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Abstract—Millimeter wave (mmWave) with abundant spec-
trum resources can realize high-rate communications in ve-
hicular networks. However, the mobility of vehicles and the
blocking effect of mmWave propagation bring new challenges
to communication security. Cooperative communication is envi-
sioned as a promising physical layer security (PLS) approach
to enhance the secrecy performance, but it will induce extra
energy consumption of vehicles. This paper proposes a deep
recurrent reinforcement learning (DRRL)-based energy-efficient
cooperative secure transmission scheme in mmWave vehicular
networks, where eavesdropping vehicles attempt to intercept
the multi-user downlink communications. We jointly design the
mmWave beam allocation, the cooperative nodes selection, and
the transmit power of vehicles. Specifically, the mmWave base
station selects idle vehicles as relays to overcome the severe
blocking attenuation of legitimate transmissions and controls
the transmit power to reduce energy consumption. Moreover,
to ensure secure transmission, a cooperative vehicle is selected to
transmit jamming signals to the eavesdropping vehicles while the
legitimate users are not disturbed. We conduct comprehensive
interference analysis for both direct transmission and relay-
aided transmission, and derive the theoretical expressions for
the secrecy capacity. We then design the Dueling Double Deep
Recurrent Q-Network (D3RQN) learning algorithm to maximize
the total secrecy capacity subject to the energy consumption
constraint. We set the energy consumption punishment mech-
anism to avoid relay vehicles consuming too much power for
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forwarding signals. We demonstrate that the proposed scheme
can rapidly adapt to the highly dynamic vehicular networks
and effectively improve secrecy performance while reducing the
energy consumption of vehicles.

Index Terms—MmWave vehicular communication, energy con-
sumption, cooperative secure transmission, physical layer secu-
rity, deep recurrent reinforcement learning.

I. INTRODUCTION

Recently, the increasing demand for high-speed and low-
latency wireless transmission in vehicular networks has stim-
ulated the development of multi-Gbps links to ensure the
quality of service [1]. Millimeter wave (mmWave) systems
with rich spectrum resources have played a crucial role in
meeting this demand and pushing vehicular communication
to a new stage [2]–[5]. Although mmWave communication
has high capacity and narrow beams, due to the openness of
wireless channels, mmWave communication still faces serious
security vulnerabilities. With the emergence of many vehicular
applications, such as autonomous driving and sensor fusion,
information security, which may endanger human life, has
become a key issue in vehicular networks.

Considering the delay-sensitive nature of vehicle communi-
cation, the low-cost physical layer security (PLS) technology
effectively improves secrecy performance by utilizing the
characteristics of wireless channels [6]–[8]. Leveraging the
PLS method, mmWave base stations or vehicles can securely
transmit mmWave signals using beamforming or wiretap cod-
ing schemes [9]–[11]. In addition, cooperative communication
is considered as a promising method to improve PLS perfor-
mance, where idle vehicles are used to relay legitimate signals
or send interfering signals to deceive eavesdroppers [12], [13].
On the one hand, relay transmission increases the strength
of the transmitted signal by overcoming the high path loss
of mmWave propagation to the target vehicles. It can also
enable the signal to get around the obstacles or wiretap
vehicles, thereby mitigating the blocking effect of legitimate
transmission and increasing the secrecy capacity of the system.
On the other hand, the base station can arrange an appropri-
ate cooperative vehicle to transmit a jamming signal to the
eavesdropper, reducing the capacity of the wiretap channel
significantly.

Therefore, cooperative secure communications in vehicu-
lar networks have attracted new research interest [14]–[17].
The authors in [14] analyze the performance of full-duplex
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amplify and forward (AF) relay in vehicle-to-vehicle (V2V)
communications. The authors in [15] investigate the secrecy
performance of relay-aided vehicle-to-everything (V2X) com-
munications. The impact of relay positions and channel condi-
tions is analyzed. In [16], the authors propose a relay selection
and cooperative jamming strategy, which outperforms the
conventional schemes under the same total power constraint.
In [17], the unmanned aerial vehicle is exploited as a relay
to improve the security of the satellite-to-vehicle link and
simultaneously serves as a jammer by generating artificial
noise to interfere with the eavesdropper.

The demand for low-carbon and green transportation sys-
tems has recently become increasingly significant. Neverthe-
less, the cooperative secure communications involve many
helper vehicles supporting the PLS scheme, which increases
the energy consumption of the cooperative vehicles. There-
fore, the energy efficiency of the cooperative secure trans-
mission becomes a key concern in vehicular networks. In
practical communication, vehicles are unwilling to overuse
high-power transmission signals for energy-saving reasons.
To reduce energy consumption, using vehicles for coopera-
tive transmission needs to consider transmit power control.
Many previous works have considered power control of relay
transmission [18]–[21]. The authors in [18] investigate relay
selection for heterogeneous transmit powers in vehicular ad-
hoc networks (VANETs). The authors in [19] formulate a
problem for the maximization of the achievable rate, where
the unmanned aerial vehicle (UAV) position, analog beam-
forming, and power control are jointly optimized. The au-
thors in [20] consider relay power control in device-to-device
(D2D)-enabled vehicular communications.

Although the effectiveness of the PLS technique has been
demonstrated in vehicular networks, most of the literature
focuses on traditional microwave communications. Few secure
transmission schemes for the mmWave vehicular networks
are currently under development. Coupling mmWave and
vehicular transmissions brings new challenges to security [22].
In [23], the authors propose two PLS schemes for mmWave
vehicular networks, namely antenna subset modulation with a
single radio frequency (RF) chain and artificial noise injection
with multiple RF chains. In [24], the authors propose a
blockage-and-power-based jammer selection strategy to ad-
dress potential security pitfalls in a mmWave cellular V2X
network. Preliminary analysis of the association probability
based on random geometric methods is conducted, leading
to the derivation of theoretical expressions for the secrecy
outage probability and secrecy throughput. The authors in [25]
investigate the mmWave PLS of a cellular Internet of Vehicles
network composed of many base stations and V2X nodes.
Two uplink association schemes are proposed, and their se-
crecy performance is analyzed. Both schemes increase the
secrecy rate of the system. However, the above works do not
investigate the energy consumption of the network. Besides,
they do not consider the mobility of the vehicles. In practical
vehicular communications, the random blockage of mmWave
propagation and the high mobility of the vehicles result in fast-
changing channels, which requires the base station to make
quick decisions on the secure transmission strategy.

Researchers have therefore turned their attention to deep
reinforcement learning (DRL), which uses target-related re-
ward functions to optimize goals by interacting with the
environment [26], [27]. DRL has found its applications in
the domain of vehicular communications. The authors in [28]
explore optimal collision avoidance algorithm using DRL
and propose a safety evaluation map (SEM) to describe the
evaluation results. In [29], resource allocation is viewed as a
non-cooperative game with each D2D pair learning strategies
from local information, using the Double Deep Q-Network
(DDQN) algorithm. Simultaneously, the Dueling Double Deep
Recurrent Q-Network (D3RQN) multi-agent algorithm, a com-
bination of D3QN and Long Short-Term Memory (LSTM)
networks, has been investigated [30], [31]. In [30], the authors
propose a channel state information (CSI)-independent decen-
tralized algorithm to optimize the throughput of the vehicle-
to-infrastructure (V2I) link while ensuring the latency and
reliability of the V2V link. In [31], the authors consider task
scheduling in serverless edge computing networks, modeling
the process as a partially observable stochastic game (POSG),
where nodes schedule tasks and allocate resources based on
local observations.

Despite the lack of considering the security issue, the fol-
lowing works demonstrate the capability of DRL in designing
the beam management strategy and cooperative communica-
tion schemes. The authors in [32] use clustering and DRL
algorithm for resource block allocation and beam management,
which performs well in latency and reliability. In [33], the
authors propose a DRL-based multi-hop mmWave communi-
cations using reconfigurable intelligent surfaces (RIS) as relay
nodes. This aims to overcome the severe propagation atten-
uation and improve the coverage range. The authors in [34]
propose a hierarchical reinforcement learning algorithm based
on the DRL algorithm to study the problem of minimizing the
outage probability in a two-hop cooperative relay network.
In [35], the authors jointly select the relay and optimize the
reflection coefficient of the cooperative RIS based on DRL to
improve communication quality. In [36], the authors propose
a DRL-based beam allocation scheme in relay-aided multi-
user mmWave vehicular networks to maximize the total system
capacity.

Overall, the significance of energy consumption and the
importance of cooperative communications in safeguarding ve-
hicular networks has been illustrated in the existing literature.
However, as far as we know, no previous work has studied
the energy-efficient cooperative secure communications for
mmWave vehicular communications. It is necessary to study
this issue from the perspective of efficient decision-making. In
this paper, by using idle vehicles as relay and jamming nodes,
we aim to resist the blocking effect of mmWave, suppress the
channel capacity of eavesdropping vehicle, reduce the energy
consumption of vehicles and enhance secrecy performance of
target vehicles. Our main contributions are summarized as
follows.

1) We propose a deep recurrent reinforcement learning
(DRRL)-based energy-efficient cooperative secure com-
munication scheme for multi-user mmWave vehicular
networks. In this scheme, blocked legitimate links are
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assisted by relay vehicles, and the eavesdropping link is
deteriorated by jamming vehicles. We derive the theo-
retical expressions of the secrecy capacity for direct and
relay-aided transmission through comprehensive interfer-
ence analysis.

2) We establish the joint optimization problem of beam
allocation, relay and jammer selection, and the transmit
power design to maximize the system secrecy capacity
with the energy consumption constraint. Considering the
high dynamic characteristics of the vehicle network,
we design the D3RQN algorithm for decision-making.
We incorporate one-dimensional convolution and LSTM
network into the D3QN architecture to extract features
for large-dimensional states and memorize the temporal
information between vehicles, respectively.

3) We utilize the approximate regretted reward (ARR) to
resist the reward fluctuation in the mobile vehicular
scenario, and design the energy consumption punishment
mechanism to avoid relay vehicles consuming too much
power for forwarding signals. We demonstrate that with
the proposed network structure, the agent can formulate
intelligent policies that improve the secrecy performance
while reducing vehicle energy consumption.

II. SYSTEM MODEL

A. MmWave Communication Model

The cooperative secure communication scenario in
mmWave vehicular networks investigated in this paper is
shown in Fig. 1. It is assumed that the vehicles are running
on a bidirectional multi-lane road, and they are divided
into four categories: target vehicles (green vehicles), relay
vehicles (red vehicles), jammer vehicles (blue vehicles),
and eavesdropping vehicles (black vehicles). In each service
cycle, the base station simultaneously transmits a set of
orthogonal beams B = {bm,m = 1, 2, · · · , NB} to NT

users, where NB is the number of orthogonal beams. To
avoid co-beam interference, each beam should only serve
one vehicle. Since the vehicles are moving on the road,
we need to select beams from B to serve the vehicles
dynamically and acquire high secrecy performance. Due to
the characteristics of the mmWave hardware, the number of
mmWave RF chains is limited. The number of the selected
beams N ′

B should be at most the number of RF chains
NRF , i.e., N ′

B ≤ NRF . The set of the selected beams is
denoted by B′ = {bm′ ,m′ = 1, 2, · · · , N ′

B}. There are
obstacles with random positions on the road, which are used
to simulate the blocking effect of buildings and green plants
on communications in a practical environment.

In our communication scenario, a potential eavesdropping
vehicle intercepts one of the target vehicles in each service
period. We assume that the location of the eavesdropping
vehicle is available at the base station. The base station selects
the transmission beam for each vehicle in turn according to the
information of NT target vehicles. If the direct transmission
link is blocked or the main-lobe beam has eavesdropped, the
base station will choose a friendly vehicle near the target
vehicle as the relay to forward signals. If the vehicle is chosen
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Fig. 1: Network model of the cooperative secure mmWave
vehicular communication.

as a relay node to forward signals, it can select transmit power
from NP transmit power levels. The base station needs to
make an appropriate power selection decision based on global
information to reduce energy consumption while ensuring the
total secrecy capacity. This strategy aims to reduce the power
consumption of vehicles and thus promote the development of
low-carbon and green transportation systems. In addition, if
the channel for direct transmission is good enough, the signal
is transmitted directly from the base station. We focus on the
power control for vehicles in this paper, and the transmit power
of the base station is fixed. At the same time, the base station
chooses a cooperative vehicle to transmit jamming signals
against the eavesdropping vehicle and deteriorate the signal
reception of the wiretap channel.

In this paper, in order to simulate the real dynamic traffic
pattern, we assume that the vehicle arrival obeys Poisson
distribution [37], and the time interval of vehicle arrival ∆t
obeys the negative exponential distribution. The probability
density function can be described as

f(∆t) =

{
λe−λ∆t, if ∆t ≥ 0,

0, Otherwise,
(1)

where λ denotes the average arrival rate of vehicles, and the
road conditions with different traffic patterns can be simulated
by adjusting λ.

B. Channel Model

This subsection presents the channel model and the corre-
sponding parameters adopted in this paper, including antenna
gain, blocking factor, path loss and channel gain of the base
station and vehicles.

1) Antenna gain: The base station uses a designed orthog-
onal beam set to provide downlink data services for multiple
users in the communication cycle, and the different beams
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TABLE I: Notations and Explanations

Notation Explanation
NT Number of target vehicles
NR Number of relay vehicles
NJ Number of potential jammer vehicles
NB Number of orthogonal beams
NP Number of transmit power levels
λ Vehicle arrival rate
GB Antenna gain of base station
GV Antenna gain of vehicle
fc Carrier frequency
αk Obstacle factor in downlink
αt,k Temporary obstacle factor
αp,k Permanent obstacle factor
Lt,r Path loss
gt,r Channel gain
η Energy consumption of relay vehicles
Cr Secrecy capacity of relay vehicles
Er Total energy consumption for relay transmission
Ck Channel capacity of the kth target vehicle
Ce,k Channel capacity of the eavesdropping vehicle
Cs,k Secrecy capacity of the kth target vehicle
ϑ Beam allocation indicator
ρ Relay selection indicator
φ Jammer selection indicator
ι Transmit power control indicator

are spaced to cover the entire communication range of the
base station. We leverage the widely used sector-based antenna
model to approximate the mmWave transmission beam [38].
Then the antenna gain of the base station can be expressed as

GB(θ) =

{
MB , |θ| < θB

2 ,

mB , Otherwise,
(2)

where θB is the beam width of the main lobe, MB and
mB are the main-lobe and side-lobe gain of the base station,
respectively. Similarly, the antenna gain of the vehicles can be
expressed as

GV (θ) =

{
MV , |θ| < θV

2 ,

mV , Otherwise,
(3)

where θV is the beam width of the main-lobe, MV and mV

are main-lobe and side-lobe gain of vehicles, respectively.
2) Obstacle factor: This paper classifies the obstacles on

the road into two kinds, namely permanent obstacles and
temporary obstacles. The former is used to describe obstacles
on the road that cannot be moved and have always existed,
such as buildings, plants, etc. The latter is used to describe
the obstacles that temporarily exist during transmission, such
as other vehicles on the road. Then the total obstacle factor
from the base station to the kth vehicle can be expressed as

αk = αp,kαt,k, (4)

where αp,k is the permanent obstacle factor, and αt,k is the
temporary obstacle factor.

3) Channel gain: The path loss Lt,r from the transmitter
to the receiver is given by

Lt,r = µ1 log (fc) + µ2 log (de) + µ3, (5)

where fc is the carrier frequency of the signal, and de is
the Euclidean distance from the transmitter to the receiver.

µ1, µ2, and µ3 are the parameters chosen according to the
communication scenario. Then the channel gain from the
transmitter to the receiver can be given by

gt,r = αkLt,r. (6)

As a result, the channel gains of several transmission links
used in this paper can be obtained, which are the channel gain
from the base station to the ith relay vehicle gB,i, the channel
gain from the base station to the kth target vehicle gB,k, the
channel gain from the base station to the eavesdropping vehicle
gB,e, the channel gain from the ith relay vehicle to the kth
target vehicle gi,k, the channel gain from the ith relay vehicle
to the eavesdropping vehicle gi,e, and the channel gain from
the jammer vehicle to the eavesdropping vehicle gj,e.

III. TRANSMISSION STRATEGY

In the transmission strategy of this paper, the base station
globally selects the beam to serve each target vehicle based
on the channel information of NT target users. There are
NT,d beams selected for direct transmission (from the base
station to the target vehicle), and NT,r beams selected for relay
transmission (from the base station to the relay vehicle), with
NT,d ≤ NT and NT,r ≤ NT . In order to reduce the hardware
overhead and computational complexity of the vehicle, the
relay vehicle adopts the AF relay method to forward the
signals, and βi,k is the amplification gain of the ith relay
vehicle to the kth target vehicle. The whole transmission cycle
is divided into two stages. The details of the two stages can be
seen in Fig. 2. The direct transmission is from the base station
to the target vehicle in the first and second stages. The relay
transmission is from the base station to the relay vehicle in
the first stage and from the relay vehicle to the target vehicle
in the second stage.

Fig. 2: Description of a transmission cycle.

In a multi-user service scenario, each user receives trans-
mission interference from other users. At the same time, all
users are affected by the jamming signals transmitted from
the jammer vehicle. Since the direct and relay transmissions
coexist in our transmission scenario, the interference analysis
is complicated. We will discuss this in detail in the following
subsections.

A. Jamming Strategy

During the communication service, friendly vehicles on the
road near the eavesdropping vehicle that is not involved in the
signal transmission are considered by the base station as poten-
tial cooperative vehicles capable of emitting jamming signals.
Before each transmission cycle, the base station decides that
one of them is selected as the jammer vehicle. Throughout the
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transmission cycle, the jammer vehicle directs its beam at the
eavesdropping vehicle to reduce the capacity of the wiretap
channel. To obtain an excellent jamming effect, the decision
of the base station needs to keep the eavesdropping vehicle in
the main-lobe beam range of the jammer vehicle and avoid the
main-lobe beam of the jammer vehicle to cover the vehicles
that are participating in the legitimate transmission.

B. Direct Transmission

The interference to the direct transmission is divided into
two parts. In the first stage, the signal transmitted from the
base station to the target vehicle will be interfered with by the
signal from other downlinks, including the side-lobe signal
from the base station to other direct transmission links and
the side-lobe signal transmitted by the base station to the
relay vehicles. Besides, the jamming signal transmitted from
the jammer vehicle to the eavesdropping vehicle also causes
some interference to the target vehicles. Thus, the first-stage
interference of the direct transmission link from the base
station to the kth target vehicle can be expressed as

I1d,k =

NT∑
k′=1,k′ ̸=k

PB,k′gB,kmBMV + PJgj,kGV,jGV,k, (7)

where PB,k′ denotes the transmit power of the base station to
the k′th target vehicle, PJ is the transmit power of the jammer
vehicle, GV,j is the antenna gain of the cooperative jammer
vehicle, and GV,k is the antenna gain of the kth target vehicle.

In the second stage, the direct transmission of the base
station is interfered with by the side-lobe signals of other
direct transmission links, the cooperative transmission from
the relay vehicles to the target vehicles, and the jamming
signals transmitted by the jammer vehicle. Thus, the second-
stage interference of the direct transmission link from the base
station to the kth target vehicle can be expressed as

I2d,k =

NT,d∑
k′=1,k′ ̸=k

PB,k′gB,kmBMV

+

NR∑
i=1

ρi,kPR,igi,kGV,iGV,k + PJgj,kGV,jGV,k,

(8)

where NT,d indicates the number of vehicles selected for direct
transmission, NR is the number of selected relay vehicles,
and GV,i denotes the antenna gain of the ith relay vehicle.
PR,i denotes the transmit power of the the ith relay vehicle,
and PR,i ∈ {P1, P2, · · · , PNP

} with NP representing the
number of the transmit power levels. Thus, the signal-to-
interference-plus-noise ratio (SINR) of the two stages for the
direct transmission can be expressed as

χ1
d,k =

PB,kgB,kMBMV

I1d,k + σ2
,

χ2
d,k =

PB,kgB,kMBMV

I2d,k + σ2
,

(9)

where σ2 denotes the noise power. For the channel capacity
of direct transmission, this paper takes the average of the two

stage capacities. Then the channel capacity of the kth direct
transmission target can be derived by

Cd,k =
1

2
W [log

(
1 + χ1

d,k

)
+ log

(
1 + χ2

d,k

)
], (10)

where W is the bandwidth.

C. Relay Transmission

We consider a relay transmission scenario, where the base
station sends signals to the ith relay vehicle in the first stage
and the ith relay vehicle sends signals to the kth target
vehicle in the second stage. In the first stage, both the target
vehicle and the relay vehicle aim the main-lobe beam at the
base station to receive the signals transmitted by the base
station and suffer interference from the signals transmitted
by other downlinks as well as interference from the jamming
signals transmitted by the jammer vehicle to the eavesdropping
vehicle. Thus, the interference received by the kth target
vehicle and the ith relay vehicle in the first stage can be
expressed respectively as

I1r,k =

NT∑
k′=1,k′ ̸=k

PB,k′gB,kGB,k′MV + PJgj,kGV,jGV,k,

I1r,i =

NT∑
k′=1,k′ ̸=k

PB,k′gB,imBMV + PJgj,kGV,jGV,i,

(11)
where GB,k′ is the antenna gain from the base station to the
k′th target vehicle. Then the SINR of the kth target vehicle in
the first stage can be obtained by

χ1
r,k =

PB,kgB,kmBMV

I1r,k + σ2
. (12)

In the second stage, the kth target vehicle will turn the main-
lobe beam towards the ith relay vehicle for better reception.
The interference to the target vehicle consists of four parts,
i.e., the downlink signals from the base station to all the
selected direct transmission target vehicles, the signals from
other relay vehicles to other target vehicles, the amplified and
forwarded interference received by the ith relay vehicle in the
first stage, and the jamming signals from the jammer vehicle
to the eavesdropping vehicle. Thus, the interference received
by the kth target vehicle in the second stage can be derived
by

I2r,k =

NT,d∑
k′=1,k′ ̸=k

PB,k′gB,kGB,k′mV

+

NR∑
i=1

ρi,kPR,igi,kGV,iGV,k

+ I1r,iβi,kgi,kMVMV + PJgj,kGV,jGV,k.

(13)

Thus, the SINR of the kth target vehicle in the second stage
can be obtained by

χ2
r,k =

PB,kgB,iMBMV βi,kgi,kMVMV

I2r,k + (βi,kgi,kMVMV σ2 + σ2)
. (14)
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Then the channel capacity of the kth relay transmission
target can be derived by

Cr,k =
1

2
W [log

(
1 + χ1

r,k

)
+ log

(
1 + χ2

r,k

)
]. (15)

Finally, combining the direct transmission and the relay
transmission, we can obtain the channel capacity of the kth
target vehicle as

Ck =

(
1−

NR∑
i=1

ρi,k

)
Cd,k +

NR∑
i=1

ρi,kCr,k, (16)

where
∑NR

i=1 ρi,k = 1 denotes that the kth target vehicle selects
the relay transmission mode, while

∑NR

i=1 ρi,k = 0 denotes that
the kth target vehicle selects the direct transmission mode.

D. Eavesdropping Strategy

This paper assumes that the eavesdropper is a random vehi-
cle on the road. Before a transmission cycle, the eavesdropping
vehicle already knows the status and transmission mode of ve-
hicles through the control information transmitted by vehicles
to the base station. Assuming that the eavesdropping vehicle
only eavesdrops on one transmission signal in a transmission
cycle, then the eavesdropping process will have three cases.

• Eavesdropping on the downlink from the base station to
the target vehicle or the relay vehicle in the first stage.
In this case, the eavesdropping vehicle adjusts its main-
lobe beam to the base station to acquire a better quality
of the received secrecy signal. On the one hand, If the
eavesdropping vehicle and the wiretapped target vehicle
are in the same beam, the eavesdropping vehicle will get
a similar channel gain with the target vehicle. Thus the
secrecy capacity of the communication will become very
low. In this situation, leveraging the jamming strategy is
essential. On the other hand, if the eavesdropping vehicle
intercepts the vehicle in the relay transmission mode, the
base station will try to avoid using the beam where the
eavesdropping vehicle is located for relay transmission
after training. At this time, the eavesdropping vehicle can
only obtain the side-lobe beam gain of the base station.

• Eavesdropping on the direct transmission from the base
station to the target vehicle in the second stage. In this
case, the eavesdropping vehicle also adjusts its main-lobe
beam to the base station. Although it still intercepts the
downlink transmission, the interference is totally different
from the first stage. It is because the downlink and the
relay forwarding transmission coexist in the network.

• Eavesdropping on the relay transmission from the relay
vehicle to the target vehicle in the second stage. In
this case, the eavesdropping vehicle adjusts its main-
lobe beam to the wiretapped relay vehicle in order to
eavesdrop on the amplified and forwarded signal.

Then we will analyze the interference and channel capacity
of the eavesdropping vehicle comprehensively in the above
three cases.

1) Eavesdropping on downlink in the first stage: Assuming
that the eavesdropping vehicle intercepts the kth target vehicle
in the direct transmission mode, the interference received
by the eavesdropping vehicle consists of two parts, which
are the interference caused by the downlink transmission of
other users and the jamming signal transmitted by the jammer
vehicle. Then the interference received by the eavesdropping
vehicle in the first stage can be expressed as

Id,1e,k =

NT,d∑
k′=1,k′ ̸=k

PB,k′gB,eGB,k′GV,e

+

NR∑
i′=1

PB,i′gB,eGB,i′GV,e + PJgj,eMVGV,e,

(17)

where GV,e is the antenna gain of the eavesdropping vehicle.
In the case that the eavesdropping vehicle chooses to intercept
the target vehicle in the relay transmission mode. We assume
that the ith relay vehicle forward signals to the kth target
vehicle. Then if the eavesdropping vehicle intercepts the
transmission to the ith relay vehicle in the first stage, the
interference can be expressed as

Ir,1e,k =

NT,d∑
k′=1

PB,k′gB,eGB,k′GV,e,

+

NR∑
i′=1,i′ ̸=i

PB,i′gB,eGB,i′GV,e + PJgj,eMVGV,e.

(18)
Then the SINRs of the eavesdropping vehicle in the first

stage when it intercepts the kth target vehicle, and the ith
relay vehicle can be respectively formulated as

χd,1
e,k =

PB,kgB,eGBMV

Id,1e,k + σ2
,

χr,1
e,k =

PB,kgB,eGBMV

Ir,1e,k + σ2
.

(19)

2) Eavesdropping on direct transmission in the second
stage: The interference received by the eavesdropping vehicle
in the second stage when intercepting the direct transmission
has three components, namely the downlink signal of other
direct transmissions, the forwarded signal of relay vehicles,
and the jamming signal. Then the interference of the eaves-
dropping vehicle can be expressed as

Id,2e,k =

NT,d∑
k′=1,k′ ̸=k

PB,k′gB,eGB,k′GV,e

+

NR∑
i=1

PR,igi,eGV,iGV,e

+ PJgj,eMVGV,e.

(20)

Then the SINR of the eavesdropping vehicle in the second
stage when it intercepts the kth target vehicle can be formu-
lated as

χd,2
e,k =

PB,kgB,eGBMV

Id,2e,k + σ2
. (21)
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Therefore, the channel capacity of the eavesdropping ve-
hicle when intercepting the kth target vehicle in the direct
transmission mode can be obtained by

Cd
e,k =

1

2
W [log

(
1 + χd,1

e,k

)
+ log

(
1 + χd,2

e,k

)
]. (22)

3) Eavesdropping on relay transmissions in the second
stage: The eavesdropping vehicle directs its main-lobe beam
at the relay vehicle during the second stage to obtain higher
channel gain. The interference has four components: the down-
link signal of direct transmissions, the forwarded signal of
other relay vehicles, the amplified and forwarded interference
received by the relay vehicle in the first stage, and the jamming
signal. Then the interference of the eavesdropping vehicle can
be expressed as

Ir,2e,k =

NT,d∑
k′=1

PB,k′gB,eGB,k′GV,e

+

NR∑
i=1

PR,igi,eGV,iGV,e

+ Ir,1e,kβi,kgi,eGVMV + PJgj,eMVGV,e.

(23)

Then the SINR of the eavesdropping vehicle in the second
stage when it intercepts the kth target vehicle can be formu-
lated as

χr,2
e,k =

PB,kgB,iGBMV βi,kgi,jGV,iMV

Ir,2e,k + (βi,kgi,jGV,iGV,jσ2 + σ2)
. (24)

Therefore, the channel capacity of the eavesdropping vehicle
when intercepting the kth target vehicle in the relay transmis-
sion mode can be obtained by

Cr
e,k =

1

2
W
[
log
(
1 + χr,1

e,k

)
+ log

(
1 + χr,2

e,k

)]
. (25)

In summary, the channel capacity of the eavesdropping
vehicle when intercepting the kth target vehicle can be derived
by

Ce,k =

(
1−

NR∑
i=1

ρi,k

)
Cd

e,k +

NR∑
i=1

ρi,kC
r
e,k. (26)

We define X = {xk, k = 1, 2, · · · , NT }, where xk = 1
means that the kth target vehicle is eavesdropped by the
eavesdropping vehicle, otherwise xk = 0. We can express the
secrecy capacity of the kth target vehicle as

Cs,k = max {0, Ck − xkCe,k} . (27)

E. Optimization Problem

In this paper, the optimization objective is to maximize
the secrecy capacity of all target vehicles and simultaneously
ensure the energy efficiency of the relay vehicles. We jointly
optimize the beam allocation, the cooperative nodes selection,

and the power control. The optimization problem can be
formulated as

max
ϑ,ρ,ι,φ

NT∑
k=1

Cs,k, (28)

C1 :

NT∑
k=1

ϑm,k ≤ 1,

NB∑
m=1

ϑm,k = 1, (28a)

C2 :

NT∑
i=1

ρi,k ≤ 1,

NR∑
k=1

ρi,k ≤ 1, (28b)

C3 :

NJ∑
j=1

φj = 1, (28c)

C4 :

NP∑
n=1

ιn,i = 1,∀i = 1, 2, · · · , NR, (28d)

C5 :

NT∑
k=1

xk = 1, (28e)

C6 : Cs,k ≥ ϕ, ∀k = 1, 2, · · · , NT , (28f)
C7 : ηi ≤ ζ,∀i = 1, 2, · · · , NR, (28g)

where ϑm,k is the binary beam allocation indicator with
ϑm,k = 1, implying that the mth beam is allocated to the
kth target vehicle and ϑm,k = 0 otherwise. ρi,k is the binary
relay transmission indicator with ρi,k = 1 denoting that the
ith relay vehicle is selected for forwarding signal to the kth
target vehicle and ρi,k = 0 otherwise. φj is the binary
jammer selection indicator with φj = 1 implying that the jth
potential jammer vehicle is selected as a jammer to confuse
the eavesdropping vehicle and φj = 0 otherwise. ιn,i is the
binary power level selection indicator with ιn,i = 1 implying
that the ith relay vehicle selects the nth transmit power level
and ιn,i = 0 otherwise. NJ is the number of potential jammer
vehicles. The constraint (28a) indicates that each beam can be
allocated to at most one target vehicle, and a target vehicle
is served by one beam. The constraint (28b) indicates that
each relay vehicle can serve at most one target vehicle, and
each target vehicle in the relay transmission mode can only
select one relay vehicle to forward signals. The constraint
(28c) indicates that only one idle vehicle is selected as the
jammer. The constraint (28d) indicates that each relay vehicle
can select one to transmit power level in the transmit power set.
The constraint (28e) indicates that the eavesdropping vehicle
only intercepts one target vehicle in each transmission cycle.
The constraint (28f) indicates the minimal secrecy capacity
that the system requires for each target vehicle, where ϕ is
the secrecy capacity threshold. The constraint (28g) indicates
the maxmal energy consumption that the system requires for
the vehicles, where ηi is the energy consumption of the ith
relay vehicle, and ζ is the energy consumption threshold.

IV. DRRL-BASED COOPERATIVE SECURE TRANSMISSION
SCHEME

DRL is an effective approach to tackle the complex opti-
mization problem raised in the previous section, but it still
faces significant challenges. The first challenge is the vast
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solution space. On the one hand, to enable the base station to
make communication decisions for arbitrary vehicle positions,
the position of each vehicle must be used as the state in
DRL, along with the blocking and beamforming effects in the
environment. This leads to a huge state space. On the other
hand, jointly optimizing the relay selection, jammer selection,
and relay power selection for the base station results in a
massive action space. The immense state and action spaces
make the solution space of this problem very large. It is
difficult for the agent to find the most suitable actions in the
solution space.

The second challenge involves constraints on beam selection
and relay power. When the same beam is repeatedly selected
by the base station for multi-user decisions, the secrecy
capacity of the subsequently selected vehicles becomes zero.
It is challenging to teach this logic to the base station through
DRL methods. The optimization objective of the base station
is to maximize the total secrecy capacity of all users, which
conflicts with the magnitude of relay power. Striking a balance
between the two is difficult, and it poses difficulties for the
convergence and performance of the algorithm.
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Fig. 3: The proposed D3RQN framework.

We use the following approaches to address the challenges
mentioned above.

1) We first add a one-dimension convolution for extracting
state information based on D3QN, then use an LSTM net-
work that learns temporal information to reduce the size
of the solution space and aid the algorithm convergence.
This extension is applied to the D3QN framework, and
the resulting algorithm is called Dueling Double Deep
Recurrent Q-Network (D3RQN). The framework of the
proposed D3RQN is shown in Fig. 3.

2) Secondly, action masking is employed to enforce the
exclusion of redundant beam selections, and appropriate
training methods are designed to facilitate DRL algorithm
learning of decision-making for arbitrary vehicle posi-
tions.

3) Finally, the conflict between secrecy capacity and relay
power is tackled by proposing a reward function based on
threshold settings. This function enables the base station
to select a larger relay power as much as possible under
certain power constraints, thus converting the conflicting
objective into an optimization problem that meets the
threshold conditions.

A. Network Structure and Learning Algorithms

Compared with the D3QN algorithm, we have modified
the network structure to optimize the problem raised in the
previous section. The overall algorithm of D3RQN is shown
in Fig. 4. Since the scheme adopts a sequential decision-
making method to select communication schemes for the target
vehicles, the base station needs to know the state and action
of the previous decisions to learn the impact of the previous
decisions on the current decision. Therefore, we use one-
dimension convolution to extract information, followed by an
LSTM network that remembers the previous states.

LSTMs retain and forget information through the dynamics
of LSTM memory cells, hidden states, and gating mechanisms,
including input, forget, and output gates. At time t, we assume
the input to the LSTM layer is xt. Then we have

ft = σ (Wifxt +Whfht−1 + bf ) ,

it = σ (Wiixt +Whiht−1 + bi) ,

C̃t = tanh (WiCxt +WhCht−1 + bC) ,

Ct = ft × Ct−1 + it × C̃t,

ot = σ (Wioxt +Whoht−1 + bo) ,

ht = ot × tanh (Ct) ,

(29)

where Wif , Whf , and bf are the weights of the forget gate.
ht−1 is the last hidden state, and σ(x) denotes the sigmoid
function. Wii, Whi, and bi are the weights of the input gate.
WiC . WhC , and bC are the weights of the self-recurrent
connection. Wio, Who, and bo are the weights of the output
gate. ft, it and C̃t are intermediate variables used to calculate
the new memory cell state Ct. ot is the activation vector used
to compute the new hidden state ht, which is also the output
of the LSTM.

This paper uses the bootstrap random update method for the
sample sampling method. In our communication scenario, the
number of decision-making steps for an episode is fixed at 3,
so we decide to stack the entire episode as updated episode
data into the replay memory. During the training process, the
agent randomly selects a batch of episodes from the replay
memory and updates the samples of the entire episode as the
updated data. The initial state of the LSTM is set as zero at
the start of each update.

The D3RQN algorithm incorporates the idea of the Double
DQN algorithm based on the Dueling DQN algorithm. It uses
the evaluation network to obtain the action corresponding to
the optimal action value in the state st+1. Then it uses the
target network to calculate the action value of the action to get
the target value. Through the interaction of the two networks,
the overestimation problem of the algorithm is effectively
avoided. The target Q value can be calculated by

Qt = r + γQ̂(s′, argmax
a′

(Q(s′, a′; θ)); θ−), (30)

where r is the reward of at, γ ∈ [0, 1] is the discount
factor, which can weight the future rewards and prevent the
cumulative discounted reward from becoming infinite. θ is the
parameter of action network, θ− is the parameter of target
network, and Q̂(s, a; θ−) is the Q value of target network. s
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and a are the state and action of the current time. s′ and a′

are the state and action of the following time.
The loss function for Double DQN update is given by

E
(s,a,r,s′)∼U(D)

[(
Qt −Qθ(s, a)

)2]
, (31)

where D is the replay buffer [30]. A minibatch of experiences
(s, a, r, s′) is uniformly sampled from D when updating the
network.

In addition, The Dueling DQN algorithm emerges as a pow-
erful variant of DQN. It enhances performance by introducing
a unique architecture for the neural network. The key concept
of Dueling DQN is its ability to bifurcate the estimation of the
state-value function and the action advantage function within
the network. Unlike a traditional DQN, where the neural
network approximates the Q-value function directly, Dueling
DQN innovatively partitions the last layer of the network into
two distinct streams. One stream is dedicated to estimating the
state-value function, while the other focuses on estimating the
advantage for each action. The final Q values are then derived
by combining these state and advantage values. The formula
for Dueling DQN is represented as

Q(s, a; θ) = V (s) +A(s, a)− 1

|A|
∑
a′

A(s, a′), (32)

where V (s) represents the value of state s and A(s, a) signifies
the advantage of taking action a in state s. The subtraction of
the average advantage aids in stabilizing the learning process.
This unique separation enables Dueling DQN to learn the
value of states without the necessity to learn the effect of each
action.

In our scheme, the update of the evaluation network adopts
the method of soft update, which is expressed as

θ− ← τθ + (1− τ)θ−, (33)

where τ is the update coefficient, indicating the update range
of the network parameters.
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Fig. 4: Network structure of D3RQN algorithm

The learning algorithm is divided into two phases, namely,
the training phase and the validation phase. In the training
phase, the base station agent uses the D3RQN algorithm for
decision learning. After adequate training episodes, the base
station performs well for all communication requests from
random vehicle streams on the road. In the validation phase,
the base station inputs the state and environment into the

trained network to obtain the output decisions. The detailed
procedures of our D3RQN-based energy-efficient cooperative
secure transmission scheme are shown in Algorithm 1. The
following are the settings of our D3RQN algorithm.

Algorithm 1 Energy-efficient cooperative secure communica-
tion scheme based on DRRL

1: Input : Vehicle generation, the simulator of D3RQN
environment.

2: Initialize : The action network parameters θ, and target
network parameters θ−, set θ = θ−.

3: for episode ne do
4: Randomly select the target vehicles, and eavesdropping

vehicle.
5: Randomly generate blocking coefficient.
6: Reset potential relay selection list, and potential jammer

selection list.
7: Reset status of beam selection.
8: Set the hidden layer parameter of LSTM network to 0.
9: Calculate the secrecy capacity of the optimal solution,

which is used to get the reward.
10: for each target vehicle k do
11: Obtain the current state sk.
12: Select action ak by actor network based on state sk

and hidden layer parameter after action mask.
13: Update hidden layer parameters.
14: Execute action ak, get the next state sk+1 and obtain

the secrecy capacity and energy consumption related
reward r′k.

15: Record {sk, ak, r′k, sk+1}.
16: end for
17: Obtain the system reward, get the final reward of target

vehicles {rk, k = 1, 2, · · · , NT }.
18: Store the experience (si, ai, ri, si+1), i = 1, 2, · · · , NT .
19: Sample a batch of data from experience pool.
20: if nc reaches the update step then
21: Soft update parameters from action network to target

network, θ− ← τθ + (1− τ)θ−.
22: end if
23: end for

B. Action Mask and Training Approach
In order to enable the intelligent agent to learn the constraint

of non-reusing beams more quickly in decision-making, the
training process employs action mask. Specifically, during
decision-making, the base station agent masks the decisions
that would lead to reusing beams by setting the Q-value of the
corresponding action to negative infinity. However, when it is
impossible to select non-reusing beams, the action masking
is lifted. These modifications only occur during action selec-
tion, and the neural network parameters remain unchanged.
Compared to the slower learning process involving negative
rewards, this approach allows the intelligent agent to directly
experience non-reusing beam selection and rapidly learn the
constraint of avoiding beam reusing.

To learn the decision policy for vehicles in arbitrary loca-
tions, we vary the blocking coefficient at each training episode
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while training with different combinations of target and eaves-
dropping vehicles for the same vehicle location. Besides, the
locations of vehicles will be changed after a certain number of
training episodes. When trained on enough vehicle locations,
the base station can learn vehicle combinations for almost all
locations.

C. State and Environment

The environment Et in the algorithm includes channel
information, blocking information (obstacle location, obstacle
type, obstacle factor), beam information (beam width, num-
ber of beams, beam assignment information, beam coverage
information), potential relay vehicle information, target vehi-
cle information, eavesdropping vehicle information, potential
jammer vehicle information, and the location information of
all vehicles on the road. In each time slot, the base station gets
the state St in the current environment Et. St = {St,k, k =
1, 2, · · · , NT }, and St,k is defined as

St,k = {Bs,Lrx,Lry,Ljx,Ljy,Bl, Ltx, Lty, Lex, Ley},
(34)

where Bs is a vector of length NB , with values of 0 or 1,
indicating whether each beam has been selected in previous
decisions. Lrx and Lry are vectors of length NV,r, with
normalized values ranging from −1 to 1, representing the
horizontal and vertical coordinates of each potential relay
vehicle. NV,r is the number of potential relay vehicles. Ljx

and Ljy are vectors of length NJ , with normalized values
ranging from −1 to 1, representing the horizontal and vertical
coordinates of each potential jammer vehicle. Bl is a vector
of length NB , with values ranging from 0 to 1, indicating
the current degree of blockage for each beam. Ltx and Lty

are scalars, with normalized values ranging from −1 to 1,
representing the horizontal and vertical coordinates of the
target vehicle. Lex and Ley are scalars, with normalized values
ranging from −1 to 1, representing the horizontal and vertical
coordinates of the eavesdropping vehicle.

D. Action Space

Based on the current state, the base station can assign
a transmission link to the kth target vehicle and select the
cooperative vehicle that sends the jamming signal. The action
is a combination of beam assignment of multiple users, the se-
lected relay vehicle, and the selected jammer vehicle. Besides,
when the base station selects the relay transmission mode,
it will also determine the transmit power. Thus, the action
space can be represented by a three-dimensional coordinate
system. The X-axis represents the selection of beam and
potential relay vehicles. The Y-axis represents the transmit
power of the relay vehicle. The Z-axis represents the selection
of the potential jammer. The size of the action space A is
NV,r×NP ×NJ +NJ . The term NV,r×NP ×NJ represents
the number of combinations in relay transmission mode,
which includes the selection of relay vehicles, relay power,
and jammer vehicles. The additional term NJ represents the
number of combinations in direct transmission mode, where

only the jammer selection is considered, disregarding the relay
power.

The actions are selected from the action space A =
{At,k, k = 1, 2, · · · , NT }, and At,k is defined as

At,k = {(ςr, ςp, ςj)|ςr ∈ ψr, ςp ∈ ψp, ςj ∈ ψj} (35)

where ψr is the set of potential relay vehicles, ψp is the
discretized relay power set, and ψj is the set of potential
jammer vehicles. ςr, ςp, and ςj represent the selected relay
vehicles, jammer vehicles, and relay power respectively.
At,k denotes all combinations of beam allocation, relay

selection, jammer selection, and transmit power selection that
the kth target vehicle can select at time t. After that, the
agent is given a reward rk based on the secrecy capacity
and energy consumption of the selected action to evaluate the
merit of the kth choice. At the end of NT choices, the agent
will get the reward rt,k for the kth choice. Unlike rk, rt,k
considers the choices of other target vehicles, which combines
all the choices to make the evaluation. After taking action, the
environment will arrive at the next state St+1 with the state
transition probability P (E′, r|E,At), and the base station will
analyze the state St+1 and make the choice of action from
At+1.

E. Reward Setting
The key to solving the decision-making problem in (28)

using the D3RQN algorithm is the design of the reward
function, which is not only related to the performance of
the final decision but also determines whether the training
results of the network can converge. Our reward contains the
following two parts.

1) Secrecy capacity-related reward: Many traditional DRL
approaches are designed for static environments. However,
in our problem of cooperative secure communication, the
environment is highly dynamic. Specifically, rewards based
on the value of secrecy capacity will fluctuate with the
mobility of the vehicles. For instance, if the distance between
transceivers decreases and the link quality improves, a higher
secrecy capacity for communication is naturally enabled. This
is due to the intrinsic properties of the physical world and
is independent of the decision-making algorithm. The high-
variance and biased reward estimation caused by shifting
environment dynamics may significantly degrade performance.
To mitigate this issue, we utilize the approximate regretted
reward [39]. The regret reward is defined as the difference
between the reward associated with an optimal policy and the
actually acquired reward and can be expressed as

rc,k = λs(Cs,k − C∗
s,k) + u, (36)

where C∗
s,k is the secrecy capacity of optimal policy, which is

calculated by traversing all possible decision combinations.
λs and u are the factors for adjusting the reward range.
This regret reward reflects the gap between the current and
optimal policies and enables precise evaluation of the training
performance in dynamic environments. The performance of
optimal policy can be used as a reference baseline to measure
the gap and implicitly track the latent environment changes,
thereby reducing the reward fluctuation.
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2) Energy consumption-related reward: To ensure that the
energy consumption of the relay vehicle satisfies the system
requirement, we set the energy consumption-related reward as

rp,i =

{
δ1, if ηi > ζ,
δ2, if ηi ≤ ζ,

(37)

where δ1 is a negative value to punish the decisions that do
not satisfy the energy consumption requirement, and δ2 is a
positive value.

To acquire better secrecy performance, the final reward of
each target vehicle decision considers its own reward and the
rewards of other target vehicles globally. Then the decision of
each target vehicle will be considered from the overall reward
maximization. Therefore, the reward of the kth target vehicle
can be obtained by

rt,k = λcrc,k + λd

NT∑
k′=1,k′ ̸=k

rc,k′ + λp

NR∑
i=1

rp,i, (38)

where λc, λd, and λp are the reward weights, which are
used to balance the importance of the secrecy capacity of the
individual target vehicle, the secrecy capacity of other target
vehicles, and the energy consumption.

V. NUMERICAL RESULTS

In this section, numerical results are presented to evaluate
the performance of the proposed energy-efficient cooperative
secure transmission scheme in vehicular networks. In the
conducted simulation, we utilized an Intel Xeon Gold 6258R
(CPU) and an RTX3070 (GPU) as our hardware devices.
The D3RQN algorithm underwent a training process spanning
35,000 episodes. This training phase was completed in a
duration of 2.5 hours. Furthermore, we observed that the model
required an average time of 5.869 seconds to perform 10,000
inferences, demonstrating its efficiency.

During training, the algorithm conducts decision training
on a random target vehicle combination in a random road
environment. Specifically, when the road vehicle position at
time t is fixed, the algorithm will train under a random
target vehicle combination, with each combination training
200 episodes. Update time t after sufficient training to allow
the distribution of vehicles on the road to change and continue
training. When the vehicles on the road are dense enough, or
the distribution of trained vehicles is sufficient, the algorithm
can encounter almost all communication situations and obtain
a universal decision strategy. For the parameter settings such
as the channel and antenna models, the simulation refers to
the 3GPP technical specification in [40], and Table II lists the
relevant parameters. Table III lists the network structure of
D3RQN during simulation.

A. Benchmark Schemes and Metrics

We also show the performance of other six schemes as
the benchmarks. We compare our proposed scheme with the
benchmark schemes to provide a comprehensive analysis. The
benchmark schemes are summarized as follows.

• Optimal Scheme. The optimal solution is the maximum
secrecy capacity that can be achieved for each scenario.

TABLE II: Simulation Parameters

Parameter Value
Carrier frequency 28 Ghz
Bandwidth of mmWave W 2 GHz
Beam number of base station 8
Number of target vehicles 3
Vehicle arrival rate λ 0.55
Noise power -70 dBm
Beam-width of base station θB 15◦

Beam-width of vehicle θV 30◦

Main-lobe gain M 13 dB
Side-lobe gain m 0.05 dB
Transmit power of base station PB 30 dBm
Transmit power of jammer vehicle PJ 23 dBm

Transmit power of relay vehicle PR [ 1
4
, 1
2
, 3
4
, 1] · PJ

Discount factor γ 0.99
Batch size 128
Soft update coefficient τ 0.05
Learning rate 0.005
Replay memory 1000000

TABLE III: D3RQN Network Parameters

Layer Input size, Output size
Conv1d 1×42, 16×39
LSTM×4 1×624, 1×256
Linear 1 1×256, 1×1024
Linear 2 1×1024, 1×1024
Linear 3 1×1024, 1×512
Linear 4 1×512, 1×512
Linear 5 1×512, 1×256
Linear 6 1×256, 1×256
Linear 7 1×256, 1×128
Linear 8 1×128, 1×116

At each decision point, the base station searches for
the total secrecy capacity of all combinations of beam
allocation, relay selection, jammer selection and transmit
power selection, and selects the maximum value as the
decision of the optimal solution.

• Asynchronous Advantage Actor-Critic (A3C) Scheme.
A3C is another DRL algorithm that we use as the standard
performance of deep reinforcement learning algorithms.
The A3C scheme does not adopt the convolution and
LSTM networks of the D3RQN scheme, only linear
layers, and the width and depth of the linear layers
are consistent with the D3RQN scheme. In the same
training environment, we consume more computational
resources to train the A3C network. We use this scheme
to demonstrate the advantages of the D3RQN scheme
over general DRL algorithms.

• D3QN Scheme with Only Linear Layers. This scheme is
represented by D3QN in the legend. In this scheme, the
convolution and LSTM layers of the D3RQN scheme are
removed, and the depth and width of the remaining net-
work stay unchanged. This scheme is used to demonstrate
the performance of convolution and LSTM layers.

• D3RQN Scheme without Regret Reward. This shceme
is represented by without regret reward in the legend.
The reward in the D3RQN scheme is changed to give
the agent a reward according to the value of the secrecy
capacity. The reward is divided into 5 levels, which are
-0.3, -0.1, 0.3, 0.6, 1. This scheme is used to demonstrate



12

the effect of regret reward on the performance.
• Random Selection Scheme. The base station randomly

makes beam allocation, relay selection, jammer selection
and transmit power selection decisions in each transmis-
sion cycle.

• Direct Transmission Scheme. This scheme does not use
relay vehicles for signal transmission during communica-
tion. The base station always chooses to transmit signals
directly to the target vehicle, while the jammer vehicle is
selected as the one closest to the eavesdropping vehicle.
This scheme is used to discuss the necessity of relay
transmission in this scenario.

In this paper, we leverage three significant performance met-
rics to sufficiently evaluate the secrecy and energy consump-
tion performance of the cooperative communication scheme.

• Secrecy capacity. This performance metric reveals the
real transmission throughput of the system under the
premise that the eavesdropping vehicle cannot decode the
confidential message.

• Secrecy probability. The secrecy probability is defined as
Ps = P{Cs,k > ϵs}, where ϵs is the secrecy capacity
threshold. This performance metric is used to evaluate
the secrecy performance under various secrecy capacity
requirements.

• Energy consumption. The measurement of this perfor-
mance metric is a key issue that can accelerate the real
deployment of our scheme for vehicles. It is because
that energy consumption is a big concern for vehicular
communications.

The detailed performance analysis is provided in the following
subsection.

B. Performance Evaluation

Fig. 5: Training rewards (after removing average).

Fig. 5 shows how the reward changes during D3RQN
training. As the number of training steps increases, the reward
of D3RQN shows an increasing trend and stabilizes at a
high value after 24000 training epochs. The figure shows
the training convergence of the D3RQN algorithm in the
simulation environment.

Fig. 6: Secrecy capacity of target vehicles under different
traffic patterns.

Fig. 6 compares the secrecy capacity of different schemes.
We randomly generate 20 traffic patterns based on queuing
theory to simulate actual traffic scenarios. As shown in the
figure, the secrecy performance of the proposed scheme is
very close to the optimal scheme. It outperforms other baseline
schemes in most traffic patterns, demonstrating the superiority
and robustness of our proposed scheme.

In addition, while the optimal scheme requires more than 30
seconds to traverse all possibilities, the proposed scheme only
needs less than 0.001 seconds. Therefore, the optimal scheme
cannot adapt to high dynamic scenarios. The proposed scheme
significantly reduces the processing time and is more suitable
for vehicle applications.

Due to the lack of conv1d and LSTM in the network
structure of the D3QN and A3C schemes, it is impossible to
train a universal decision that adapts to various road conditions
in a short time, and the overall performance of the test is
not ideal. The performance of the scheme without regret
reward is slightly higher than that of the scheme without
conv1d and LSTM networks, and the experiment shows that
the improvement of the network is more important than regret
reward. The curve of the direct transmission scheme shows that
direct transmission will be affected by the blocking effect and
beam repetition selection, resulting in a significant decrease
in secrecy capacity. Even in severe blocking situations and
strong eavesdropping scenarios, the proposed scheme can
still show excellent secrecy performance, because our scheme
uses cooperative nodes to relay signals and interfere with
eavesdroppers.

Moreover, we test the performance of the proposed scheme,
D3QN scheme, and without regret reward scheme under
different simulation parameters (different learning rates, batch
sizes, reward settings). Under the same training time and
parameter conditions, the average secrecy capacity perfor-
mance of the D3QN scheme and the without regret reward
scheme compared with the proposed scheme are decreased
by 7.86% and 6.08% respectively. The experiment proves the
effect of network improvement and reward improvement in the
proposed scheme.

Fig. 7 illustrates the secrecy probability under different
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Fig. 7: Secrecy probability of target vehicles under different
traffic patterns.

secrecy capacity thresholds. As the secrecy threshold in-
creases, the average Ps of the direct transmission scheme first
decreases slowly, then sharply, and then drops to zero when ϵs
rises to 7. The A3C scheme outperforms the random scheme
obviously. Due to the consideration of the secrecy capability
constraint of each target vehicle, the proposed scheme is
better than the previously mentioned schemes. Moreover, the
secrecy probability of the proposed scheme is higher than
the D3QN scheme and the scheme without regret reward.
This demonstrates that the proposed scheme can adapt to
dynamic environments and exhibit good secrecy probability
performance under various secrecy capacity requirements with
proper training.

Continuous Time(ms)

Fig. 8: Total cumulative data for a period of time.
Fig. 8 illustrates the communication performance by com-

paring the total accumulated data during continuous com-
munications under different duration time in the cooperative
mmWave vehicular network. Over time, the gap between direct
transmission scheme and the other schemes has increased
dramatically. The performance of the proposed scheme is close
to the optimal scheme and significantly higher than the A3C
and random schemes. The without regret reward scheme is
slightly higher than the D3QN scheme, both of which are

Fig. 9: Energy consumption of target vehicles under different
traffic patterns.

between the proposed scheme and the A3C scheme. The figure
also shows that the proposed scheme helps achieve superior
communication performance and adaptability in dynamic com-
munication scenarios than the benchmark schemes.

Fig. 9 depicts the total energy consumption under differ-
ent schemes. Since the direct transmission scheme does not
involve relay vehicles, we compare the performance of the
other six schemes. We set the energy consumption threshold
as 0.5, and design the punishment mechanism to satisfy this
constraint in our proposed scheme. It can be seen that the
optimal solution to achieve maximum secrecy capacity always
chooses the maximum relay power. After reaching an energy
consumption constraint of 0.5, the proposed scheme uses as
much transmit power as possible to improve secrecy capacity.
Combined with Fig. 6, we observe that the proposed scheme
can approximate the secrecy performance of the optimal solu-
tion, while transmitting signal with lower energy consumption.
This demonstrates that our scheme can balance vehicle energy
consumption and secrecy capacity while providing excel-
lent decision-making solutions. In contrast, the A3C scheme,
D3QN scheme, and without regret reward scheme do not learn
to reasonably use transmit power within a limited training
time, which shows the necessity of using conv1d and LSTM
networks in our scheme.

Fig. 10 describes the secrecy capacity of each target vehicle
under the A3C scheme, proposed scheme, and optimal scheme.
We find that the proposed scheme also performs well regarding
the secrecy performance of individual vehicle. It is because we
consider not only the overall secrecy capacity of the system
but also the secrecy capacity of each vehicle when designing
the reward. During training, when the secrecy capacity of each
target vehicle is less than 6, a negative reward will be given.
It can be seen that the secrecy capacity of the target vehicles
for the proposed scheme are all higher than the threshold. The
A3C scheme does not fully meet the threshold requirement,
which is due to the fact that only linear networks cannot obtain
excellent decisions in a short training time.
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Fig. 10: Secrecy capacity of single target vehicle under different schemes.

VI. CONCLUSION

This paper has proposed an energy-efficient cooperative
secure transmission scheme based on PLS technology and
cooperative communication architecture, aiming to maximize
the secrecy capacity of target vehicles while ensuring the
energy consumption performance of cooperative vehicles. We
have comprehensively analyzed the interference situation of
the direct transmission mode and the relay transmission mode,
and derived the theoretical expression of secrecy capacity.
To jointly optimize beam allocation, relay vehicle selection,
jammer vehicle selection, and transmission power selection,
we have designed the D3RQN learning algorithm and adjusted
the training process. After training, the proposed scheme can
adapt to highly dynamic vehicle environments. Simulation
results show that the proposed scheme can effectively improve
the secrecy performance of vehicles while reducing energy
consumption.

We also provide possible future research directions here.
For the selection of relay power, this paper adopts a discrete
decision-making approach. Future research could consider
making continuous decisions on power under the premise
of global optimal decision-making. Additionally, the design
of the reward parameters in this paper primarily relies on
experiments. Future research may discover a scientific method
for parameter adjustment. Future research may find a more
efficient method for parameter adjustment. Finally, the scheme
in this paper needs to retrain the model when communication
parameters change. Future research could design a model that
can be updated online.
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