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Abstract

Livestock guarding dogs (LGDs) are often suggested as a tool to help facilitate human-wildlife
coexistence because they are considered effective at preventing livestock losses and reducing
persecution of large carnivores. As LGDs have been observed chasing and killing wildlife, they could
be perceived as predators or competitors in the environment, yet little is known about how the use
of LGDs affects co-occurring wildlife. This research aimed to understand the ecological effects of
using LGDs by 1) determining the wildlife species chased, killed, and/or consumed by LGDs, 2)
quantifying LGD roaming behaviours by breed, sex, age, and reproductive status, and 3) quantifying

spatial and temporal responses of wildlife to LGD presence.

A detailed overview of the potential and currently reported ecological effects of using LGDs was
gathered via a literature review. Then, in 2021, LGD-wildlife interactions were investigated in the
Carpathian Mountains, Romania. Thirteen sites were visited where shepherds were interviewed,
129 scats collected, and a total of twelve sheep and 40 LGDs GPS-tracked for an average of three
weeks. Camera traps were deployed across 315 km? covering both pasture and forest. Wildlife
remains in the scats were identified via traditional methods including microscopic hair analysis.
Roaming behaviours were investigated from the GPS data by calculating pairwise distances between
each sheep and LGD and the overlap in their daily home ranges, which were estimated using the
Local Convex Hull (LoCoH) method. Habitat use by grey wolves, brown bears, red foxes, red deer,
and wild boars was investigated from the camera trap data via detection rates, single- and two-
species occupancy models, and activity patterns estimated by a nonparametric kernel density

approach.

There were 56 records in the literature widely reporting, mostly anecdotally, LGDs interacting with
wildlife. Similarly, all thirteen shepherds reported that their LGDs chased wildlife and seven reported
that their LGDs had injured or killed wildlife. However, there were low occurrences of wildlife in LGD
scats with only 9% containing wild vertebrate remains (mostly wild boar in scats collected at one
site on one day). Some roaming occurred with LGDs being found up to 4 km away from sheep, but
LGDs predominantly remained in close proximity to livestock. On average, LGDs were within 200 m
of the sheep during the day and within 100 m at night whilst sheep were enclosed in the sheepfold.
Differences in distances between LGDs and sheep, and overlap in daily home ranges, were not
predicted by LGD breed, sex, age, or reproductive status. Only red deer showed potential spatial
and temporal avoidance of LGDs with lower detection rates, lower occupancy, and a reduction in

daytime activity in areas of more frequent LGD use. Grey wolves were potentially attracted to areas



used by LGDs. However, it was not possible to disentangle the effects of LGDs alone and the effects

of LGDs, sheep, and shepherds combined.

This is the first large-scale study assessing multiple elements of LGD behaviours and wildlife
responses. Overall, there was little empirical evidence to suggest that LGDs have substantial
detrimental effects on co-occurring wildlife in the Romanian Carpathian Mountains. These results
help to establish that LGDs, both purebreds and mixed-breeds, are a suitable candidate tool for
reducing the need for lethal control of wild predators and possibly helping to facilitate human-

wildlife coexistence.
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Chapter 1: General introduction

With the increasing expansion of humans into rural areas, and in some cases the recovery and
expansion of wildlife into human-dominated landscapes (Chapron et al. 2014), there is an ever-
increasing risk of humans and wildlife encountering one another. As a result, conflicts over or about
wildlife (human-wildlife conflicts) are escalating around the world (Penteriani et al. 2016; Gross et
al. 2021; Bombieri et al. 2023). Though several definitions exist, human-wildlife conflict generally
refers to negative interactions between people and wildlife that results in harm to both parties.
Conflicts typically arise when wildlife pose a threat, whether real or perceived, to human life or
livelihoods (Woodroffe et al. 2005a; Sillero-Zubiri et al. 2007; Torres et al. 2018). The risk to
livelihoods typically stems from wildlife-inflicted damages such as crop-raiding and livestock
predation, or from competition for natural resources, such as between people harvesting fish and
wild piscivores (Peterson et al. 2010; Cook et al. 2022). The risk to human life involves the likes of
physical attacks by predators, zoonoses, and wildlife collisions with vehicles; the latter clearly
presenting a direct negative outcome for both the people and wildlife involved (Grilo et al. 2020;
Moore et al. 2023). Thus, human-wildlife conflicts arise under a myriad of contexts and involve a
huge variety of species from across the globe (Inskip and Zimmerman 2009; Torres et al. 2018),

though conflicts are more widely understood in terrestrial than marine systems (Guerra 2019).

Whilst the cost to wildlife of human-wildlife conflict is often direct mortality from the interaction or
subsequent persecution from humans, the costs to humans include financial, emotional, and
opportunity costs (Dickman 2010; Barua et al. 2013). Financial costs are as named — economic costs
such as a loss of income or a monetary expense incurred — whereas emotional and opportunity
costs are more nuanced and less well understood (Manoa et al. 2021). Emotional costs include the
sadness, stress, anxiety, and/or fear experienced by people due to the likes of livestock or pet loss,
or when living in fear of attacks from large predatory wildlife (Barua et al. 2013; Stancioiu et al.
2019). Opportunity costs refer to missed opportunities that arise as a result of human-wildlife
conflicts, for example when people need to spend more time protecting their livestock or crops from
wildlife at the expense of other activities (Barua et al. 2013). Though costs are felt globally, there is
evidence of relatively greater costs and impacts associated with human-wildlife conflicts in
developing economies (Braczkowski et al. 2023). To reduce costs incurred as a result of wildlife
activities, humans have historically responded with lethal management of wildlife (Treves and
Naughton-Treves 2005; Woodroffe et al. 2005b; Allen et al. 2023), though a suite of nonlethal
management tools are constantly being developed and employed to help facilitate coexistence with

wildlife (Sillero-Zubiri et al. 2007; Dickman 2010).
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1.1 Lethal management of wildlife

Lethal management of wildlife typically takes one of three forms: population control — culling of a
species to reduce or prevent conflicts; problem animal control — killing only the individual(s)
responsible for conflicts (typically conducted at the government or institution level); or retaliatory
killing — killing of a species in response to costs incurred, often in an indiscriminate way that does
not target the individual animals responsible (typically conducted by members of an affected
community rather than by government or institutions) (Dickman 2010). Whether lethal
management of wildlife works at reducing conflicts is debated (Treves and Naughton-Treves 2005).
In some cases, lethal removal is perceived as more effective, and cheaper, than non-lethal methods
(Thorn et al. 2015; Drouilly et al. 2023) and its implementation, regardless of effectiveness, can help
reverse disempowerment felt by local people living alongside wildlife and help increase overall
tolerance towards the species in question (Maji¢ et al. 2011; Hartel et al. 2019; Anderson 2021).
Lethal management can also be particularly successful at reducing conflicts when damages are
proportional to wildlife abundance and populations are sufficiently reduced (Herfindal et al. 2005;
Bradley et al. 2015), or when specifically targeting particular ‘problem animals’ (Swan et al. 2017).
Using lethal methods has also been theorised to help create a ‘landscape of fear’ that keeps wildlife
away from particular areas, thus providing a long-term effect that is reinforced by the real risk of

mortality imposed in the landscape from humans (Cromsigt et al. 2013; Meuret et al. 2021).

On the contrary, lethal management of wildlife is often expensive and not necessarily successful at
reducing conflicts (McManus et al. 2015). In some areas, wildlife densities are not proportional to
the damages caused (Fernandez-Gil et al. 2016; Dalerum et al. 2020). In this case, reducing the
numbers of the species involved in the conflict would not affect the level of damage or risk of
recurrence of conflicts (Obbard et al. 2014; Santiago-Avila et al. 2018). Areas from which wildlife
are removed can also simply be recolonised by neighbouring individuals leading to a continuation
of, or even increase in, conflicts. For example, lethal management of cougars (Puma concolor) in the
USA (Peebles et al. 2013) and grey wolves (Canis lupus) in Spain (Fernandez-Gil et al. 2016) has been
associated with an increase in livestock predation the following year, possibly through immigration
and changes to the social structure of populations (Peebles et al. 2013; Borg et al. 2015). Similarly,
compensatory demographic processes, such as increased reproduction, can even counter lethal
management with increasing rather than decreasing populations (e.g. Minnie et al. 2016). New
conflicts, or exacerbation of existing conflicts, can also arise if the killing of one species alters the
behaviour or abundance of another, for example with mesopredator release (Prugh et al. 2009). If
these mesopredators were also involved in human-wildlife conflicts, then the opposite of the

desired effect might be observed. Lethal removal of animals can also shift the conflict elsewhere,
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meaning any local benefits are offset by detrimental effects for people living and working in the

surrounding areas (Santiago-Avila et al. 2018).

Lethal wildlife management also has welfare implications (Nunny 2020) and other negative, or
unintended, impacts on wildlife and ecosystems (Woodroffe et al. 2005b). First and foremost is that
human persecution of wildlife can be substantial and is responsible for species population declines
and even extinctions worldwide (Woodroffe et al. 2005b; Inskip and Zimmerman 2009). For
example, large carnivores are often the taxa responsible for attacks on humans and livestock and
have been heavily persecuted in response (Inskip and Zimmerman 2009; Ripple et al. 2014). Due to
their low population densities, low reproductive rates, and the need for large home ranges, large
carnivores are particularly vulnerable to persecution and many are now classified as Vulnerable,
Endangered, or Critically Endangered on the IUCN Red List (Ripple et al. 2014). Dramatic declines in
large predator populations caused by lethal control has major implications for ecosystem
functioning (Inskip and Zimmerman 2009; Colman et al. 2014; Thorn et al. 2015; Kuijper et al. 2016).
Furthermore, it is not just target species that are killed as many non-target species can also be
substantially impacted by indiscriminate forms of lethal control such as poisoning (Glen et al. 2007,
Ogada 2014). Consequently, lethal management is now illegal, heavily criticised, and socially
unacceptable in many regions (Treves et al. 2006; Allen et al. 2023). Though the killing of wildlife
can serve many necessary ecological, economic, and social purposes (Linnell et al. 2017; Allen et al.
2023), it is critical to find effective, humane solutions that help facilitate human-wildlife coexistence

(Sillero-Zubiri and Switzer 2001; Sillero-Zubiri et al. 2007).

1.2 Non-lethal management of wildlife

There are a plethora of non-lethal methods that aim to manage wildlife populations and mitigate
conflicts without intentionally harming wildlife (Shivik 2004; Breitenmoser et al. 2005; Dickman
2010). First, modification of human behaviours can reduce conflicts, such as reducing risky
behaviours, reducing attractants that draw wildlife into human-populated areas, and adopting
protective measures such as improving livestock husbandry techniques (Breitenmoser et al. 2005;
Carter and Linnell 2016; Penteriani et al. 2017). There are also many methods that rely on modifying
the behaviour of wildlife, such as animal conditioning interventions (Snijders et al. 2019) and
deterring animals from an area with the use of visual, auditory, or chemical repellents (Shivik 2006;
Schakner and Blumstein 2013). Wildlife can also be deterred or excluded from areas with the use of
human or animal guardians (Meadows and Knowlton 2000; Rigg 2001), or through physical barriers
such as fencing and netting (Hayward and Kerley 2009). Instead of excluding wildlife from areas,

they can also be attracted elsewhere with the use of diversionary and supplementary feeding
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(Kubasiewicz et al. 2016), or, often only used in extreme cases, problem animals can be translocated
to more suitable habitat (Bradley et al. 2005; Langridge et al. 2021). Finally, there are also non-lethal
methods to reduce wildlife populations such as surgical sterilisation and the use of chemical

contraceptives (Bromley and Gese 2001; Massei and Cowan 2014; Denicola and Denicola 2021).

Overall, there is little robust empirical evidence on the effectiveness of many non-lethal methods
(Eklund et al. 2017; van Eeden et al. 2018b). Nonetheless, some methods certainly have been shown
to be effective at reducing wildlife-inflicted damages (at least in the short-term) and more so than
lethal management methods (Treves et al. 2016). For example, chemical and visual repellents
involving chilli peppers and flashing lights reduce crop-raiding by elephants (Adams et al. 2021;
Montgomery et al. 2022). However, results from testing the different methods are often mixed and
depend on the context and target species. For example, one predator-deterrent method being
trialled is the use of Foxlights® (Bex