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ABSTRACT
This research investigates the stability analysis of multi-trigger
nanotube-based sandwich structures that carry fluid subjected to
external stimulus. Acrylic-based material and magnetorheological
elastomers (MRE) are considered multi-trigger cores in which the
external stimulus alters the mechanical properties of the core
and, subsequently, the sandwich structures. The system is sub-
jected to an external magnetic field while the ambient temperature
varies. The results demonstrate that incorporating a multi-trigger
viscoelastic core can accelerate the divergence instability of the
non-conservative system while delaying its flutter. Additionally, the
impact of the external magnetic field, as a control parameter, for the
frequencyand stability regionof theMRE ismore significant than that
of the Acrylic-basedmaterial. Furthermore, employing Acrylic-based
material with a higher shear modulus in a constant magnetic field
leads to a more stable system. Moreover, the effect of the external
magnetic force on stability is affected smoothly by the ambient tem-
perature. Finally, the influence of temperature on stability is nearly
the same for both MRE and Acrylic-based material, with a more pro-
nounced effect observed in systems with larger length-to-diameter
ratios.
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Nomenclature

u longitudinal displacement component
u0 initial longitudinal displacement
v Lateral displacement component
w transverse displacements component
x axial axis
z transverse axis
ε strain
σ normal stress
τ shear stress
γ shear strain
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e0a nonlocal parameter
E Young’s modulus
G′ storage shear modulus
G′′ loss modulus
ρf fluid density
ρ density
mt mass per unit length of tube
mf mass per unit length of fluid
ψn the nth shape function
δ variation operator
Io outer layer moment of inertia
Ii inner layer moment of inertia
δij Kronecker delta
Do the outer diameter of the system
Di the inner diameter of the system
αCNT CNT layers thermal expansion parameter
h layer thickness
T0 room temperature
V volume
A cross-section area
L tube length
ex unit vector along the X direction
B magnetic intensity of the longitudinal magnetic field in Tesla
θ T − T0
T ambient temperature
K kinetic energy
W work done by external forces
π strain energy
U fluid velocity
t time
i imaginary unit
λ real part of the eigenvalue
 the imaginary part of the eigenvalue

The subscripts o and i are used for the outer and inner layers.
The subscript f is used to denote the fluid.
The symbol ‘CNT’ (both as a subscript and superscript) is used to refer to a CNT layer.
The symbol ‘C’ (both as a subscript and superscript) is used to refer to the core layer.

1. Introduction

Composite sandwich structures are hugely used in the aerospace, automobile, and marine
industries because of outstanding properties such as lightweight and high strength-to-
weight ratio, corrosion resistance, and excellent energy absorption [1–5]. Sandwich struc-
tures with an embedding viscoelastic core with applications of controlling noise and vibra-
tion have two elastic parts and a viscoelastic core that effectively dissipates vibration and
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acoustic energy [6,7] and has excellent flexural stiffness. Indeed, the viscoelastic layer has
a significant role in damping properties [8–10]. Also, these types of structures extended to
designing and fabricating structural systems on nano and micro scales due to their abil-
ity to provide superior structural and thermal performance [11–15]. Li et al. [16] explored
wave propagation in viscoelastic single-walled CNTs while considering the surface effect
and exposing it to an in-plane magnetic field. Their findings were based on the nonlo-
cal strain gradient theory. In addition, Karami et al. [17] have analyzed the size-dependent
propagation of hygrothermal waves in a viscoelastic graphene sheet in the magnetic field.
Their methodology was developed based on the nonlocal strain gradient theory to con-
sider the effects that occur on a small scale. Using Eringen’s nonlocal theory, Zenkour and
Sobhy [18] could depict the nonlocal vibration of viscoelastic piezoelectric Nanoplateswith
varied boundary conditions while lying on visco-substrate. Pasternak’s Radwan and Sobhy
[19] have studied the deformation of a viscoelastic graphene sheet with variable boundary
conditions immersed in a visco-Pasternak medium and subjected to a time-harmonic ther-
mal load. Their analysis is based on the nonlocal strain gradient theory. Additionally, Sobhy
and Zenkour [20] have used the modified couple stress theory to study the bending of vis-
coelastic nanobeams embedded in a visco-Pasternak medium based on a unique quasi-3D
approach. Kolahchi [21] examined wave propagation in a viscoelastic FG-CNTs-reinforced
plate between two piezoelectric layers.

Viscoelastic materials are among the materials used for sandwich structures, leading
to selected mechanical properties [22–26]. Furthermore, incorporating a viscoelastic core
into the system results in a modification of the loss factor and dynamic specifications of
the construction [27]. Magneto rheological elastomer (MRE) and Acrylic-based materials
are potential multi-trigger candidates for sandwich structure core. MRE is a new class of
materials known as smart materials. Smart materials are new materials with one or more
properties altered in response to external stimuli such as thermal ormagnetic fields [28,29].
Magnetorheological elastomer (MRE) is a potential candidate for smart sandwich structures
[30,31]. These smart materials include MRE fluids, elastomers, foams, and gels [32]. Exter-
nal magnetic fields and thermal sources [33] could change the mechanical properties of
thesematerials. MREmaterials can be reversible and transition fast from a liquid to a nearly
solid state in the presence of external magnetic fields [34]. This unique feature regulates
the vibrations and stability of various constructions [26–28] or controls the microsystems’
motion [35]. In the current research we have used the magnetic field trigger to alter the
property

Structure instability is known as one of the main sources of failures of many engi-
neering structures [36–40] and has been considered in many nanosystem applications.
This analysis is crucial in understanding the structure’s behavior and its design concepts.
Engineers consider different materials and conditions to control stability in engineering
structures. Several researchers have attempted to determine the main controlling param-
eters. Mohammadimehr and Mehrabi [41] studied the stability and vibration analysis of
sandwich nanotubes conveying fluid resting on an orthotropic elastic medium, where the
face sheets were made of temperature-dependent composite material. Free vibration and
stability analyses of fluid-conveyed sandwich pipe with porous core and graphene platelet
reinforced composite in the top and bottom layers of face sheets were analyzed by Nejadi
et al. [42]. Mohajeri et al. [43] studied the dynamic instability, static buckling, and free vibra-
tion of the Magnetorheological fluid sandwich plates subjected to a periodic load. They
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concluded that increasing the Magnetorheological fluid thickness leads to stabilizing the
dynamic instability of sandwich plates.

Moreover, the vibration analysis and energy capability of a sandwich axisymmetric
curved panel made of two graphene nanoplatelets reinforced composite face sheets and
electro-rheological corewas presented for the first time by Shen et al. [26]. MRE andAcrylic-
based material materials are also considered in sandwich nanostructures, where the vibra-
tion behavior of viscous-elastically coupled sandwich beams and plates was demonstrated
by Ghorbanpour Arani et al. [44–46]. They showed that the modal loss factor decreases by
increasingmagnetic field intensity. In another work by Amiri et al.[47] a parametric stability
analysis of a microtube conveying fluid made MRE presented using modified couple stress
theory, and more recently, Mihankhah et al. [48] considered free vibration of the sandwich
platemade of two smartmagnetostrictive face sheets and an electro-rheological fluid core,
that considers the behavior of the electro-rheological fluid material under electric field.

Among nanosystems, carbon nanotubes are a group of mechanical elements with
enormous applications in different fields, such as cancer treatment methodologies, bio-
engineering, biosensing, gene therapy, neurology [49–52], wastewater treatment [53,54],
microelectronics [55], remediation of emerging pollutants [56] and electromagnetic shield-
ing applications [57]. In almost all its applications, the stability of nanotubes conveying
fluid should be considered. Based on the literature review and the authors’ best knowledge,
the dynamic analysis of multi-trigger nanotube-based sandwich structures conveying fluid
with MRE and Acrylic-based material core under an external magnetic field has not been
considered so far, specifically when the ambient temperature is changed. In the present
study, two different sandwich structures with the investigated MRE and an Acrylic-based
material core are considered, and the structures’ response to external thermal stimulus and
the magnetic field is investigated MRE and an Acrylic-based material core are considered
and structures’ response to external thermal stimulus and themagnetic field is investigated.
Bringing MRE materials makes it possible to analyze the effects of viscoelastic core on the
stability of the nanostructure and the amount of energy that can be damped by adding
this material to the system, specifically when MRE mechanical properties could be com-
pletely changed due to the applied magnetics and ambient temperature. A multi-trigger
nanotube-based sandwich structure conveying fluid with a viscoelastic core is proposed.
It has potential applications in bioengineering, medicine, wastewater treatment, micro-
electronics, remediation of emerging pollutants, and electromagnetic shields, as presented
in Figure 1. The design’s vibration and stability are comprehensively studied. The motion
equation is obtained using extended Hamilton’s principle using Eringen nonlocal elasticity
theory and then solvedbyextendedGalerkinmethod. Finally, theeffects of differentparam-
eters, including viscoelastic core thickness, viscoelastic shear modulus (which is a function
ofmagnetic field and ambient temperature), the ratio of diameter to length,magnetic field,
and ambient temperature effects are investigated on the flutter and divergence instability
of the system.

2. Formulation

This section examines the dynamic motion equation of a multi-trigger three-layer
nanotube-based sandwich structure that carries fluid and contains a viscoelastic coremade
of two different cores: MRE and Acrylic-based material. The system comprises outer and
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Figure 1. Potential applications of sandwich structures.

inner elastic layers and the viscoelastic core, as illustrated in Figure 2. Following the pos-
sible manufacturing processes that can be adopted for the current system have been
discussed briefly; however, itmust be pointed out thatmanufacturing the proposed design
can be challenging and demands dedicating more time to research and experimental
investigation.

The layer-by-layer assembly method is one of the most effective ways to manufacture
a three-layer nanotube-based sandwich structure. The original concept of Layer-by-Layer
(LbL) assembly was introduced by Iler in 1966, demonstrating the deposition of oppositely
charged silica and alumina particles [58].

Also, almost at the same time, Decher and colleagues created thin films through
the alternating adsorption of oppositely charged polyelectrolytes [59]. Recently, LbL
approaches have garnered significant attention owing to their adaptability in tailoring the
size, composition, porosity, stability, and surface functionality of resulting thin films. This
is achieved by incorporating multiple functionalities straightforwardly and cost-effectively
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Figure 2. A cantilever nanotube-based sandwich structure with a viscoelastic core conveying fluid.

[59]. Thin films assembled through LbL involve the sequential adsorption of variousmacro-
molecular components characterized by attractive forces such as electrostatic interactions,
hydrogen bonding, and van der Waals forces [59].

Another viable, cost-effective method to fabricate MEMS devices and tubular hollow
microfluidic resonators is the silicon-on-nothing (SON) method [60–62]. Kim et al. [60]
explain a simple, cost-effectivemethod employing a SON approach tomanufacture tubular
hollow microfluidic resonators. The distinctive attributes of this innovative manufacturing
method enable the broad application of hollow microtube resonators, their seamless inte-
gration across various research domains, and the development of economically feasible
devices. Moreover, Kim et al., after the fabrication of tubular hollowmicrofluidic, proposed
an effective way to assess the functionality of the hollow microtube resonators: a device
mounting clamp that has been specifically engineered and fabricated. Themounting clamp
comprises stainless steel for the top and bottom clamp components, a fluorinated rubber
gasket, double O-rings, a quartz window, a piezoelectric actuator, and a piezo fastener [60].
The proposed device can be employed to validate the current model by modifying it.

Using beam theory, the displacements filed are [63]:

u(x, z, t) = u0(x, t)− z
∂w(x, t)
∂x

, (1)

v(x, z, t) = 0,w(x, z, t) = w(x, t),
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Considering the neutral axis coincide with the center axial of the tubethen u0(x, t) = 0.
Next, only the non-zero strain term and then strain-stress relations for CNT layers and vis-
coelastic are defined. For the outer and the inner elastic layers, the relationships between
strains and stresses using nonlocal elasticity theory are [64,65]:

εCNTxx (x, t) = −z
∂2w(x, t)
∂x2

, (2a)

σ CNT
xx (x, t)− (e0a)

2 ∂
2σ CNT

xx (x, t)
∂x2

= −zECNT
∂2w(x, t)
∂x2

, (2b)

next, for the viscoelastic core, the shear strain γ cis [66–68]:

γ c
xz = ∂wc(x, t)

∂x
+ ∂uc(x, t)

∂z
, (3)

where

∂uc(x, t)
∂z

=
(
ho + hi
2hc

)
∂w(x, t)
∂x

+
(
uo − ui

hc

)
, uo = ui = 0, (4)

then substituting Equation 4 into Equation 3, γ c
xz is:

γ c
xz = d

hc

∂w(x, t)
∂x

, d = hc + 1
2
(ho + hi), (5)

the relationship between shear stress and shear strain in the viscoelastic core is [69]:

τ cxz = G∗γ c
xz , (6)

G∗ = G′ + iG′′, (7)

then implementing nonlocal elasticity theory leads to:

τ cxz(x, t)− (e0a)
2 ∂

2τ cxz(x, t)
∂x2

= d

hc
G∗ ∂2w(x, t)

∂x2
. (8)

2.1. Magnetic field and ambient temperature effects

The magnetic force along the direction of the flexural displacement effect on the system
due to a longitudinal magnetic field B̄ = Bex [70]:

FB(x, t) = 1
η
B2A

∂2w(x, t)
∂x2

. (9)

Moreover, considering the system in an environment with a variable ambient temperature
causes an axial force that affects the tube [71]:

Fthermal = −(2αCNTECNTACNTθ), (10)

where the normal stress term of the viscoelastic core is zero.
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2.2. Hamilton principle

To obtain the motion equation, according to extended Hamilton’s principle [72,73]:

δ
t2∫
t1

(
π − W − K + 1

2
mfU

2
L∫
0

(
∂2w(x, t)
∂x2

)2
)
dt + t2∫

t1
mfU

(
∂w(x, t)
∂t

+ U
∂w(x, t)
∂x

)
δwdt,

(11)

the strain energy of the outer and inner layers is [74,75]

πCNT =
2∑

m=1

1
2

∫ ∫
∫
VCNT

σ CNT
ij εCNTij dv, (12)

and for the viscoelastic core it is [76,77]:

π c = 1
2

∫ ∫ ∫
Vc
σijεijdv. (13)

Then, the total maximum storage energy in the three-layered structure is obtained by sum-
ming Eqs.12 and 13. The total kinetic energy of the system, which includes the energy
contributions from water, the viscoelastic core, and the outer and inner CNT layers, is
calculated as follows: [44,67]:

K = 1
2
�f

∫ ∫ ∫
Vf

[(
∂w(x, t)
∂t

)2
]
dv +

2∑
m=1

(
1
2
�CNT

∫ ∫ ∫
CNT

[(
∂w(x, t)
∂t

)2
]
dv

)
m

+ 1
2
�c

∫ ∫ ∫
c

[(
∂w(x, t)
∂t

)2
]
dv, (14)

and the work done by the distributed transverse magnetic load and axial thermal force is:

W = L∫
0

(
FB(x, t)w(x, t)− Fthermal

2

(
∂w(x, t)
∂t

)2
)
dx, (15)

considering both kinetic and potential energy andperforming a variation of the output, the
motion equation is derived as:

((ECNT I)i + (ECNT I)o)
∂4w(x, t)
∂x4

+
(
mfU

2 − AcG∗d2

h2c
− B20A

η
+ 2αCNTECNTACNTθ

)
∂2w(x, t)
∂x2

+ 2mfU
∂2w(x, t)

∂x∂ t̂
+ (mt + mf )

∂2w(x, t)
∂t2

− (e0a)
2

(
2mfU

∂4w(x, t)

∂x3∂ t̂
+

(
mfU

2 − AcG∗d2

h2c
− B20A

η

+ 2αCNTECNTACNTθ)
∂4w(x, t)
∂x4

+ (mt + mf )
∂4w(x, t)
∂x2∂t2

)
= 0. (16)
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Finally, for convenience following dimensionless parameters are used:

ŵ = w

L
, x̂ = x

L
, u =

(
mf

(ECNT I)i + (ECNT I)o

)1
2 LU,

β = mf

mt + mf
, t̂ = t

L2

√
(ECNT I)i + (ECNT I)o

mt + mf
,α0 = ρAcG∗d2L2

h2c ((ECNT I)i + (ECNT I)o)

μ = e0a

L
,χ = B20AL

2

η((ECNT I)i + (ECNT I)o)
, ϕCNT = αCNTECNTACNTL2

(ECNT I)i + (ECNT I)o
, θ̂ = θ

T0

(17)

then the dimensionless equation of motion is:

∂4ŵ(x̂, t̂)
∂ x̂4

+ (u2 − α0 − χ + 2ϕCNT θ̂ )
∂2ŵ(x̂, t̂)
∂ x̂2

+ 2β2u
∂2ŵ(x̂t̂)

∂ x̂∂ t̂
+ ∂2ŵ(x̂, t̂)

∂ t̂2

−μ2

(
u
∂4ŵ(x̂, t̂)

∂ x̂3∂ t̂
+ (u2 − α0 − χ + 2ϕCNT θ̂ )

∂4ŵ(x̂, t̂)
∂ x̂4

+ ∂4ŵ(x̂, t̂)

∂ x̂2∂ t̂2

)
= 0

(18)

3. Numerical solution

In this section, the numerical solution of the obtained dimensionless equation is proposed
using Galerkin residual procedure where the transverse deflection is [78]:

w(x̂, t̂) =
m∑

n=1

ψn(x̂)qn(t̂) (19)

qn(t̂) = X1 exp(ω0 t̂),ω0 = λ+ i.

ψn(x̂)is the suitable shape function that satisfies the boundary conditions for the cantilever
beam, ω0 is the eigenvalue, and X1 represents its corresponding eigenvector. It should be
noted that the real parts of the eigenvalue (λ)aremodal damping, and imaginary parts ()
serve as the frequencies. Using both real and imaginary parts, the dimensionless loss factor
(which is the ratio of the imaginary part to the real part) is:

η = 

λ
. (20)

Now, by substituting Equation 20 into Equation 19 and use a suitable shape function that
satisfies the boundary condition of the system:

ψn(x̂) = (cosh(κsx̂)− cos(κsx̂))−
(

sinh(κs)− sin(κs)
cosh(κs)+ cos(κs)

)
(sinh(κsx̂)− sin(κsx̂)), (21)

where κs is obtained from the root of the following equation:

cosh(κs) cos(κs)+ 1 = 0, (22)

then, applying the extended Galerkin procedure, a set of coupled ordinary differential
equations is obtained:

[M]
{
q̈(t̂)

} + [C]{q̇(t̂)} + [K]{q(t̂)} = 0, (23)
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where [M], [C], and [K] are the mass, damping, and stiffness matrices, respectively, and
define as:

Mij = δij − μ2ϑij, (24)

Cij = 2β
1
2 uξij − 2μ2β

1
2 uνij, (25)

Kij = (1 − μ2(u2 − α0 − χ + 2ϕCNT θ̂ ))ζij + (u2 − α0 − χ + 2ϕCNT θ̂ )ςij, (26)

δij =
{
1
0

i = j
i �= j

, (27)

ϑij =
{

�iκi(2 + �iκi)

4 κiκj
κ2i −κ2j

((−1)i+j(�jκ
3
i − �iκ

3
j )− κiκj(�iκi − �jκj))

i = j
i �= j

,

ζij =
{
κ2i
0

i = j
i �= j

,

ξij =
⎧⎨
⎩

2

4
κ2j

κ4i −κ4j
(κ2i − (−1)i+jκ2j )

i = j
i �= j

,

ςij =
⎧⎨
⎩

�iκi(2 − �iκi)

4
κ2j (�iκi−�jκj)

κ4i −κ4j
(κ2i + (−1)i+jκ2j )

i = j
i �= j

,

νij =
⎧⎨
⎩

−2�2
i κ

2
i

4
κ3j κi�jκj

κ4i −κ4j
(κ2i + (−1)i+jκ2j )

i = j
i �= j

.

To solve Equation 24, it should transfer into a set of first-order differential equation:

{ż(t̂)} = [�]{z(t̂)}, (29)

[�] =
[

[0] [I]
−[M]−1[K] −[M]−1[C]

]
, (30)

where [I] is the unit matrix,z(t̂) is the state function and [�] is the statematrix of the system.
Solving the above equation by considering the determinant of the standard eigenvalue
problem leads to a system characteristic equation. The roots of this equation consist λ
and.

4. Results and discussion

4.1. Verification

The mechanical properties of the system are displayed in Table 1. The system consists of
inner andouter layersmadeofCNT,while the core is composedofMREandanAcrylic-based
material. The core is a homogeneous jelly that comprises three fundamental components:
silicon rubber, silicon oil, and iron particles, with a mass fraction of 70% for the ferromag-
netic particles. [79–81]. Note that theAcrylic-basedmaterial is solely affectedby the thermal
environment and remains unaffected by external magnetic forces[82]. The values of shear
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Table 1. Mechanical properties and dimensions of a three-layer nanotube with viscoelastic core.

Layer Material Elastic Modulus E(GPa) Density ρ (kg/m3)

Inner layer CNT 3400 2300
Core MRE – 5740

Acrylic-based material – 970
Outer layer CNT 3400 2300

modulus for both the MRE and Acrylic-based material, in relation to magnetic force and
ambient temperature, have been obtained from previous studies. [81,83].

First, a brief overview of the stability conditions of the system based on eigenvalues is
provided, which aids in analyzing the output results. A nanotube system conveying fluid is
considered stable if all real parts (λ) of the eigenvalues of the matrix [�] are negative. Con-
versely, it is deemed unstable if any of the real parts are positive. As the velocity increases,
the system may lose stability due to flutter or divergence. At a specific point known as
the critical velocity point, the real part transitions from negative to zero. Flutter occurs
at this point (λcr) when the imaginary part () is non-zero, causing the system to lose its
dynamic stability. When both the real part and the imaginary part become zero simulta-
neously (λcr = cr = 0), the system loses its static stability due to divergence, resulting in
static buckling of themode. The critical velocity (ucr) and critical frequency (cr) are defined
when the system transitions into instability and the sign of lambda changes from negative
to positive (λcr) = 0).

In order to demonstrate the reliability of the output results, both the real and imaginary
parts of the frequency of a single cantilever tube conveying fluid in compared with Ni et al.
[84] in Figure 3. In another case, the result for critical frequency (cr) and dimensionless
flutter critical velocity (ucr)) in terms of βcr) are compared with Gregory et al.[85] shown in
Table 2. Furthermore, Table 3 compares the current study and theworks of Ramasamy et al.
[61] and Yang et al. [62] regarding pipes with viscoelastic cores. It is evident that there is a
satisfactory agreement between the obtained results and the published findings.

Figure 3. Compares obtained (a) real and (b) imaginary parts of the eigenvalues in the present study
with Ni et al. [84].
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Table 2. The critical velocity (ucr) and critical frequency (cr) calculated in the present study compared
with Gregory et al.[86]. Study.

βcr 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ucr This Study 4.71 5.54 7.06 8.7 9.26 9.92 10.84 13.11 13.95

Gregory et al 4.7 5.6 7.0 8.5 9.3 9.8 10.5 13.2 14.0
cr This Study 14.28 14.01 14.97 24.99 26.17 26.39 27.41 40.89 44.05

Gregory et al[85] 14.4 13.9 1 5 2 5 26.1 26.3 27.6 4 2 4 5

Table 3. Frequency and dimensionless loss factor calculated in the present study compared with
Ramasamy et al.[87] and Yang et al.[88].

Ramasamy et al [87] Yang et al [88] present

f (Hz) 6.0490 6.0486 6.161
η 0.1455 0.1388 0.1408

4.2. Vibration and stability analysis

The real parts of the first three eigenvalues of the system in Figure 4(a) are shownwhere the
nonlocal parameter is μ = 0.01, the thickness ratio is hc/ho = 1, and the system is at room
temperature in theabsenceofmagnetic force. This diagramclearly illustrates that in the first
mode, flutter instability does not occur (based on the explanation of the eigenvalues pro-
posed at the beginning of this section). The first bifurcation (divergence) in the first mode
befalls at u = 3.3, this point is the critical velocity for the first mode in which the first mode
of the system is divided into two branches, and then they meet again at u = 5.7. In this
domain, the overdamping behavior occurs in the system where the imaginary part is zero
(based on Figure 4b). For the second mode, there is no instability. Meanwhile, the stability
of the system is different in the thirdmodewhere the system is stable for the dimensionless
velocity up to about 9 and then loses its stability by fluttering (the real part changes from
negative to positive, where the imaginary part is not zero) and this flutter critical velocity
for the thirdmode. Comparing Figure 4with Figure 3 shows that considering viscoelastic in
the core of the nanotubewill decrease the starting point of bifrucation of the system for the
first mode. At the same time, it increases the critical flutter velocity in the third mode. This
comes from the nature of the viscoelastic core, where the static bifrucation causes a reduc-
tion of the overall stiffness of the system. Consequently, the softer system loses its stability
sooner, while the flutter point adds damping to the system, and this causes an increase of
critical flutter velocity for the dynamic system.

To assess the damping effects of the viscoelastic core on the structure’s vibration, the
first, second and third vibrational mode shapes (that refers to a specific pattern or config-
uration of movement exhibited by the system when it vibrates at a particular frequency).
and dimensionless loss factors are shown in Figure 5. According to the defined dimension-
less loss factor and description provided, the structure is stable when the loss factor sign
is negative and is unstable when it becomes positive. Based on Figure 5(a), the area that
the first mode divaricated and then met again is more visible here, where the loss factor
is zero between u = 3.3to 5.7. From Figures 5(b) and 4(c), again for the second mode, the
system is stable and finally, for the third mode, the critical flutter velocity is around ucr = 9
respectively.
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Figure 4. Shows the first three (a) real parts and (b) imaginary parts of eigenvalues when β = 0.5,
μ = 0.01 and hc/ho = 1.

Figure 5. Loss factor for the first three modes when β = 0.5, µ = 0.01and hc/ho = 1. (a) first mode,
(b) second mode and (c) third mode.

Figure 6 illustrates the natural frequency () of the system and the real part of the first
eigenvalue (λ) in relation to the ratio of the viscoelastic core thickness to the outer layer
thickness. It is important to note that the thickness of the outer and inner layers is equal. By
increasing the thickness of the core, a bifurcationoccurs at a lower velocity,while the rejoin-
ing of the bifurcation occurs at a higher velocity. The expansion of the over-damping region
is ascribed to an increase in the volume of elastomer arising from a rise in the thickness,
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Figure 6. (a) real (λ) and (b) imaginary () parts of thefirst eigenvalue in termsof dimensionless velocity
for different values of hc/ho.

Figure 7. Loss factor of the first mode for different values of hc/ho.

which consequently results in a reduction in the stiffness of the system. This observa-
tion aligns with Equation 27, where the viscoelastic core’s thickness negatively affects the
system’s overall stiffness. This effect is also evident in the system’s natural frequency, as
depicted in Figure 6(b), where thicker cores result in a significant reduction in the natural
frequency over a wide range of dimensionless velocities.

The effect of the core thickness on flutter instability is illustrated in Figure 7. As the vis-
coelastic core thickness increases, the point at which the sign changes from negative to
positive shifts towards the right side in the third mode. This indicates that flutter occurs at
a higher velocity, and stability is maintained at a higher velocity as well.

In Figure 8, the critical frequency (cr) and dimensionless flutter critical velocity (ucr) are
depicted in relation to βcr (the ratio of fluid mass to total mass). The diagram is divided
into two distinct main areas. The area below the chart represents the stable area, while the
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Figure 8. (a) critical frequency and (b) critical flutter velocity in terms of βcr for different hc/ho.

area above it corresponds to the flutter area. The boundary lines between these two areas
indicate the boundaries of instability.

From Figure 8(b), it can be observed that the systemhas several S-shaped segments that
illustrate a sequence of instability-stabilization-instability that, in comparison with classi-
cal tube [84], could be concluded that adding viscoelastic core decreases the sequence
of instability-stabilization-instability. In Figure 8, it can be observed that the trends of the
boundary line can be broadly classified into three distinct sections. In the first regionwhere
βcr is below 0.35, the critical frequency gradually decreases with the increase in the mass
ratio βcr . Considering the constancy of the mass of the nanotube in each branch of the
graphs, it can be seen that at a low mass ratio, increasing the fluid mass per unit length
decreases the critical frequency and increases the critical flutter velocity. The second area
is where βcr is between 0.35 and 0.8, both of the graphs climb, but the slope of increase
in natural frequency is smother. The thickness ratio enhancement in this area increases
the natural frequency and critical flutter velocity. Changes occurring at this point depend
on the energy balance between the input energy due to the velocity of the fluid pass-
ing through the nanotube, the energy stored by the elastic component, and the energy
loss by the viscoelastic core. Finally, the third region is where βcr is greater than 0.8, in
this region, increasing the mass ratio and decreasing the thickness ratio increases the nat-
ural frequency. After passing βcr = 0.35, the graphs lines show the S-shaped segments.
Finally, someone could conduct that thicker viscoelastic core, increases the critical dimen-
sionless velocity and stability area. This is because the viscoelastic core acts as a damper by
absorbing the external energy caused by the fluid’s movement and damping the system’s
instability. The thicker viscoelastic core influences the system stability due to the different
nature of the two flutter and divergence phenomena. The thicker core causes more shear
deformation, and consequently, the energy is dissipated more intensively; hence it delays
flutter instability but supports divergencebecauseof reducing the stiffness of thenanotube
structure.

The effect of magnetic force for both MRE and Acrylic-based materials is shown in
Figure 9. Forasmuch as themagnetic field does not affect the Acrylic-basedmaterial’s shear
modulus, then for this material, it only effect as external field on the system while for
MRE it also changes the shear modulus values. Consequently, the magnetic field effect is



16 S. JOLAIY ET AL.

Figure 9. Shows the effect ofmagnetic field B0(mT) on critical flutter velocity for (a)MRE and (b) Acrylic-
based material.

more pronounced in MRE than in acrylic-based materials. This can be observed by com-
paring Figures 9(a and b) when increasing the magnetic field strength (B) from 0 to 1000
mT. The trend of this parameter for both materials is the same, where putting the sys-
tem in a stronger magnetic field increases stability which is visible from inset figures 9(a
and b). Overall, the magnetic field causes an increase in the equivalent stiffness of the
system. Then it can improve the stability for any kind of material, including Acrylic-based
material, while in the case of MRE it also affects the equivalent damping by increasing
the shear modulus that enhances the stability. Furthermore, from Figure 9(b), considering
Acrylic based-material with a higher shear modulus in a constant magnetic field is more
stable.

The effect of ambient temperature on the natural critical frequency and stability region
is shown in Figure 10. This graph clearly states that temperature enhancement decreases
the critical natural frequency anddimensionless critical velocity. Higher temperaturemakes
the core layer softer by decreasing the shear modulus, And because of the thermal stress
term in equation 16, it also affects on outer and inner layers. An increase in temperature
has the opposite effect on the loss factor of the MRE core layer, thus causing lower damp-
ing effects of the middle layer, and the flutter instability area of the system becomes more
expanded, and the tendency of the system to lose stability increases. From Figure 10, also
it can be seen that in some points, the diagram of each temperature cross or coincide with
each other; this comes from jumping of the experimental shear modulus of MRE material
at each temperature (for more details, read Ref. [81])

The effects of the length ratio on the critical frequency and dimensionless flutter critical
velocity forMRE are shown in Figure 11. Effects of this ratio in different states are completely
different. as can be recognized from Figure 11 for the higher amount of β (more than 0.8)
larger L /Do the ratio drops the critical natural frequency sharply and has no practical effects
on flutter critical velocity. While in lower mass ratios, it is entirely contrary. Considering β , a
larger L /Do ratio increases the critical natural frequency and flutter critical velocity gradu-
ally. L /Do Ratio effects canbe seen in the centrifugal force ofmoving fluid. By increasing this
ratio, the effects of the velocity decrease, so the centrifugal force ofmoving fluid decreases,
and critical velocity increases. For βcr higher than 0.8, the effect of the fluid Coriolis force
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Figure 10. Shows the effect of ambient temperature on (a) critical frequency and (b) critical flutter
velocity for MRE.

Figure 11. Shows the effects of the length ratio on (a) critical frequency and (b) critical flutter velocity
for MRE.

is dominant. This is the turning point between the influencing forces, which is associated
with increasing the damping matrix. This is why the trend of the diagram changes. For
core layers with a higher shear modulus (Caused by lower temperature or higher magnetic
field strength), the slope of the critical speed increase will be higher while it has almost no
noticeable effect on the slope of increasing the critical frequency.

In Figure 12, the effect of the ambient temperature on the critical frequency and veloc-
ity are shown where β = 0.49, 0.50and 0.51. The trend of variations is the same with MRE,
where an increase in the ambient temperature causes a decrement in both critical fre-
quency and velocity. Although the effect of the temperature between 20–60◦C on the
critical flutter is almost the same, with the range between 30–50 ◦Care more effective on
decreasing of critical frequency. In Figure 13 can be seen that larger L /Do ratio leads to a
higher critical frequency and velocity while the change is more sensitive in the frequency
rather than the flutter velocity, specifically when the ambient temperature is 20 ◦C, close to
room temperature.
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Figure 12. Shows the effect of ambient temperature on (a) critical frequency and (b) critical flutter
velocity for Acrylic-based material.

Figure 13. shows the effects of the length ratio on (a) critical frequency and (b) critical flutter velocity
for Acrylic-based material.

4.3. Potential applications

Carbon nanotubes have a wide application in medicine. Carbon nanotubes are promis-
ing for drug carrier applications in drug delivery. Carbon nanotubes have been employed
for drug delivery because of unique features such as significant transporting capabilities,
proper surface modifications, and physicochemical features [50]. Several researchers have
illustrated the benefit of CNT in brain imaging to recognize a stroke and diseased location,
in addition to the delivery of drug molecules to the site of action. Employing CNT for Neu-
rotherapy can be beneficial in treating several neurological pathologies and Neurological
disorders, such as ischemic stroke [51,89,90]. In addition, the functionalized CNTs are used
for gene delivery by penetrating human cells and delivering theDNA leading to the expres-
sion of marker genes [91]. Therefore, the present research, which investigates the stability
of three-layer nanotube convening fluid, can provide new insight into future applications
in drug delivery.

Another promising application of CNT is wastewater treatment. Carbon nanotubes are
used to remove heavy metals, organic and inorganic matter from water. CNTs have some
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unique properties, such as large surface area, high aspect ratio, and high chemical and
mechanical stabilities,making themperfect candidates to use as adsorbents forwater treat-
ment [54]. The stability of CNTs convening fluid, in this case, water, is highly important so
that the present research can benefit the water treatment application. Using three-layer
sandwich cantilever nanotubes with a viscoelastic core as filler in nanocomposite struc-
tures can provide unique thermal and mechanical properties, which leads to new types of
structures that can be used for electromagnetic shielding applications [57].

5. Conclusion

The present study focused on the stability analysis of a multi-stimuli (multi-trigger) sand-
wich structure conveying fluid with a viscoelastic core under an external magnetic field,
considering varying ambient temperatures. Two types of smartmaterials were examined as
the viscoelastic core: Acrylic-basedmaterial andmagnetorheological elastomer (MRE). The
shear modulus of the Acrylic-based material was influenced solely by the ambient temper-
ature, while for MRE, it was affected by both the magnetic field and ambient temperature.
The main conclusions drawn from the obtained results are as follows:

1- Introducing a smartmaterial as the coreof the system leads toquicker divergence
instability of the non-conservative system while delaying flutter instability.

2- External magnetic forces can serve as significant control parameters to enhance
the stability of the nanotube-based sandwich structures with a viscoelastic core,
especially for MRE, owing to the magnetic properties of MRE materials.

3- The effect of the magnetic field is more pronounced for Acrylic-based material
with a higher shear modulus.

4- The influence of the external magnetic force on stability exhibits a smooth
variation across different ambient temperatures.

5- For MRE, the effect of ambient temperature on stability is less significant com-
pared to the external magnetic force, especially for higher L /Doratios.

6- Conversely, for Acrylic-basedmaterial, the effect of ambient temperature on sta-
bility is more substantial than the external magnetic force, particularly for higher
L /Doratios.

7- The L /Doratio has a greater impact on the critical frequency for Acrylic-based
material than MRE, especially when the temperature is near room temperature.

8- Within the 30–50°C range, changing the ambient temperature has the most
pronounced effect on the decrement of the critical frequency for Acrylic-based
material.

These conclusions highlight the role of viscoelastic materials, magnetic fields, and ambient
temperature in the stability analysis of nanotube-based sandwich structures with a smart
core conveying fluid, providing insights for potential control and optimization strategies
for such systems.
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