ∈ N+.

3) Cost Function: We construct the cost function as Πj(t),
which is consistent with the optimization problem (19).

B. Algorithm Implementation

Fig. 3. shows the detailed algorithm framework. Each edge
server respectively constructs a set of deep neural networks for
resource management optimization. The set of sj consists of
a main actor network νmainj , a target actor network νtargetj , a
main critic network θmainj , a target critic network θtargetj , and
an experience replay pool Rj(t). Compared with conventional
DAC, the detrimental effect of AoI on DT-assisted information
estimation of channel gain and EMI power is taken into
account by the proposed algorithm to improve the learning
performance. Particularly, the proposed algorithm defines the
probability of extracting training samples and loss function of
θmainj based on ρ̄j(t). It achieves resource management of

Algorithm 1 Joint optimization algorithm of signal processing,
communication, and computing integration based on AoI-
aware DAC with DT assistance

1: Initialize Gj(t)=0, Nj(t)=0, aj(t)=0, xj(t)=0, yi(t),
and fj(t)=0.

2: For t = 1, · · · , T do
3: Set ωj(t) = ω(t− 1).
4: Obtain resource management strategy Ãj(t) according

to π(Sj(t)|νmainj ).
5: ∀ui ∈ Uj uploads EV energy management data samples

or state data according to Ãj(t).
6: ∀sj ∈ S trains ωj(t).
7: Train the global model as (10).
8: Calculate ρ̄j(t), Gj(t + 1), Nj(t + 1) based on (13),

(16), and (17).
9: Derive Πj(t) based on (19).

10: Transfer Sj(t) to Sj(t+ 1) and update the experience
pool.

11: Calculate TD error δt−ej (t) based on (20).
12: Update pej(t) as (21) based on ρ̄j(t−e−1) and δt−ej (t).
13: Extract R̃j(t) from the experience pool.
14: Update Γj(t) according to (22).
15: Calculate νmainj and θmainj as (23) and (24).
16: Update θtargetj = θmainj and νtargetj = νmainj every

T0 iterations.
17: end for

signal processing, communication, and computing integration
by continuously learning the mapping among the optimal
action, state estimates, and AoI evolution.

The proposed algorithm is implemented in three stages
in Algorithm 1, i.e., initialization, AoIo-DT-assisted resource
management, and AoI-aware learning.

1) Initialization: Set Gj(t), Nj(t), aj(t), xj(t), yi(t), and
fj(t) as zero.

2) AoIo-DT-Assisted Resource Management: sj sets local
model of EV energy management as ωj(t) = ω(t − 1),
and obtains resource management strategy Ãj(t) based on
π(Sj(t)|νmainj ).

Then, ∀ui ∈ Uj uploads data samples of EV energy
management or state data according to the derived strategy.
Each edge server trains local model ωj(t). After local model
training, the global model is aggregated according to (10).

3) AoI-Aware Learning: After global aggregation, the cen-
tral controller feeds back a timestamp to edge server. Then, the
AoI of DT, and virtual deficit queues are updated according
to (13), (16) and (17). Πj(t) is also updated based on (19).
Next, the state Sj(t) is transferred into Sj(t + 1), and a
sample of network ϑj(t) is constructed and used to replace
most stale network sample. The TD error corresponding to
the e-th network sample is given by

δt−ej (t) = Πt−e
j (t) + γQj(S

t−e
j (t+ 1), Ãt−e

j (t+ 1),θtargetj )

−Qj(S
t−e
j (t), Ãt−e

j (t),θmainj ), (20)

where γ represents the discounting coefficient.
Considering the adverse influence of AoI on state estimates

and TD error on network learning, the probability of extracting
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Fig. 3. The proposed algorithm based on AoI-aware DAC with DT assistance.

network sample ϑj(t−e) is jointly determined by ρ̄j(t−e−1)
and δt−ej (t), which is derived as

pej(t) =

|δt−e
j (t)|

ρ̄j(t−e−1)∑E
m=1

|δt−e
j (t)|

ρ̄j(t−m−1)

. (21)

pej(t) also represents the priority of ϑj(t− e), i.e., higher pri-
ority network samples are given larger extracting probabilities.

Afterwards, a mini-batch R̃j(t) is extracted based on AoI-
aware probability distribution pj(t) = {pej(t)} to derive the
loss function as

Γj(t) =
1

M

∑
ϑj(t−e)∈R̃j(t)

pej(t)
(
δt−ej (t)

)2

, (22)

where M is the number of network samples.
sj updates νmainj and θmainj based on the gradient descent

method as

νmainj = νmainj − ψν
√

Γj(t)Oνmain
j

logπ(Sj(t)|νmainj ),

(23)

θmainj = θmainj − ψθOνmain
j

Γj(t), (24)

where ψν and ψθ are the learning steps of actor network and
critic network. νtargetj and θtargetj are updated every T0 > 1

iterations as νtargetj = νmainj and θtargetj = θmainj .
Afterwards, the trained EV energy management model is

leveraged to generate EV energy management strategies based
on various inputs such as EV charging load, PV output,
and load variation. Grid companies or third-party aggregators
perform EV energy management to achieve better energy
demand-supply balance, promote clean energy utilization, and
reduce carbon emission.

Compared with the conventional DAC algorithm, the pro-
posed algorithm additionally calculates the probability of
extracting network samples with a complexity of O(E), which
renders it more practical.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

T 200 I , J 40, 4
H 3 N1, N 5, 10
ξ 106 cycles N0 −114 dBm

BPLC , B6G 0.1, 0.2 MHz PPLC 0.2 W
P5G 0.4 W yi,m(t) 5, 7, 9
τg 10 ms fj,max [4, 10] GHz
τ0 0.1 s γ 0.99
V, Vρ 10, 30 ψ 0.001

V. NUMERICAL RESULTS

We consider a resource management scenario for model
training of EV energy management. Two state-of-art algo-
rithms i.e., age-aware policy algorithm (AAP) [32] and age-
aware resource allocation strategy (ARAS) [33], are compared
with the proposed algorithm. AAP minimizes AoI by optimiz-
ing device scheduling, but cannot jointly optimize data com-
pression ratio selection, channel allocation and computation
resource allocation. ARAS jointly minimizes AoI and global
loss function by optimizing device scheduling and channel
allocation based on alternate iterative optimization under the
long-term training delay constraints, but data compression
ratio selection and computation resource allocation are not
optimized. However, neither AAP nor ARAS considers the
constraint of AoI guarantee. The local dataset is constructed
based on the ImageNet dataset [14]. Table I shows simulation
parameters [3], [18].

Fig. 4(a) shows global loss function performance. The
global loss function decreases initially and eventually becomes
stable after t = 20. When t = 200, the global loss function of
the proposed algorithm is reduced by 61.61% and 47.79%
compared to AAP and ARAS, respectively. The reason is
that data sample uploading of EV energy management is
dynamically scheduled for global loss function reduction.
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Fig. 4. Comparison with AAP and ARAS: (a) Global loss function; (b) AoI; (c) AoI deficit.

(a) (b) (c)

Fig. 5. Influence of key parameters: (a) Impact of τ0 and Vρ on global loss function; (b) Impact of τ0 and Vρ on AoI. (c) Impact of fj,max(t) on global
loss function.

ARAS is addicted to reducing training delay, resulting in
inadequate training of global model. AAP neglects the severe
influence of large AoI on global loss function which causes
the decrease of global model training precision.

Figs. 4(b) and (c) show AoI versus iterations and the box
plots of AoI deficit. Compared with AAP and ARAS, the
proposed algorithm reduces AoI by 57.45% and 44.04%, the
average AoI deficit by 61.06% and 43.64%, and the minimum
average AoI deficit by 73.86% and 63.84%. Neither AAP nor
ARAS is capable of realizing long-term AoI guarantee.

Fig. 5(a) and (b) demonstrate the influence of uploading
duration of data sample and weight of AoI. The global
loss function decreases initially and then grows, while AoI
continuously decreases due to the paradox between model
training and DT synchronization. A large τ0 helps to reduce
global loss function by uploading more data samples, but
increases model training delay and AoI.

Fig. 5(c) shows the impact of fj,max(t), which has a
negative impact on global loss functions improvement. When
computation resources are sufficient, more devices can be
scheduled to upload data samples to reduce global loss func-
tion. When fj,max(t) = 10 GHz, the proposed algorithm
outperforms AAP and ARAS by 53.27% and 45.65% due to
the well exploitation of computation resources.

We consider a scenario of EV energy management with
1000 EVs and distributed PV generators in distribution grid.
The rated capacity of EV storage battery is 45 kWh, and

the upper and lower bounds of state of charge (SoC) are
set as 0.95 and 0.3. The maximum and minimum charging
and discharging power are 4 kW and 1kW. Fig. 6 and Fig.
7 show the average EV charging demand, original daily load
curve, PV output, and time-of-use (TOU) price in practical
scenarios [34]. EVs provide ancillary services of peak shaving
and valley filling to obtain revenue from the grid. The EV
charging cost is defined as the difference between charging
fee and obtained revenue. EV energy management aims to
minimize load fluctuation and EV charging cost by jointly
optimizing EV charging and discharging [35]. In practical
scenarios, EV energy management model is trained based
on the data samples collected from devices, which include
daily loads, TOU prices, PV outputs, EV SoC, EV charging
demands, and timestamps.

Fig. 8 shows the EV energy management performance. EVs
charge during the off-peak load period, i.e., 0:00-8:00, to meet
their own charging demands and fill load valley. The reasons
are twofolds. First, the lower electricity price of off-peak
period reduces charging cost. Second, EVs earn additional
revenue by providing valley-filling service. On the other hand,
EVs discharge during the peak load period, i.e., 11:00-13:00,
and 19:00-21:00, to shave load peak when PV output falls far
behind load demand. EVs obtain more revenue by providing
peak-shaving service due to the peak load tariff imposed by
the TOU pricing mechanism.

Fig. 9 shows actual load curve with EV energy management
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and cumulative charing cost. Compared with APP and ARAS,
the proposed algorithm reduces load curve fluctuation by
17.02% and 21.77%, and reduces cumulative charging cost
by 71.92% and 78.74%, respectively. The model training pre-
cision of EV management is improved from three perspectives.
First, AoI-weighted global model aggregation is leveraged to
alleviate the adverse impact of AoI on global model training.
Second, AoIo-DT is employed to provide more accurate state
estimates to reduce global loss function through coordinated
resource management. Third, AoI-aware learning encourages
DAC training to use samples with lower AoI to achieve better
learning convergence and optimality performance.

VI. CONCLUSION

In this paper, the model training problem of DT empowered
EV energy management is addressed from the perspective of
AoI optimization. The proposed algorithm achieves network
resource management of 6G signal processing, communica-
tion, and computing integration through AoIo-DT assistance
and AoI-aware learning. Compared with AAP and ARAS, the
global loss function is improved by 61.61% and 47.79% and
the AoI is reduced by 57.45% and 44.04%. The proposed

algorithm was further validated in a more complex scenario
of EV energy management with 1000 EVs and distributed
PV generators. Under dynamic load, PV output, and TOU
price, the proposed algorithm outperforms APP and ARAS by
17.02% and 21.77% in load curve fluctuation reduction, and
71.92% and 78.74% in cumulative charging cost saving. We
conclude that the great potentials of EVs are better exploited
through joint optimization of signal processing, communica-
tion, and computing. In [36], a novel fashion to model task
caching strategies was proposed, which provided a solution
for the improvement of system model. In the future, we will
further investigate the impact of caching issues in DT model.

ACKNOWLEDGEMENTS

This work was supported by the Science and Technology
Project of State Grid Corporation of China under Grant
Number 5400-202199541A-0-5-ZN.

REFERENCES

[1] S. A. Khowaja, P. Khuwaja, K. Dev et al., “A secure data sharing scheme
in community segmented vehicular social networks for 6G,” IEEE Trans.
Ind. Informat., vol. 19, no. 1, pp. 890–899, Jan. 2023.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 10

[2] Z. Zhou, B. Wang, Y. Guo, and Y. Zhang, “Blockchain and compu-
tational intelligence inspired incentive-compatible demand response in
internet of electric vehicles,” IEEE Trans. Emerging Top. Comput. Intell.,
vol. 3, no. 3, pp. 205–216, Jun. 2019.

[3] Z. Zhou, B. Wang, M. Dong, and K. Ota, “Secure and efficient
vehicle-to-grid energy trading in cyber physical systems: Integration of
blockchain and edge computing,” IEEE Trans. Syst. Man Cybern.: Syst.,
vol. 50, no. 1, pp. 43–57, Jan. 2020.

[4] M. Kamal, G. Srivastava, and M. Tariq, “Blockchain-based lightweight
and secured V2V communication in the internet of vehicles,” IEEE
Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 3997–4004, Jul. 2021.

[5] J. Zhou, D. Tian, Y. Wang et al., “Reliability-optimal cooperative
communication and computing in connected vehicle systems,” IEEE
Trans. Mob. Comput., vol. 19, no. 5, pp. 1216–1232, May 2020.

[6] M. Kamal, M. Tariq, G. Srivastava, and L. Malina, “Optimized security
algorithms for intelligent and autonomous vehicular transportation sys-
tems,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2, pp. 2038–2044,
Feb. 2023.

[7] Y. Shu, Z. Wang, H. Liao et al., “Age-of-information-aware digital twin
assisted resource management for distributed energy scheduling,” in
Proc. IEEE Global Communications Conference (IEEE GLOBECOM),
Rio de Janeiro, Brazil, Dec. 2022, pp. 5705–5710.

[8] M. Adhikari, A. Hazra, V. G. Menon, B. K. Chaurasia, and S. Mumtaz,
“A roadmap of next-generation wireless technology for 6G-enabled
vehicular networks,” IEEE Internet Things Mag., vol. 4, no. 4, pp. 79–
85, Dec. 2021.

[9] S. Zhang, H. Gu, K. Chi et al., “DRL-based partial offloading for
maximizing sum computation rate of wireless powered mobile edge
computing network,” IEEE Trans. Wireless Commun., vol. 21, no. 12,
pp. 10 934–10 948, Dec. 2022.

[10] W. Sun, S. Lei, L. Wang, Z. Liu, and Y. Zhang, “Adaptive federated
learning and digital twin for industrial internet of things,” IEEE Trans.
Ind. Informat., vol. 17, no. 8, pp. 5605–5614, Aug. 2021.

[11] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp. 5098–5107, Jul. 2021.

[12] F. Wang, D. Jiang, Z. Wang, and S. Mumtaz, “Service continuity based
data delivery optimization in satellite-terrestrial networks,” IEEE Trans.
Veh. Technol., vol. 72, no. 10, pp. 13 604–13 617, Oct. 2023.

[13] J. Choi, V. Marojevic, C. B. Dietrich, and S. Ahn, “DSRC-enabled
train safety communication system at unmanned crossings,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 10, pp. 18 210–18 223, Oct. 2022.

[14] Z. Zhou, Z. Jia, H. Liao et al., “Secure and latency-aware digital
twin assisted resource scheduling for 5G edge computing-empowered
distribution grids,” IEEE Trans. Ind. Informat., vol. 18, no. 7, pp. 4933–
4943, Jul. 2022.

[15] D. Van Huynh, V.-D. Nguyen, S. R. Khosravirad, G. K. Karagiannidis,
and T. Q. Duong, “Distributed communication and computation resource
management for digital twin-aided edge computing with short-packet
communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp.
3008–3021, Oct. 2023.

[16] W. Sun, S. Lian, H. Zhang, and Y. Zhang, “Lightweight digital twin and
federated learning with distributed incentive in air-ground 6G networks,”
IEEE Trans. Network Sci. Eng., vol. 10, no. 3, pp. 1214–1227, Oct. 2022.

[17] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp. 5098–5107, Aug. 2020.

[18] T. Do-Duy, D. Van Huynh, O. A. Dobre, B. Canberk, and T. Q. Duong,
“Digital twin-aided intelligent offloading with edge selection in mobile
edge computing,” IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 806–
810, Jan. 2022.

[19] D. Van Huynh, V.-D. Nguyen, S. R. Khosravirad et al., “URLLC
edge networks with joint optimal user association, task offloading and
resource allocation: A digital twin approach,” IEEE Trans. Commun.,
vol. 70, no. 11, pp. 7669–7682, Nov. 2022.

[20] W. Y. B. Lim, Z. Xiong, J. Kang et al., “When information freshness
meets service latency in federated learning: A task-aware incentive
scheme for smart industries,” IEEE Trans. Ind. Informat., vol. 18, no. 1,
pp. 457–466, Jan. 2022.

[21] Z. Zhu, S. Wan, P. Fan, and K. B. Letaief, “An edge federated MARL
approach for timeliness maintenance in MEC collaboration,” in Proc.
IEEE International Conference on Communications Workshops (ICC
Workshops), Montreal, QC, Canada, Jun. 2021, pp. 1–6.

[22] S. B. Prathiba, G. Raja, K. Dev, N. Kumar, and M. Guizani, “A hybrid
deep reinforcement learning for autonomous vehicles smart-platooning,”

IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13 340–13 350, Dec.
2021.

[23] Y. Cao, S.-Y. Lien, and Y.-C. Liang, “Deep reinforcement learning
for multi-user access control in non-terrestrial networks,” IEEE Trans.
Commun., vol. 69, no. 3, pp. 1605–1619, Mar. 2021.

[24] Y.-C. Wu, T. Q. Dinh, Y. Fu, C. Lin, and T. Q. S. Quek, “A hybrid
DQN and optimization approach for strategy and resource allocation in
MEC networks,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp.
4282–4295, Jul. 2021.

[25] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265, Jun.
2018.

[26] J. Lopez, J. E. Rubio, and C. Alcaraz, “A resilient architecture for the
smart grid,” IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3745–3753,
Aug. 2018.

[27] H. Chen and S. Ye, “Modeling and optimization of EMI filter by using
artificial neural network,” IEEE Trans. Electromagn. Compat., vol. 61,
no. 6, pp. 1979–1987, Dec. 2019.

[28] C. Luo, Y. Cui, and S. Lin, “Container migration method based on
bandwidth prediction and adaptive compression,” Computer Engineer-
ing, vol. 48, no. 5, pp. 200–207, May 2022.

[29] H. Liao, X. Chen, Z. Zhou, N. Liu, and B. Ai, “Licensed and unlicensed
spectrum management for cognitive M2M: A context-aware learning
approach,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 3, pp. 915–
925, Sep. 2020.

[30] M. J. Neely, Stochastic Network Optimization With Application to
Communication and Queueing Systems. San Rafael, CA, USA: Morgan
and Claypool, 2010.

[31] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement
learning for stochastic computation offloading in digital twin networks,”
IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4968–4977, Jul. 2021.

[32] X. Liu, X. Qin, H. Chen et al., “Age-aware communication strategy
in federated learning with energy harvesting devices,” in Proc. IEEE
International Conference on Communications in China (IEEE ICCC),
Xiamen, China, Nov. 2021, pp. 358–363.

[33] J. Sun, L. Wang, Z. Jiang, S. Zhou, and Z. Niu, “Age-optimal scheduling
for heterogeneous traffic with timely throughput constraints,” IEEE J.
Sel. Areas Commun., vol. 39, no. 5, pp. 1485–1498, May 2021.

[34] Y. Wang, Y. Zheng, H. Xue, and Y. Mi, “Optimal dispatch of mobile
energy storage for peak load shifting based on enhanced firework
algorithm,” Autom. Elect. Power Syst., vol. 45, no. 5, pp. 48–56, Mar.
2021.

[35] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “Effective utilization
of available PEV battery capacity for mitigation of solar PV impact
and grid support with integrated V2G functionality,” IEEE Trans. Smart
Grid, vol. 7, no. 3, pp. 1562–1571, May 2016.

[36] D. Van Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and
T. Q. Duong, “Edge intelligence-based ultra-reliable and low-latency
communications for digital twin-enabled metaverse,” IEEE Wireless
Commun. Lett., vol. 11, no. 8, pp. 1733–1737, Aug. 2022.

Haijun Liao (Student Member, IEEE) received the
B.Eng. degree in smart grid information engineering
in 2019 from North China Electric Power University,
Beijing, China, where she is currently working to-
wards the Ph.D. degree in electrical engineering with
the School of Electrical and Electronic Engineering,
North China Electric Power University. Her research
interest is cloud-edge-end collaborative computing
offloading in power internet of things. She was the
recipient of the IEEE IWCMC 2019 Best Paper
Award, IEEE VTC-2020 Spring Best Student Paper

Award, and IEEE CAMAD 2021 Best Paper Award.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 11

Jiaxuan Lu majored in communication engineering
with the School of Electrical and Electronic En-
gineering, North China Electric Power University,
Beijing, China. His research interest is the power
internet of things.

Yiling Shu received the B.Eng. degree in com-
munication engineering in 2022 from North China
Electric Power University, Beijing, China, where
he is currently working toward the M.E. degree
in information and communication engineering with
the School of Electrical and Electronic Engineering,
North China Electric Power University. His research
interest is power wireless communication networks
and power internet of things.

Zhenyu Zhou (Senior Member, IEEE) received the
M.E. and Ph.D. degrees in international information
and communication studies from Waseda University,
Tokyo, Japan, in 2008 and 2011, respectively. From
September 2012 to April 2019, he was an Asso-
ciate Professor with the School of Electrical and
Electronic Engineering, North China Electric Power
University, Beijing, China, where he has been a Full
Professor since April 2019. His research interests
include power internet of things, smart grid informa-
tion and communication, communication-sensing-

computing integration, and smart grid energy management. He was the re-
cipient of the IET Premium Award in 2017, IEEE Globecom 2018 Best Paper
Award, IEEE International Wireless Communications and Mobile Computing
Conference 2019 Best Paper Award, and IEEE Communications Society Asia-
Pacific Board Outstanding Young Researcher. He was an Associate Editor for
IEEE INTERNET OF THINGS JOURNAL, IET Quantum Communication,
IEEE ACCESS, and EURASIP Journal on Wireless Communications and
Networking, and the Guest Editor of IEEE Communications Magazine, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, and Transactions on
Emerging Telecommunications Technologies. He is an IET Fellow and a
Senior Member of the Chinese Institute of Electronics and the China Institute
of Communications.

Muhammad Tariq (Senior Member, IEEE) received
the M.S. degree from Hanyang University, South
Korea, as an HEC Scholar, and the Ph.D. degree,
as a Japanese Government (MEXT) Scholar, from
Waseda University, Japan, in 2012. He completed
his postdoctoral research at Princeton University as
a Fulbright Scholar under the supervision of Prof. H.
V. Poor, in 2016. He was the Head of the Department
of Electrical Engineering, FAST National Univer-
sity of Computer and Emerging Sciences (NUCES),
Peshawar Campus, where he remained the Campus

Director from 2018 to 2021. He is currently Professor and Head of the
School of Electrical Engineering at the National University of Computer and
Emerging Sciences (NUCES), Islamabad Campus, Pakistan. Previously he
served as Campus Director at NUCES Peshawar Campus. He was recognized
in the top 2% of scientists worldwide in 2023 by Stanford University and
Elsevier. His academic journey includes a Fulbright-Postdoctoral fellowship
at Princeton University, USA, a Ph.D. from Waseda University, Japan, and
MS from Hanyang University, South Korea.

Shahid Mumtaz (Senior Member, IEEE) received
the M.Sc. degree in electrical and electronic engi-
neering from the Blekinge Institute of Technology,
Karlskrona, Sweden, in 2006, and the Ph.D. degree
in electrical and electronic engineering from the
University of Aveiro, Aveiro, Portugal, in 2011. He
is currently a Professor with Nottingham Trent Uni-
versity (NTU), U.K. He was a Research Intern with
Ericsson and Huawei Research Labs, Karlskrona,
Sweden, in 2005. His research interests include
wireless communication and internet of things. Dr.

Mumtaz was the recipient of the Alain Bensoussan Fellowship by ERCIM
to pursue research in communication networks for one year with the VTT
Technical Research Centre, Espoo, Finland, in 2012. He was nominated as
the Vice Chair for the IEEE new standardization on P1932.1: Standard for
Licensed/Unlicensed Spectrum Interoperability in Wireless Mobile Networks.


