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A B S T R A C T   

High-performance fibre-reinforced polymer (FRP) composites offer outstanding specific strength and stiffness. 
However, their inherent brittleness can result in sudden and catastrophic failure without adequate warning, 
making them unsuitable for many applications. To overcome this limitation, we developed graphene-based glass- 
carbon FRP hybrid composites with excellent pseudo-ductile properties. Our method involves coating glass and 
carbon fibre fabrics with graphene-based materials using a scalable pad-dry-cure technique, followed by epoxy 
matrix reinforcement via vacuum-assisted resin infusion (VARI). Tensile and flexural tests reveal remarkable 
pseudo-ductile behaviour, with 1 wt% GNP-coated composites showing approximately ~ 17.05 % higher 
Young’s modulus, ~18.52 % higher ultimate failure stress, and ~ 31.73 % higher strain% compared to glass- 
carbon/epoxy hybrids. By enabling the manufacture of high-performance pseudo-ductile composites at scale 
using a cost-effective manufacturing method, these composites hold significant potential for next-generation 
applications.   

1. Introduction 

High-performance FRP composites are widely employed in advanced 
lightweight engineering applications due to their remarkable mechani-
cal properties [1–3]. However, a fundamental limitation of such com-
posites is their inherent brittleness, which can lead to sudden and 
catastrophic failure without adequate pre-warning. This drawback has 
rendered such composites unattractive for many applications. The full 
potential of FRP composites in terms of their outstanding structural 
properties remains untapped due to concerns over their safety and po-
tential for sudden and catastrophic failure. Therefore, the development 
of high-performance FRP composites with inherent ductility is critical to 
expanding the range and volume of applications for composite mate-
rials. While a clear definition for pseudo-ductility does not exist, this 
property can be quantified using the pseudo-ductile strain, which can be 
defined as the difference between the final failure strain and the pro-
jected elastic strain at the failure stress [4]. Numerous approaches have 
been employed to impart ductility in high-performance composites, 
enabling a gradual failure mode while maintaining high strength and 
specific stiffness [5–8]. 

The introduction of ductile fibres, such as stainless steel, has been 

shown to improve the failure strain of composites [9,10]. However, the 
higher density of steel fibres can limit their application in weight-critical 
contexts by reducing the specific strength. Modification of traditional 
reinforced materials in composite laminates has been studied as an 
alternative method for generating additional strain and non-linear 
response during tensile loading. Additional strain and non-linear 
response can be achieved through various methods, including reor-
ientation of off-axis fibres and matrix shearing through angle plies, 
[11,12] excess length via out-of-plane waviness, [13,14] highly aligned 
discontinuous fibres, [15,16] or shear under tension in a biaxial braid 
structure [17,18]. However, braided composites typically do not exhibit 
an increase in stress after the initial failure, making true pseudo-ductility 
unattainable with such architecture. Promising ductile fibres, such as 
carbon nanotubes [19] and regenerated cellulose, [20] have been 
identified. However, these new fibres are unable to provide elastic 
moduli and strength values comparable to those of traditional glass or 
carbon fibres, making the commercialization of ductile composites for 
macroscale structural applications a challenging and time-consuming 
process. A summary of the different techniques and mechanisms used 
for creating ductility or pseudo-ductility is presented in supporting in-
formation (Table S1). 
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Hybridizing low strain (LS) to failure fibres with high strain (HS) to 
failure fibres is one of the most commonly used methods for achieving 
pseudo-ductility [21]. Fiber hybridization can be performed using 
various methods, such as interlayer or layer-by-layer, [22] intralayer or 
yarn-by-yarn, [23] and intra-yarn or fiber-by-fiber [24]. In hybrid 
composites with different failure strain values, achieving an appropriate 
fibre volume fraction (Vf) for the two different fibres is critical for pro-
ducing progressive failure of the composite [25]. Recent studies have 
indicated that a thin-ply interlayer unidirectional (UD) hybrid archi-
tecture is a promising approach for achieving favorable ductile or 
pseudo-ductile behavior in composites [26–30]. In most cases, such UD 
interlayer hybrid composites are produced by embedding thin carbon 
fiber (LS) layers between glass fiber (HS) layers to create pseudo- 
ductility through the progressive fragmentation of the carbon layer 
and delamination of the carbon/glass interface. Although thin-ply UD 
hybrid composites have good pseudo-ductile properties, unbalanced 
load-bearing capacity, higher manufacturing costs, and poor preform 
drapability relative to woven fabric preforms present obstacles to their 
industrial application. 

Graphene and its derivatives have drawn significant research interest 
in recent years as potential materials for producing multifunctional 
textiles [31–34] and composites, [35–38] due to the superior mechan-
ical, electrical, and thermal properties [39,40]. Due to these multi-
functional properties, graphene material has gained significant interest 
for use as a filler in high-performance FRP composites [41,42]. Gra-
phene oxide (GO), an oxidized derivative of graphene, is formed by 
attaching various oxygen functional groups (e.g., hydroxyl, epoxy, and 
carbonyl groups) to the basal plane and edges of a graphene sheet [43]. 
Many studies have aimed to improve the interfacial properties of FRP 
composites by introducing GO in the composites through modifying 
resins or fibers [44–48]. Additionally, the Graphene Nanoplatets (GNP), 
made up of a few layers of graphene stacked together in a plate-like 
shape, can be produced at a relatively low cost through a top-down 
approach, including mechanical exfoliation and liquid-phase exfolia-
tion from pre-treated graphite [49]. However, incorporating GNP into 
FRP composites is a challenging task. It is important to develop a time- 
and cost-effective processing technique to incorporate the GNP into FRP 
composites that is easier to scale up to industrial production. To date, 
there is no published work available on pseudo-ductility in graphene- 
based FRP composites, which is the focus of this study. 

Here, we present an innovative approach to significantly enhance the 
pseudo-ductile behavior of GNP-coated woven glass-carbon/epoxy 
interlayer hybrid composites, which can bear loads in both directions 
and are more practical for real-life applications than UD hybrid com-
posites. Commercially available E-glass and carbon fibre balanced fab-
rics were coated with GNP at different concentrations using a simple and 
highly scalable pad-dry-cure coating method, and the composites were 
manufactured via a VARI process using five-layer fabric configurations. 
The results of tensile tests showed that glass-carbon/epoxy and GNP- 
coated glass-carbon/epoxy hybrid composites exhibited excellent 

pseudo-ductile behavior. However, the GNP-coated glass-carbon/epoxy 
hybrid composites showed a higher level of pseudo-ductile strain 
compared to the glass-carbon/epoxy hybrid composite. 

2. Experimental 

2.1. Materials 

Commercial E-glass fibre and Toray carbon fibre plain woven fabrics 
were purchased from Easy Composites, UK. The areal weight of the glass 
fabric was approximately ~ 290 g/m2 with a weave density of 4 ends 
and picks per cm. The areal weight of the carbon fibre fabric was 
approximately ~ 90 g/m2 with a weave density of 7 ends and picks per 
cm. EL2 epoxy laminating resin and AT30 slow hardener were pur-
chased from Easy Composites, UK. Araldite 2011 A/B epoxy adhesive 
was purchased from Huntsman, USA. 2-Propanol (≥99.5 %) was pur-
chased from Sigma-Aldrich, UK. Graphene nanoplatelets (GNP) (xGNP, 
Grade M− 15, XG Science, Lansing USA) with a nominal lateral size of 
approximately ~ 15 µm as reported by the supplier were used. The 
manufacturer reported that the average thicknesses of all the flakes were 
in the range of approximately ~ 6–8 nm. 

2.2. Preparation of GNP dispersion 

GNP dispersions were prepared using a bath-type sonication method. 
Since they do not disperse in water without a surfactant, GNPs (1 and 5 
wt%) were dispersed in 2-propanol (IPA) and deionized water (DI) (50 
% propanol + 50 % water) to prepare a homogeneous dispersion. Firstly, 
the GNP, IPA, and DI water were mixed using a magnetic stirrer for 2 h. 
Then, the GNP dispersion was sonicated in a bath sonicator for 2 h to 
achieve a homogeneous dispersion. 

Both the glass and carbon fibre fabrics were cut into dimensions of 
300 mm × 250 mm. The pad-dry-cure coating technique (as shown in 
Fig. 1) was employed to coat the glass and carbon fibre fabrics with GNP 
dispersions. A laboratory-scale padder machine (Roaches, UK) was used 
to coat the glass and carbon fabrics with the GNP dispersions, followed 
by drying at 100 ◦C for 7 min in a Mini-Thermo (Roaches, UK). The GNP 
dispersions were placed between the two rubber rollers of the padder, 
and the padding roller pressure and speed were adjusted to 0.5 bar and 
1 m/min, respectively. Two coating cycles were carried out, with each 
cycle including one padding and one drying pass. 

2.3. Composite manufacturing 

GNP-coated glass-carbon/epoxy inter-layer hybrid composite lami-
nates were manufactured using a VARI process. To compare the per-
formance of hybrid composites with the baseline materials, glass/epoxy, 
carbon/epoxy and glass-carbon/epoxy inter-layer hybrid composite 
laminates were also manufactured. Five types of composites were 
fabricated for the current investigation, and each composite contains 

Fig. 1. Photograph and schematic of the fabric coating process.  
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five layers of fabric. The hybrid composites consist of four layers of glass 
and one layer of carbon fabric. The lay-up sequence was two layers of 
glass, one layer of carbon and then two layers of glass fabrics. The ratio 
of glass to carbon fibre by volume in the composites was 90:10. The 
schematic diagram of the stacking sequence of glass, carbon and glass/ 
carbon hybrid composites is shown in Fig. 2. A peel ply was used on the 
bottom and top side of the layered fabric to ensure easy de-molding of 
composites. In addition, a mesh fabric was also placed on top to ensure 
an even flow of resin during the infusion process. The preform was 
sealed by a plastic bag and vacuum-pressed using a pump. EL2 epoxy 
laminating resin and AT30 slow epoxy hardener were degassed sepa-
rately for 1 h and then mixed. The mixed resin was again de-gassed for 
30 min to ensure there were no bubbles inside the resin. Finally, the 
resin is carefully sucked into the preform through the resin inlet and 
outlet tube using a vacuum pump. The resin-infused preforms were 
cured at room temperature for 48 h. Five different types of composite 
laminates were manufactured, and the list of laminates is presented in 
Table 1. The thickness and density of the composites are presented in 
Table 2. 

2.4. Characterization 

The surface topography of the untreated, GNP-coated glass and 
carbon fibre fabrics was analysed using an FEI Quanta 650 Field Emis-
sion Scanning Electron Microscope (SEM). After the tensile test, the 
fracture specimens were also observed under SEM to observe the GNP- 
coated fibre matrix interaction. To avoid charging, all the specimens 
were gold-coated using an Emscope SC500 gold sputter coating unit 
before the SEM analysis. 

2.5. Tensile strength testing of composites 

All the composite specimens were prepared for tensile testing ac-
cording to ASTM D3039M standard. Five specimens (250 mm long and 
25 mm wide) were prepared for each type of composite for tensile 
testing. End tabs made of glass fibre-reinforced cross-ply plates with a 
thickness of 1.60 mm were bonded to the specimen using an Araldite 
2011 A/B epoxy adhesive mixer. The individual samples were cut from 
the composite panel with a diamond cutting wheel. Tensile tests were 
carried out using a Testometric X350-20 (UK) tensile testing machine, 
which was equipped with a 20 kN load cell at a crosshead speed of 2 
mm/min. The strain was measured using a mechanical extensometer 
with a nominal gauge length of 25 mm. A high-speed video camera 
(Sony HXR-NX 80) was used for in-situ observation during the test. 

2.6. Flexural test 

The flexural tests were performed according to the ASTM D7264/ 
D7264M-15. The dimensions of the test specimens used were 74 mm 
in length, 13 mm in width, and 1.1 mm in thickness. The span-to-depth 
ratio was set to 40:1. Flexural tests were carried out using a Testometric 
X350-20 (UK) testing machine, which was equipped with a 20 kN load 
cell at a crosshead speed of 1 mm/min. At least five specimens were 
tested for each composite sample. The flexural stress (σ) and flexural 
strain (ε) were calculated using the following equations given in ASTM 
D7264/D7264M-15. 

σ =
3PL
2bh2 (1)  

ε =
6δh
L2 (2)  

where: σ = stress at the outer surface at mid-span (MPa), ε = maximum 
strain at the outer surface (mm/mm), P = applied force (N), L = support 
span (mm), b = width of beam (mm), h = thickness of beam (mm), δ =
mid-span deflection (mm). 

Fig. 2. Schematic of the layup process for different composites.  

Table 1 
List of the different laminates.  

Laminate configurations Lay-up sequences and number of 
fabric layers (L) 

GF areal density 
(g/m2) 

CF areal density 
(g/m2) 

Volume of HS 
fibre (%) 

Volume of LS 
fibre (%) 

Glass (G) fibre 5L G 290 – 100  
Carbon (C) fibre 5 L C – 90 – 100 
Glass/carbon 2L G + 1L C + 2L G 290 90 90 10 
GNP coated glass and carbon (2 laminates at 

different GNP concentrations) 
2L G + 1L C + 2LG 290 90 90 10  

Table 2 
The thickness and density of the composites.  

Composites Thickness (mm) Density (g/cm3) 

Carbon/epoxy  0.65  1.3 
Glass/epoxy  1.21  1.72 
Glass-carbon/epoxy  1.13  1.58 
1 wt% GNP-glass-carbon/epoxy  1.11  1.62 
5 wt% GNP-glass-carbon/epoxy  1.09  1.65  
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3. Results and discussion 

3.1. Design approach 

This section describes the design approach and materials used to 
ensure a stable pseudo-ductile failure of the hybrid composites (Fig. 3). 
A previous study [26] presented an analytical method that demonstrated 
the importance of LS fibre fragmentation and dispersed delamination in 
achieving the pseudo-ductile behavior of the hybrid composites during 
tensile loading. Hybrid architecture and the proportion of LS and HS 
fibres play a crucial role in achieving LS fibre fragmentation and 
dispersed delamination. In addition, the thickness of LS fibres affects the 
pseudo-ductile behavior of the composite [28,29]. The outer HS fibre 
layers must be thick and strong enough to take the full load after LS fibre 
failure. Another study, [25] showed that the fibre volume fraction (Vf) of 
two different fibres with different failure strain values is important for 
achieving a progressive failure of the hybrid composites. The pseudo- 

ductile response was only achieved using 10 to 25 % of LS fibres by 
volume. Recent studies have shown that the incorporation of a small 
amount of nanofiller, such as graphene, in FRP composites could 
significantly improve interface-dominated properties [50,51]. Nano-
filler improves the fibre/matrix bonding, which plays a vital role in 
efficient stress transfer, reduces local stress concentration around the 
fibre–matrix interface, and improves interfacial properties. 

In this study, to achieve pseudo-ductility in a hybrid composite, glass 
and carbon fabrics were coated with GNP. The GNP could be attached to 
the fabric surface, improving the fibre–matrix interactions and forming 
a link between the glass-carbon fibre layers. This helped to promote 
carbon fibre fragmentation, dispersed delamination, and stable load 
transfer to glass fibre after carbon fibre failure. GNP-coated glass-car-
bon/epoxy inter-layer hybrid composite laminates were manufactured, 
with one layer of carbon fabric placed in the middle of four layers of 
glass fabric, Fig. 3a. The glass and carbon fibre volume ratio in the 
composite was maintained at 90:10 to promote fragmentation of the 

Fig. 3. a) Design of GNP-coated glass-carbon/epoxy hybrid composite and b) Schematic of the stress–strain response of conventional and GNP-coated glass-carbon/ 
epoxy hybrid composites with the graphical representation of pseudo-ductile properties. 

Fig. 4. SEM images of a) untreated glass fabric (X1000); b) 1 wt% GNP-coated glass fabric (X1000), c) 5 wt% GNP-coated glass fabric (X1000), d) untreated carbon 
fabric (X1000); e) 1 wt% GNP-coated carbon fabric (X1000), and f) 5 wt% GNP-coated carbon fabric (X1000). 
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central carbon layer and stable delamination around the fractures in the 
carbon layer. In this way, the typical major load drop at the fracture of 
the carbon fibre in the hybrid composite could be avoided, and a slightly 
rising plateau could be generated instead, with further rise after com-
plete fragmentation of the carbon fibre. A schematic of the stress–strain 
response of conventional and GNP-coated glass-carbon/epoxy hybrid 
composites with the graphical representation of pseudo-ductile prop-
erties is shown in Fig. 3b. 

3.2. Characterization of GNP-coated glass and carbon fabric 

A highly scalable pad-dry-cure coating technique was used to coat 
glass and carbon fibre fabrics with GNP at two different concentrations. 
This process can coat fabrics at a very high speed of ~ 150 m/min 
[52,53]. The SEM images of uncoated and GNP-coated glass and carbon 
fibre fabrics with different GNP concentrations are shown in Fig. 4a–f. 
The surfaces of uncoated glass and carbon fibres are smooth and clean 
(Fig. 4a and d). After coating with GNP, the surface roughness of coated 
fibres is noticeable, as seen in Fig. 4b–c and e–f, which may be due to the 
fact that GNP is attached to the fibre surface by mechanical interlocking. 
As seen in Fig. 4b–c and e–f, GNP flakes were randomly distributed on 
glass and carbon fibre surfaces with some aggregated GNP in some areas. 
Aggregation occurs more for 5 wt% GNP-coated fibre surface (Fig. 4c 
and f) compared to the 1 wt% GNP-coated glass fibre surface (Fig. 4b 
and e). 

3.3. Tensile properties 

Three different types of hybrid composite laminates were prepared 
from untreated and GNP-coated glass and carbon fabrics, and epoxy 
resin. Two concentrations (1 and 5 wt%) of GNP dispersion were used to 
coat the fabric. Glass/epoxy and carbon/epoxy composites were also 
manufactured for baseline specimens. Tensile test results of different 
composites are presented in Table 3. 

Fig. 5 shows the tensile stress–strain response of the neat carbon/ 
epoxy and glass/epoxy composite laminates. Both carbon and glass 
fabric composites show a catastrophic failure. The tensile stress of the 

glass and carbon fibre composites was found to be ~ 454 and ~ 568 
MPa, and the tensile strain was found to be ~ 3.26 and ~ 1.29 %, 
respectively. Stress–strain responses of untreated glass-carbon/epoxy 
and GNP-coated glass-carbon/epoxy hybrid composites are shown in 
Fig. 6a–c. Images at different strain levels during the tensile tests 
(recorded using a high-speed video camera) are also shown on the right 
side of the respective graphs (i-iv). All the hybrid composites demon-
strate non-linearity in their stress–strain graph instead of a sudden 
catastrophic failure. There was no load drop after the initial failure of 
the carbon layer, and a smooth transition of stress after carbon fibre 
failure was observed. As carbon fibre has a lower strain to failure 
compared to that of glass, therefore carbon fibres failed initially. Once 
the carbon fibres failed, the stress was redistributed to the high-strain 
glass fibres that carried the load to ultimate failure. A significant vari-
ation of the pseudo-ductile properties of GNP-coated glass-carbon/ 
epoxy hybrid composites was observed compared to untreated glass- 
carbon/epoxy hybrid composite. 

Fig. 6 shows a noticeable change in slope in the hybrid composites 
after the pseudo-yield point where the carbon layer failed and the 
fragmentation of carbon fibre took place. However, there was not 
enough stress and strain value after the initial failure for the glass- 
carbon/epoxy composite. The fragmentation of the carbon layer and 
crack propagation were visible in the specimen and progressively 
covered the whole specimen (Fig. 6a–ii-iii). However, there were no 
visible changes on the specimen surfaces observed for GNP-coated glass- 
carbon/epoxy composites after initial failure (Fig. 6b–ii and c–ii). Some 
changes were observed on the specimen surfaces before ultimate failure 
(Fig. 6b-iii and 6c-iii). The pseudo-yield strain of untreated and GNP- 
coated hybrid composites was between ~1.53 % to ~1.56 %, which is 
higher than the pure carbon fibre composite failure strain (~1.26 %). 
These results indicated that the hybrid effect occurred in all glass/car-
bon hybrid composites. A previous study reported an enhancement in 
the strain at failure of LS material up to 20 % for very thin plies glass/ 
carbon hybrid composite [22]. 

The effect of GNP coating on the pseudo-ductile properties of GNP- 
glass-carbon/epoxy composites with different GNP concentrations is 
shown in Fig. 6b–c. Both 1 and 5 wt% GNP-coated glass-carbon/epoxy 

Table 3 
Tensile test results of different composite laminates.  

Composites Pseudo-yield 
stress (MPa) 

Maximum Stress 
(MPa) 

Initial Modulus 
(GPa) 

Pseudo-yield 
strain (%) 

Ultimate failure 
strain (%) 

Difference between Initial and 
ultimate failure strain (%) 

Carbon/epoxy  567.9 ± 16.6 49.7 ± 1.65  1.29 ± 0.07  
Glass/epoxy  454.0 ± 7.2 18.9 ± 1.8  3.26 ± 0.13  
Glass-carbon/epoxy 302.7 ± 11.9 344.4 ± 14.2 21.7 ± 1.1 1.56 ± 0.06 2.08 ± 0.08 0.52 ± 0.09 
1 wt% GNP-glass- 

carbon/epoxy 
372.0 ± 10.3 408.2 ± 11.8 25.4 ± 0.7 1.53 ± 0.05 2.26 ± 0.11 0.73 ± 0.09 

5 wt% GNP-glass- 
carbon/epoxy 

344.8 ± 10 377.9 ± 12.2 24.2 ± 1.4 1.56 ± 0.04 2.74 ± 0.21 1.18 ± 0.25  

Fig. 5. Tensile stress–strain graph of a) carbon/epoxy and b) glass/epoxy composite.  
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hybrid composites showed an excellent pseudo-ductile response during 
tensile loading. A significant difference in the failure behaviour of the 1 
wt% GNP-coated glass-carbon/epoxy hybrid composite compared to the 
5 wt% GNP-coated glass-carbon/epoxy hybrid composite was observed. 

The pseudo-yield stress and initial modulus of these composites were 
higher compared to uncoated glass-carbon/epoxy hybrid composites. 
The pseudo-yield stress of 1 and 5 wt% GNP-coated composites was 
increased by ~22.89 % and ~13.90 %, respectively, compared to 

Fig. 6. Tensile stress–strain graph of a) glass-carbon/epoxy hybrid, b) 1 wt% GNP-coated glass-carbon/epoxy hybrid and c) 5 wt% GNP coated glass-carbon/epoxy 
hybrid composite. Images of specimens at different strain levels i) start, ii) after the initial failure, iii) just before ultimate failure and iv) after ultimate failure. 

Fig. 7. SEM micrographs of the fracture surfaces after the tensile test a) glass-carbon/epoxy without coating, b) 1 wt% GNP coated glass-carbon/epoxy and c) 5 wt% 
GNP coated glass-carbon/epoxy composites. 
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uncoated glass-carbon/epoxy hybrid composites. The highest modulus 
and maximum stress values were achieved with 1 wt% GNP-coated 
glass-carbon/epoxy hybrid composites. Young’s modulus increased by 
~17.05 % and ~11.52 %, and ultimate failure stress increased by 
~18.52 % and ~9.72 %, respectively, for 1 and 5 wt% GNP-coated 
composites compared to that of glass-carbon/epoxy hybrid composite. 
However, the ultimate failure strain of 5 wt% GNP-coated composite 
was higher than untreated and 1 wt% GNP-coated composite (Table 3). 

In glass-carbon/epoxy hybrid composites, crack initiation occurs 
after carbon fibre failure at the matrix site and spreads rapidly due to the 
absence of mechanical interlocking between the fibres and matrix. The 
crack starts to propagate at the matrix along the fibre axis, and delam-
ination occurs between different fibre layers (Fig. 6a ii-iii). However, in 
GNP-coated glass-carbon/epoxy hybrid composites, the GNP on the 
fabric surface acts as a bridge, increasing the mechanical interaction 
between fibres and matrix. This formed a stronger graphene-epoxy 
matrix interface [54]. Due to this strong interface between the GNP- 
fibre and epoxy chain, the tensile strength of the GNP-coated glass- 

carbon/epoxy hybrid composite was enhanced. The strong interface of 
the graphene nanoplatelets can act as a bridging element that reduces 
the stress concentration and delays crack propagation in the interface 
region, promoting a smooth transfer of load from the carbon to the glass 
fibres after initial failure [47,48,55]. 

The fracture surface morphology of the composites was analysed 
after the tensile test using SEM. Fig. 7a shows the fracture surface image 
of the glass-carbon/epoxy hybrid composite without coating, while 
Fig. 7b–c shows the GNP-coated glass-carbon/epoxy hybrid composites 
of 1 wt% and 5 wt% GNP, respectively. The without-coating glass-car-
bon/epoxy shows a smooth fracture surface, indicating relatively brittle 
failure. However, the GNP-coated glass-carbon/epoxy composite shows 
a relatively rougher surface compared to the uncoated composite. These 
results indicate that the GNP is mechanically interlocking with the fibre, 
which suppresses the crack propagation after the initial failure of the 
carbon fibre and transfers the load to the glass fibre. 

3.4. Flexural properties 

To investigate the effect of GNP coating on the flexural properties of 
different composites, 3 points bending test was performed. The sum-
mary of the flexural test results of different composites laminate is 
presented in Table 4. The flexural stress–strain response of neat carbon/ 
epoxy and glass/epoxy composites is shown in Fig. 8. 

The flexural stress–strain graph of glass-carbon/epoxy and GNP- 
coated glass-carbon/epoxy composites with different GNP concentra-
tions are shown in Fig. 9. The glass-carbon/epoxy and GNP-coated glass- 
carbon/epoxy hybrid composites with varying GNP concentrations 
exhibit distinct flexural properties and failure behavior. It is noteworthy 
that all the stress–strain curves rise linearly during the early loading 

Table 4 
Flexural test results of different composite laminates.  

Composites Maximum Stress 
(MPa) 

Modulus 
(GPa) 

Peak strain 
(%) 

Carbon/epoxy 732.8 ± 31.3 38.6 ± 0.22 2.04 ± 0.02 
Glass/epoxy 379.9 ± 17.3 16.0 ± 0.10 3.49 ± 0.10 
Glass-carbon/epoxy 374.9 ± 5.3 16.7 ± 0.10 3.08 ± 0.19 
1 wt% GNP-glass- 

carbon/epoxy 
420.2 ± 13.5 17.6 ± 0.08 3.90 ± 0.12 

5 wt% GNP-glass- 
carbon/epoxy 

396.9 ± 5.1 17.8 ± 0.05 3.17 ± 0.23  

Fig. 8. Flexural stress–strain graph of a) carbon/epoxy and b) glass/epoxy composite.  

Fig. 9. Flexural stress–strain graph of a) glass-carbon/epoxy, b) 1 wt% GNP coated glass-carbon/epoxy and c) 5 wt% GNP coated glass-carbon/epoxy composite.  
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stage (up to 2.25 % strain) and show some nonlinearity before ultimate 
failure. However, after a certain strain (~3%), the GNP-coated com-
posite behaves differently from the non-coated specimen. The GNP- 
coated composites demonstrated larger stress–strain values before ulti-
mate failure. The flexural stress of the glass-carbon/epoxy composite 
was found to be ~ 374.9 MPa. At 1 % and 5 % GNP-coated glass-carbon/ 
epoxy composites, the flexural stress was found to be ~ 420.2 and ~ 
396.9 MPa, respectively, which are ~12.1 % and ~6% higher compared 
to that of the glass-carbon/epoxy composite. The increment of flexural 
stress with the 5 % GNP-coated composite was less pronounced in 
comparison with that of the 1 % GNP-coated composite. This might be 
due to the agglomeration of GNP at the interfacial region, which gen-
erates stress concentration and hence reduces the strength at the inter-
face. A higher flexural strain of ~ 3.9 % was observed with 1 wt% GNP 
coated glass-carbon/epoxy composite, which is approximately 26.6 % 
higher compared to the control specimen. This enhancement of flexural 
stress and strain with GNP coated glass-carbon/epoxy composites is 
likely due to the wrinkled structure of GNP that is attached to the fibre 
surface by mechanical interlocking, which improves the fibre matrix 
interactions and forms a link between the glass-carbon fibre layer. 
Therefore, the strong GNP/fibre/matrix interfacial interactions created 
from the randomly distributed GNP at the interface facilitate smooth 
load transfer to glass fibre after carbon fibre failure, thus contributing to 
higher flexural stress and strain as well as pseudo-ductility. 

4. Conclusion 

In this study, we report graphene-based glass-carbon/epoxy inter-
layer hybrid composites with excellent pseudo-ductile properties. GNP 
was incorporated into the glass and carbon fibre fabric using a highly 
scalable pad-dry-cure coating method. Microstructural investigation 
revealed that GNP was randomly distributed onto the glass and carbon 
fibre surface. Both 1 and 5 wt% GNP-coated glass-carbon/epoxy hybrid 
composites exhibited excellent pseudo-ductility during tensile loading. 
The 1 wt% GNP-coated glass-carbon/epoxy hybrid composite demon-
strates higher strength (408.2 MPa) compared to the 5 wt% GNP-coated 
glass-carbon/epoxy hybrid composite (377.9). However, the 5 wt% 
GNP-coated glass-carbon/epoxy hybrid composite shows a higher 
pseudo-ductile strain (~21,23 %). The excellent pseudo-ductility of the 
resulting composites can be attributed to the GNP that is distributed on 
the fibre surface improving the fibre–matrix interfacial interaction by 
mechanical interlocking, which facilitated smooth load transfer from the 
carbon to the glass fibre after carbon fibre failure. The graphene-based 
glass/carbon hybrid composite could be a suitable approach to 
manufacturing high-performance pseudo-ductile composites for struc-
tural applications. 
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