

Gerontology

Gerontology , DOI: 10.1159/000539261 Received: April 11, 2023 Accepted: April 23, 2024 Published online: May 15, 2024

Clinimetric properties of the "FIND-NEEDS" to screen geriatric conditions

Chang C-M, Lin C-Y, -Hu F-W, Wang Y-W, Huang C, Lo Y-T, Wu C-Y, Chung Y-F, Kang C-C, Chen Y-J, Yang Y-C, Liu L-F, Griffiths MD, Lin D-C, Shen M-R

```
ISSN: 0304-324X (Print), eISSN: 1423-0003 (Online)
https://www.karger.com/GER
Gerontology
```

1

2

3 Abstract

- 4 Background: Comprehensive geriatric assessment (CGA) is used to thoroughly assess and
- 5 identify complex healthcare problems among older adults. However, administration of CGA
- 6 is time-consuming and labor intensive. A simple screening tool with the mnemonic "FIND-
- 7 NEEDS" (function, incontinence, nutrition, dementia, number of medications, eyes, ear,
- 8 depression, and social interaction) was developed to quickly identify common geriatric

9 conditions. The objective of the present study was to evaluate the clinimetric properties of the10 FIND-NEEDS.

11	Methods: First-visiting older adults aged 65 years and above (and who were able to
12	communicate by themselves or with the help of a caregiver) were assessed (October to
13	December, 2021) using the FIND-NEEDS and CGA at geriatric outpatient clinics of a
14	tertiary, referred medical center (n=114). The FIND-NEEDS was examined for its criterion-
15	related validity and compared with the gold standard of CGA results. Two types of scoring
16	(summed score and binary score) of FIND-NEEDS and CGA were analyzed using Spearman
17	correlation, sensitivity and specificity, and area under receiver operating characteristic curve
18	(AUC).
18 19	(AUC). Results: The mean age of the 114 outpatients was 78.3 years (SD±7.6 years), and 79 were
19	Results: The mean age of the 114 outpatients was 78.3 years (SD±7.6 years), and 79 were
19 20	Results: The mean age of the 114 outpatients was 78.3 years (SD±7.6 years), and 79 were female (69.3%). The internal consistency was excellent when using all FIND-NEEDS items,
19 20 21	Results: The mean age of the 114 outpatients was 78.3 years (SD±7.6 years), and 79 were female (69.3%). The internal consistency was excellent when using all FIND-NEEDS items, and was acceptable when using FIND-NEEDS domain scores. Exploratory factor analysis

- FIND-NEEDS and CGA was high. The FIND-NEEDS summed score was moderately
- 26 correlated with CGA score (r=0.494; p<0.001). The FIND-NEEDS binary score showed

27	excellent correlation with CGA score ($r=0.944$; $p<0.001$) and showed excellent AUC (0.950),
28	sensitivity (1.00), and specificity (0.90) when using the CGA score as the gold standard.
29	Conclusions: The present study demonstrated that the FIND-NEEDS had acceptable
30	clinimetric properties to screen for geriatric problems among older adults. Further in-depth
31	assessment in specific domains and care plan can then be conducted afterwards.
32	

Keywords: FIND-NEEDS; assessment; geriatric screening; screening; reliability; validity

34 INTRODUCTION

Comprehensive geriatric assessment (CGA)¹ is used to thoroughly assess and identify 35 complex health and care problems among older adults. With the use of CGA, healthcare 36 professionals can obtain a holistic overview of older people with complex needs, which is 37 essential for the development of individualized, patient-centered care plans in geriatric care. 38 39 Veronese et al. reviewed CGA on health outcomes and found that CGA reduces (i) nursing home admission, risk of falls, and pressure sores in hospital medical settings; (ii) the risk of 40 delirium in hip fracture; and (iii) the risk of physical frailty among community-dwelling older 41 adults.² 42 However, the administration of CGA is very time consuming and labor intensive 43 because the CGA contains many tools and items.^{3,4} The growing aging population 44 exacerbates the workloads of healthcare providers who have insufficient time to conduct 45 CGA. Moreover, CGA has to be conducted by trained professionals.⁵ Such inconvenience 46 often precludes healthcare providers in geriatric care from arranging CGA for holistic 47 overview and thorough care management. Therefore, a series of easy-to-administer, office-48 based screening questions could be used quickly among older adults to identify common 49 geriatric conditions which would reduce such problems.⁶ Previous studies have found that an 50 early comprehensive geriatric screening followed by CGA and management significantly 51

53

decreases admission and mortality among older patients visiting emergency departments⁷ and reduces the 30-day readmission rate of older hospitalized adults.⁴

- Several screening tools had been proposed in the literature to replace or to supplement 54
- CGA, such as the Vulnerable Elders Survey (VES-13),⁸ DEEP-IN (Dementia, depression, 55
- drugs; Eyes; Ears; Physical performance, phalls [falls], psychosocial; Incontinence; 56
- Nutrition),⁹ Kihon Checklist,¹⁰ Brief Risk Identification of Geriatric Health Tool 57
- (BRIGHT),¹¹ Targeted Geriatric Assessment (TaGA),¹² Rapid Geriatric Assessment (RGA),³ 58

and Geriatric 8 (G8).¹³ Moreover, Integrated Care for Older People (ICOPE) corresponding 59

- to intrinsic capacity (concerning individuals' mental and physical capacities) have been 60
- proposed recently by the World Health Organization (WHO).¹⁴⁻¹⁹ The clinimetric properties 61
- 62 and clinical impact on relevant outcomes of these screening instruments have not been
- thoroughly examined.⁵ 63

Moreover, some practical issues need to be addressed. First, most instruments have 64 relatively limited spectrums of domains that affect the health status of older people. For 65 example, some important conditions in geriatric care (e.g., polypharmacy, urinary 66 incontinence, sensory impairment or social function) are not assessed. Second, some 67 instrument items use a relatively intricate method or subjective rating (e.g., Whispered voice 68 test), which needs additional training for the assessors. Third, some instruments focus on 69

70	specific conditions (e.g., frailty) or targeted populations (e.g., G8 Questionnaire for Cancer), ⁵
71	and some instruments are divided into several modules (e.g., ICOPE [Integrated Care for
72	Older People]) ¹⁴ which may cause administrative burden to the assessors in determining
73	whether to conduct the further stage of evaluation and referral pathways. Moreover, using
74	different modules by steps may result in some domains (e.g., falls, urinary incontinence,
75	polypharmacy, social interaction) being overlooked or deferred unless the assessors screen
76	the next module. Fourth, some screening questions are not based on the patient's
77	perspectives. For example, old people may be reluctant to accept further advice or referred
78	managements if the detected abnormality does not cause major discomfort or affect their
79	daily life (e.g., visual or hearing impairment by tests). Therefore, geriatric care needs a
80	screening instrument that has theoretical framework and is comparable to the major domains
81	of CGA to quickly and easily understand the holistic and thorough health needs for older
82	people.
83	Based on the literature review of screening tools of geriatric assessment and
84	incorporating the theoretical concept of intrinsic capacity, key principles were considered.
85	First, such a screening instrument should be able to be used by non-geriatric healthcare
86	workers or volunteers with minimal training or by self-evaluation with assistance in only a
87	few items. Second, domains should either be derived from the commonly used simple

88	screening tools or further condensed and modified from the core items of existing screening
89	instruments. Third, the instrument should focus on how daily life of an older adult is affected,
90	or how the symptoms/signs of an older adult's health problems are captured). Finally, the
91	instrument should include the 11 domains of potentially manageable conditions. This resulted
92	in the development of the screening tool with mnemonic "FIND-NEEDS", namely Function
93	(functional impairment, falls, and frailty), Incontinence, Nutrition, Dementia, Number of
94	medications, Eyes, Ear, Depression, and Social interaction. The 11 domains also correspond
95	with the intrinsic capacity framework ¹⁴ and the 4M model (what matters, medications,
96	mentation, and mobility). ²⁰ Detailed information regarding the development of the FIND-
97	NEEDS is reported in the 'FIND-NEEDS development' subsection (in the Methods section).
98	Although the FIND-NEEDS was developed by experts with good content validity, the
99	clinimetric properties of the FIND-NEEDS have not been fully examined. Moreover, no
100	previous empirical studies have examined if the FIND-NEEDS is comparable to the gold
101	standard of CGA results in holistic assessment for older people. In order to provide useful
102	and time-saving assessments for geriatric care in busy clinical settings, the present study
103	evaluated the newly developed instrument (i.e., FIND-NEEDS) in assessing geriatric needs.
104	

METHODS

106 Participants and data collection

Between October 2021 and December 2021, data for the present study were collected at 107 geriatric outpatient clinics of a tertiary, referred medical center. The participants comprised 108 first-visiting older adults aged 65 years and above (who were able to answer the study 109 questionnaire by themselves or with the help of a caregiver). Individuals excluded from 110 111 participation included those who were institutionalized, could not mobilize with or without assisting devices, could not communicate, or had any acute or chronic condition that could 112 affect the ability of answering the questionnaire and completing the objective evaluation. 113 Written informed consent was obtained from participants or from their legal guardians if the 114 patient had serious cognitive impairment. 115 116 The research assistants interviewed the participants to obtain the following information: age (in years), sex (male or female), educational level (illiterate, primary school, junior high, 117 senior high or college/above), marital status (married, cohabiting, widowed, or other), living 118 status (living alone or not), current cigarette smoking (yes or no), current alcohol drinking 119 (yes or no), body mass index (kg/m^2) , and history of chronic diseases (including 120 hypertension, diabetes mellitus, hyperlipidemia, stroke, cardiovascular disease, respiratory 121 disease, liver disease, gastrointestinal disease, renal disease, musculoskeletal disease, eye 122 disease, psychiatric disease, urological disease, and cancer). 123

124	In addition to the demographic and medical information of the patients, data were also
125	collected regarding the FIND-NEEDS and CGA. The FIND-NEEDS was completed by the
126	patients or their caregivers accompanied under assistance of research assistants, and CGA
127	was performed by a geriatric care practitioner.

129 *Comprehensive geriatric assessment*

The core measures of the CGA comprise metrics of physical function, falls, cognitive 130 impairment, depression, visual and hearing impairments, nutrition, pain, urinary 131 incontinence, medication-related problems, tubes, caregiver issues, and socioeconomic 132 issues. The assessment tools involved physical function (assessed by the Katz Index of 133 Activities of Daily Living, ADLs), cognitive impairment (defined as scores < 8 for the 134 participants with a high school education on the Chinese version of the modified Short 135 Portable Mental Status Questionnaire, SPMSQ,²¹ depressive mood (defined as scores ≥ 2 on 136 the Chinese version of the five-item Geriatric Depression Scale, GDS-5,²² medication-related 137 problems (defined as currently using >eight medications, poor adherence, adverse drug 138 reactions and potentially inappropriate medications), malnutrition (defined as scores <12 on 139 the Mini-Nutritional Assessment-Short Form, MNA-SF), requirements of social resources, as 140 well as health-related quality of life (assessed by the Chinese version of the EQ-5D system). 141

143 Development of FIND-NEEDS screening tool

The FIND-NEEDS was designed based on the following principles. First, some domains 144 were derived from the well-established and commonly used screening tools, such as the 145 Patient Health Questionnaire-2 (PHQ-2)²³ and Geriatric Depression Scale (GDS-5)^{24,25} for 146 screening depression, and the CSHA Clinical Frailty Scale (CFS)²⁶ for screening frailty. 147 Second, some domains were further condensed and modified from the core items of existing 148 screening tools. For example, two shared items from the Malnutrition Universal Screening 149 Tool (MUST) and the Mini-Nutritional Assessment-Short Form (MNA-SF)^{27,28} were selected 150 for screening malnutrition. Items also included the "three-item recall" test from the Mini-Cog 151 assessment with a simple question²⁹ for objective and subjective cognitive problems, and an 152 item concerning high-risk medications from the 4Ms model as one of medication-related 153 problems²⁰. Third, some domains contained combination of several core items into a 154 question. For example, core questions of the Practice Guideline for Prevention of Falls by the 155 American Geriatrics Society and British Geriatrics Society³⁰ and those of incontinence 156 proposed by Moore and Siu,³¹ as well as selecting two items of activities of daily living from 157 the Katz Index³² for screening functional impairment. Fourth, the items concerning sensory 158 impairment focused on affected daily life or identified symptoms/signs (e.g., memory 159

160	impairment, medication-related problems). The reason of focusing on affected daily life and
161	identified symptoms/signs is because these are important factors associated with quality of
162	life. Fifth, to easily and quickly understand the health status of older adults, the screening
163	instrument was designed to be performed by non-geriatric healthcare workers or volunteers
164	with minimal training or by self-evaluation with assistance on only a few items.
165	A total of 24 items were drafted to screen for common geriatric conditions, with frailty,
166	falls, and disability being the very first items of "Function" in the FIND-NEEDS. Frailty,
167	falls and disability are distinct with serial progression of decreased mobility and functional
168	ability, with overlapping concepts that share common risk factors. ⁵ Screening for disability is
169	suggested first to find out those with severe results of functional impairment, ³ which is
170	directed to provision of care skills, supportive services, or long-term care. Falls is the
171	geriatric condition that is an indicator of underlying frailty and a predictor of future disability.
172	Further screening of falls and frailty for potential mobility problems is suggested among
173	those without disability. More specifically, "Function" in FIND-NEEDS corresponds to
174	locomotion and vitality in intrinsic capacity; "Dementia" in FIND-NEEDS corresponds to
175	cognition in intrinsic capacity and mentation in the 4Ms; "Eyes and Ear" in FIND-NEEDS
176	corresponds to the sensory components in intrinsic capacity; "Depression" in FIND-NEEDS
177	corresponds to psychological components in intrinsic capacity and mentation in 4Ms;

178	Nutrition in FIND-NEEDS corresponds to vitality in intrinsic capacity; "Number of
179	medications" in FIND-NEEDS corresponds to medications in 4Ms; "Falls, incontinence,
180	social interaction in FIND-NEEDS corresponds to the second module of "falls, incontinence,
181	social support" in intrinsic capacity. Previous study of the content validity of the FIND-
182	NEEDS screening tool was based on the expert opinions after modification and amendment
183	showed good Item-Level and Scale-Level Content Validity Index.33
184	
185	Data analysis
186	All the statistical analyses in the present study were conducted using the JASP Version 0.16.3
187	(JASP Team, 2022; https://jasp-stats.org/). Descriptive statistics of the data comprised means
188	(SDs) or frequencies (percentages). Internal consistency of the FIND-NEEDS was conducted
189	using three methods: traditional Cronbach's α , ³⁴ McDonald's ω , ³⁵ and greatest lower bound
190	(GLB). ³⁶ Cronbach's α was used for calculating internal consistency; ³⁷ McDonald's ω was
191	used for adjustment of the tau-equivalence assumptions when this assumption is violated; ³⁸
192	GLB was used because it is less impacted by skewed data (which is common for older
193	people's data) than α and $\omega.^{37,39}$ Moreover, internal consistency of the FIND-NEEDS was
194	examined for its item scores (i.e., 24 items) and its domains scores (i.e., 11 domains) by using

item analysis and item-total correlation test. The internal consistency value is interpreted asacceptable when larger than 0.6 and good when larger than 0.7.

Apart from internal consistency, the factor structure of the FIND-NEEDS was assessed 197 using parallel analysis (PA) and exploratory factor analysis (EFA) on its domain scores. In 198 PA, simulated datasets were generated to identify the random eigenvalue. Then, the 199 200 eigenvalue derived from the present dataset was compared with the random eigenvalue. When the eigenvalue of a factor from the present dataset was higher than its random 201 eigenvalue, the factor was considered to be real.40 In EFA, Kaiser-Meyer-Olkin and 202 Bartlett's tests were conducted first to ensure that the data were suitable for EFA. Kaiser-203 Meyer–Olkin value larger than 0.6 and significant Bartlett's test indicate that the data can be 204 used for EFA.⁴¹ Then, EFA with principal axis factoring extraction method is used if the data 205 are suitable. Root mean square error of approximation smaller than 0.05 in the EFA further 206 indicates that identified factor structure of FIND-NEEDS was supported.⁴² Factor loadings of 207 the FIND-NEEDS domain scores were calculated in the EFA and a factor loading larger than 208 0.3 indicated good loading.43 209

Finally, the FIND-NEEDS was examined for its criterion-related validity with the gold standard of CGA results. Two FIND-NEEDS scores were used: (i) a summed score that added all the FIND-NEEDS domain scores, and (ii) a binary score using the FIND-NEEDS

213	summed score converted into 0 (no problems) or 1 (having problems). The two FIND-
214	NEEDS scores were examined using the following statistical analyses: (i) Spearman
215	correlation with CGA results; (ii) sensitivity and specificity; and (iii) area under receiver
216	operating characteristic curve (AUC).
217	
218	RESULTS
219	A total of 114 older adults were enrolled. Table 1 shows characteristics of the participants
220	receiving screening and assessment. Their mean age was 78.3 years (SD±7.6), and 35 were
221	males (30.7%). The majority of the participants were married or cohabiting (96.43%), and
222	over half of them had an educational level at primary school or below (59.82%). Very few of
223	the participants lived alone (7.14%).
224	Table 2 shows the percentages of participants having problems in each domain. More
225	than 80% of the participants had potential problems in the domains of Function (functional
226	impairment, falls, and frailty). More than a half of participants had problems in the domains
227	of Dementia, Number of medications, and Depression. Nearly one-third of participants had
228	problems in the domains of Incontinence, Nutrition, Eyes or Ear problems. In all internal
229	consistency methods, the internal consistency was excellent when using all FIND-NEEDS
230	items (α =0.917; ω =0.922; GLB=0.982), and was acceptable when using FIND-NEEDS

231	domain scores (α =0.616; ω =0.635; GLB=0.760). The unidimensionality of the FIND-NEEDS
232	domain scores was supported by the PA (Figure 1). Moreover, Kaiser-Meyer-Olkin value
233	(0.67) together with significant Bartlett's test chi-square (110.56 [df=36]; p<0.001) supported
234	that FIND-NEEDS domain scores were suitable for EFA. EFA results showed that most of
235	the FIND-NEEDS domain scores had factor loadings higher than 0.3, except for Nutrition
236	(0.240), Eyes (0.257), and Ears (0.154). Fit index of root mean square residual error of
237	approximation (0.044) also supported the unidmensionality of the FIND-NEEDS.
238	Table 3 shows intercorrelations of binary scores between domains of FIND-NEEDS and
239	CGA. Most domains showed moderate correlation between FIND-NEEDS and CGA, except
240	for low correlation in dementia and weak correlation in social interaction. The overall
241	correlation of summed scores between FIND-NEEDS and CGA was high.
242	Table 4 shows the intercorrelations between FIND-NEEDS domains. Depression was
243	significantly correlated with most domains except for eyes and ears. Hearing impairment
244	(ears) was not correlated with other domains of impairment, while visual impairment (eyes)
245	and malnutrition were significantly correlated only with one other domain of impairment
246	(i.e., dementia and depression, respectively).
247	Figure 1 shows parallel analysis of the FIND-NEEDS. The FIND-NEEDS summed
248	score was moderately correlated with CGA score ($r=0.494$; $p<0.001$). After converting the

249	FIND-NEEDS summed score into a binary score (0=no problems, 1=having problems), the
250	FIND-NEEDS binary score had a very high correlation with CGA score ($r=0.944$; $p<0.001$).
251	Moreover, the FIND-NEEDS binary score showed excellent AUC (0.950), sensitivity (1.00),
252	and specificity (0.90) when using the CGA score as the gold standard.
253	
254	DISCUSSION
255	The present study evaluating clinimetric properties of the FIND-NEEDS showed that the
256	validity and reliability were acceptable with excellent internal consistency (α =0.616 and
257	0.917; ω =0.635 and 0.922; GLB=0.760 and 0.982). Using the CGA as the gold standard,
258	FIND-NEEDS binary scores showed moderate to very high correlations ($r=0.494$ to 0.944;
259	p < 0.001) as well as excellent sensitivity (1.00) and specificity (0.90) with a satisfactory AUC
260	(0.950).
261	Although the CGA has the huge benefit with regards to holistic assessment of older
262	people, it has been criticized for its administration burden. ^{3,5} The FIND-NEEDS includes
263	important domains of geriatric care to help healthcare providers efficiently assess geriatric
264	needs for older people and is a feasible brief tool to screen for geriatric problems in busy
265	clinical settings.

266	The present study showed that most domains had moderate correlations between FIND-
267	NEEDS and CGA, except for a low correlation in dementia and a weak correlation in social
268	interaction. Dementia screening in the CGA comprised the SPMSQ, which does not include
269	direct testing of episodic declarative memory, and is more accurate in identifying individuals
270	with moderate or severe impairment of dementia,44 while the dementia screening in the
271	FIND-NEEDS included directly asked presentation of memory impairment and three-item
272	recall may detect individuals with mildly impaired dementia. Social interaction in FIND-
273	NEEDS included directly asked about living alone or loneliness and social activities, while
274	social conditions in CGA include living alone or social support needed. However, the FIND-
275	NEEDS may identify more potential problems for further assessment of geriatric conditions.
276	Although the present study found that most clinimetric properties of the FIND-NEEDS
277	(especially in its scale-level) were acceptable to satisfactory, some domains had relatively
278	low associations with the entire FIND-NEEDS instrument. More specifically, Eyes, Ears, and
279	Nutrition were the three domains with low factor loadings in the EFA. In 2007, these three
280	domains were not considered as geriatric syndrome by Inouye SK, et al. ⁴⁵ In fact, visual and
281	hearing impairments were not listed as screening domains in most screening tools except the
282	ICOPE or DEEP-IN. ^{3,8,10-14,} Geriatric syndromes (geriatric conditions) are multifactorial
283	conditions that are prevalent among older adults and are believed to develop when an

284	individual experiences accumulated impairments in multiple systems that compromise their
285	compensatory ability. The low factor loadings of visual and hearing (sensory) impairments
286	may be explained by the following reasons. First, in contrast to the other impairments, the
287	causes of sensory impairments are usually due to aging-related organ-specific diseases (e.g.,
288	cataract or glaucoma, age-related, noise-generated, drug-induced, or chronic otitis media),
289	and multifactorial causes due to other impairments are not common. Second, sensory
290	impairments may not directly lead to urgent health problems, unless the impairment is severe.
291	Compared to impairments in other domains, individuals with mild to moderate sensory
292	impairments may tolerate or accustom themselves gradually and live independently without
293	progressively accumulated impairments in other systems for several years. As for nutrition
294	screening, malnutrition risk is associated with the existing geriatric syndromes, which are
295	also associated with poor nutritional status. ⁴⁶ The nutrition screening items in the FIND-
296	NEEDS were retrieved and modified from the core items of the commonly used screening
297	tools in clinical practice, MUST and MNA-SF. However, the impacts of weaker associations
298	between these three domains with the other FIND-NEEDS domains needs to be monitored in
299	the future study. Nevertheless, from the viewpoint of intrinsic capacity and the 4Ms model,
300	the domains of nutrition, eyes, and ears in the FIND-NEEDS need to be retained for
301	comprehensive assessment.

302	The present study showed there were high percentages of older adults visiting geriatric
303	clinics who had potential geriatric conditions, which would be ignored if no CGA was
304	conducted. In fact, CGA was usually not considered by healthcare providers as routine
305	assessment in primary geriatric care, because CGA is typically regarded as being carried out
306	by geriatricians and/or trained gerontological nurses, ⁵ and usually takes more than an hour to
307	complete, ³ However, the FIND-NEEDS is easier for administration and can reduce the heavy
308	workload in the geriatric setting. Completion of the FIND-NEEDS takes an average of less
309	than ten minutes, which is considerably less time than CGA.
310	The required time in assessment for conducting FIND-NEEDS screening or conducting
311	CGA has not been clearly defined due to the difference in capacity (i.e., FIND-NEEDS
312	focuses on brief screening whereas CGA focuses on comprehensive assessment), facilities
313	(i.e., FIND-NEEDS relies on self-reports whereas CGA needs older adults to complete some
314	physical tasks, such as walking to check the person's balance) and staff (i.e., FIND-NEEDS
315	can be administered by the older adults or their caregivers with assistance from research
316	assistants whereas CGA needs to be performed by trained geriatric care personnel). In fact,
317	not all older adults can have CGA because CGA takes a lot of time to administer. A previous
318	quasi-experimental study reported only about 10% of admission patients in control group
319	received CGA (usually administered to patients with frailty and recent functional decline). ⁴ In

320	addition to community-dwelling older population, geriatric screening is suggested for all
321	older adults visiting outpatient clinics, or inpatients hospitalized within first 48-72 hours after
322	admission, usually at a relatively stabilized condition of acute diseases, so that team staff
323	have enough time to manage geriatric problems during a hospital stay. As to geriatric
324	screening in the emergency room (ER), one study showed that a screening program for
325	geriatric conditions during routine ER care increased the compliance of follow-up
326	maintenance instead and did not result in negative attitudes toward the ER process among
327	older patients. ⁴⁷
328	There are some limitations in the present study. First, the sample was recruited using a
329	convenience sampling method. Also, the sample was recruited in the geriatric clinics of a
330	single center in Tainan City. Therefore, the representativeness of the present sample is
331	restricted and cannot be generalized to the entire Taiwan geriatric population. Future studies
332	are therefore needed to examine if the FIND-NEEDS possesses good clinimetric properties in
333	a more heterogeneous sample. Second, the sample size was not big enough to provide
334	sufficient power for advanced clinimetric testing (e.g., confirmatory factor analysis). Future
335	studies are needed to use other advanced clinimetric testing method to corroborate the present
336	study's conclusions. Third, the present study did not examine a number of clinimetric
337	

responsiveness. Therefore, it is unclear if the reproducibility and the ability to detectintervention effects of the FIND-NEEDS are satisfactory.

340

341 Conclusion

The present study showed that the newly developed instrument (i.e., FIND-NEEDS) is an 342 343 ease-for-use instrument with acceptable clinimetric properties. Apart from its brevity which saves time for healthcare practitioners in busy clinical practice, the FIND-NEEDS has the 344 strength of corresponding to the intrinsic capacity framework, DEEP-IN, and 4Ms model. By 345 considering intrinsic capacity, DEEP-IN, and 4Ms model in its development, the FIND-346 NEEDS captures precise geriatric needs using a holistic method. Healthcare providers can 347 use the FIND-NEEDS to quickly screen overall conditions among older adults. Further in-348 depth assessment in specific domains and appropriate geriatric care plan can then be 349 conducted afterwards. 350 351

352 ACKNOWLEDGMENTS

353 **Conflict of Interest**

354 The authors declare no conflicts of interest.

355 Author Contributions

356	Conception	and design	of study:	CMC, FW	/H, YWW.	, CCH, Y	'TL, CYW,	YFC, LFL,	CCW;

- 357 Acquisition of data: CMC, FWH, CCH, YTL, YCY; Analysis of data: CMC, YJC, MDG, DCL, CYL;
- 358 Drafting of article and/or critical revision: CMC, CYW, YFC, YJC, MDG, DCL, CYL; Final approval
- of manuscript: CMC, FWH, YWW, CCH, YTL, CYW, YFC, YJC, MDG, CCW, DCL, CYL.

360 Funding Information

- 361 This work was partially funded by the Health Promotion Administration, Ministry of Health and
- 362 Welfare, and the Center for National Health Research Institutes, Taiwan (NHRI-11A1-CG-CO-04-
- 363 2225-1). The content of this research may not represent the opinion of the Health Promotion
- 364 Administration, Ministry of Health and Welfare, Taiwan.

365 Sponsor's Role

- 366 The sponsor had no role in the design, methods, subject recruitment, data collections, analysis
- 367 or preparation of the paper.

368 **REFERENCES**

369	1.	Stuck AE, Siu AL, Wieland GD, Rubenstein LZ, Adams J. Comprehensive geriatric
370		assessment: a meta-analysis of controlled trials. The Lancet. 1993;342(8878):1032-
371		1036. https://doi.org/10.1016/0140-6736(93)92884-V
372	2.	Veronese N, Custodero C, Demurtas J, et al. Comprehensive geriatric assessment in
373		older people: an umbrella review of health outcomes. Age Ageing. 2022;51(5):afac104.
374	3.	Morley JE, Little MO, Berg-Weger M. Rapid geriatric assessment: a tool for primary
375		care physicians. J Am Med Dir Assoc. 2017;18(3):195-9.
376	4.	Lin KP, Chen JH, Lu FP, Wen CJ, Chan DC. The impact of early comprehensive
377		geriatric screening on the readmission rate in an acute geriatric ward: a quasi-
378		experimental study. BMC Geriatrics. 2019;19(281):1-9.
379	5.	Seematter-Bagnoud L, Büla C. Brief assessments and screening for geriatric conditions
380		in older primary care patients: a pragmatic approach. Public Health Rev. 2018;39(8):1-
381		13.
382	6.	Arai H, Ouchi Y, Yokode M, et al. Toward the realization of a better aged society:
383		messages from gerontology and geriatrics. Geriatr Gerontol Int. 2012;12(1):16-22.
384	7.	Lin CF, Lin PC, Hu SY, et al. Comprehensive geriatric assessment and clinical outcomes
385		in the older people at the emergency department. Int J Environ Res Public
386		Health. 2021;18(11):6164.

387	8.	Saliba D, Elliott M, Rubenstein LZ, et al. The Vulnerable Elders Survey: a tool for
388		identifying vulnerable older people in the community. J Am Geriatr Soc.
389		2001;49(12):1691-1699.
390	9.	Sherman FT. Functional assessment: easy-to-use screening tools speed initial office
391		workup. Geriatrics. 2001;56:36-40.
392	10.	Arai H, Satake S. English translation of the Kihon Checklist. Geriatr Gerontol Int.
393		2015;15(4):518-519.
394	11.	Kerse N, Boyd M, McLean C, Koziol-McLain J, Robb G. The BRIGHT tool. Age
395		Ageing. 2008;37(5):553-558.
396	12.	Aliberti MJR, Apolinario D, Suemoto CK, et al. Targeted geriatric assessment for fast-
397		paced healthcare settings: development, validity, and reliability. J Am Geriatr Soc.
398		2018;66(4):748-754.
399	13.	Bellera CA, Rainfray M, Mathoulin-Pélissier S, et al. Screening older cancer patients:
400		first evaluation of the G-8 geriatric screening tool. Ann Oncol. 2012;23(8):2166-2172.
401	14.	World Health Organization. Integrated care for older people (ICOPE): guidance for
402		person-centred assessment and pathways in primary care. 2019. World Health
403		Organization.
404	15.	Beard JR, Jotheeswaran AT, Cesari M, Araujo de Carvalho I. The structure and
405		predictive value of intrinsic capacity in a longitudinal study of ageing. BMJ Open.

2019;9(11):e026119. https://doi.org/10.1136/bmjopen-2018-026119 406 16. Beard JR, Si Y, Liu Z, et al. Intrinsic capacity: Validation of a new WHO concept for 407 healthy aging in a longitudinal Chinese study. J Gerontol A-Biol. 2022;77(1):94-100. 408 https://doi.org/10.1093/gerona/glab226 409 17. Gutiérrez-Robledo LM, García-Chanes RE, González-Bautista E, Rosas-Carrasco O. 410 Validation of two intrinsic capacity scales and its relationship with frailty and other 411 outcomes in Mexican community-dwelling older adults. J Nutr Health Aging. 412 2021;25(1):33-40. https://doi.org/10.1007/s12603-020-1555-5 413 18. Ma L, Chhetri JK, Zhang Y, et al. Integrated care for older people screening tool for 414 measuring intrinsic capacity: preliminary findings from ICOPE pilot in China. Front 415 Med. 2020;7:576079. https://doi.org/10.3389/fmed.2020.576079 416 19. Yu R, Amuthavalli Thiyagarajan J, Leung J, Lu Z, Kwok T, Woo J. Validation of the 417 construct of intrinsic capacity in a longitudinal Chinese Cohort. J Nutr Health Aging. 418 2021;25(6):808-815. https://doi.org/10.1007/s12603-021-1637-z 419 20. Institute for Healthcare Improvement. Age-friendly health systems: Guide to using the 420 4Ms in the care of older adults. [Dec 9, 2022]; Available from: 421 https://www.ihi.org/Engage/Initiatives/Age-Friendly-Health-422

424 21. Pfeiffer E. A short portable mental status questionnaire for the assessment of organic

423

25

Systems/Documents/IHIAgeFriendlyHealthSystems GuidetoUsing4MsCare.pdf.

425	brain deficit in elderl	y patients. J Am Geriatr Se	oc. 1975;23(10):433-441.

- 426 22. Hoyl MT, Alessi CA, Harker JO, et al. Development and testing of a five-item version of
- 427 the Geriatric Depression Scale. J Am Geriatr Soc. 1999;47(7):873-8.
- 428 23. Löwe B, Kroenke K, Gräfe K. Detecting and monitoring depression with a two-item
- 429 questionnaire (PHQ-2). J Psychosom Res. 2005;58(2),163-171.
- 430 https://doi.org/10.1016/j.jpsychores.2004.09.006
- 431 24. Yesavage JA, Brink TL, Rose TL, Lum O. Development and validation of a geriatric
- depression screening scale: A preliminary report. J Psychiatr Res. 1983;17:37-49.
- 433 https://doi.org/10.1016/0022-3956(82)90033-4
- 434 25. Yesavage JA. The use of self-rating depression scales in the elderly. In LW Poon, T
- 435 Crook, KL Davis, et al. (Eds.), Handbook for clinical memory assessment of older adults
- 436 (pp.213-217). American Psychological Association. https://doi.org/10.1037/10057-017
- 437 26. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and
- 438 frailty in elderly people. Can Med Assoc J. 2005;173(5):489-495.
- 439 https://doi.org/10.1503/cmaj.050051
- 440 27. Stratton RJ, Hackston A, Longmore D, et al. Malnutrition in hospital outpatients and
- 441 inpatients: prevalence, concurrent validity and ease of use of the 'Malnutrition Universal
- 442 Screening Tool' ('MUST') for adults. Br J Nutr. 2004;92:799-808.
- 443 28. Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Vellas B. Screening for undernutrition in

- 444 geriatric practice: developing the short-form Mini-Nutritional Assessment (MNA-SF). J
- 445 Gerontol A-Biol. 2001;56(6):M366-M372.
- 446 29. Borson S, Scanlan J, Brush M, Vitaliano P, Dokmak A. The Mini-Cog: a cognitive 'vital
- signs' measure for dementia screening in multi-lingual elderly. Int J Geriatr Psych.
- 448 2000;15(11):1021-1027.
- 449 30. Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British
- 450 Geriatrics Society. Summary of the updated American Geriatrics Society/British
- 451 Geriatrics Society clinical practice guideline for prevention of falls in older persons. J
- 452 Am Geriatr Soc. 2011;59(1):148-57.
- 453 31. Moore AA, Siu AL. Screening for common problems in ambulatory elderly: clinical
- 454 confirmation of a screening instrument. Am J Med. 1996;100(4):438-443.
- 455 https://doi.org/10.1016/S0002-9343(97)89520-4
- 456 32. Dowd S, Davidhizar R. Opening up to the Katz Index. Elderly care. 1999;11(1):9-12.
- 457 33. Fang-Wen Hu FW, Huang CC, Lo YT, et al. (in press). FIND-NEEDS: Development and
- 458 content validity of a screening tool for identifying health problems in older adults. (in
- 459 Chinese) Taiwan J Gerontol Geriatr.
- 460 34. Cronbach L. Coefficient alpha and the internal structure of tests. Psychometrika.
- 461 1951;16:297-334. doi: 10.1007/BF02310555
- 462 35. McDonald R. Test Theory: a Unified Treatment. Mahwah, NJ: Lawrence Erlbaum

463 Associates. 1999.

464	36.	Woodhouse B, Jackson PH. Lower bounds for the reliability of the total score on a test
465		composed of non-homogeneous items: II: a search procedure to locate the greatest lower
466		bound. Psychometrika. 1977;42:579-591. doi: 10.1007/BF02295980
467	37.	Trizano-Hermosilla I, Alvarado JM. Best alternatives to Cronbach's alpha reliability in
468		realistic conditions: congeneric and asymmetrical measurements. Front in Psychol.
469		2016;7:769. https://doi.org/10.3389/fpsyg.2016.00769
470	38.	Dunn TJ, Baguley T, Brunsden V. From alpha to omega: A practical solution to the
471		pervasive problem of internal consistency estimation. B J Psychol. 2014;105(3):399-
472		412. https://doi.org/10.1111/bjop.12046
473	39.	Shapiro A, ten Berge JMF. The asymptotic bias of minimum trace factor analysis, with
474		applications to the greatest lower bound to reliability. Psychometrika. 2000;65:413-425.
475		doi: 10.1007/BF02296154
476	40.	O'connor BP. SPSS and SAS programs for determining the number of components using
477		parallel analysis and Velicer's MAP test. Behav Res Meth Ins C. 2002;32:396-402.
478	41.	Dziuban CD, Shirkey EC. When is a correlation matrix appropriate for factor analysis?
479		Some decision rules. Psychol Bull. 1974;81(6):358-361. doi:10.1037/h0036316
480	42.	Finch WH. Using fit statistic differences to determine the optimal number of factors to
481		retain in an exploratory factor analysis. Educ Psychol Meas. 2020;80(2):217-241.

482 https://doi.o

https://doi.org/10.1177/0013164419865769

- 483 43. Williams B, Onsman A, Brown T. Exploratory factor analysis: A five-step guide for
- 484 novices. J Emerg Prim Health Care. 2010;8(3):1-13.
- 485 44. Mendez M. General mental status scales, rating instruments, and behavior inventories.
- 486 In: Mendez M, (Ed.). The mental status examination handbook, 1st Ed. Elsevier, 181-
- 487 199. https://doi.org/10.1016/B978-0-323-69489-6.00016-4.
- 488 45. Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: clinical, research
- and policy implications of a core geriatric concept. J Am Geriatr Soc. 2007;55(5):780-
- 490 91.
- 491 46. Saka B, Kaya O, Ozturk GB, Erten N, Karan MA. Malnutrition in the elderly and its
- relationship with other geriatric syndromes. Clin Nutr. 2010;29(6):745-748.
- 493 https://doi.org/10.1016/j.clnu.2010.04.006
- 494 47. Blomaard LC, de Groot B, Lucke JA, et al. Implementation of the acutely presenting
- 495 older patient (APOP) screening program in routine emergency department care: a
- 496 before-after study. Z Gerontol Geriatr. 2021;54:113-121.

	Mean (SD) or n (%)
Age (years)	78.3 (7.6)
Sex (male)	35 (30.7)
Educational level	
Illiterate	25 (22.3)
Primary school	42 (37.5)
Junior high	16 (14.3)
Senior high	9 (8.0)
College or above	20 (17.9)
Marital status	
Married or cohabiting	73 (65.2)
Widowed	35 (31.3)
Other	4 (3.6)
Living alone	8 (7.1)
Current cigarette smoker	3 (2.7)
Current alcohol drinker	13 (11.7)
Underlying diseases	
Hypertension	69 (62.2)
Diabetes mellitus	39 (35.1)
Hyperlipidemia	24 (21.6)
Cardiovascular accident	8 (7.2)
Cardiovascular disease	37 (33.3)
Neurological disease	13 (11.7)
Respiratory disease	10 (9.0)

Table 1. Characteristics of participants receiving screening and assessment

Liver disease	9 (8.1)
Gastrointestinal diseas	<i>26</i> (23.4)
Renal disease	18 (16.2)
Musculoskeletal diseas	se 31 (27.9)
Eye disease	41 (36.9)
Psychiatric disease	30 (27.0)
Urological disease	25 (22.5)
Cancer	16 (14.4)

Table 1. Characteristics of participants receiving screening and assessment

Table 2. Domain	properties	for FIND	-NEEDS	(N=114)
	properties	IOI I II (D		(

Domain	n (%) of having problem	Factor loading	Item-total correlation
F: Function, Falls, Frailty	94 (82.5)	0.42	0.36
I: Incontinence	38 (33.3)	0.47	0.36
N: Nutrition	36 (31.6)	0.24	0.17
D: Dementia	82 (71.9)	0.61	0.50
N: Number of medications	72 (63.2)	0.46	0.32
E: Eyes	39 (34.2)	0.26	0.18
E: Ears	35 (30.7)	0.15	0.12
D: Depression	59 (51.8)	0.60	0.46
S: Social interaction	53 (46.5)	0.37	0.25

Note.

1. For exploratory factor analysis: Kaiser-Meyer-Olkin value=0.67; Bartlett's test chi-square=110.56, df=36 (p<0.001), X2/df=3.07; root mean square residual error of approximation=0.044 (90% CI=0.00, 0.09).

2. Area Under the ROC Curve (using FIND-NEEDS binary score and CGA binary score): AUC=0.95. Accuracy=0.99; Precision=0.99; Sensitivity=1.00; Specificity=0.90.

3. FINDNEEDS domain score: Internal consistency using greatest lower bound (GLB) method=0.76 (95% CI, 0.70, 0.84); using McDonald's omega=0.64 (95% CI, 0.54, 0.73); using Cronbach's alpha=0.62 (95% CI, 0.50, 0.71).

4. FINDNEEDS item score: Internal consistency using GLB method=0.98 (95% CI, 0.99, 1.00); using McDonald's omega=0.92 (95% CI, 0.90, 0.94); using Cronbach's alpha=0.92 (95% CI=0.89, 0.94).

						CGA					
	1.	2.	3.	4.	5.	6.	7.	8.	9.	Sum score	Sum
FIND-NEEDS	(0-1) ^a	score									
1. F: Function, Falls, Frailty	0.68 ***										
2. I: Incontinence		0.63 ***									
3. N: Nutrition			0.44 ***								
4. D: Dementia				0.39 ***							
5. N: Number of medications					0.53 ***						
6. E: Eyes						0.47 ***					
7. E: Ears							0.64 ***				
8. D: Depression								0.40***			
9. S: Social interaction									0.02		
sum score (0-1)										0.94 ***	
sum score											0.69 ***

Table 3. Intercorrelations of binary scores between domains of FINDNEEDS and Comprehensive Geriatric Assessment (CGA)

***p < 0.001. ^a Phi coefficient; ^b Spearman's rank correlation coefficient.

	r (p)								
	1.	2.	3.	4.	5.	6.	7.	8.	9.
1. F: Function, Falls, Frailty									
2. I: Incontinence	0.23 *								
3. N: Nutrition	0.17	-0.04							
4. D: Dementia	0.17	0.28 **	0.17						
5. N: Number of medications	0.17	0.31 **	0.13	0.25 **					
6. E: Eyes	0.14	0.08	-0.01	0.33 ***	0.05				
7. E: Ears	0.11	0.13	0.04	0.16	-0.08	0.12			
8. D: Depression	0.25 **	0.19 *	0.26 **	0.34 ***	0.33 ***	0.14	0.07		
9. S: Social interaction	0.20 *	0.27**	0.01	0.23 *	0.13	-0.04	-0.01	0.24 **	

Table 4. Intercorrelations between FIND-NEEDS domains (N=114)

p*<0.05, *p*<0.001, ****p*<0.001.

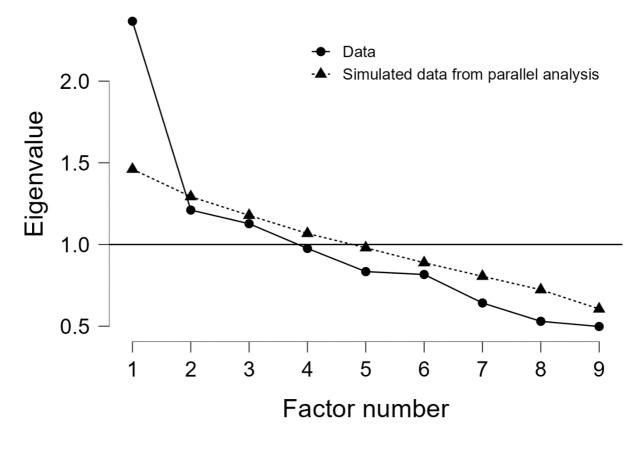


Figure 1. Parallel analysis of the FIND-NEEDS