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Abstract—With the recent advances in battery technology
enabling fast charging, public Charging Stations (CSs) are
becoming a viable choice for Electric Vehicles (EVs). How-
ever, the distribution of EVs relies on strategic assignment
of EVs to CSs. EVs drivers’ Quality of Experience (QoE)
is an significant impact factor that should be considered to
find the optimal assignment of EVs to CSs. In this context,
a novel framework to find the optimal assignment of EVs
to CSs has been proposed based on optimization of QoE.
Our proposed approach considers the travel time of EVs
towards CSs taking into account the distance between EVs
and CSs, the impact of congestion level on the roads resulted
from the Internal Combustion Engine Vehicles (ICEVs) and
EVs, queuing time at the CSs, and the time required to fully
charge the EVs battery when connected to any charging slot
at a CSs. The adjacency between the different zones in a
city environment is also considered in order to minimize
the potential number of CSs for each EVs. Specifically,
the assignment problem is formulated as Mixed Integer
Nonlinear Programming (MINLP), and a heuristic solution
is developed using the Genetic Algorithm (GA) technique.
The performance evaluation in realistic metropolitan envi-
ronment attests the benefits of the proposed CSs assignment
framework considering range of charging metrics.

Index Terms—Electric vehicle assignment, Charging sta-
tion, travel time, congestion level, queuing time, adjacency
relation.

I. INTRODUCTION

INCREASING energy demand, oil prices, environmen-
tal concerns, such as climate change and air pollution

have made electric vehicle (EVs) a desirable solution for a
new sustainable transportation system. At the same time,
various factors, such as the technological innovation in
electric drivetrain and battery efficiency, have helped to
dramatically increase the EVs penetration in recent years
in metropolitan areas [1], [2]. Using charging slots at
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home is an alternative for the users of EVs but it takes
too much time (6 to 8 hours) for each charging process.
Therefore, high voltage fast charging stations (CSs) are
the best solution to increase the satisfaction of EVs users,
because EVs batteries can be recharged at least 12 times
faster [3].

The high penetration rate of EVs in urban areas is
mainly depend on the presence of wide range of CSs
to allow EVs drivers to charge their vehicle batteries
during their daily trips [4], [5]. In addition, the optimal
assignment of EVs to the available CSs in urban areas
is an important factor that affects not only the adoption
of EVs but also increase EVs users’ satisfaction in terms
of reducing the time to reach these CSs [6]. Moreover,
EVs’ batteries can provide the electricity grid’s auxiliary
storage capacity, further increasing the incorporation of
renewable energy conversion technologies into the national
electrical grid. Notwithstanding all these advantages, the
spread of the market for electric vehicles is still somewhat
below expectations [7]. This can be attributed to a variety
of factors, such as financial matters (e.g. car and battery
cost), EVs usability, which involves concerns of the EVs
drivers on the range and the lack of spread and availability
of the EVs charging slots, especially in urban areas, which
is considered one of the most challenges and restrictions
to the spread of the EVs [8], [9].

To the best of our knowledge, the existing literature
in this field did not take into account the EVs drivers’
QoE. It refers to the EVs driver satisfaction in terms of
the travel time considering any possible charging during
the journey. It depends on parameters including distance
between locations of EVs and CSs, traffic congestion level
on the roads, the queuing time at CSs as well as the time
required to charge the EVs battery when connected to the
charger and the rated power of the chargers installed at
CSs. Our proposed approach is unique in that sense, as
we take into account the influence of all these parameters
on finding the optimal assignment of EVs to CSs. Fur-
thermore, we consider the maximum number of EVs that
assign with each CSs in our approach, the technology that
is used in each connector, and the variety of the traffic
circumstances. We argue that all of these metrics have a
significant impact on the decision of assignment EVs to
CSs.

The contributions of this work are list as follows;
• A novel model for assignment of EVs to CSs in

urban areas is proposed in this paper. The proposed
model considers the EVs drivers’ QoE in terms of
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the travel time of EVs to reach CSs, the queuing
time at CSs, also the time needed to charge the EVs
battery when plugged into charger. The effect of road
congestion level caused by both ICEVs and EVs was
considered in this work. The results show the impact
of congestion level on the travel times which in turn
affects the EVs drivers’ QoE.

• Our model takes into account the influence of the
urban traffic circulation of EVs between adjacent
zones on determining the optimal assignment of EVs
to CSs in metropolitan areas.

• An optimization technique for selecting the optimal
assignment of EVs to CSs has been introduced in
this paper. The problem is formulated as Mixed
Integer Nonlinear Programming (MINLP) problem.
The GA technique has been utilized to solve this
problem based on real world datasets. The Nonlinear
objective function of the proposed approach is set as
minimizing the total charging time of EVs.

• A critical performance evaluation in realistic traffic
environment with a range of EV charging scenarios.

This paper is organized as follows. The recent works
in this area will be discussed in detail in Section II.
The assignment problem formulation and optimization
model are presented in Section III. Section IV shows the
numerical results of our proposed approach. Concluding
remarks and future work are summarized in Section V.

II. LITERATURE REVIEW

The problem of assigning EVs to CSs has been inves-
tigated from different perspectives in the literature, such
as the overall energy consumption of EVs to reach CSs
[10], EVs battery state of charge (SoC) [11], EVs user’s
charging cost as well as the shortest distance that EVs
travels to reach CSs [12].

In [13], scheduling assignment of EVs to CSs has been
presented as an optimization model. The scheduling as-
signment problem was formulated as linear programming
(LP) problem. In this model the assignment of EVs must
be solved inline with the constraints that are related to
the status of CSs, the traffic conditions, EVs conditions,
etc. The proposed approach was demonstrated considering
two modes. The first mode is assignment of EVs to CSs
under normal circumstances (roads without traffic jam and
slops, driving without using electrical accessories, etc.),
and the second mode is under disturbed circumstances. A
new solution for the distributed dynamic assignment of a
set of EVs to a network of CSs has been introduced in
[14]. To solve this problem, the authors have proposed a
quantized consensus algorithm that the network of CSs au-
tonomously performs in order to reach a consensus about
the assignment of the EVs to CSs. Two different setups for
systems were considered and some consensus algorithms
based on the solution of integer linear programming (ILP)
problems were proposed.

In [15], an assignment rescheduling technique of mobile
CSs has been proposed, where the assignment of EVs to
the mobile CSs have been rescheduled dynamically. To
minimize the expenses of charging EVs, the assigned EVs
tp some mobile CSs can be switched to other CSs, while

the locations of CSs were chosen based on minimizing
the cost of charging EVs. Furthermore, the rewards of
assigned EVs to minimize the expenses of EVs that
have not assigned are demonstrated. Simulation results
validated the outstanding efficiency and robustness of
mobile CSs. In [16], an optimization approach for optimal
assignment and scheduling of EVs to CSs was proposed.
This approach was presented as an integrated platform to
increase the interaction between different system entities,
such as EVs, energy providers and CSs. The method
of communication between EVs and the platform was
ensured through the use of strengths in information and
communication technologies, Geo-positioning techniques
and web services. The remaining energy status of EVs,
CSs is updated by the information received from the
platform.

A stochastic decentralized algorithm to assign the most
convenient CSs to EVs that need charging has been intro-
duced in [17]. The authors used various utility functions to
characterize the potential various priorities of EVs users,
such as the preference to minimize charging times, charg-
ing costs, or the distance between the locations of EVs and
CSs. In terms of the total time required for charging, they
have studied the impact of the queuing time and travel
time in the proposed scheme. However, they did not study
the influence of the congestion level on the streets, and
also the charging time at CSs in the presented algorithm.
To illustrate this approach, they generalized the concept of
a simple CSs to comprise the potential of supplying other
loads in addition to EVs, and take advantage of locally
produced energy from renewable sources. A muli-agent
hierarchical approach for EVs charging stations trading
and energy scheduling taking into account the constraint
of mobility in the network of transportation and the system
constraint of in the network of energy distribution was
proposed in [18]. The problem has been modeled as
a separated profit driven entities, where CSs schedule
their operations based on different periods, which can be
resolved by the agents of traffic operators. An auction
method with constrained shared information has been
incorporated, in order to manage the market of electricity
according to the bids and offers of submitted CSs. In this
study, a new technique based on four stage solution has
been introduced to solve the problem of trading and power
scheduling of CSs.

In [19], the authors have modeled the problem of
assignment EVs to CSs in a certain geographical area. The
energy requirement is communicated before the departure
time and reduce the EVs drivers disutility in parking at
charging stations away from their travel destination. The
main difficulty in this paper is that the authors could
not capture the disutility function of EVs user effectively
due to the constraints of behaviour recognition of drivers.
In [20], an integrated scheme aiming to determine the
conditions of traffic and the EVs assignment of charging
service that partly need to be charged during EVs drivers’
trips. A specific feature of the proposed system is the
assumption that the demand of the charging service has
a probability density function that varies with the origin
and destination pair.

In [21], a new methodology for managing a dynamic
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EVs population has been proposed. The scheme consists
of a queuing model that captures various states of EVs
from the point of requesting the charging service until
their departure was built. The Lyapunov method is used
in order to analyze the queuing performance at CS.
The assignment policy of EVs aimed to enhance EVs
users’ convenience by reducing the time required from the
moment of requesting the charging service until arriving
at CS. A new online assignment model for charging
EVs has been introduced in [22] and integrated into the
problem of fast-charging station (FCS) location. The aim
was to minimize the total EVs idle time during charging
process for dynamic ride-sharing facilities. The authors
have incorporated the proposed online assignment policy
with a bi-level optimization-simulation approach in order
to optimize the number of FSC locations under stochastic
EVs user demand, where the waiting time of EVs at FCS
was considered as a multi-server queuing model with a
stochastic charging demand of EVs and the heterogeneous
specifications of CSs. A greedy based charging station
reservation strategy has been suggested considering local
statistics at charging station and travel distance based
arrival time estimation in traffic environment [23]. It
is majorly based static traffic information sharing using
vehicular traffic network environment. Some other recent
charging station optimization strategies have considered
cost centric economic aspect of the charging stations
optimization [24]–[26].

III. QOE ORIENTED ASSIGNMENT FOR EVS TO
CHARGING STATIONS

This paper proposes a novel model to find the optimal
assignment of EVs to CSs in metropolitan environment,
based on EVs users’ quality of experience (QoE). Travel
time on the road networks including congestion level on
the roads and the distance between the locations of EVs
and CSs, as well as the total expected time inside the
CSs which mainly depends on queuing time and the time
required to fully charge EVs battery have been considered
in this paper. The notations used in this paper are listed in
Table I. In addition, parameters and variables are explained
where they are first used. As shown in Fig. 1, we assume
that the EVs which are represented by black vehicles are
randomly distributed in zone k, where zone k has only one
port with each adjacent zone. It assume that EVs in the
same zone use different routes to reach the port between
two adjacent zones. We do agree that the assumption
is little strict in terms of independent charging decision
made by EV drivers. However, it is highlighted that the
assumption considers that any charging decision within the
same zone will have approximately similar QoE due to
the similar traffic scenario and their impact. It is expected
that the due to the on-road connectivity of near by charging
station zone, EV driver will prefer nearby zones with better
QoE recommended by the proposed framework. Finally,
all EVs that arrive to port (tkj) take the same route to
reach CSj

u in zone j. The red arrow shows the direction
of the EVs movement from zone k to zone j. We assume
that the EVs can only be charged in the adjacent zones
and also will not select any CSs at the same zone (k).

Fig. 1. An Illustrative example of EVs movement to CSs in adjacent zone

Any pair of zones are considered as adjacent if they have
a geographical borders with each other. The adjacency set
Gu represents exactly which zones have borders with zone
j.

It is clarified that the central controller system has
information about those EVs and their state of charge
which are subscribed to the proposed framework. How-
ever, information related to traffic scenario, and their
impact on mobility, adjacency of the charging stations,
and their on-road connectivity is also considered to be
available to the central controller system. The problem
will be modeled and solved as shown in the following
sections. In the Genetic Algorithm (GA) based solution,
standard crossover, and mutation operation are adapted in
the proposed framework which is detailed in [27].

A. Major Entities in Modeling

In this section, the attributes of EVs, CSs and the zones
of the study area will be defined as shown below. Each
parameter that has been introduced in our approach will
be discussed in the next sections.

1) EVs: Define the EVs set as N = {1, ..., i, ..., N}.
The cardinality of N is N , i.e., there are N EVs in the
investigated area. EV k

i in N has one attribute: (pi), where
pi is the position (coordinates) of EV k

i .
2) CSs: Define the CSs set as M = {1, ..., u, ...,M}.

The cardinality of M is M , i.e., there are M CSs in the
investigated area. CSj

u in M has one attribute; bu which
is the location of the CSj

u.
3) Zones: Define the Zone set as Z = {1, ..., j, ..., Z}.

The cardinality of Z is Z, i.e., there are Z postcode
zones in the study area. The model of a postcode zone
j is represented by (c

j
, pop

j
, g
j
), in which c

j represents
the ICEVs population in zone j, popj represents the EVs
population in zone j, and g

j is the adjacency relation
between zone j and other zones in the study area.

B. Travel Time Estimation
Two important factors should be taken into consider-

ation in terms of travel time: the total distance between
the current location of EV k

i and CSj
u in the adjacent

zone, and the congestion level, i.e., traffic condition on
the road. Therefore, the travel time relies on the length
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TABLE I. MAIN NOTATIONS AND THEIR DESCRIPTIONS

Notation Description
EV k

i The EVs with global index i in zone k.
N EVs set, in which each EV k

i has one attribute; pi,
which is the EV k

i location.
N The total number of EVs in the study area.

CSj
u The CSs with global index u in zone j.

M CSs set, in which each CSs has one attribute; bu,
which is the CSj

u position.
M The number of CSs in the study area.
Z The set of the zones in the study area.
Z The number of zones in the study area.

Ti,u The total time of charging EV k
i starting from

movement towards CSj
u until departure.

τi,u The travel time of EV k
i to reach CSj

u.
ℓ The linear coefficient of the travel time function.

di,u The total distance between the current location of
EV k

i and the location of CSj
u.

δi,u The traffic condition, i.e., congestion level on the
road which EV k

i takes to reach CSj
u per peak hour.

tkj The port of zone k with an adjacent zone j.
µi, Ψi The latitude and longitude of EV k

i , respectivelly.
xi,u A binary decision variable shows that EV k

i selects
CSj

u for charging per peak hour.
Vi,tkj The number of ICEVs that share the same road with

EVi to reach tkj .
ζi,tkj The capacity of the road in zone k that EVi uses

to reach tkj .
Nk The total number of EVs in zone k.
qu The queuing time at CSj

u per peak hour.
ηu The number of chargers at CSj

u.
ru The maximum number of EVs that can be charged

by a charger in CSj
u per hour.

ρu The charging time of EVs at CSj
u.

Gu The number of adjacent zones for CSj
u.

Di The number of adjacent zones for EV k
i .

Γ The maximum time of charging EV k
i .

λu The maximum number of EVs allowed to be as-
signed to CSj

u.
β The threshold value that shows the difference be-

tween the best fitness value of the current generation
and the best fitness value in previous iterations.

and capacity of the road that EV k
i takes to reach CSj

u,
and also the traffic congestion level on the road. In general,
more vehicles on the road lead to higher congestion level.
The greater the road capacity, the lower the level of
traffic congestion on the roads. The EVs travel time (τ)
is calculated as follows:

τi,u(X) = ℓ× di,u × δi,u(X). (1)

where τi,u represents the travel time of EV k
i to reach CSj

u, X
is the associated matrix that shows the assignment of EVs to
CSs, ℓ is the linear coefficient of the travel time function [28],
di,u denotes the total distance between the current location
of EV k

i and CSj
u, and δi,u is the congestion level on the

road that EV k
i takes to reach CSj

u. Knowing that the EVs
that come from zone k use the same road inside zone j to
reach CSj

u. EVs move under the same route conditions (length,
capacity and congestion level) in zone j. Here is the travel
time matrix structure (N×M), that shows the travel time for
the each EV k

i with each CSj
u. Knowing that τ = 0 if CSj

u

is not adjacent to the EV k
i and also if they are in the same

zone (k = j). Each line in the following matrix, shows how
the travel time is calculated. To achieve this, the EV will be
assigned to only one CS a time. The GA keeps trying to assign
each EV to the optimal CS, until it is terminated. Consequently,
this matrix is considered as the associated matrix, that shows
the relation between all available EVs and CSs in the study area.

A =



τ1,1 τ1,2 ... τ1,M
. . ... .

τ
N1,1

τ
N1,2

... τ
N1,M

τ
N1+1,1

τ
N1+1,2

... τ
N1+1,M

. . ... .
τ
N1+N2,1

τ
N1+N2,2

... τ
N1+N2,M

τ
N1+N2+1,1

τ
N1+N2+1,2

... τ
N1+N2+1,M

. . ... .
τ
N1+N2+N3,1

τ
N1+N2+N3,2

... τ
N1+N2+N3,M

. . ... .

. . ... .
τ∑Z−1

k=1
Nk+1,1

τ∑Z−1
k=1

Nk+1,2
... τ∑Z−1

k=1
Nk+1,M

. . ... .
τ∑Z

k=1
Nk,1

τ∑Z
k=1

Nk,2
... τ∑Z

k=1
Nk,M


N × M

The distance di,u between the current location of EV k
i

and CSj
u is calculated using haversine formula. The haversine

formula is a very accurate technique of computing minimum
distances between two points on the surface of a sphere using the
latitude and longitude of the two points [29]–[31]. It is expressed
in trigonometric function as shown in the following equation,
where α is the central angle between two points on a sphere:

hav(α) = sin2(
α

2
) (2)

The distance between EV k
i and CSj

u is calculated in two
stages as shown in eq.(3). The first stage from the current location
of EV k

i to the port of adjacent zone j. The second stage from
the port between two zones to reach CSj

u as illustrated in Fig.
1.

di,u = di,tkj + dtkj ,u (3)

where di,u denotes the total distance between the location of
EV k

i and CSj
u, di,tkj represents the distance from the location

of EV k
i to the port with the adjacent zone j, and dtkj ,u is the

distance between the port tkj and CSj
u.

The haversine of central angle (for instance dtkj ,u / R) can
be calculated using the following formula:

hav

(
dtkj ,u

R

)
= hav (µu − µtkj ) +

cos(µtkj ) cos(µu) hav(Ψu −Ψtkj )

(4)

where dtkj ,u is the distance along the surface of the earthly
sphere from the port between zones (k and j) to the location
of CSj

u, µtkj , µu are the latitude of EVs at the port and CSj
u,

and Ψtkj , Ψu are longitude, respectively. Fig. 2 shows how the
spherical triangle is solved using haversine function, where R
is the radius of the Earth which is known to be 6371 km, and
di,u is the distance along the surface of the earthly sphere. The
haversine function finds only half of the angle α. The following
equation shows how the distance from the port between zones
k and j until CSs u, i.e., dtkj ,u, can be calculated by applying
the inverse of the sin function:

dtkj,j = 2Rsin−1×√
hav(µu − µtkj ) + cos(µtkj )cos(µu) hav(Ψu −Ψtkj )

= 2Rsin−1 ×√
sin2(

µu − µtkj

2
) + cos(µtkj )cos(µu)sin2(

Ψu −Ψtkj

2
)

(5)
The congestion level δi,u is resulted from the normal con-

gestion caused by ICEVs, and the congestion caused by the
EVs heading for charging. Only normal congestion is taken into
account when EV k

i moves from its location to reach the port
with adjacent zones. However, from the port to the location of
CSj

u, both congestion are considered, taking into account the
capacity of the road in both zones (k and j). Eq.(6) shows how
the congestion level δi,u is calculated:

δi,u(X) = (Vi,tkj / (ζi,tkj × φ)) + ((Vtkj ,u +

Nk∑
i=1

xi,u) /(ζtkj ,u × φ × ε × Sk × Sj)))
(6)
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Fig. 2. Spherical triangle solved by the law of haversines.

where Vi,tkj , Vtkj ,u represents the number of ICEVs in zone k
and zone j that share the same route with EVs, respectively,
ζi,tkj , ζtkj ,u is the capacity of the roads in zones k and j,
respectively, Nk represents the number of EVs in zone k that
are needed to be charged, xi,u is a binary decision variable
which indicates whether EV k

i selects CSj
u for charging, and φ,

ε represents the proportion of ICEVs and EVs sharing the same
roads with EVs per peak hour, Sk and Sj denotes the traffic flow
level in the zone k and j respectively.

C. Queuing Time Estimation
Besides the travel time of the EVs, the queuing time inside

CSs also influences the decision of assigning EVs to CSs. The
queuing time at any CSs depends on the total number of EVs
that reach this CSs for charging per peak hour, the number of
chargers that have been installed in the CSs and also the charger
technology, which mainly decides the number of EVs that can be
charged per charger. The queuing time is calculated as follows:

qu(X) =

Gu∑
f=1

Nk∑
i=1

xi,u/ (ηu × ru × ε× Chr
i,u). (7)

where qu represents the queuing time at CSj
u per peak hour,

the indices f and i represent the number of adjacent zones of
zone k (where the EV is located), and the total number of EVs
in zone k, respectively. The associated matrix (X) shows the
assignment of EVs to CSs, Gu represents the set of adjacent
zones for CSj

u, ηu denotes the number of chargers at CSj
u,

ru is the maximum number of EVs charged per charger in an
hour, ε denotes the proportion of EVs charge per peak hour, and
Chr

i,u is the charging rate of EVs. Here is the queuing time
vector for CSj

u,
−→
Q = {q1 q2 q3 ... qM}. It is clarified

that the number of vehicles queued at charging stations, and
their respective charging times, traffic conditions and their impact
on mobility, and adjacency of different charging stations zones
have been considered in the optimization problem for making
recommendation to EVs for a particular charging station.

D. Charging Time Estimation
In addition to the travel time of the EVs to reach CSs location,

and the queuing time at CSs, the charging time of EVs battery
at a CSs is considered as an important factor that affects not
only the time that the EVs user needs to stay at the CSs but
also the total number of EVs that can be served by the CSs.
The maximum number of EVs charged per charger is the main
parameter that has an influence on charging time of EVs inside
CSs. The rated power of the chargers varies in the range of
50 kW to 350 kW, depending on the charger technology and
manufacturer [32], [33]. EVs chargers can basically be classified
into three different charging levels of Electric Vehicle Supply
Equipment (EVSE). Table II lists the differences between the
three levels. The charging time for each CSs is calculated as
follows:

ρu = 60/ru. (8)

TABLE II. Classification of EVs chargers [33]
EVSE Power Charger Charging Time
Type Supply Power Battery EVs (BEV)

Level 1 120 VAC ∼ 1.44 kW to
(AC Charging) 12 A to 16 A ∼ 1.92 kW ∼ 17 Hours

(Single Phase)
208 ∼ 240 VAC ∼ 7 Hours

Level 2 15 A ∼ 80 A ∼ 3.1 kW (3.3 kW on-board charger)
(AXC Charging) (Single/Split Phase) ∼ 19.2 kW ∼ 3.5 Hours

(6.6 kW on-board charger)
Level 3 200 ∼ 920 VDC

(Combo Charging (Max 500 A) From 120 kW < 30 Minutes
System or DC Charging) (Poly Phase) to 350 kW

where ρu is the charging time of a EVs at CSj
u, and ru is the

number of EVs that can be served by this charger per one hour.−→
P = {ρ1 ρ2 ρ3 ... ρM}, is the vector of the charging time
at CSj

u.
Thus, the total time for EV k

i that have been assigned to CSj
u

is calculated as the sum of the travel time τi,u(X) of EV k
i ,

where X is the associated matrix that shows the relation between
EVs and CSs, the queuing time qu at CSj

u, and the charging time
inside a CSs ρu, as shown in the following equation:

Ti,u(X) = τi,u(X) + qu(X) + ρu. (9)

It is highlighted that the estimation of charging time considers
range of parameters including number of vehicles at charging
stations, respective charging time, traffic scenario on the road and
their impact on mobility, adjacency of charging stations nearby,
and their on-road connectivity.

E. The Optimization Problem
To minimize the overall charging time of EVs, we determine

the optimal assignment of EVs to CSs in urban environments.
The following equation shows the corresponding optimization
problem of our proposed approach:

min
X

N∑
i=1

M∑
u=1

(τi,u(X) + qu(X) + ρu)× xi,u (10)

s.t.

Di∑
u=1

xi,u = 1, ∀i ∈ N (11)

N∑
i=1

xi,u ≤ ηu × ru, ∀u ∈ M (12)

xi,u ∈ {0, 1}, ∀i, u ∈ N , M (13)

(τi,u(X) + qu(X) + ρu) ≤ Γ, ∀i, u ∈ N , M (14)

where N is the total number of EVs in the study area, M is the
total number of CSs, EV k

i is assigned to only one CSs from
the set of adjacent zones (Di) as shown in eq.(11). Constraint
(12) indicates that the total number of EVs that are assigned to
each CSs should not exceed the capacity of the CSs, xi,u is a
binary decision variable with values {0,1} as shown in eq.(13),
to indicate whether CSj

u in zone j is selected by EV k
i , xi,u is

equal to 1 if the CSj
u in zone j is selected by EV k

i , otherwise
it is equal to 0. The total time to charge EV k

i should not exceed
a certain threshold value (Γ) which is used as EVs drivers’ QoE
indicator as shown in eq.(14).

The objective function shown in eq.(10), and system con-
straints in Eqs.(11)-(14) form a MINLP problem, where the
values of xi,u are constrained to be integer values {0,1}, and
all constraints are linear terms. Finding the optimal assignment
of EVs to CSs represent the solving of this optimization problem.
In this work, GA is used to find the optimal assignment of
EVs to CSs. Despite the high computational complexity of
GA to solve this type of problems, it is considered as one
of the most effective techniques that can be used to perform
meta-heuristic search in very complex, multimodal landscapes,
and large problems, and provide near optimal solutions for
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TABLE III. FOUR CORNERS OF THE STUDY AREA

Corner Longitude Latitude
SE 54.965405 -1.537112
NE 55.021271 -1.565240
NW 55.015563 -1.750658
SW 54.968385 -1.711929

fitness or objective functions of optimization problems [34], [35],
especially when the approaches using this technique prioritize
the accuracy of the results rather than focusing only on the time
required for implementation. Algorithm 1 explain the GA steps
to determine the optimal assignment of EVs to CSs based on
inheritance, mutation, selection and some other techniques. Fig.
3 shows the flowchart of our proposed approach.

F. Implementation Settings
To implement our optimization algorithm, a centric server is

used, where all the required information should be stored on the
server, and any changes on the environment should be updated
on the server environment as well. A 95% confidence interval
of the mean is a range with the lower and upper values in our
approach. Following is the information that should be stored on
this server in advance:

• EVs information includes; EVs’s ID, coordinates, and to
which zone its belong.

• CSs details includes; CSs’s ID, location, ηu and ru.
• Details of each zone includes; the borders of each zone,

coordinates of the ports with adjacent zones, number of
EVs, Number of ICEVs, and roads capacity of each zone.

• Study area characteristic includes; number of the zones,
adjacency map between zones and the four corners which
represents the investigated area.

The assignment of EVs to the optimal CSs is managed by
the server which has all the information mentioned before. The
implementation process on this server is done based on the
objective function of this approach and all system constraints
as introduced in Section III-E . A best choice of CSs for each
EVs is determined by this server, and this requires every EVs
that needs to be charged to communicate directly to this server
in order to determine the optimal CSs as shown in Fig. 4, which
illustrates an example of charging time process, starting from
movement of EVs to reach CSs, then waiting in a queue until
a charger is available for charging. Finally, the EVs leaves the
CSs after its battery is fully charged.

IV. NUMERICAL RESULTS

A. System Base Scenario
The proposed model is applied to the city of Newcastle upon

Tyne considering a total of seven post codes from NE1 to NE7.
Fig. 5 shows detailed map of the study area with a length of
about 11 km and a width of about 6 km. As shown in Fig. 5,
the available CSs are distributed on main roads in different zones
in the study area. The coordinates of the four corners of the study
area is shown in Table III. Table IV shows the information for
each zone in terms of ID, EVs population, ICEV population, the
number and location of CSs at each zone, we assume 10 CSs
in the study area as shown in Table IV. Table IX in Appendix
section shows the adjacency relations between zones.

According to the statistics of Newcastle upon Tyne city
council in the second quarter 2020, the population of the personal
ICEVs in Newcastle upon Tyne has reached around 82,850 [36].
5% EVs are assumed to be EVs. It is assumed that 10% of EVs
population needs to be charged at peak hour. We assume that
10% of ICEV use the same road as EVs per peak hour, also
we assume that the capacity of the road in the study area is the
same. Table V presents the value of the study parameters used
in the current base scenario.

Besides the impact of charging activities of EVs and move-
ment of EVs between adjacent zones, the movement of ICEVs is
also taken into account in our proposed model. The assignment

Algorithm 1 GA strategy to determine the optimal assign-
ment of EVs to CSs

Input: N,M, Vi,tkj , Vtkj ,u, ℓ, µi,Ψi, µtkj ,Ψtkj , µu,Ψu,
ζi,tkj , ζtkj ,u, N

k, ε, φ, ηu, ru, Gu, Di,Γ, β, λu

Output : Xopt

begin:
1: GA generates an initial population F (1) =

{X(1)
1 , X

(1)
2 , X

(1)
3 , ..., X

(1)
Y }

2: K = maximum number of GA iterations
3: Y = size of F
4: for i = 1 to N do
5: for u = 1 to M do
6: Calculate di,u using Eqs. (3)-(5)
7: end for
8: end for
9: for u = 1 to M do

10: Calculate ρu using eq. (8)
11: end for
12: set iteration ID s = 1
13: while s < K do
14: for n = 1 to Y do
15: for i = 1 to N do
16: for u = 1 to M do
17: Calculate δi,u(X

(s)
n ) using eq. (6)

18: Calculate τi,u(X
(s)
n ) using eq. (1)

19: end for
20: end for
21: for u = 1 to M do
22: Calculate qu(X

(s)
n ) using eq. (7)

23: end for
24: set ln = 0
25: for i = 1 to N do
26: for u = 1 to M do
27: ln = ln + Ti,u(X

(s)
n ), where Ti,u(X

(s)
n ) is the

total time as shown in eq. (9)
28: end for
29: end for
30: end for
31:

−→
L = {l1, l2, l3, ..., lY }

32: [b(s), idx1] = min(
−→
L ). This step calculates the mini-

mum total time of the objective function as shown in eq.
(10).

33: R(s)= F
(s)
idx1

34: C = {b(1), b(2), b(3), ..., b(s−1)}
35: [B, idx2] = min(C)
36: if b(s) < B then
37: Xopt = R(s)

38: else
39: Xopt = R(idx2)

40: end if
41: if |B − b(s)| ≤ β then
42: Return Xopt

43: Break
44: end if
45: GA selects solutions from F (s), then implements

crossover process to create new offspring
46: GA applies mutation operator on a random solution
47: s = s + 1
48: GA updates F (s) subject to the constraints in Eqs. (11)-

(14)
49: end while
50: Return Xopt

problem will be solved based on minimizing the overall comple-
tion time of charging EVs batteries considering our objective
function in line with the system constraints. The proposed
approach has been performed in MATLAB environment R2019a.
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Fig. 3. Flowchart of the proposed approach.

B. Other Case Studies
More studies have been evaluated to demonstrate the advan-

tage of the proposed approach in determining the optimal assign-
ment of EVs to the available CSs in the study area. Moreover,
the reason for implementing these different case studies is to
show the importance and influence of these parameters on the
decision of assigning EVs to the available CSs in the study area.

Four different case studies have been conducted as follows:
• Case A: With reduced congestion level on the road towards

CS9 in NE3. We assume that the capacity of the road
towards CS9 in NE3 is doubled, while the other CSs
characteristics remain the same as the base scenario.

• Case B: With increased congestion level on the roads
towards CSs in NE1. The road capacity towards CSs in
zone NE1 is assumed to be reduced by a third, while the
others CSs conditions remain the same as the base scenario.

• Case C: With increased ICEVs. We assume that the number
of ICEVs that share the roads with EVs moving towards
CSs in NE1 is increased to be the same as in NE5 while
the road capacity towards these CSs remain the same as
the base scenario. The condition of other CSs remain the
same as the base scenario.

• Case D: Increased charging rate of connectors. We assume
that the maximum number of EVs that can be charged per
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Fig. 4. Illustration of charging process completion time.

Fig. 5. Study area map

TABLE IV. ZONES INFORMATION

Zone EVs ICEVs Zone CSs’s Coordinates

ID Pop Pop CSs Latitude Longitude
CS2 54.9740967 -1.6212623

NE1 67 1349 CS3 54.9792671 -1.6098994
CS4 54.9749156 -1.595424

NE2 268 5362 CS6 54.988027 -1.613854
NE3 1123 22466 CS9 55.0072571 -1.619521
NE4 499 9977 CS1 54.97448 -1.644712

CS7 54.9862673 -1.6594208
NE5 1150 23000 CS8 55.0023349 -1.6754294
NE6 708 14154 CS5 54.988743 -1.581588
NE7 333 6662 CS10 55.009272 -1.57895

charger in CS1 and CS7 in NE4 to be 8 (r1 and r7=8)
instead of 6 as assumed in other cases. The characteristics
of other CSs remain the same.

• Case E: Future scenarios with increased EVs and ICEVs,
in this case, we study the impact of increasing the number
of EVs and ICEVs on the total time of charging EVs
in Newcastle upon Tyne city in three different scenarios.

TABLE V. Base scenario parameters

Parameter Value
N 415
M 10
V 8285
ηu 10
ru 6
Z 7
ℓ 0.2
ζ 1590
Γ 120
λu 48
β 10

Then we present suggested solutions in order to reduce the
charging time caused by increasing the density of vehicles
in the study area in these three scenarios.

C. Result Analysis Discussion
In this section, we run experiments on the real data set from

Newcastle upon Tyne city, results are presented in averages taken
over 30 independent experiments. Error bars are used to represent
the standard deviation obtained from these experiments.

Fig. 6 shows the comparison results between the base scenario
and Cases A to D in terms of the assignment EVs to CSs. It can
be seen in Fig. 6 that the CSs at zones NE1, NE2, NE4, NE6 and
NE7 in the base scenario have received a large number of EVs,
the reason for this is the proximity of these CSs to the location
of the majority of EVs in the study area, and also the congestion
level in these zones are less compared to the other zones, which
in turn reduces the time for these EVs to reach CSs due to the low
level of congestion on the roads. Another observation in this case
is that the assignment of EVs to CS8 in NE5 has reached to the
maximum number of EVs, although the congestion level in NE5
is very high due to the large number of ICEVs, and the reason
behind this is that the location of EVs in NE3 is very close to
CS8 in NE5. In addition, the EVs need to travel a long distance
within a high congestion level in NE3 to reach other available
adjacent CSs in NE2, NE4 and NE7. It can be observed that the
EVs in the adjacent zones of NE3 has selected CS9 as shown
in Fig. 6 in Case A, rather than selecting CS1, CS3 and CS5 as
shown in the base scenario, and the reason behind this is that
the the road capacity towards CS9 in NE3 is doubled which in
turn led to reduce the congestion level in NE3 as we assume
in this case. In Case B, when the road capacity towards CSs in
NE1 is reduced by a third while the road capacity of other CSs
remain the same as the base scenario, it can be observed that the
total number of EVs that are assigned to CS3 is less compared
to the total number of EVs that are assigned to CS3 in the base
scenario as shown in Fig. 6, and this is due to the high level
of congestion on the roads resulting from the low road capacity
towards this CSs. The number of EVs that are assigned to CS2
and CS4 is almost the same as they are still the best CSs for
EVs in NE4 and NE6, respectively.

The results obtained for Case C have shown the influence of
the total number of ICEVs that share the same roads with EVs
that are heading to charge at CSs in NE1, on the decision of
assignment EVs to the optimal CSs. As shown in Fig. 6, the
total number of EVs that were assigned to CS3, is reduced by
more than a half compared to the base scenario. The main reason
for this is the increased congestion due to the increase in the
number of the ICEVs on the roads towards CS3. However, CS2
and CS4 in NE1 have the almost received the same number of
EVs because they are still the best options for EVs in NE4 and
NE6, respectively.
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Fig. 6. Comparison between all cases in terms of EVs assignments
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Fig. 7. Comparison between all cases in terms of travel time

In Case D, we assume that the maximum number of EVs that
can be charged per charger in NE4 is increased to 8 instead of 6,
which in turn reduce the queuing time and charging time inside
CSs. As shown in Fig. 6, the assignment of EVs to CSs in Case
D is remain the same as in the base scenario, and the reason for
this is, of course, the assignment of EVs to CS1 and CS7 have
reached the maximum number of EVs in the base scenario. We
will discuss the significant impact of this assumption, when it
comes to talk about the figures and discussion of queuing time
and charging time.

Fig. 7 shows the comparison between the base scenario and
Cases A to D in terms of the travel time of EVs to reach CSs in
adjacent zones. Several factors were taken into consideration to
calculate the travel time of EVs en route to CSs, i.e, congestion
level, road capacity towards CSs, total number of EVs and ICEVs
that share the same route with these EVs that are heading to
charge. In the base scenario, as can be seen in Fig. 7, the
travel time of EVs that move from NE5 to reach CS1 in NE4
is significant, and the reason behind this is the large number
of ICEVs inside NE5 and also the long distance between the
locations of EVs in NE5 and CS1 in NE4. EVs in NE5 can
be charged in two adjacent zones NE3 and NE4. However, they
have selected CS1 in NE4 although CS9 in NE3 is much closer
to their locations, and this is because of the high congestion level
in NE3 due to the large number of ICEVs in this zone, compared
to the number of the ICEVs in NE4 as shown in Table IV. It is
easy to notice that the travel time of CS9 in NE3 is very high
even though the number of EVs that are assigned to CS9 is very
few as shown Fig. 6, and this is due to the high congestion level
in this zone. Another observation in the base scenario in Fig.
7, is that the travel time of EVs that are assigned to CS2, CS3
and CS4 in NE1 is very low, although the EVs assignment to
these CSs has almost reached to the maximum number of EVs
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Fig. 8. Comparison between all cases in terms of queuing time

that allowed to be assigned to CSs, the reason for this is the low
level of congestion in this zone, and the proximity of these CSs
to the EVs locations.

It can be seen from Fig. 7, that the travel time of EVs that
are assigned to CS9 in Case A is almost the same as in the
base scenario, although the EVs assignment to CS9 has increased
more than doubled, and also the number of ICEVs in this zone
is very high, this is due to the assumption that the road capacity
towards this CSs has doubled. Another observation in the results
of Case A in Fig. 7, is that the travel time of EVs to reach CS1
and CS5 are decreased, and the reason for this is that some of
EVs in NE5 and NE7 have selected CS9 rather than selecting
CS1 and CS5, this has reduced the travel time because of the
low number of EVs that are assigned to them. In Case B, we
assumed that the capacity of the roads towards CSs in NE1 is
reduced by a third. As shown in Fig. 7, the travel time of EVs to
reach CS9 is slightly increased compared to the base scenario,
and the reason for this is that some of EVs in NE2 moved to
NE3 for charging rather than selecting CS3 in NE1 due to the
high congestion level because the road capacity towards NE1 is
reduced as we assumed in this case, and this is also the reason
why the travel time for CS3 is reduced. It is easy to see that
the travel time to reach CS2 and CS4 is increased, this is also
because of the congestion level in NE1 which is increased due
to the assumption in this case.

In Case C, as shown in Fig. 7, the travel time of EVs to reach
CS2 and CS4 has increased compared to the base scenario, this
is due to the increase in the number of ICEVs in NE1 as we
assumed in this case which in turn increased the congestion level
on the roads towards these CSs. It is observed in Fig. 7 that the
travel time of EVs to reach CS3 is reduced, the reason behind
this is that the number of EVs that are assigned to CS3 has
dramatically decreased because of the increase in the congestion
level in this zone which encouraged some of EVs in NE2 to
select CS9 in NE3 rather than selecting CS3 in NE1 as shown
in Fig. 6. In Case D, we assumed that the maximum number of
EVs that can be charged by a charger per hour in CS1 and CS7
in NE4 is 8 rather than 6 as assumed in the other cases, i.e, r1
and r7 = 8. As shown in Fig. 7, it is observed that the travel time
of EVs to reach CS1 and CS7 in Case D and base scenario is
almost the same, and the reason for this is that in both cases the
number of EVs that are assigned to CS1 and CS4 have reached
to the maximum number of EVs. As mentioned before, the effect
of this assumption will be noticed when we study the figures of
queuing time, charging time and total time.

Fig. 8 shows the queuing time inside each CSs. As shown in
eq. (7), the queuing time is calculated considering the number of
EVs that are assigned to CSj

u, the number of chargers at CSj
u

and the rated power of chargers. In the base scenario and Cases
A to D, we assumed that the number of chargers at each CSs
are the same, and the charger’s rated power are the same for
base scenario and Cases A, B and C, while it is different for
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Fig. 9. Comparison between all cases in terms of charging time
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Fig. 10. Comparison between all cases in terms of the
total time of EVs with each selected CSs

Case D as mentioned earlier. As shown in Fig. 8, the queuing
time at CS1, CS2, CS4, CS6, CS7, CS8 and CS10 in all cases is
more than the other CSs, and the reason behind this is that the
number of EVs that are assigned to these CSs is more than the
other CSs as shown in Fig. 6. Quite the contrary, the queuing
time at CS3, CS5 and CS9 is less, this is because the number of
EVs are assigned to these CSs is less as shown in Fig. 6. Another
observation in Fig. 8, is that the queuing time for CS1 and CS7
in Case D is less than the base scenario although the number of
EVs that are assigned to them is the same, and this is because
of the assumption of this case that the charger rated power is
higher. As a result, the waiting time for EVs inside these CSs
will be shorter. It is also shown in Fig. 8, that the queuing time
at CS9 in Case A is higher than the other cases in CS9, and this
is because of the assumption in this case that the road capacity
towards this CSs has doubled, which led to an increase in the
number of EVs that are assigned to it, and thus an increase in
queuing time inside it.

Fig. 9 shows the charging time of EVs that are assigned to
each CSs. The charging time for each EVs inside CSj

u is mainly
depend on the number of EVs that can be charged by a charger
in CSj

u per hour as shown in eq. (8). As shown in Fig. 9, it
is obvious that the charging time of EVs that are assigned to
CS1 and CS7 in Case D is less compared to the other cases,
although the number of EVs that are assigned to them is the
same, the reason behind this is that the charger’s rated power of
CS1 and CS7 in Case D is higher than other cases in these CSs.
As shown in Fig. 6 and Fig. 9, the CSs that received more EVs,
the charging time is more, and the opposite is true for CSs that
received fewer EVs. Therefore, the charging time at CS1, CS2,
CS4, CS6, CS7, CS8 and CS10 in all cases is more than the
other CSs.

TABLE VI. Comparison between the base scenario and Case D
in terms of the total time

CSs ID Base scenario Case D
EVs Charging Time(m) EVs Charging Time(m)

CS1 48 2,256.897 48 2,119.686
CS7 48 1,668.656 48 1,542.862
Total 96 3,925.553 96 3,662.548
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Fig. 11. Total time required to fully charge EVs based on proposed scenarios

Fig. 10 shows the total time of charging EVs with each se-
lected CSs, starting from movement towards CSs until departure
as shown in Fig. 4. The total time consists of travel time, queuing
time and charging time at CSs. As shown in Fig. 10, CS1 has
the highest total time compared to all CSs and in all cases, and
the reason for this is that CS1 has almost reached the maximum
number of EVs in the base scenario, and Cases B, C and D.
Knowing that these EVs come from NE5, and as shown in Table
IV, the number of ICEVs in NE5 is very high which increases
the congestion level on the roads towards CS1 in NE4, also the
distance that EVs need to move from NE5 to reach CS1 in NE4
is too long as shown in the study area map in Fig. 5. Another
observation in Fig. 10, is that the total time of EVs that are
assigned to CS2 and CS4 is low although the EVs assignment to
these CSs has almost reached to the maximum number of EVs
that allowed to be assigned to CSs, the reason for this is the
low level of congestion in this zone the zones from which these
EVs come, in addition to the proximity of these two CSs to the
sites of EVs. As shown in Fig. 109, the total time of EVs that
are assigned to CS1 and CS2 in Case D is the least compared
to the others cases in these two CSs, and the reason for this
is the assumption of this case that the chargers rated power in
these CSs is higher than other cases. Table VI shows comparison
between the base scenario and Case D in terms of the total time
for charging EVs in CS1 and CS7.

Fig. 11 shows the total time of charging EVs that are assigned
to the best choice of CSs for the base scenario and the other cases
that have been proposed in order to demonstrate the efficiency
of the proposed scheme. As shown in Fig. 11, it is obvious that
the total time for Case A is less compared to the base scenario,
and the reason behind this is the assumption in this case which
is increasing the road capacity to the double towards CS9 in
NE3. The number of ICEVs in this zone is large, and thus
increasing the road capacity led to less congestion level on the
road, therefore less travel time to reach CS9. In Case B, as shown
in this figure, the total time is higher than the base scenario as
shown in Fig. 11, and this is due to the decrease in the road
capacity of CS2, CS3 and CS4 in NE1 by a third, which has
resulted in an increase in the level of congestion on the roads
leading to these CSs.

To demonstrate the influence of ICEVs on the congestion level
and total time. In Case C, the number of ICEVs in NE1 was
increased to be the same as in NE5 while the road capacity
remain the same as in the base scenario. As a consequence, the
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Fig. 12. EVs assignment for Case E
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Fig. 13. Case E results in terms of the total time to charge EVs

total time for the EVs that are assigned to the CSs has increased
compared to the base scenario as shown in Fig. 11. In Case D,
the total time has decreased compared to the base scenario as
shown in Fig. 11, and the reason for this is the increase in the
maximum number of EVs can be charged per charger in CS1
and CS7 in NE4, as the charging time inside the CSs mainly
depends on the rated power of charger.

Figs. 12 and 13 show the assignment of EVs to the optimal
CSs as proposed for Case E, and also the total expected charging
time for EVs which increased dramatically due to the increase
number of vehicles in Newcastle upon Tyne as proposed in the
three scenarios. Fig. 12 shows how the EVs are distributed to the
available CSs based on the projection that the number of EVs
and ICEVs will increase by 20% and 10% for the first scenario,
40% and 15% for the second scenario, 60% and 20% for the third
scenario, respectively, compared to the current vehicle density in
the study area. It is assumed that the values of λ1, λ2, λ3, ..., λM

= 58, 65 and 73 for the three proposed scenarios, respectively.
In this case we also assume that the rest of parameters remain
the same as in the base scenario.

Fig. 13 shows the total expected time for charging EVs based
on the assumption in this case. It is obvious that the total time
has increased dramatically, as shown in Fig. 13. To overcome
the increase in total time for the three proposed scenarios, the
following two suggested solutions have been proposed:

• Selecting most recent chargers which can serve more EVs
within one hour ru.

• Increasing the number of chargers ηu at each CSs.
In the first suggested solution, to minimize the overall charg-

ing time. We assume that the maximum number of EVs that can
be charged per charger in CSj

u is increased to 8 per hour, which
means that r1, r2, r3, ..., r10 = 8 instead of 6 as assumed in
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Fig. 14. Comparison between QoE strategy and Greedy strategy
in terms of EVs assignment

the previous three scenarios. The use of new technology and an
advanced charger directly affects the total number of EVs that
can be charged per hour. As a results, the total time of charging
EVs has decreased. Table VII show the impact of the charger’s
rated power on reducing the total time of charging EVs for the
three proposed scenarios.

In the second suggested solution, to minimize the overall
charging time for the three proposed scenarios, the number of
chargers will be increased to 12 for all CSs, i.e, η1, η2, η3,
..., η10 = 12, instead of 10 chargers as assumed before. The
increase in the number of chargers in the CSs affects directly
the performance of the CSs in terms of the queuing time, as
having a larger number of chargers reduces the overall charging
time of EVs as shown in Table VIII. As shown in the previous
figures, it is obvious that increasing the charger rated power as
proposed in the first solution has more impact on the total time
than increasing the number of chargers as proposed in the second
scenario, and the reason behind this is that the chargers rated
power affects the queuing time and also the charging time, while
the number of chargers at CSs affects only on the queuing time
inside the CSs.

D. A Comparison between QoE strategy and Greedy strat-
egy

The comparison between the two strategies is done first based
on the congestion level that is proposed in the base scenario, and
then the congestion ratio is increased by 20%, 40%, 60%, 80%
and 100% in order to see the impact of congestion level on the
EVs driver’s QoE. Fig. 14 shows the EVs assignment results for
both strategies, It is observed that the number of EVs that are
assigned to some CSs has changed. As shown in Fig. 14, CS9
in NE3 in greedy strategy has reached the maximum number
of EVs compared to low number of EVs in the QoE strategy,
and the reason for this is that the EVs in NE5 moved to NE3
for charging because of the proximity to the location of CS9 in
NE3 and also ignoring the high congestion level in both zones,
knowing that the NE3 and NE5 have the highest congestion level
because of the high number of ICEVs in these zones compared
to the other zones as shown in Table IV. Another observation in
Fig. 14, is that the assignment of EVs to CS1 and CS3 in greedy
assignment has decreased dramatically, and the reason for this is
that the EVs in NE5 selected CS9 in NE3 rather than selecting
CS1 in NE4, and the EVs in NE2 selected CS5 instead of CS3
in NE1, and the reason for this is the long distance between the
locations of EVs and CSs.

Figs. 15 and 16 show the comparison between the QoE
strategy and greedy strategy in terms of the travel time and the
total time, respectively. It is easy to see in both figures that the
travel time and total time have increased in greedy scenario, and
the reason for this is that the congestion level on the road towards
CSs has been ignored when assigning EVs to CSs, whereas the
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TABLE VII. Total time of charging EVs at each CSs in Case E where ru = 6 & 8 (minute)

First scenario Second scenario Third scenario

CSs ID
ru ru ru

6 8 6 8 6 8
CS1 3129.436263 2929.957268 3462.292027 3241.408114 3859.115391 3694.001159
CS2 1254.219562 1094.37063 1447.10629 1271.255051 1713.51112 1529.7045
CS3 1127.682654 825.5329969 1549.5048 1515.246455 1903.029848 1215.131903
CS4 1297.453849 1359.746675 1493.08984 1157.926111 1513.397148 1886.994357
CS5 1265.391947 880.5210802 1239.194264 1219.198678 2051.236573 1850.486573
CS6 1930.784719 1528.256329 2018.615044 1834.006093 2660.624901 2465.614232
CS7 2302.362157 2181.940581 2563.098152 2432.267806 2947.114222 2707.806859
CS8 1137.250528 1396.896541 1780.957542 1711.818979 1886.901305 1497.118697
CS9 2211.886189 2151.900653 3496.111945 3250.258396 4228.490812 4297.014697
CS10 1395.503289 1253.178433 1521.501169 1342.022471 1741.338642 1541.407026
Total 17051.97116 15602.30119 20571.47107 18975.40815 24504.75996 22685.28

TABLE VIII. Total time of charging EVs at each CSs in Case E where ηu = 10 & 12 (minute)

First scenario Second scenario Third scenario

CSs ID
ηu ηu ηu

10 12 10 12 10 12
CS1 3129.436263 3083.942266 3462.292027 3381.059848 3859.115391 3859.124833
CS2 1254.219562 1222.939124 1447.10629 1450.238559 1713.51112 1803.638444
CS3 1127.682654 1123.473499 1549.5048 1711.524658 1903.029848 1704.202567
CS4 1297.453849 1374.07816 1493.08984 1382.053357 1513.397148 1690.162977
CS5 1265.391947 983.1079562 1239.194264 1231.533765 2051.236573 2038.787622
CS6 1930.784719 1675.865047 2018.615044 2008.467179 2660.624901 2652.549138
CS7 2302.362157 2328.27438 2563.098152 2621.24549 2947.114222 2911.251208
CS8 1137.250528 1489.607598 1780.957542 1540.156533 1886.901305 1589.396339
CS9 2211.886189 2206.67613 3496.111945 3644.65523 4228.490812 4419.275512
CS10 1395.503289 1401.002234 1521.501169 1508.48174 1741.338642 1733.263897
Total 17051.97116 16888.96639 20571.47107 20479.41636 24504.75996 24401.65254

Fig. 15. Comparison between QoE strategy and Greedy strategy
in terms of travel time

only metric that has been considered is the distance between the
EVs and the locations of CSs.

Figs. 17 and 18 show the comparison between the QoE
strategy and greedy strategy in terms of the travel time and
the total time, respectively, taking into consideration different
percentages of the congestion’s levels on the roads leading to
the charging stations. It is obvious that the total time and travel
time in QoE strategy is less compared to the greedy strategy, and
the reason behind this is that in addition to the distance between
the locations of EVs and CSs, the congestion level has also been
taken into account in this strategy. Moreover, it is easy to notice
that the relation between both the travel time and total time, and

Fig. 16. Comparison between QoE strategy and Greedy strategy
in terms of total time of charging EVs

the congestion level is linear. The reason behind this is that the
increase of the percentages of the different congestion levels that
have been assumed in our experiments is linear.

E. A Comparison between QoE strategy and the Ant Lion
Optimizer (ALO) technique

The comparison between the two QoE and ALO strategies
was made based on the assumptions that have been proposed in
the previous section (Section IV-C). Based on the experimental
results, the difference of assigning EVs to the CSs in both
techniques is small, and the reason behind this is that the both
algorithms was working on assigning EVs to the optimal CSs
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Fig. 17. Travel time required for EVs to reach CSs based on the proposed
scenarios taking into account the differences in congestion ratio
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Fig. 18. Total time required to fully charge EVs based on the proposed
scenarios taking into account the differences in congestion ratio

in the investigated areas, considering the same parameters and
system constraints.

Figs. 19 and 20 show the comparison between the QoE the
ALO strategies in terms of the travel time and the total charging
time, respectively. It is easy to see in both figures that the travel
time and total time have increased in ALO technique, and the
reason for this is that the distribution of EVs to the available
CSs in the study area using our proposed approach (QoE) is
more accurate, which in turn directly affects the travel time
and total charging time. Moreover, the ALO suffers from the
slow speed of convergence and the local-optima stagnation for
particular optimization problems. However, It is obvious that the
travel time and total time of assigning EVs to CSs using the
ALO is less compared to the greedy technique, and the reason
for this is that the ALO considers all the parameters and system
constraints, while the greedy technique ignores all of them.

Figs. 21 and 22 show the comparison between the QoE
strategy and ALO strategy in terms of the travel time and the total
time, respectively, taking into consideration different percentages
of the level of congestion on the roads leading to the charging
stations. It is easy to see that the total time and travel time in QoE
strategy is less compared to the ALO strategy, and the reason
behind this is that our proposed approach in more accurate,
and also because of the main limitation on the ALO, i.e., slow
convergence and local optima stagnation.

V. CONCLUSION AND FUTURE WORK

A new optimization model dedicated to the problem of as-
signment of EVs to CSs in metropolitan environments has been

Fig. 19. Comparison between QoE strategy and ALO strategy
in terms of travel time
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Fig. 20. Comparison between QoE strategy and ALO strategy
in terms of total time of charging EVs

introduced in this paper. The assignment of EVs to the best
charging stations has been done considering the EVs user’s QoE,
in terms of the total completion time of charging EVs in the
available CSs in the study area. Travel time towards CSs, travel
distance, congestion level on the streets that resulted from both
ICEVs and EVs, queuing time at the CSs, required time to fully
charge EVs battery, chargers’ technology, the maximum capacity
of the CSs and the influence of the urban traffic circulation of
EVs between adjacent zones have been taken into account in the
proposed scheme. In this paper, the assignment problem has been
formulated as MINLP problem, this is because the decision of
selecting the optimal charging station is directly influenced by
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Fig. 21. Travel time required for EVs to reach CSs based on the proposed
scenarios taking into account the differences in congestion ratio
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Fig. 22. Total time required to fully charge EVs based on the proposed
scenarios taking into account the differences in congestion ratio

the interaction between the EVs and ICEVs in the investigated
area. GA technique has been incorporated into this work in
order to solve the MINLP problem. Additional metrics and
constraints can be incorporated into this approach to determine
the optimal assignment of EVs to CSs, such as the difference in
elevation between the locations of CSs and EVs, the amount of
energy consumption that EVs requires to reach CSs, the charging
cost at CSs, etc. The proposed approach has been applied to
different cases using real world datasets of Newcastle upon Tyne,
United Kingdom. The results demonstrate the significance of the
proposed approach. This approach is scalable so can be easily
utilized to different geographical areas and different sample size.

More parameters and constraints related to the EVs can be
considered in our work in near future. Moreover, deep learning
(DL) techniques can also be utilized in order to solve the
assignment problem.
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APPENDIX

TABLE IX. Adjacency relations between zones

Zone Adjacent Zone Port Coordinates

ID Zones Latitude Longitude
NE2 54.982939 -1.612724

NE1 NE4 54.975764 -1.626792
NE6 54.976013 -1.589379
NE1 54.982939 -1.612724
NE3 55.001376 -1.619571

NE2 NE4 54.995152 -1.628682
NE6 54.980327 -1.580731
NE7 54.997546 -1.593246
NE2 55.001376 -1.619571

NE3 NE4 54.989936 -1.656745
NE5 55.00171 -1.667159
NE7 55.006931 -1.601896
NE1 54.975764 -1.626792

NE4 NE2 54.995152 -1.628682
NE3 54.989936 -1.656745
NE5 54.989939 -1.669187

NE5 NE3 55.00171 -1.667159
NE4 54.989939 -1.669187
NE1 54.976013 -1.589379

NE6 NE2 54.980327 -1.580731
NE7 54.993012 -1.579443
NE2 54.997546 -1.593246

NE7 NE3 55.006931 -1.601896
NE6 54.993012 -1.579443
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