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Abstract—As the research community increasingly focuses on
quantifying emotional states in real-world scenarios, there is
a growing need for edge computing. In this work, we present
a novel approach to on-device emotion classification through
the development of a low-cost hand-held device. This device
incorporates a range of environmental air quality factors, in-
cluding Particulate Matter, Nitrogen Dioxide, Carbon Monoxide,
Ammonia, and Noise. Our research addresses the current limi-
tations in the field of emotional state measurement by leveraging
environmental air quality data, which has been previously linked
to affective states. This on-device approach not only offers an
alternative to resource-intensive emotion recognition methods
but also contributes to the development of more practical and
affordable solutions for emotion assessment. The preliminary
results of our device’s performance in real-world scenarios
suggest its effectiveness in quantifying emotional states through
air quality factors, with the model achieving 95% accuracy
demonstrating accurate on-device classification without the need
for external high-processing power.

Index Terms—Emotion, Real-World, On-Device, Classification,
Edge-Computing, Air Quality

I. INTRODUCTION

Pollution, in its various forms, presents a pressing global
challenge that transcends geographical boundaries and socioe-
conomic disparities. The detrimental effects of pollution on
the health and wellbeing of individuals have been a subject of
concern for decades. Exposure to pollutants such as particulate
matter has been linked to a range of health issues, including
respiratory diseases, cardiovascular disorders, and even mental
health problems [1], [2]. Little previous work has explored the
impact of pollution on emotions due to its perceived irrele-
vance however our previous work demonstrates the correlation
between pollutants and mental wellbeing [3]. This highlights
the need for effective monitoring and mitigation of pollution’s
impacts has become increasingly urgent.

Recent advances in sensing technologies have ushered in
a new era of real-world pollution data monitoring. These
technologies enable us to gather precise and granular data on
pollution levels in various environments, from densely popu-
lated urban areas to remote natural settings. The availability
of such data provides an unprecedented opportunity to better
understand the dynamics of pollution and its consequences on
human health and wellbeing.

Artificial Intelligence (AI) offers a promising avenue for
leveraging pollution data. Specifically, AI has the potential
to enable the classification of individual wellbeing based on
pollution data. This capability holds immense promise for
public health research and intervention strategies. However,
despite the potential benefits, there has been relatively limited
focus on the practical deployment of AI-driven pollution-to-
wellbeing classification systems.

Edge computing involves the execution of AI models on-
device, close to the point of data collection, rather than
relying on centralised servers for inference. This approach
offers several advantages, including reduced data transmission
requirements, lower operational costs, decreased latency, and
improved privacy protection. Additionally, on-device classifi-
cation reduces reliance on continuous connectivity, allowing
the system to function in remote locations or in case of
network outages.

The emergence of sensors and edge devices has opened
new possibilities for real-time monitoring and classification of
human wellbeing based on environmental data. When applied
to the task of inferring wellbeing from pollution data, edge
computing can facilitate the integration of AI-based solutions
into everyday life, enabling more proactive and personalised
approaches to addressing the health consequences of pollution
exposure.

In this work, we demonstrate the feasibility of classify-
ing emotions from environmental pollutants using a model
deployed directly on a Raspberry Pi-based edge device. We
optimise a decision tree model to deploy it on the memory-
limited hardware. The model is trained on a dataset of environ-
mental sensor data and associated wellbeing labels collected
from user studies. The proposed system eliminates the need for
off-device processing, enabling timely wellbeing monitoring
without compromising user privacy.

The main contributions of this work is:
1) We present a custom-built, low-cost hand-held device

for real-world emotion classification on the edge using
environmental sensors.

2) We explore the use of a Random Forest model for the
real-time monitoring of emotions.

3) We demonstrate that inference is possible on the edge,
achieving real-time emotion inference without relying on



abundant computational resources like powerful servers
or distributed computing.

The remainder of this paper is organised as follows; Section
II explores the related works in the field and looks to the
opportunities on-device processing can have in quantifying
emotions in-situ. Section III discussed the methodology for
this work defining the dataset and model architecture, finally
concluding with the new prototype ’Enviro-Edge’. Section
IV reviews the deployment of the device into the real work,
detailing how the device was tested. Section V discusses the
impact of the work and concludes with some future work for
next steps.

II. RELATED WORK

Embedded sensors such as heart-rate, electrodermal activity,
heart-rate variability and blood volume pulse within wearable
technologies offer a range of opportunities to assess the
autonomic nervous system [4], which has been shown to
model both positive and negative emotion [5]. In particular an
elevated ElectroDermal Activity (EDA) a decrease of Blood
Volume Pulse (BVP) [6] and a reduced heart-rate variability
(HRV) [7] are common indicators or negative emotion as these
variables simulate an activation for the sympathetic nervous
system [8]. There has been significant work in the use of
wearable technologies to detect the level of physiological
arousal from variables such as HRV and EDA which have
demonstrated that they can be inferred to assess emotional
states in the real-world [9], [10].

In our previous work we have began exploring the impact
of environmental variables namely air quality particulates and
gases on mental wellbeing. The concept DigitalExposome
offered a unique insight into how the use of environmental sen-
sors could be used to quantify emotions when walking in urban
environments [3]. This approach demonstrated emotions could
be accurately inferred using air quality data achieving an F1-
score 0.67 using a 1-D CNN, exceeding the same model using
only physiological data which achieved an F1-score of 0.61.
Furthermore, our work on emotions in semantic trajectories
saw environmental data alone achieve an impressive F1-score
result of 0.84 [11]. The results of these findings across both
studies demonstrates that air quality data directly correlates
with the sympathetic nervous system.

To date, most efforts on emotion classification have been
focused around using large computational processing power
to pre-process, extract and classify emotions after the point of
collection [12], [13]. The concept of edge computing shows
much promise for facilitating deployment of such sensing
technologies in the real world [14]. Recent improvements in
devices have enabled Raspberry Pis and other comparable
single board computers to be used for deploying AI models
due to their small portable size yet powerful processing
capabilities [15].

Previous work shows hows physiological sensors can be
used to detect stress processed automatically by an on-board
computer under driving conditions [16]. However, this work
relied on a large computer within the car which is not

feasible for other real-world scenarios. More recent work has
explored how the use of multiple models could be used to
improve the accuracy of stress detection on a ultra-low power
microcontroller by combining stress and activity recognition
[17]. Similar work [18] in the area has focused on inferring
a participant’s activity from running, falling and normal state
using a 1D CNN model achieving 97% accuracy.

However, little work has been carried out to explore the
use of environmental sensors to classify emotions at the
edge. While previous research has explored environmental
monitoring there has been little consideration of how environ-
mental monitoring, in particular how the environment impacts
wellbeing, could be deployed into the real-world.

III. METHODOLOGY

In this work, we propose the development of a machine
learning model that can perform real-time emotion classi-
fication directly on resource-constrained edge devices using
only air quality data as input. Our goal is to design an
artificial intelligence system that leverages advances in on-
device inference to enable continuous monitoring of emotions
based on real-world environmental factors, without relying on
connectivity to the cloud or abundant computational resources.
The overall methodology is depicted in Figure 1.

A. Dataset

The dataset used in this work uses previous data collected
from our study DigitalExposome to collect real-world air qual-
ity data along with self-reported emotions. The study involved
40 healthy participants aged between 18-50 as approved by
Nottingham Trent University Ethics Committee, application
number 638. The experiment equipped each participant with
two devices namely:

1) Enviro-IoT - An environmental monitoring device
which continuously collected air pollution variables such
as Particulate Matter (PM1), (PM2.5), (PM10), Nitro-
gen Dioxide (N02), Carbon Monoxide (CO), Ammonia
(NH3) and Noise (dB) in the vicinity.

2) EnvBodySens app - Mobile application pre-loaded
onto a Samsung smartphone for participants to self-
report their emotions during the experiment activity. To
measure the emotions of participants the app used the
Personal Wellbeing Index for adults model [19], with a
five-point Likert SAM scale using an emoji at each point
as a way to replicate how the participant was feeling
[20]. The approach of this model has been shown to be
highly effective for self-reporting emotional states [21].

The devices accompanies the participants as they strolled
along a predetermined route within the vicinity surrounding
Nottingham Trent University’s Clifton Campus continuously
gathering data on environmental pollutants and self-reported
emotions.



Fig. 1. The system Architecture of the processes behind quantifying emotion on device within the urban environment.

B. Machine Learning Architectures

When considering a model architecture for the edge, there
isn’t a pre-defined model for use, particularly due to the
resource-constrained nature of edge devices [17]. Selecting
an optimal machine learning model architecture that can
perform well despite the limited resources on edge devices
is crucial. Therefore, we evaluated several lightweight classi-
fication models that are suitable for deployment on resource-
constrained edge hardware:

• Support Vector Machine (SVM): SVMs are effective
for small datasets and have relatively low computational
requirements. Using an SVM scored 0.56 (F1 Score).

• Decision Tree: Decision trees offer interpretable models
that are easy to optimise for low-power devices. They
work well for small datasets with limited features. De-
cision trees can also be converted to small rule-based
classifiers. A decision tree performed the best at 0.95
(F1-Score).

• Random Forest: Random forests overcome overfitting
limitations of single decision trees by training an ensem-
ble of decorrelated trees. However, the resulting model
size may be larger. A random forest model performed at
0.90 (F1-Score).

• Logistic Regression (LR): Logistic regression is a sta-
tistical model used to describe the relationship between
one dependent variables and one or more independent
variables. The model iteself does not require too many
computational resources. The trained data using a LR
model acheived 0.45 (F1-Score).

• Gaussian Naive Bayes (GNB): Gaussian Naive Bayes
model operates on the assumption of feature indepen-
dence, using the Gaussian distribution to calculate the
probability of a given instance belonging to a particular
class based on the probability distribution of its features.
The trained data using a GNB model resulted in the worst
performance at 0.38 (F1-Score).

We trained and tested each model using hold-out validation

with a 20% test split. After preliminary experiments, we found
that decision trees provided the best combination of high ac-
curacy and low resource usage for our application. We trained
a randomised decision tree classifier using scikit-learn on the
DigitalExposome dataset. The model was trained to classify
self-reported emotion labels based on the environmental sensor
data features.

The results showed that Decision Tree was the best per-
forming at 95% accuracy and due to previous successes with
classifying emotions to a high level, we have used a Decision
Tree model. This model was then exported as a pickle file and
transferred onto the Raspberry Pi.

C. System Architecture

In this paper we introduce the ’Enviro-Edge’ as a novel,
low-cost hand-held device capable of on-device inference. The
approach is capable of measuring environmental air quality
factors to quantify the impact of emotions in-situ within an
urban environment. This process removes the need for pow-
erful systems and extensive deep learning models to unravel
the link between urban environments and emotions which has
been explored in previous work [22].

The Enviro-Edge device uses a range of off-the-shelf hard-
ware and sensors encased within a 3D printed box which
reduces the overall cost and simplifies the design process. A
schematic involving a Raspberry Pi connected to a range of
environmental sensors to confirm compatibility, ensure sensor
accuracy, and achieve the desired level of precision is shown
in Figure 2.

The ’Enviro-Edge’ system comprises of multiple hardware
components, for sensing, processing and to display the classi-
fication result as detailed below.

1) Raspberry Pi 3 B+: Raspberry Pi is a versatile and
affordable single-board computer that has gained popu-
larity for its wide range of applications. The Raspberry
Pi 3 B+ is powered by a quad-core ARM Cortex-A53
CPU, providing adequate processing power for a variety



Fig. 2. Hardware schematic comprising of the Raspberry Pi Model 3+,
environmental sensors including Gas Sensors (monitoring Nitrogen Dioxide,
Carbon Monoxide and Ammonia), Particulate Matter (1.0, 2.5 and 10), Noise
sensor and battery.

of tasks and operates at a clock speed of 1.2 GHz.
It provides a flexible platform for deploying machine
learning models to classify data in the real-world.

2) LCD Screen: Connected to the Raspberry Pi is a small
0.96” colour LCD screen that serves as a visual aid
which informs the user in real-time of the changes in
emotions from 1 (very sad) to 5 (very happy).

3) Particulate Matter Sensor: As one of the most harmful
environmental pollutants, Particulate Matter (PM) is
commonly built-in within air quality sensing systems.
PM sensors work by having a small fan that draws
air through the device and past a laser which detects
both the concentration number and size of the particles
in the surrounding air. The sensor within the hand-
held device used is PMS5003 PM sensor which has
previously been correlated for use in the real-world
[23]. Previous studies have shown that the addition of
particulate matter supports the classification of emotions
[11].

4) Nitrogen Dioxide Sensor: Nitrogen Dioxide (NO2)
is one of the most highly reactive gases as a result
from aerosols and combustion processes for fossil fuels
within the environment [24]. This provides a simple,
low-cost approach to capture the levels of concentration
of Nitrogen Dioxide within the urban environment.
The data is obtained through converting the analogue
voltage readings using a digital converter, resulting in
resistances. NO2 has been shown to result in increased
stress [25] and worsened emotions [11].

5) Carbon Monoxide Sensor: Similarly the Carbon
Monoxide (CO) sensor is compact and low-cost, cap-

turing the total concentration levels within the urban
environment. There has been significant research con-
ducted highlighting issues caused by carbon monoxide
on human health with respiratory and cardiovascular
illnesses [26]. More recently, there is work to show the
impact of short-term exposure of CO on physiological
and behavioural issues [27].

6) Ammonia Sensor: Within the environment, Ammonia
(NH3) is one of the most common gases in the atmo-
sphere [28]. Research has shown the impact of Ammonia
largely depends on the level of gas concentration but
can result in swelling of the airways and long-term
issues in the respiratory system [29]. In recent years,
some attempts have been made to quantify the impact
of Ammonia towards emotions [11].

7) Noise (dB) Sensor: Sensors to capture sound are often
used within environmental sensing systems. Primarily,
these sensors work by detecting the overall intensity
of sound waves by using an in-built microphone, peak
detector and an amplifier. Previous work on the impacts
of noise demonstrate significant causes of health related
conditions such as cardiovascular [30] and more recently
focusing on the impact towards mental wellbeing [3] and
emotions [31].

Using the above hardware components, a two-step prototype
was developed and devised to house the electronics within a
3D printed case designed to protect the materials in the hand-
held device, as depicted at Figure 3.

Fig. 3. Development process of the two prototypes (Top) Raspberry Pi
connected to Particulate Matter (a), Nitrogen Dioxide (b), Carbon Monoxide
(b), Ammonia (c), visual LED screen (d) and powered by battery (e). Final
prototype (Bottom) with all electronics encompassed within a 3D printed box.



IV. DEPLOYMENT

To evaluate real-world feasibility, we deployed the decision
tree model on a Raspberry Pi 3 B+ edge device. The Pi
was equipped with particulate matter, nitrogen dioxide, carbon
monoxide and ammonia gas sensors to collect environmental
data. Sensor readings were collected and pre-processed locally
on the Pi and then passed to the model for emotion inference.

In this approach we have developed a Python application
that acquires and aggregates sensor data over fixed intervals
collecting 8 samples. After each interval, the data is nor-
malised and input to the decision tree model to classify the
predicted emotional state. The application visualises the output
of the model on a small LCD display attached to the Pi,
enabling the real-time monitoring of emotion from air quality
data.

The use of on-device processing provides several advantages
over a traditional cloud-based deployment for this application.
Performing inference at the edge eliminates privacy concerns
associated with transmitting raw sensor data to the cloud
[32]. It also reduces reliance on continuous connectivity and
mitigates against network failures.

A. Results

We conducted an ’in-the-wild’ test to assess the performance
and reliability of the model classifying emotion on-device.

To compare the accuracy prediction of the Enviro-Edge
device, the data from 40 participant’s in the DigitalExposome
dataset namely emotion label, latitude and longitudinal were
aggregated together and plotted on a heatmap, as depicted at
’Ground Truth’ in Figure 4. The heatmap demonstrates that
walking in green spaces (left-handside of the map) highlights
a mixture of happy and very happy emotions. Whereas walking
along busy, polluted spaces (right-handside) results in a very
negative or negative emotions.

The results for Enviro-Edge device shown in Figure 4 were
generated by a single participant walking the same route as
performed in the ’Ground Truth’ Heatmap. Whilst walking
the pre-determined route the Enviro-Edge device recorded the
changes in predicted emotion which were saved to on-board
storage. Subsequently, these results were downloaded and used
to visualise the route.

Analysis of the results incorporating predicted emotion, lati-
tude and longitudinal for the Enviro-Edge using the real-world
data demonstrates that classifying at the edge is comparable
to the ground truth results. Similar to the ground truth, green
spaces predicted a very happy or happy emotion whereas
busy, polluted spaces resulted in a prediction very negative
or negative impact on human emotions.

Contrasting the two maps in Figure 4 highlights that the
Enviro-Edge device is accurate in predicting emotion using
air quality factors as a basis for classifying on-device. While
the inferred emotions are not identical to the original dataset
this is because the real-world air quality differed during this
test. However, this test demonstrates that the device functions
independently to infer emotional state in the real-world from
air quality data in real-time.

Fig. 4. Plotting participant label from DigitalExposome dataset (left) and the
on-device inference using Enviro-Edge (right)

Despite the constraints of the low-power Raspberry Pi
hardware, we found that the model was able to classify
wellbeing states in real-time with an average inference latency
of 8.45ms. Furthermore, the system was able to function
continuously during periods lasting several hours on battery
power demonstrating the feasibility of on-device inference and
real-world deployment.

While limitations of this work were encountered such as the
possibility of external factors impacting emotion, this study
aimed to evaluate real-world performance which is vital to
enable successful deployment. Furthermore, the contribution
of this work is the edge deployment of the system enabling
its use in real-world environments; it was therefore necessary
to collect real-world data to train the model.

V. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated the ability to deploy
a machine learning model for classifying emotions from real-
time environmental pollution data directly onto a resource-
constrained edge device. This approach continues and extends
previous studies [3], [11], [33] by quantifying the impact of
the environment on emotions in-situ. Our results indicate that
accurate real-time inference is possible using only the limited
compute capabilities of a Raspberry Pi. The decision tree
model was able to classify emotional states with 95% accuracy
compared to ground truth labels, despite being deployed on
low-power hardware.



The ability to classify emotional states in real-time using
only ambient environmental data provides exciting possibili-
ties. Our edge device can enable continuous monitoring dur-
ing everyday activities without requiring body-worn sensors.
This can help identify personalised environmental factors that
impact emotions. The edge approach also allows for rapid
localised interventions based on the inferred affective state.

In the future, the on-device model could be enhanced further
by incorporating physiological signals like heart rate along
with environmental data for more robust inference. Advances
in edge hardware will also enable more sophisticated models
to be deployed. Overall, this work demonstrates the feasibility
of performing real-time emotion monitoring using on-device
intelligence, paving the way for innovative healthcare and
wellness applications.
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