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A B S T R A C T   

This study explores the effect of local buckling on the compressive performance of slender structural elements, 
particularly those with thin-walled sections. The phenomenon of local buckling significantly reduces the axial 
compressive stiffness, leading to a notable decrease in the load-bearing capacity of these elements. The main goal 
of this research is to examine how the post-buckling characteristics of polymeric composite channel section struts 
can be improved under thermal loading by incorporating multi-layer graphene reinforcements. The solution 
methodology incorporates the von Karman geometrical nonlinearity and is based on the layerwise third-order 
shear deformation theory (LW-TSDT). To ascertain the precision and computational performance of the results 
derived from LW-TSDT, a three-dimensional (3D) finite element model is created in ABAQUS for comparative 
evaluation. An extensive analysis of nonlinear thermal instability in perfect and geometrically imperfect FG-GRC 
laminated channel section struts is undertaken to discern the graphene distribution patterns that are most and 
least effective in elevating the critical buckling temperature and natural frequencies through pre- and post- 
buckling conditions. The comparative analysis indicates that employing the FG-X graphene distribution 
pattern across the thickness of the web and flanges in channel section struts leads to a projected increase of 12 % 
in the critical buckling temperature for clamped channel section struts, in contrast to those that adopt the FGO 
graphene distribution pattern. For cases with simply-supported boundary conditions, this increase is noted to be 
approximately 9 %. Moreover, findings confirm that incorporating an asymmetric graphene distribution pattern 
(FGV) or introducing geometrical imperfections in the flanges and web that generate a bending moment within 
the structure from the beginning of thermal loading effectively prevents the primary natural frequencies of FG- 
GRC channel section struts from declining to zero close to the critical buckling temperature. This is significantly 
different from scenarios involving perfectly structured and symmetrically reinforced graphene distribution 
patterns such as FGX.   

1. Introduction 

1.1. Graphene as a composite reinforcement 

The domain of nanoscience has experienced significant expansion in 
the last twenty years, with nanotechnology coming to the forefront in 
areas like electronics, biomedicine, and energy. Within this framework, 
the identification and incorporation of graphene into polymer nano-
composites marks a notable achievement in nanoscience. Composed of 

carbon atoms in a hexagonal lattice, graphene is an atomic-scale layer 
that demonstrates a variety of extraordinary characteristics [1–6]. These 
include the high carrier mobility at room temperature (approximately 
10,000 cm2V⁻1S⁻1) [7], large theoretical specific surface area (2630 
m2g⁻1) [8], excellent optical transparency (approximately 97.7 %) [9], 
high Young’s modulus (around 1 TPa) [10], and outstanding thermal 
conductivity (ranging from 3000 to 5000 Wm⁻1K⁻1) [11]. When 
compared to other nanomaterials, graphene displays superior multi-
functional properties. 
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Molecular dynamic (MD) simulations are frequently used to clarify 
the properties of different carbon-based materials, such as graphite, 
fullerenes, and nanotubes [10–18]. MD simulations have confirmed that 
changes in the size of graphene sheets do not affect their anisotropic 
Young’s modulus [15]. Owing to its wide array of uses and impressive 
tensile strength, this fascinating material has now reached a point where 
its effective integration into polymer nanocomposites is feasible. This 
advancement is significant, as it opens up new possibilities in various 
fields where the unique properties of graphene can enhance the per-
formance of polymer-based materials. By blending graphene with 
polymers, we can create composites that are not only stronger and more 
durable but also have enhanced electrical and thermal properties, 
making them suitable for innovative applications in electronics, auto-
motive, aerospace, and other high-tech industries [19]. Unlike com-
posites reinforced with carbon fibers, where a substantial amount of 
carbon fibers can be included, composites reinforced with graphene 
(GRCs) have a limited capacity for adding nanofillers, typically ranging 
from 0.05 to 5 wt percent. This difference is mainly due to the distinct 
structural and physical properties of graphene compared to traditional 
carbon fibers. Graphene’s high surface area and strength allow it to 
provide significant reinforcement even at lower concentrations. More-
over, adding too much graphene can lead to agglomeration and a 
decrease in overall composite performance [20–22]. 

Due to existing technological challenges, the fabrication of func-
tionally graded materials (FGM) with an ideal and flawless transition 
between two distinct material phases remains a complex task. As a 
practical alternative, a multilayered structure, comprising several layers 
each demonstrating a gradual shift in the blend proportion between the 
matrix and nano-reinforcement materials, presents a viable solution 
[23]. For the construction of multilayer or graded composites, graphene 
platelets (GPLs) are utilized to strengthen the composite matrix. GPLs 
consist of multiple, parallel layers of two-dimensional graphene. The 
manufacturing process involves mixing epoxy, which acts as the com-
posite’s matrix, with specific weight percentages of graphene platelets. 
Typically, this blend is poured into a mold to form the initial layer. This 
process is repeated in a sequential manner to fabricate additional layers 
of the nanocomposite, each with different proportions of GPLs. Ulti-
mately, these individual layers are fused together to form a cohesive 
structure [23]. 

Integrating graphene sheets into a polymer matrix enables fine- 
tuning of the mechanical, thermal, and electrical characteristics of 
composite materials. This structured distribution of graphene not only 
lightens the composite’s weight but also makes it appropriate for 
lightweight applications without compromising structural strength and 
multifunctional capabilities. Numerous experimental and computa-
tional studies have been conducted to investigate the impact of using 
graphene sheets as reinforcements, especially with different graded 
distribution patterns, on the static and dynamic properties of engi-
neering structures. 

A multitude of research endeavors has been dedicated to examining 
laminated beams composed of graphene-epoxy nanocomposites. The 
findings from these studies uniformly indicate that a marginal elevation 
in the weight proportion of graphene markedly boosts the critical 
buckling load of these beams. Remarkably, the incorporation of a mere 
0.1 % weight fraction of graphene platelets has been observed to esca-
late the critical buckling load by an astounding 52 % when contrasted 
with beams fabricated exclusively from epoxy [24]. Furthermore, 
extensive numerical analyses, [25–29], have been conducted to examine 
the nonlinear bending, thermal post-buckling, and dynamic instability 
in laminated nanobeams reinforced with graphene. These studies 
employed the Timoshenko beam theory and considered the von-Karman 
nonlinear strain-displacement relationshiThe primary objective of these 
numerical studies was to elucidate the significant influence of the vol-
ume fraction and distribution pattern of graphene reinforcement on the 
nonlinear behavior of the nanobeams. 

The buckling behavior of a single-layer graphene/epoxy composite 

plate, sized at 23.79 × 12 nm, was evaluated employing the multiscale 
volume element method. The study featured atomistic-level modeling of 
graphene and a continuum-based analysis for polymer deformation. The 
findings reveal a substantial enhancement in the critical buckling load of 
the nanocomposite plate, registering a 26 % increase due to the inte-
gration of a 6 % volume fraction of graphene [30]. Another noteworthy 
outcome from recent numerical analysis that investigated the nonlinear 
bending [31], thermal post-buckling [32–35], and nonlinear vibration 
[36–38] responses of FG-GRC laminated plates is that a symmetric FG-X 
distribution pattern demonstrates superior performance in terms of 
critical buckling temperature and natural frequency when compared to 
other symmetric and asymmetric distribution patterns. In this particular 
symmetric arrangement of graphene, the topmost layer contains the 
highest concentration of graphene reinforcement. Progressing towards 
the midplane, there is a consistent reduction in the volume percentage of 
graphene, leading to the central composite layer that has the minimal 
graphene content. This gradient in graphene distribution is critical to the 
enhanced structural performance observed in this configuration. 

Considerable advancements in manufacturing techniques have 
markedly transformed the creation of advanced materials, culminating 
in the achievement of outstanding thermoelectromechanical properties. 
This evolution in production technology has notably enabled the fabri-
cation of innovative lightweight auxetic materials, distinguished by 
their extraordinary negative Poisson’s ratio (NPR) [39–41]. The fusion 
of remarkable characteristics inherent to architecturally derived mate-
rials and the superior properties of nanomaterials presents a promising 
avenue for enabling the creation of next-generation, high-performance, 
architected composites utilizing nanomaterials. This synergy harnesses 
the distinct architectural design elements and the advanced capabilities 
of nanomaterials to push the boundaries of composite structure perfor-
mance [41]. For example, the compressive and thermal post-buckling 
behavior of sandwich plates and cylindrical panels with an auxetic 
graphene-reinforced metal matrix composite (GRMMC) core have been 
examined by many researchers [42–44], and the results confirmed that 
the FG pattern of the graphene sheets combined with the auxeticity of 
the cellular core can impart structures with enhanced buckling resis-
tance. As an intriguing avenue for designing nano-architected meta-
materials inspired by the art of paper folding, graphene or graphene 
layers can also be folded to form cellular origamis that offer tailorable 
multifunctional properties, from auxeticity and foldability to tunablity 
of mechanical and thermoelectric and properties [45,46]. 

1.2. Thin-walled composite laminated struts 

Recent years have seen a notable expansion in the application of 
composite laminates across diverse sectors, attributed to their ability to 
strike an optimal balance between stiffness, strength, and weight. 
Concurrently, advancements in manufacturing technologies, particu-
larly 3D printing, have significantly transformed the fabrication of 
composite laminates. This evolution offers substantial advantages in 
design flexibility, customization, and production efficiency. The inte-
gration of 3D printing capabilities with the benefits of composite ma-
terials represents a pioneering methodology, opening new opportunities 
for constructing intricate and functional engineering structures, 
including thin-walled composite laminated struts [47,48]. 

These structures find frequent application in contexts requiring in- 
plane compressive loading, especially prevalent in the aerospace 
sector. The industry’s drive towards engineering efficient and light-
weight structures necessitates an assessment of local buckling and post- 
buckling behaviors at specific critical buckling loads. Conducting a 
meticulous analysis of compressive instability is imperative for these 
structures due to the significant diminution in compressive stiffness and 
load-bearing capacity observed during the post-buckling phase. This 
advanced understanding is critical to ensure structural integrity and 
performance under operational conditions [49]. Consequently, a 
comprehensive array of research endeavors, encompassing numerical 
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simulations, analytical techniques, and experimental studies, has been 
conducted on thin-walled struts with open and closed sections. These 
studies have focused on a variety of sectional geometries, employing a 
range of isotropic and anisotropic materials to evaluate their charac-
teristics precisely [49–74]. 

A cutting-edge P-version technique was developed to create a 
comprehensive 3D finite element model (FEM) for analyzing local, 
overall, and interactive buckling behaviors in thin-walled structures. 
This model encompassed various sectional geometries, including chan-
nel sections, box, and I-sections. A pivotal discovery of this research was 
the substantial impact of the length-to-web width ratio (L /Bw) on 
buckling types. Specifically, in short struts with an L /Bw ratio approxi-
mately equal to 1, a predominant local buckling mode was noted. 
Conversely, at lower L/Bw ratios, a transition between local and overall 
buckling modes was observed, resulting in an interactive buckling mode 
shape [68]. 

An analytical assessment of the local buckling behavior in fiber- 
reinforced composite laminated beams under uniform compressive 
load was performed for various sectional geometries, such as I, C, Z, T, 
and L configurations, utilizing two distinct methodologies [55,56,58, 
62]. The first method involved a segmented analysis of the beam’s 
components, like flanges and webs, employing an energy-based semi--
analytical technique with elastic rotational constraints at the flange-web 
junction. Conversely, alternate research introduced an integrated 
approach using the Ritz method, which conducted a collective analysis 
of webs and flanges as a unified system, implementing precise continuity 
conditions at the interconnections of webs and flanges. Both approaches 
provided closed-form formulas to determine key quantities, such as the 
critical buckling load. This characteristic renders these two approaches 
highly valuable and practical from an engineering standpoint. 

Finite element analysis (FEA) was employed to evaluate the influ-
ence of geometrical imperfections and elastoplastic material character-
istics on the post-buckling behavior, compressive stiffness, and 
structural failure of thin-walled I and box section struts [57]. The aim 
was to precisely compare the axial compressive stiffness variations 
under elastic circumstances against those in situations incorporating 
material nonlinearity. A comprehensive series of experimental tests 
were meticulously conducted on thin-walled struts, characterized by 
their complex cross-sectional profiles and the inclusion of multiple in-
termediate stiffeners. The obtained strength test results were compared 
with numerical simulations, validating the finding that the presence of 
intermediate stiffeners increases the local buckling stress level [60]. The 
application of the exact finite strip method (FSM) was implemented to 
analyze the local buckling and initial post-buckling characteristics of 
thin-walled I-section struts [59]. In addition, the evaluation of 
post-buckling stiffness and the geometrically nonlinear behavior of 
channel section struts was executed using two specialized analytical 
techniques: the semi-energy and the full-energy FSM [49,73]. In the first 
method, only the out-of-plane displacement is specified, while the sec-
ond method incorporates both in-plane and out-of-plane displacement 
functions from the very beginning of the computational process. It is 
worth noting that in a compelling previous study, the influence of 
interlaminar defects, delamination, on the post-buckling characteristics 
of fiber-reinforced composite laminated angle section and T-section 
struts was rigorously analyzed based on the layerwise theory. This 
detailed examination disclosed that delamination occurring amongst the 
flange layers markedly decreased the load-bearing capacity of these 
laminated composite thin-walled structures [57]. 

In conclusion, an exhaustive review of the literature clearly dem-
onstrates that local buckling must be considered as a paramount design 
factor for thin-walled struts, regardless of their cross-sectional configu-
ration. Local buckling significantly influences the axial compressive 
stiffness and consequently adversely affects the load-bearing capacity. 
Therefore, it is essential to prioritize addressing this crucial issue in such 
widely used engineering structures, through detailed evaluation of 
various strategies to ascertain effective solutions. 

To address the complex behavior of slender structural elements 
under compressive and thermal loads, this study introduces novel 
methodologies and findings that significantly extend the current un-
derstanding of local buckling phenomena of these structures. Unlike 
previous research, which primarily focused on conventional materials 
and reinforcements, this study uniquely explores the incorporation of 
multi-layer graphene into polymeric composite structures. This 
approach leverages the distinctive thermal and mechanical properties of 
graphenes to enhance the buckling resistance and load-bearing capa-
bilities of thin-walled channel section struts. Furthermore, the employ-
ment of the layerwise, third-order shear deformation theory (LW-TSDT) 
combined with a sophisticated three-dimensional finite element model 
in ABAQUS represents a significant advancement in the capabilities of 
analytical methods for tackling such problems. By comparing different 
graphene distribution patterns and introducing geometrical imperfec-
tions, this study provides new insights into optimizing structural resil-
ience against thermomechanical buckling. 

This research conducts a comparative analysis of various arrange-
ments of functionally graded graphene sheets, distributed along the 
thickness directions of the flanges and web plates in channel section 
struts. The aim is to identify the specific pattern combinations that most 
effectively enhance the critical buckling temperature, as well as the 
fundamental and second-order frequencies, in both pre- and post- 
buckling states. Alongside examining various material configurations 
and conducting an in-depth comparison of the thermal post-buckling 
characteristics between the most and least impactful cases against the 
uniform distribution (UD) graphene pattern, this study also assesses how 
boundary conditions and localized geometrical imperfections, applied 
either individually or collectively to each flange and web, influence the 
thermal instability response and variation of pre- and post-buckled 
frequencies. 

To fulfill the research goals effectively, an advanced, layerwise 
theoretical model based on the third-order shear deformation theory 
(TSDT) is developed. This innovative approach is instrumental in 
analyzing the thermal and mechanical instability responses of thin- 
walled structures. The initial step in this methodology involves treat-
ing the constituent plates (including flanges and web) as separate, 
distinct elements. This is followed by a discretization process, wherein 
each plate is segmented into several numerical layers along its thickness. 
A pivotal element of this method is the establishment of displacement 
and rotation shape functions at the midplane of each layer. It is crucial to 
underscore the importance of ensuring these shape functions adhere 
rigorously to the continuity and boundary conditions that govern the 
structural entirety. Moreover, a 3D finite element model is implemented, 
utilizing the commercial software ABAQUS, to incorporate some of the 
findings derived from the LW-TSDT. Additionally, this study presents a 
comparative evaluation of the central processing unit (CPU) time 
required by both methodologies. These approaches demand differing 
quantities of displacement and rotational degrees of freedom (DOFs) to 
precisely evaluate the nonlinear behavior observed in channel section 
struts. 

2. Basic theoretical formulations 

The current study delves into the structure of multilayer laminated 
composite channel section struts, comprising several subcomponents 
such as two vertical plates (named flange1&2) and a horizontal plate 
(termed the web), as shown in Fig. 1. Measurements for both flanges and 
the web are expressed in terms of thickness and width, denoted by tf , bf ,

tw, and bw, respectively. The strut’s total length is represented as L. 
Additionally, Fig. 1 illustrates the setup of a local Cartesian coordinate 
system, centered at the mid-plane of each structural subelement. These 
coordinate systems are crucial for the formulation of accurate 
displacement and rotational shape functions within the study. 

As highlighted earlier, each structural subcomponent, encompassing 
flanges and web, is composed of N distinct composite layers. These 
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layers consist of a polymeric matrix integrated with graphene sheets, 
where the concentration of graphene varies. This variation gives rise to a 
complex laminated construct termed a piecewise functionally graded 
graphene-reinforced composite. Within the scope of this research, two 
primary graphene reinforcement configurations are examined: the 
zigzag pattern (designated as 0◦-ply) and the armchair pattern (identi-
fied as 90◦-ply). The focus of this article is a comprehensive analysis and 
evaluation of six unique non-uniform graphene distribution patterns, 
assessing their reinforcement efficacy relative to the uniformly distrib-
uted (UD) graphene arrangement. The studied non-uniform patterns 
encompass four symmetric distributions (namely FG-X, FGX-FGX, FG-O, 
and FGO-FGO) and two asymmetric distributions (FG-V and FGV-FGV), 
as detailed in Table 1. 

Table 1 features a color-coded representation of the layers, indi-
cating the volume fraction of graphene sheets within each. In this 
scheme, a darker blue signifies layers containing the highest graphene 
volume fraction (0.11), whereas a lighter blue designates layers with the 
minimal graphene content (0.03). Additionally, the subscripts "2″ and "s″ 
are employed to describe two specific attributes. The subscript "2″ de-
notes the count of layers having an identical graphene volume fraction, 
distributed from the topmost to the bottommost layer. Conversely, the 
subscript "s″ is used to represent the symmetric distribution of graphene 
reinforcement across the thickness of the plate. 

Different permutations of the graphene distribution patterns detailed 
in Table 1 can be independently selected for the flanges and the web. For 
better understanding, Fig. 2 provides illustrative representations of 
channel section struts, showcasing instances where both the flanges and 
the web employ an identical FGX graphene distribution pattern. 

The comprehension of thermomechanical properties in GRCs plays a 
pivotal role in evaluating their structural functionality. To determine 
these properties with precision in polymer nanocomposites that are 
reinforced with graphene, MD simulations have been effectively utilized 
[75]. A critical comparison between the outcomes of these MD simula-
tions and the predictions made by both the Halpin-Tsai model [76] and 
the rule of mixtures [75] reveals a notable mismatch. This indicates that 
the conventional micromechanical models are somewhat limited in their 
ability to accurately capture the effective material properties of GRCs, 
especially due to nano-scale size and surface effect. Therefore, there is a 
recognized need for modification and refinement of these models [32]. 

To tackle this challenge, the Halpin-Tsai mathematical framework 
has been refined to account for varying volume fractions of graphene 
sheets through the incorporation of efficiency parameters. These pa-
rameters are ƞi, i = 1, 2,3 calibrated at different temperatures, ensuring 

alignment between the outcomes of MD simulations and the revised 
Halpin-Tsai model. This methodology enables an evaluation of both the 
elastic and shear modulus of the composite medium, which is reinforced 
with graphene sheets, as elucidated in reference [31]. 

E11 = ƞ1
(
VG,T

)
1 + 2

(
aG

hG

)

γ11VG

1 − γ11VG Em(T)
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where aG, bG, and hG, represent the length, width, and effective thick-
ness of the graphene sheet, respectively. The remaining supplementary 
parameters are as defined by [31,35]: 

γ11 =

(
EG

11(T)
Em(T)

)

− 1
(

EG
11(T)

Em(T)

)

+ 2
(

aG

hG

)

γ22 =

(
EG

22(T)
Em(T)

)

− 1
(

EG
22(T)

Em(T)

)

+ 2

(

bG

hG

)

γ12 =

(
GG

12(T)
Em(T)

)

− 1
(

GG
12(T)

Em(T)

) (2) 

It is important to acknowledge that Em and Gm symbolize the moduli 
of elasticity and shear, respectively, pertaining to the uniform isotropic 
matrix. Furthermore, in Eq. (2), the terms EG

11, EG
22, and GG

12 correspond 
to the elastic and shear moduli of the graphene sheets. Reflecting on the 
composition of each GRC laminate layer, which includes both graphene 
and the matrix, Eq. (1) uses VG to represent the volume fraction of 
graphene, while Vm, defined as 1-VG, reflects the proportional volume of 
the matrix. The Schapery model [75] is widely recognized and employed 

Fig. 1. (a) A schematic FG-GRC laminated channel section struts with their local coordinate systems (b) detailed view half of the piecewise functionally graded 
graphene reinforced cross-section. 
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for calculating the coefficients of thermal expansion in composite ma-
terials, including those reinforced with carbon nanotubes. This model is 
equally relevant and applicable to the analysis of GRC materials. 

α11 =
VGEG

11(T)αG
11(T) + VmEm(T)αm(T)

VGEG
11(T) + VmEm(T)

α22 =
(
1+ νG

12(T)
)
VGαG

22(T) + (1+ νm(T))Vmαm(T) − ν12(T)α11(T) (3)  

where αG
11, αG

22 and αm are the thermal expansion coefficients, and νG
12 

and νm are the Poisson’s ratios, respectively, of the graphene sheet and 
matrix. The Poisson’s ratios of the GRCs can be expressed in terms of the 
Poisson’ ratios of constituents according to the standard rule of mixes 
[75]. As a result, one may arrive at: 

ν12 = VGνG
12(T) + Vmνm(T) (4) 

The Generalized Higher Order Shear Deformation Theory (GHSDT) 
represents an advanced theoretical approach for examining the behavior 
of thin-walled structures subject to bending, buckling, and vibrationa 
forces. Diverging from traditional plate theories, GHSDT introduces 
higher-order displacement variables, coupled with the presumption of a 
linear variation in shear strains across the thickness of the plate. A more 
refined and streamlined variant of GHSDT is the Third-Order Shear 
Deformation Theory (TSDT). The TSDT framework limits itself to third- 
order displacement terms while maintaining the assumption of linear 
shear strain variation. Renowned for its precision in predicting the re-
sponses of thin-walled structures under diverse load conditions and 
boundary constraints, TSDT has become a staple in various engineering 
disciplines for its practical efficacy [77]. 

In the field of laminated plate theories, essential for analyzing plates 
and shells, there are two main methodologies: the Equivalent Single 
Layer (ESL) theory and the Layerwise theory. Both approaches simplify 
the complex 3D elasticity challenges into a more manageable two- 
dimensional (2D) format, as referenced in [78,79]. Yet, the ESL theory 
faces particular limitations, especially in accurately capturing stress and 
strain distributions in thick composite laminates or in cases with layers 
of dissimilar materials, like FG-GRC, where thermomechanical proper-
ties vary across the thickness. This limitation stems from its assumption 
of uniform transverse shear stresses throughout the thickness. To over-
come these challenges and precisely determine the post-buckling 
behavior of FG-GRC laminated channel section struts, this research 
utilizes the Layerwise theory in conjunction with the TSDT. This 
approach marks a pioneering effort in analyzing such thin-walled 
structures using this combined methodology. 

The TSDT-based formulation of displacement fields for individual 
numerical layers, defined under the layerwise theory, within the FG- 
GRC laminated composite channel section struts, whether in the web 
or flange, can be expressed as follows [77]: 

ui
j(x, y, z, t) = ui

j,0(x, y, t) + θi
j(z)φ

i
j,x(x, y, t) + γi

j(z)ψi
j,x(x, y, t)

vi
j(x, y, z, t) = vi

j,0(x, y, t) + θi
j(z)φ

i
j,y(x, y, t) + γi

j(z)ψi
j,y(x, y, t)

wi
j(x, y, z, t) = wi

j,0(x, y, t) + w∗(x, y, t) (5) 

As illustrated in Fig. 3, ui
j,0, vi

j,0, and wi
j,0 represent the displacement 

components defined at the midplane of the ith numerical layer located at 
the jth region including flange 1 and 2 or web; φi

j,x and φi
j,y are also the 

middle surface rotations of those regions around the Y and X axes, 
respectively. Additionally, ψi

j,x and ψ i
j,y denote the higher-order terms 

related with Taylor series. These parameters can be written as: 

ψi
j,x =

∂wi
j

∂x
, ψi

j,y =
∂wi

j

∂y
, θi

j(z) = z −
4z3

3hi
j
2, γi

j(z) = −
4z3

3hi
j
2, φi

j,x =
∂ui

j

∂z
, φi

j,y

=
∂vi

j

∂z
(6) 

For the sake of brevity, the von-Karman nonlinear strain–displace-
ment and linear stress-strain relations, as well as stiffness matrix equa-
tions are given in Appendix A. 

3. Structural modelling of channel section struts 

3.1. Modelling based on the LW-TSDT 

Within the scope of layerwise theory, it’s imperative to divide the 
flanges and web plates into a series of numerical layers, aligned with 
their thickness. The number of these layers may equal, exceed, or be 

Table 1 
Lay-up arrangements of the FG-GRC laminated plates with different graded 
graphene distributions.  

Graphene 
distribution 
patterns 

Lay-up arrangements of graphene 
volume fraction 

Schematic distribution 
patterns 

FG-X [0.11,0.09, 0.07,0.05, 0.03]S 

FGX-FGX [0.09,0.07, 0.03,0.07, 0.09]S 

FG-O [0.03,0.05, 0.07,0.09, 0.11]S 

FGO-FGO [0.05,0.07, 0.11,0.07, 0.05]S 

FG-V 
[
(0.11)2, (0.09)2, (0.07)2, (0.05)2,

(0.03)2
]

FGV-FGV [0.11,0.09,0.07,0.05,0.03,0.11,0.09,
0.07,0.05,0.03]
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fewer than the actual number of graphene-reinforced polymer com-
posite layers comprising the flanges and web. Notably, increasing the 
count of numerical layers tends to enhance result accuracy. However, 
this advantage is balanced by a corresponding increase in computational 
load and CPU resource consumption. The layerwise theory necessitates 
unique rotational functions around the X and Y axes for each segmented 
layer. In this research, the in-plane and out-of-plane displacement 
functions at the midplane of each numerical layer are accurately defined 
according to the TSDT. 

Fig. 3 presents a detailed schematic of the methodical steps required 
for the precise application of the Layerwise Third-Order Shear Defor-
mation Theory (LW-TSDT). The process begins by dividing the FG-GRC 
channel section strut into three separate components: two flanges and 
one web. Each component is assigned its own local coordinate system, 
centered at the midplane. The next phase involves the stratification of 
each component into a variable number of numerical layers along their 
thickness. In this phase, each segmented layer is treated analogously to a 
distinct plate. This facilitates the establishment of rotational and 
displacement shape functions at the midplanes of these layers, consis-
tent with the tenets of the TSDT. It’s essential for the shape functions to 
precisely conform to the continuity conditions where adjacent numeri-
cal layers meet. They must also align with the boundary conditions at 
the channel section struts’ longitudinal ends. While our theoretical 
framework accommodates different types of edge supports, this partic-
ular analysis is focused on FG-GRC channel section struts with clamped 
and simply-supported boundary conditions at both ends, as mathemat-
ically outlined in Table 2. 

At the conclusion of the process, the three components, two flanges 
and one web, are integrated to create a unified structure for analytical 
purposes. A critical factor in this integration is the verification that the 
rotational and displacement functions, established in the preceding step, 
meet the continuity condition at the junction where the flange and web 
plates intersect and connect. 

The adoption of an in-plane stress-free edge as a continuity condition 
at the flange-web junction in various open section struts is a prevalent 
practice. This approach significantly enhances the alignment of both 
analytical and numerical methods with real-world conditions, especially 
in the study of their nonlinear post-buckling behavior. In the context of 
this study, the condition applied permits the nodes at the junction of the 
flanges and web plates to move freely within the plane, while their out- 
of-plane displacements are constrained. For any given point along the 
junction’s length, there exist two overlapping nodes. One node pertains 
to the flange and the other is linked to the web plate. The imposed 
continuity condition here ensures that the in-plane displacement of 
these nodes in the X-direction is identical, and they share an equal 

rotation about the X and Y-axes. The in-plane stress-free edge condition 
essentially implies that following the local buckling of wall sections, the 
junctions maintain their flatness without experiencing any out-of-plane 
displacements. The mathematical representation of this condition is 
expressed as follows: 
(

u(i)
f ,φ(i)

xf ,φ
(i)
yf

)
|
yʹ=

− bf
2

=
(

u(i)
w ,φ(i)

xw,φ
(i)
yw

)
|
y= bw

2
, {i= 1..n}

(
u(i)

f ,φ(i)
xf ,φ

(i)
yf

)
|
yʹ́ =

bf
2
=
(

u(i)
w ,φ(i)

xw,φ
(i)
yw

)
|
y= − bw

2
, {i=1..n}

w(i)
w

⃒
⃒
⃒
⃒x = − L1

2 = w(i)
w

⃒
⃒
⃒
⃒x = L1

2 = w(i)
w

⃒
⃒
⃒
⃒y = − bw

2 = w(i)
w

⃒
⃒
⃒
⃒y = bw

2 = 0, {i= 1..n}

w(i)
f

⃒
⃒
⃒
⃒y

ʹ = − bf
2 = w(i)

f

⃒
⃒
⃒
⃒y

ʹ́ = bf
2 = 0, {i= 1..n} (7) 

These factors contribute to the increased complexity involved in 
designing the rotational and displacement functions for FG-GRC channel 
section struts. In Eq. (7), indexes ̋ f˝ and ̋ w˝ associated with the flange 

and web, respectively. For instance, 
(

u(i)
f , w(i)

f

)
and 

(
u(i)

w , w(i)
w
)

represent 

the in-plane and out-of-plane displacements of the ith numerical layer 
located through the thickness of the flange and web, respectively. 
Additionally, (φ(i)

xf ,φ
(i)
yf ) and (φ(i)

xw,φ(i)
yw) correspond to the midplane 

rotation of the ith numerical layer of the flange and web, respectively. 
As expressed in Eq. (7), all these rotational and displacement shape 

functions are defined according to the local coordinate systems estab-
lished at the mid-plane center of the flanges and web plates. 

Table 2 elucidates that the fundamental difference between clamped 
and simply-supported boundary conditions is confined solely to the 
rotation of the flanges and web about the local Y-axis (φ(i)

xw, φ(i)
xf ). In 

contrast, all other shape functions, including in-plane and out-of-plane 
displacements, as well as rotations around the X-axis, are consistent 
across both types of boundary conditions. Following this, the viable 
functions for out-of-plane displacements under both clamped and 
simply-supported conditions are determined in accordance with Eq. (8). 

w(1)
w =

∑M

m=0

∑N

n=0

(

x −
L
2

)(

x+
L
2

)(

y+
bw

2

)(

y −
bw

2

)

w(1)
w,mnxmyn, w(1)

w

= w(i)
w i = 2..n  

Fig. 2. Schematic depiction of the cross-section with an FGX graphene distribution pattern within both the flanges and the web.  
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Fig. 3. A typical channel section strut and segmentation of the flanges and web (a) Separation of flanges and web, (b) Discretization of flanges and web through their 
thickness based on the layerwise theory. 

Table 2 
Mathematical expressions of the boundary conditions at longitudinal ends of the FG-GRC channel section struts.  

Boundary condition Out-of-plane displacement Rotation 

clamped Flange w(i)
f |x = − L1

2 = w(i)
f |x = L1

2 = 0i = 1..n φ(i)
xf |x = − L1

2 = φ(i)
xf |x = L1

2 = 0i = 1..n 
Web w(i)

w |x = − L1
2 = w(i)

w |x = L1
2 = 0i = 1..n φ(i)

xw|x = − L1
2 = φ(i)

xw |x = L1
2 = 0i = 1..n 

simply-supported Flange w(i)
f |x = − L1

2 = w(i)
f |x = L1

2 = 0i = 1..n φ(i)
xf |x = − L1

2 & φ(i)
xf |x = L1

2 ∕= 0i = 1..n 
Web w(i)

w |x = − L1
2 = w(i)

w |x = L1
2 = 0i = 1..n φ(i)

xw|x = − L1
2 & φ(i)

xw |x = L1
2 ∕= 0i = 1..n  
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w(1)
f1 =

∑M

m=0

∑N

n=0

(

x −
L
2

)(

x+
L
2

)(

yʹ+
bf

2

)

w(1)
f1,mnxmyn, w(1)

f1 = w(i)
f1 i

= 2..n  

w(1)
f2 =

∑M

m=0

∑N

n=0

(

x −
L
2

)(

x+
L
2

)(

yʹ́ −
bf

2

)

w(1)
f2,mnxmyn, w(1)

f2 = w(i)
f2 i

= 2..n (8) 

Eq. (8) clearly indicates that the out-of-plane displacements of both 
the web and flanges (ww, wf ) are restricted along their longitudinal 
boundaries (x = L

2, x = − L
2), adhering to the specified boundary con-

ditions. As detailed earlier, these conditions require either clamping or 
simply-support of the channel section strut at its longitudinal ends. 
Additionally, the equation highlights that in order to meet the continuity 

conditions at the junctions of the web and flanges 
(

at y = bw
2 , y = − bw

2 ,

yʹ = −
bf
2 , and yʹ́ =

bf
2

)

, where it is assumed that these intersections 

remain flat following the post-buckling deflection, the out-of-plane 
displacements of both the web and flanges are also required to be con-
strained at these specific points. 

Assuming the absence of interlaminar imperfections like delamina-
tion between the graphene-reinforced composite layers of both flanges 
and web, it is observed that each ply within these areas experiences the 
same out-of-plane displacement when subjected to bending. This leads 
to the assumption that the out-of-plane displacements for all discretized 
numerical layers in each flange or web section are consistent. Ensuring 
this consistency is vital for fulfilling the continuity condition along the 
out-of-plane interfaces of the numerical layers. With these consider-
ations in mind, it can be concluded that the total degrees of freedom 
required for modeling the out-of-plane displacements in channel section 
struts is quantified as 3 (M + 1) (N + 1). 

The presumed polynomial displacement functions within the X and Y 
directions for both the flanges and web are expressed in Eqs. (9) and 
(10), respectively: 

Uref
w =

∑P

p=0

∑Q

q=0

(

x −
L
2

)(

x+
L
2

)

Uref
w,pqxpyq  

U(1)
w = Uref

w + θ(1)
w

(
h(1)

w
2

)

φ(1)
w,x + γ(1)w

(
h(1)

w
2

)

ψ(1)
w,x  

U(2)
w = Uref

w − θ(2)
w

(
h(2)

w
2

)

φ(2)
w,x − γ(2)w

(
h(2)

w
2

)

ψ(2)
w,x  

⋮ 

U(n)
w = U(n− 1)

w − θ(n− 1)
w

(
h(n− 1)

w
2

)

φ(n− 1)
w,x − γ(n− 1)

w

(
h(n− 1)

w
2

)

ψ(n− 1)
w,x

− θ(n)
w

(
h(n)

w
2

)

φ(n)
w,x − γ(n)w

(
h(n)

w
2

)

ψ(n)
w,x  

Uref
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[
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(
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L
2

)(

x+
L
2
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bf1

2

)

Uref
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]

+ Uref
w

(

x,
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2

)
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2
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(
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2
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)
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)

φ(n)
w,y − γ(n)w

(
h(n)
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)
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V(1)
f2 = Vref

f2 + θ(1)
f2

(
h(1)

f2

2

)

φ(1)
f2,y + γ(1)f2
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2
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2

)
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A critical element to consider is the incorporation of reference 
values, Uref and Vref , representing the in-plane displacements of the 
flanges and web along the X and Y axes, respectively. These reference 
values play a pivotal role in ensuring the in-plane continuity condition at 
the interfaces of the numerical layers, which are discretized across the 
thickness of each distinct subcomponent, flanges and web. Furthermore, 
to satisfy the continuity condition at the junction, it is imperative that 
the reference in-plane displacements of the flange through the X direc-
tion (Uref

f ) are consistent with those of the web (Uref
w ) across the junction 

at any given length coordinate. It should be noted that h(i)
f and h(i)

w 

indicate the thickness of the ith numerical layer within the flanges and 
web, respectively. 

Based on the stipulated requirements for continuity and boundary 
conditions that govern the in-plane displacement functions in both X and 
Y directions, it is inferable that the total number of degrees of freedom 
associated with these functions amounts to 3[(P + 1)(Q + 1)+ (R +

1)(S + 1)]. 
In addition, the midplane rotation of each numerical layer defined 

through the flanges and web of the channel section struts with clamped 
boundary conditions can be expressed as follows with considering the 
continuity conditions at the junctions. It is also worth noting that the 
rotational shape functions for channel section struts subject to simply- 
supported boundary conditions are provided in Appendix B. 
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(11)  
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Eq. (11) illustrates that the midplane rotation of different numerical 
layers about the Y-axis, (φ(i)

w,x,φ(i)
f ,x), is limited at the longitudinal ends of 

the channel section strut, (x = L
2, x = − L

2). This limitation is a result of 
the established fixed boundary conditions at these specific edges. Based 
on the layerwise theory, it is necessary for each numerical layer assumed 
through the thickness of the flanges and web to possess distinct rota-
tional functions, enhancing the precision in evaluating strain and stress 
distributions. As illustrated in Fig. 3, the FG-GRC channel section strut is 
discretized totally into 3n numerical layers, with each layer requiring a 
distinct rotational shape function. Hence, the cumulative number of 
unknown coefficients related to these rotational functions is calculated 
to be 3n ((J + 1)(K + 1)+ (D + 1)(T + 1)). 

This paper focuses on examining the influence of geometrical im-
perfections on the nonlinear thermal compressive behavior of channel 
section struts. These imperfections, which happen due to several reasons 
including manufacturing tolerances, material defects, thermal effects, 
and aging, add a realistic dimension to the study. Essentially, these 
imperfections are deviations from the perfect flatness of FG-GRC lami-
nated channel section struts. Given the boundary conditions and 
ensuring stress-free edge continuity at the junction, the formulation of 
the initial imperfection affecting the entire strut is detailed as follows 
[80]: 

W∗
= ηhsech[δ1(x1 − ψ1)]cos[μ1π(x1 − ψ1)]sech[δ2(x2 − ψ2)]cos[μ2π(x2 − ψ2)]

(13)  

where x1 =

x+

(

L
2

)

L and x2 =

y+

(

b
2

)

b , η is the maximum dimensionless 
amplitude of the initially deflected geometry, δ1 and δ2 are the constants 
defining the localization degree of the imperfection that is symmetric 
about ψ1 and ψ2 and μ1 and μ2 are the half-wave numbers of the 
imperfection in X and Y-axes, respectively. This equation is designed to 
accommodate a broad spectrum of initial imperfection patterns. 

Table 3 displays the specific geometrical imperfections implemented 
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locally to the flange and web segments of FG-GRC laminated channel 
section struts. These imperfections are aligned with the first buckling 
mode of these thin-walled structures. Highlighting the importance of 
these imperfections, it is crucial to understand that they play a signifi-
cant role in the accurate prediction of thermal instability response under 
various conditions. By simulating real-life scenarios where minor de-
viations from perfect geometry can have a profound impact on the 
structural integrity, this method enhances the reliability of structural 
analysis and design. 

In analyzing the nonlinear thermal compressive behavior and the 
thermally induced pre- and post-buckling free vibration characteristics 
of FG-GRC laminated channel section struts, the approach is based on 
the principle of minimum total potential energy. The total potential 
energy of a structure is a comprehensive measure that encompasses 
several key components. It includes the potential energy due to external 
loads, reflecting the work exerted by external forces on the structure. 
Additionally, it accounts for the total strain energy, which represents the 
energy associated with internal stresses and deformations within the 
structure’s material. Kinetic energy, which pertains to the motion of the 
structure, also forms a part of the total potential energy calculation [77]. 
Regarding the fact that the channel section strut is uniformly subjected 
to thermal loading, it can be inferred that the potential energy 

associated with external forces is negligible. Consequently, in this 
context, the total potential energy of the structure primarily comprises 
the sum of its total strain energy and kinetic energy. 

Given that the channel section strut’s flanges and web are divided 
into several numerical layers as per layerwise theory, and each layer has 
specific displacement and rotational functions, the total potential energy 
of the structure is obtained by summing the strain and kinetic energy of 
each layer as illustrated in the following equations: 

∏Total
=
∑n

i=1

(
U(i)

w +T(i)
w
)
+
∑n

i=1

(
U(i)

f1 +T(i)
f1

)
+
∑n

i=1

(
U(i)

f2 +T(i)
f2

)

∏Total
=

(
1
2

)[
∑n

i=1

∫ ((
σ(i)

w
)Tε(i)w + ρh

(
U̇(i)

w + V̇(i)
w + ẇ(i)

w
))

dV

+
∑n

i=1

∫ ((
σ(i)

f1

)T
ε(i)f1 + ρh

(
U̇(i)

f1 + V̇(i)
f1 + ẇ(i)

f1

))
dV

+
∑n

i=1

∫ ((
σ(i)

f2

)T
ε(i)f2 + ρh

(
U̇(i)

f2 + V̇(i)
f2 + ẇ(i)

f2

))
dV

]

(14) 

To maintain brevity, the strain and kinetic energy of the first 

Table 3 
schematic of local imperfections applied to flange and web of channel section struts.  

Segment Parameters Imperfection mode (x-y plane) Imperfection mode (3D) 

Flange δ1 = δ2 = 0μ1 = 1, μ2 = 0.5 
η = 0.2ψ1 = 0.5, ψ2 = 1 

Web δ1 = δ2 = 0μ1 = 1, μ2 = 1 
η = 0.2ψ1 = 0.5, ψ2 = 0.5 
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numerical layer positioned in the web (U(1)
w and T(1)

w ), illustrated in 
Fig. 3, are extended in Eqs. (15) and (16), respectively: 

U(1)
w =

∫
1
2

σTε dV  

=
1
2

∫
bw
2

− bw
2

∫
L
2

− L
2

({
ε0}(1)

w [A](1)w
{

ε0}(1)
w

T
+2
{

ε0}(1)
w [B](1)w

{
ε1}(1)

w
T

+
{

ε1}(1)
w [D](1)w

{
ε1}(1)

w
T
+2
{

ε0}(1)
w [E](1)w

{
ε3}(1)

w
T
+
{

ε1}(1)
w [F](1)w

{
ε3}(1)

w
T

+
{

ε3}(1)
w [H]

(1)
w
{

ε3}(1)
w

T
+
{

γ0}(1)
w [As](1)w

{
γ0}(1)

w
T
+2
{

γ0}(1)
w [Ds](1)w

{
γ2}(1)

w
T

+
{

γ2}(1)
w [Fs](1)w

{
γ2}(1)

w
T
)

(15)  

The inertial terms are obtained through the integration of the 
density. 

Following this stage, the total potential energy should be minimized 
by using the unknown displacement and rotation coefficients as shown 
in Eqs. (18) and (19) [81] 

∂
∏

∂χ = 0 (18)  

where χ is the vector of unknowns, expressed by 

{
∑P

p=0

∑Q

q=0

(
uref

w,pq + uref
f1,pq + uref

f2,pq

)
,
∑R

r=0

∑S

s=0

(
vref

w,rs + vref
f1,rs + vref

f2,rs

)
,
∑M

m=0

×
∑N

n=0

(
wref

w,mn +wref
f1,mn +wref

f2,mn

)
,

(
∑n

i=1

∑J

j=0

∑K

k=0

∅(i)
wx,jk +

∑n

i=1

∑J

j=0

×
∑K

k=0

∅(i)
f1x,jk +

∑n

i=1

∑J

j=0

∑K

k=0

∅(i)
f2x,jk

)

, (
∑n

i=1

∑D

d=0

∑T

t=0
∅(i)

wy,dt +
∑n

i=1

∑D

d=0

×
∑T

t=0
∅(i)

f1y,dt +
∑n

i=1

∑D

d=0

∑T

t=0
∅(i)

f2y,dt

}

(19) 

Eq. (18) leads to the nonlinear general dynamic matrix equation of 
the FG-GRC channel section strut: 

[M]{χ̈} + [K(T, χ)]{χ} = {F(T)} (20)  

Where [M] is the mass matrix, [K(T, χ)] is the stiffness matrix; {χ̈} and {χ}
are the Jacobi expanded coefficients, and {F(T)} is the force matrices. 

To solve Eq. (20), it can be assumed that 

χ = χ s + χ t (21)  

Where χ s is the time-independent particular solution which means the 
incremental thermal large deflection, and χ t is the time-dependent. 
Therefore, by substituting Eq. (21) into Eq. (20), two sets of system of 
equations can be obtained as: 

[K(T, χ)]{χ s} = {F(T)} (22) 

T(1)
w =

(
1
2

) ∫
bw
2

− bw
2

∫
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2
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(16)   

{
Iij
0 Iij

1 Iij
2 Iij

3 Iij
4 Iij

5

}
=

∫
hij

2

−
hij

2

ρ(z)
{

1 θ1(z) θ2
1(z) θ2(z) θ1(z)θ2(z) θ2

2(z)
}
dz (17)   
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[M]{χ̈ t} + [K(T, χ)]{χ t} = 0 (23) 

Eq. (22) addresses the nonlinear thermal post-buckling analysis, 
while Eq. (23) is formulated for examining the thermally induced vi-
brations in channel section struts. In addition, the subscripts ’s’ and ’t’ 
denote the static and dynamic displacement of the plate, respectively. 
The Newton-Raphson iterative method is frequently employed to solve 
nonlinear systems of equations in thermal post-buckling analysis, Eq. 
(22). After resolving the Eq. (22) and determining the displacement for 
the given thermal load, it is essential to refresh and incorporate the 
tangent stiffness matrix, [K(T, χ)], into Eq. (23). This step facilitates 
solving the eigenvalue equation, thereby enabling the computation of 
linear fundamental frequencies. 

3.2. Modelling based on the finite element simulation 

To validate the accuracy of the results derived from the LW-TSDT 
approach, this study employs a sophisticated 3D-FEM developed using 
the ABAQUS, which encompasses two critical phases. Initially, a 
comprehensive 3D model is constructed, integrating specific material 
characteristics, load conditions, and boundary parameters. Subse-
quently, a linear perturbation buckling analysis is conducted to identify 
the various buckling modes of the channel section struts. Following this, 
the analysis transitions to the static Riks method, replacing the linear 
buckling approach. This method considers nonlinear geometric factors, 
incorporating the first buckling mode shape identified earlier as an 
imperfection within the Riks method. It’s imperative to highlight the 
significant impact of the imperfection amplitude on the convergence of 
the nonlinear post-buckling analysis. In the nonlinear simulation con-
ducted using ABAQUS, the imperfection amplitude for the channel 
section struts is set to 0.001 times the magnitude of the initial buckling 
mode shape. 

In this research, as previously highlighted, the edge supports are 
modeled as either clamped or simply-supported boundary conditions. 
Additionally, it is crucial to consider that the in-plane displacement of 
the channel section struts in the X direction must be constrained, as 
illustrated in Fig. 4(a). This constraint is particularly pertinent due to the 

thermal loading involved in the study. When the temperature uniformly 
increases, it induces expansion throughout the entire structure. The 
imposed restriction counteracts this expansion, thereby precipitating the 
buckling phenomenon. 

In the finite element simulation, the 3D, 8-node, linear isoperimetric 
element (C3D8) is utilized. The C3D8 element in ABAQUS represents a 
brick-shaped volume with eight nodes situated at specific coordinates in 
the 3D space, defining its geometry. It is capable of deformation and 
shape alteration when subjected to applied loads or constraints. With 
each node having three DOFs, translation displacement along the X, Y, 
and Z axes, the element possesses a total of 24 DOFs (8 nodes * 3 DOFs 
per node). 

4. Results and discussion 

The nonlinear compressive instability of composite laminated 
channel section struts reinforced by graphene sheets is investigated 
using the approach described in the preceding sections. For the matrix, 

Fig. 4. A typical channel section strut modelled based on the finite element simulation (a) implementing clamped boundary conditions, (b) diagrammatic repre-
sentation of the mesh for the channel section strut. 

Table 4 
. Thermomechanical properties of single layer graphene sheet with geometrical characteristics aG = 14.76 nm, bG

= 14.77 nm, hG
= 0.188 nm [75].  

T [K] EG
11 [TPa] EG

22[TPa] GG
12 [TPa] νG

12 αG
11
[
10− 6/K

]
αG

22
[
10− 6/K

]

300 1.812 1.807 0.683 0.177 − 0.9 − 0.95 
400 1.769 1.763 0.691 0.177 − 0.35 − 0.4 
500 1.748 1.735 0.700 0.177 − 0.08 − 0.08 
700 1.737 1.721 0.676 0.177 0.25 0.3 
1000 1.660 1.646 0.645 0.177 0.32 0.32  

Table 5 
The efficiency parameters ƞi, i = 1,2, 3 for different volume fractions of gra-
phene sheets at three different levels of temperature [30,31,34].  

T (K) VG ƞ1 ƞ2 ƞ3 

300 0.03 2.929 2.855 11.842 
0.05 3.068 2.962 15.944 
0.07 3.013 2.966 23.575 
0.09 2.647 2.609 32.816 
0.11 2.311 2.260 33.125 

400 0.03 2.977 2.896 13.928 
0.05 3.128 3.023 15.229 
0.07 3.060 3.027 22.588 
0.09 2.701 2.603 28.896 
0.11 2.405 2.337 29.527 

500 0.03 3.388 3.382 16.712 
0.05 3.544 3.414 16.018 
0.07 3.462 3.339 23.428 
0.09 3.058 2.936 29.754 
0.11 2.736 2.665 30.773  
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Poly (methyl methacrylate), also known as PMMA, is chosen, and it is 
characterized by material properties Em = (3.52 − 0.0034T)GPa, νm =

0.34, and αm = 45 × 10− 6(1+0.0005(T − T0))K− 1 [75]. Additionally, 
the reinforcement for each layer consists of graphene sheets with an 
effective thickness of hG

= 0.188 nm. Due to the pronounced influence 
of temperature variation on graphene sheets’ material properties, an MD 

simulation was employed by Lin et al. [75] to derive the material 
characteristics of graphene sheets at different temperatures, as depicted 
in Table 4. 

The extended Halpin-Tsai approach, as presented in Eq. (1), was 
introduced to enhance the precision of material property determination 
for GRC laminated channel section struts, which builds upon the original 

Fig. 5. Comparison the results obtained from FEM and LW-TSDT (a) nonlinear thermal equilibrium paths of flange and web in a channel section strut (b) variations 
in pre-and post-buckling fundamental frequencies. 
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Halpin-Tsai method. This approach involves several efficiency parame-
ters denoted as ƞi, where i takes the values of 1, 2, and 3. The evaluation 
of these parameters for five different graphene volume fractions at three 
different temperatures was conducted by Shen et al. [30,31,34], and the 
results are shown in Table 5. 

In all cases studied in this work, the specified GRC laminated channel 
section struts (flanges and web) consist of ten plies stacked in the 
sequence [0, 90,0, 90,0]s. As mentioned, the investigation involves the 
utilization of seven distinct graphene distributions to reinforce the 
specified composite channel section strut. Among these distributions, 
one is the UD pattern, while the remaining six follow a functionally 
graded distribution. Moreover, it should be emphasized that in this 
study, the thicknesses of both the web and flanges are maintained 
identical, 

(
tf = tw

)
. 

4.1. GRC laminated channel section strut with UD graphene pattern 

One of the principal targets of this study is to undertake a compre-
hensive comparative evaluation of how varying graphene distribution 
patterns impact the nonlinear thermal instability responses and the 
thermally induced natural frequencies variations in composite lami-
nated channel section struts, both in pre-buckling and post-buckling 
states. To achieve this objective, a thorough comparison is made be-
tween several graphene distribution patterns, with the UD pattern 
serving as the reference case. 

The comparison methodology employed in this research comprises 
three distinct phases. initially, the comparative analysis begins with the 
presumption that each distinct segment of the channel section strut, 
which includes two vertical walls (flanges) and one horizontal wall 
(web), is constructed from ten plies of graphene reinforced composite 
material, all adhering to the UD distribution pattern. Following this 
assumption, a detailed nonlinear thermal instability analysis is per-
formed to acquire results pertinent to the reference case. In the second 
step of the comparative analysis, the graphene distribution patterns 
through the flanges thickness are altered to include various non-uniform 
distribution patterns such as FG-X, FGX-FGX, FG-O, FGO-FGO, FG-V, 
and FGV-FGV. This analysis endeavors to ascertain which specific 
types of non-uniform graphene distribution patterns, applied through 
the flanges, exert the most and least significant impact on the critical 
buckling temperature and fundamental natural frequencies of the 
channel section struts, while maintaining a constant UD graphene dis-
tribution pattern across the web’s thickness in all case studies. 

The final step involves selecting and maintaining the best non- 
uniform graphene distribution pattern for the flanges obtained from 
the second steSimultaneously, the web is subjected to a variety of non- 
uniform graphene distribution patterns, replacing the initial UD 
pattern. Consequently, it becomes feasible to identify the optimal 
combination of graphene distribution patterns that can be applied across 
the thickness of the flanges and web, with the aim of improving the 
critical buckling temperature and fundamental natural frequencies. 
Furthermore, this process is conducted again, but this time employing 
the least effective non-uniform graphene distribution patterns for the 
flanges. The purpose of this stage is to conclusively recognize the least 
efficient combination of graphene distribution patterns when used on 
the entire channel section strut. 

Two key points should be highlighted for clarity: First, in all the 
scenarios examined in this paper, the graphene distribution pattern is 
kept identical for both flanges to ensure symmetry. Second, the total 
volume percentage of graphene used remains the same in all case 
studies; the primary difference lies in the distribution patterns of the 
graphene. 

Prior to initiating the comparative analysis of various graphene 
distribution patterns using the aforementioned methodology, it’s crucial 
to establish a baseline of verification results. Fig. 5(a) showcases the 
thermal equilibrium paths for channel section struts with three different 

shape factors, R = bf/bw, reinforced with a UD graphene distribution 
pattern and considering the clamped boundary conditions at both lon-
gitudinal ends of the structure. Additionally, Fig. 5(b) confirms the 
changes in the fundamental frequency of the plate both in pre-and post- 
buckling conditions. 

This paper employs a specific notation to represent boundary con-
ditions: ’CCC–CCC’ for clamped and ’SSS-SSS’ for simply-supported 
conditions. This format reflects the setup where, at each longitudinal 
end of the structure, there are three edges, two belonging to the flanges 
and one to the web’s edge. The notation confirms that at both ends, all 
edges are subjected to the same type of boundary condition. Moreover, 
the various types of graphene reinforcement combinations utilized for 
the web and flanges of the channel section struts, represented sche-
matically in the A-B format. In this notation, the first element (A) rep-
resents the graphene distribution pattern applied to the web, and the 
second element (B) corresponds to the specific type of graphene rein-
forcement pattern used for the flange. For example, in the UD-FGX case, 
UD refers to the graphene distribution for the web, and FGX indicates the 
graphene distribution pattern adopted for the flanges in the channel 
section struts. 

As shown, the deflection curve for the flange corresponds to the 
center of its longitudinal free edge, while the deflection of the web is 
associated with its central point. These paths are derived using the LW- 
TSDT and compared with outcomes from numerical simulations con-
ducted using the ABAQUS commercial software. 

A preliminary analysis of Fig. 5 reveals a significant correlation be-
tween the findings acquired from the LW-TSDT and those computed 
using the FEM. Moreover, the results demonstrate that increasing the 
flange width dimension inversely affects the compressive strength of the 
channel section struts, leading to greater flange deflection in the post- 
buckling phase and a subsequent decrease in the critical buckling tem-
perature. To clarify, with a flange-to-web width ratio R = 0.2, the 
critical buckling temperature for UD channel section struts is approxi-
mately T = 400 K. Increasing this ratio to R = 0.8 results in a reduction 
of the critical buckling temperature to T = 370 K. Another interesting 
observation that can be drawn from the figure is the apparent lack of 
noticeable influence of varying flange widths on the post-buckling 
equilibrium path of the web. This is evidenced by the nearly identical 
web post-buckling deflection across three different shape factor types. 

Furthermore, there is a strong correlation between the results 
derived from FEM and those obtained through LW-TSDT regarding the 
pre-and post-buckling analysis of channel section struts. These struts are 
characterized by clamped boundary conditions and are reinforced with a 
UD graphene distribution pattern. 

The LW-TSDT approach accounts for 6591 degrees of freedom 
(DOFs) in its buckling analysis for the UD laminated composite channel 
section strut, which is reflected in a stiffness matrix of the order 6591 by 
6591. On the other hand, the finite element analysis utilizes 3D 8-node 
linear hexahedral elements (C3D8), resulting in a total of 17,421 DOFs. 
This marked discrepancy in the DOFs between the semi-analytical LW- 
TSDT and the numerical finite element method underscores the 

Table 6 
Comparison of computing time and CPU usage in performed simulations and 
computational performance of proposed methodology (UD, bf /bw = 0.2, tf /tw =

1, CCC–CCC).  

Solution method   

Present Method 
(LW-TSDT) 

DOF 
Running time (s) 
CPU usage (%) 

6591 
938 
25 % 

Finite Element Method 
(ABAQUS) 

DOF 
Running time (s) 
CPU usage (%) 

17,421 
1247 
37 % 

Discrepancy performance time (%) 
(ABAQUS − LWTSDT)

LWTSDT
× 100   

33%  
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Fig. 6. Investigation the influence of various kinds of graphene distribution patterns and boundary conditions on the critical buckling temperatures and fundamental 
natural frequencies of laminated channel section struts. 
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enhanced computational efficiency of the LW-TSDT. Table 6 offers a 
detailed summary of the analysis in terms of runtime and CPU usage. A 
cursory review of this table clearly shows that the implemented LW- 
TSDT method operates around 33 % faster in terms of runtime 
compared to the numerical finite element simulation. 

4.2. Influence of different graphene distribution patterns on the post- 
buckling equilibrium paths and vibration characteristics of channel section 
struts 

By conducting a nonlinear thermal instability analysis of polymeric 
laminated channel section struts, reinforced with various graphene 

Fig. 7. Investigation the boundary conditions and various graphene distribution patterns on the thermal equilibrium paths of laminated channel section struts 
subjected to uniform temperature rise (a) clamped (b) simply-supported. 
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distribution patterns, and subjected to both clamped and simply- 
supported boundary conditions, Fig. 6 compares the outcomes pertain-
ing to their critical buckling temperatures and fundamental natural 
frequencies. Following the aforementioned explanations, the initial step 
of the comparison involves case studies, where UD graphene distribution 
pattern is consistently applied across the web, while variations in 

graphene dispersions are examined in the thickness direction of the 
flanges. The outcomes of these studies are presented in Figs. 6(a) and 
(b), distinguished by a blue background for clarity. The results demon-
strate that where the web is reinforced with UD graphene distribution, 
the configuration employing FGX graphene distribution for flanges 
reinforcement yield the highest critical buckling temperatures and 

Fig. 8. Influence the boundary conditions and various graphene distribution patterns on the variation of bending moment at the center of the web (a) clamped (b) 
simply-supported. 
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fundamental natural frequencies. Conversely, configuration with FGO 
graphene distribution in the flanges are associated with the lowest 
values for both critical buckling temperature and fundamental natural 
frequency. 

In the subsequent step of the comparative analysis, the FGX graphene 

distribution pattern, identified as the most effective, is consistently 
applied for reinforcing the flanges. Concurrently, various non-uniform 
graphene dispersions are explored through the thickness direction of 
the web. The results pertaining to this specific scenario are demon-
strated within the yellow regions of Figs. 6(a) and (b). The findings 

Fig. 9. Influence of different graphene distribution patterns on variations of thermally induced pre- and post-buckling of laminated channel section struts (a) 
fundamental frequency with clamped boundary condition (b) fundamental frequency with simply-supported boundary condition (c) second mode frequency with 
clamped boundary condition (d) second order with simply-supported boundary condition. 
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confirm that when the FGX graphene distribution pattern is employed 
for both the flanges and the web, the laminated channel section struts 
achieve their peak performance in terms of critical buckling temperature 
and fundamental natural frequency. 

Furthermore, this scenario is replicated with the objective of iden-
tifying the least effective graphene distribution pattern. This is illus-
trated in the pink area of Fig. 6. Here, the FGO graphene distribution, 
acknowledged as the least effective, is selected for reinforcing the 

flanges of the channel section struts. simultaneously, a range of non- 
uniform graphene distributions are explored through the thickness di-
rection of the web. The results conclusively demonstrate that the lowest 
critical buckling temperature and fundamental natural frequency 
correspond to the case in which both the flanges and the web are rein-
forced with the FGO graphene distribution pattern. 

Based on the findings presented in Fig. 6, the subsequent section of 
this paper will undertake a comparative analysis of four distinct 

Fig. 9. (continued). 
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graphene distribution patterns. These patterns will be evaluated from 
various analytical perspectives, including thermal post-buckling equi-
librium paths, bending moment, and pre- and post-buckling thermally 
induced free vibration. It is important to note that the four graphene 

patterns under review include UD-UD, serving as the benchmark case, 
along with FGX-FGX and FGO-FGO, identified respectively as the most 
and least effective scenarios. Additionally, the analysis will also consider 
the FGV-FGO combination, where an asymmetric graphene distribution 

Fig. 10. Influence of various graphene distribution patterns and geometrical parameters on the fundamental frequencies of FG-GRC channel section struts (a) 
clamped boundary condition (b) simply-supported boundary condition. 
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pattern (FGV) is utilized for reinforcing the web. 
Fig. 7 presents a comparison of the thermal post-buckling equilib-

rium paths for laminated channel section struts, reinforced with various 
uniform and non-uniform graphene distribution patterns. As depicted, 
Fig. 7(a) pertains to the struts under clamped (CCC–CCC) boundary 
conditions, whereas Fig. 7(b) displays the outcomes for struts with 
simply-supported (SSS-SSS) boundary conditions. The results clearly 
demonstrate that, under both types of boundary conditions, laminated 
channel section struts reinforced with FGX graphene distribution pattern 
exhibit a higher critical buckling temperature compared to those with 
alternative graphene dispersions. Furthermore, during the post-buckling 
phase, the deflection observed at the flange (center of the free edge) and 
the web (central point) is comparatively lower in the FGX graphene 
reinforced cases than in other graphene distribution patterns. 
Conversely, independent of the boundary conditions applied, structures 
reinforced with FGO graphene distribution pattern experience a lower 
critical buckling temperature and a higher post-buckling deflection at 
the flange and web. For example, consider a scenario with a clamped 
boundary condition where the geometrical parameters of the channel 
section strut, and the total percentage of graphene utilized in reinforcing 
the laminated structure remain constant. Adjusting the graphene dis-
tribution pattern from FGO to FGX results in a relative increase of 12 % 
in the critical buckling temperature. 

From Fig. 7, another significant observation emerges regarding the 
distinctive thermal equilibrium path of the FGV-FGO laminated channel 
section strut under simply-supported boundary conditions. This path 
markedly differs from those associated with other graphene distribution 
patterns that preserve symmetry or those found in channel section struts 
subjected to clamped boundary conditions. 

The results illustrate that in cases featuring symmetric graphene 
distribution patterns, the thermal equilibrium paths exhibit a primary- 
secondary characteristic. The stable primary thermal equilibrium path 
is defined by a direct correlation between the applied thermal load and 
the structural response. As illustrated in Fig. 7, up until the critical 
buckling temperature, identified as the point of instability or bifurca-
tion, both flanges and the web retain a flat configuration with no out-of- 
plane displacement, signifying their alignment with the primary equi-
librium path. At the onset of the critical buckling temperature, however, 
there is a noticeable jump in the deflection of both the flanges and the 
web. Consequently, in the post-buckling state, the instability response of 
both the flanges and the web is characterized by their transition to the 
second set of equilibrium paths. 

Nonetheless, the thermal equilibrium path exhibited by simply- 
supported channel section struts reinforced with FGV-FGO graphene 
distribution patterns is distinct. Initially, as thermal loading commences, 
the structure undergoes out-of-plane displacement, transitioning into 
the first buckling mode shape. However, the magnitude of this initial 
deflection is minimal. Notably, the rate of deflection increases near 
specific temperatures, T = 347 K. The observed phenomenon is due to 
the generation of non-zero thermal bending moments within the web 
reinforced with FGV graphene distribution pattern under thermal 
loading. This arises from stretching-bending coupling of asymmetric 
graphene distribution pattern, a process clearly illustrated in Fig. 8. 

Fig. 8 demonstrates that under both clamped and simply-supported 
boundary conditions, the bending moment at the center of the web, 
reinforced with symmetric graphene distribution patterns, remains zero 
until the critical buckling temperature. At this point, a bending moment 
is induced, leading to deflection. In contrast, for the web reinforced with 
FGV, characterized as an asymmetric graphene distribution pattern, a 
bending moment is present at the center of the web from the initial stage 
of thermal loading. The rate of change in this bending moment in-
tensifies around T = 387 K for clamped boundary conditions and T =
347 K for simply-supported conditions. It should be noted that the 
simply-supported edge lacks the capability to provide an additional 
moment necessary for maintaining the flatness of the channel section 
strut, in contrast to a clamped structure, where the supports are designed 

to exert an extra moment. 
Fig. 9 illustrates the variation of thermally induced pre- and post- 

buckling vibration of FG-GRC channel section struts. At the reference 
temperature, both the fundamental and second order natural fre-
quencies of FGX channel section struts are higher compared to those 
reinforced with other types of graphene distribution patterns. 

As indicated, independent of the variations in graphene distribution 
patterns and boundary conditions, a uniform increase in temperature 
leads to a continuous decrease in both the first and second-order natural 
frequencies during the pre-buckling phase. This decrease continues until 
reaching near the critical buckling temperature or instability point, 
primarily because of the reduction in stiffness caused by in-plane 
compressive thermal loading. It is essential to highlight that, across 
the majority of the cases examined, following the critical buckling 
temperature in the post-buckling phase, there is an observed increase in 
both first second natural frequencies. This perception emphasizes the 
predominance of the stiffening effect because of static buckling defor-
mation over the softening impact induced by thermal stress. 

In the analysis of fundamental natural frequencies, it is observed 
that, in instances where symmetric graphene distribution patterns (FGX, 
FGO, UD) reinforce the laminated channel section strut, these funda-
mental frequencies diminish to zero at the critical buckling temperature, 
before transitioning into the post-buckling phase. Conversely, Employ-
ing an asymmetric graphene distribution pattern (FGV) results in an 
elevation of the fundamental frequency close to the critical buckling 
temperature. This approach prevents the frequency from decreasing to 
zero. The underlying mechanism involves the generation of thermal 
bending moment through the web at the beginning stage of thermal 
loading, as discussed in Fig. 8. This bending moment induces static 
buckling deflection, which, as noted, leads to an increase in stiffness. 

As mentioned, FGX channel section struts exhibit enhanced thermal 
compressive strength relative to alternative configurations, causing 
them to transition into the post-buckling phase at a later stage compared 
to other cases. Consequently, the fundamental natural frequencies dur-
ing the post-buckling phase are lower for FGX struts than for structures 
reinforced with other types of graphene distribution patterns. 

An additional insight derived from Fig. 9 pertains to the variance in 
the fundamental and second-order natural frequencies under different 
boundary conditions. Specifically, in the pre-buckling stage, the 
fundamental frequencies of channel section struts with clamped 
boundary conditions are substantially higher than those with simply- 
supported boundary conditions. Conversely, this pattern reverses in 
certain segments of the post-buckling phase, indicating a notable shift in 
frequencies behavior dependent on the boundary condition applied. For 
example, at the reference temperature of T = 300 K, the fundamental 
frequency of FGX channel section struts under clamped boundary con-
ditions is approximately 1.67 times greater than that of struts with 
simply-supported boundary conditions. However, at the maximum 
temperature of T = 600 K in the post-buckling phase, this ratio decreases 
to 0.9. 

Investigation the influence of the shape factor of channel section 
struts 

(
bf/bw

)
, which is the ratio of the flange width to the web width, on 

their fundamental natural frequencies at the reference temperature (T =
300 K) is conducted in Fig. 10. As with the earlier results, this analysis is 
undertaken for both clamped and simply-supported boundary condi-
tions. A key inference drawn from these findings is that, irrespective of 
the boundary condition type, an increase in the shape factor, assuming a 
constant web width while the flange width increases, leads to a decrease 
in the fundamental natural frequencies. This suggests a significant 
reduction in the compressive stiffness of the structure. This phenomenon 
can be logically attributed to the increased leverage effect of the wider 
flanges, which amplifies bending and reduces the overall stiffness, 
thereby impacting the fundamental frequency characteristics. 

Furthermore, the optimal shape factor for laminated channel section 
struts, as suggested by the data, is approximately bf/bw = 0.2, where the 
structure exhibits the highest fundamental frequencies. Specifically, in 
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the case of clamped FGX channel section struts, it is observed that 
increasing the flange width from 0.2 to 0.9 leads to an approximate 30 % 
decrease in the fundamental frequency. This highlights the critical role 
of shape factors in determining the vibrational characteristics of these 
structures. 

4.3. Imperfection sensitivity of post-buckling equilibrium paths and free 
vibration of FGX channel section struts 

To determine the impact of geometrical imperfections on the post- 
buckling behavior and free vibration characteristics of channel section 

Fig. 11. Influence of geometrical imperfection on the thermal post-buckling equilibrium paths of the FGX channel section struts (a) clamped boundary condition (b) 
simply-supported boundary condition. 
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struts, just the FGX graphene distribution pattern is selected as the most 
effective in enhancing in-plane compressive stiffness. For a thorough 
analysis of the impact of local geometrical imperfection, three distinct 
methodologies are employed to apply it. In the initial method, the web 
of the channel section strut is presumed to be perfect, with local 
geometrical imperfections applied exclusively to the flanges. This 
induced imperfection corresponds to the first buckling mode of the 
flanges, as depicted in Table 3. Conversely, in the subsequent approach, 
the local geometrical imperfection is exclusively applied to the web, 
aligning with the first mode of buckling for this component, while the 
flanges are assumed to be without imperfection. In the final approach, 
geometrical imperfections are applied simultaneously to both the 
flanges and the web of the channel section struts. It is crucial to 

emphasize that throughout the process of introducing geometrical im-
perfections to both the flanges and the web, the preservation of 
straightness at the junction is maintained as an assumption to meet the 
stress free edge criteria. 

Fig. 11 clearly shows that under any boundary condition, the perfect 
FGX laminated channel section strut demonstrates a bifurcation-type 
instability across both the web and flange. This behavior indicates 
that these components stay undeformed and flat until reaching the 
critical temperature threshold. Conversely, the presence of geometrical 
imperfections initiates lateral deflections in both the flange and web 
right from the onset of thermal loading. An additional noteworthy 
observation is that the instability response of channel section struts, 
where imperfection is solely applied to the web, more closely resembles 

Fig. 12. Influence of geometrical imperfection on the local deflection at the buckle crest of FGX channel section struts (a) clamped boundary condition (b) simply- 
supported boundary condition. 
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Fig. 13. Influence of geometrical imperfections on variations of thermally induced pre- and post-buckling of FGX laminated channel section struts (a) fundamental 
frequency with clamped boundary condition (b) fundamental frequency with simply-supported boundary condition (c) second order frequency with clamped 
boundary condition (d) second order with simply-supported boundary condition. 
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the scenario in which imperfections are introduced simultaneously to all 
segments. 

A comparative analysis highlighting the effects of geometrical im-
perfections on the local deflection of the web and flange at the buckle 
crest (half length) of the channel section struts is presented in Fig. 12. 
Owing to the symmetry along the Z local axis of the web, as shown in 
Fig. 1, deflection variations are illustrated for only one half of the cross- 

section. It is essential to emphasize that the presented results are for 
temperatures T = 450 K and T = 380 K, which are very close to the 
critical buckling temperatures of the FGX channel section struts, under 
clamped and simply-supported boundary conditions, respectively. As 
illustrated, the deflection observed in the perfect channel section strut at 
temperatures marginally exceeding the critical buckling temperature is 
virtually insignificant when compared to scenarios incorporating 

Fig. 13. (continued). 
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geometrical imperfections. In particular, the maximum out-of-plane 
displacement seen in the clamped FGX channel section strut, when it 
undergoes imperfections with an amplitude of w∗/h = 0.2 affecting both 
flanges and web, is approximately 2 times higher than in instance 
without any imperfections. It should be highlighted that the out-of-plane 
displacement of the flange and web is equal to zero at the junction to 
satisfy the in-plane stress-free edge condition. 

Fig. 13 illustrates the comparison between the pre- and post-buckling 
free vibrations of both perfect and imperfect channel section struts. This 
analysis is crucial for understanding the potential effects that deviations 
from ideal geometrical configurations can have on the natural fre-
quencies of FGX channel section struts with clamped and simply- 
supported boundary conditions. 

A pivotal observation from the analysis reveals that geometrical 
imperfections, characterized by an amplitude of w∗/h = 0.2, prevent the 
fundamental frequencies of FGX channel section struts from diminishing 
to zero near the critical buckling temperature. Furthermore, introduc-
tion of these imperfections across the entire structure notably increases 
their fundamental frequencies in the vicinity of this critical buckling 
temperature. This augmentation results in enhanced frequencies, 
achieving up to 414 Hz for struts under clamped boundary conditions 
and 339 Hz for those with simply-supported boundary conditions, 
respectively. This phenomenon is due to the enhanced structural stiff-
ness around the critical buckling temperature that arises from the static 
buckling deflection caused by the geometrical imperfection. Neverthe-
less, in both the pre-buckling and post-buckling phases, particularly 
with the clamped boundary condition, the presence of geometrical im-
perfections leads to a decrease in the fundamental natural frequencies. 
Furthermore, as clearly demonstrated in Figs. 13(c) and 13(d), the 
geometrical imperfections substantially diminish the second-order nat-
ural frequencies across both pre- and post-buckling states. It is important 
to highlight that there is no occurrence of order exchange phenomena 
between the first two modes of natural frequencies. 

5. Concluding remarks 

This research addresses the issue of laminated composite open sec-
tion struts, which are commonly used in engineering, being prone to 
local buckling when exposed to compressive thermal loads. The inves-
tigation seeks to discover effective solutions to this problem by 
employing graphene sheet reinforcements. The primary objective of this 
study is to assess how different distributions of graphene sheet re-
inforcements, through the thickness of the flange and web plates of 
channel section struts, affect their thermal compressive instability and 
their pre- and post-buckling free vibration. Attention has been given to 
discerning the distribution patterns of graphene that most significantly 
enhance the critical buckling temperature and natural frequencies. 
Furthermore, the effect of geometrical imperfections on the nonlinear 
thermal compression behavior of the FG-GRC laminated channel section 
struts has been assessed to obtain results that more accurately reflect 
real-world conditions. A framework is constructed on the foundations of 
LW-TSDT and the von-Karman strain-displacement equation. To solve 
the governing equations, the minimum total potential energy principle 
and the Ritz method are applied in tandem with the Newton-Raphson 
iterative process; the obtained results are finally compared with those 
evaluated using the 3D finite element simulation. This study signifi-
cantly enhances our comprehension of the relationship between mate-
rial distribution and structural characteristics, offering pertinent 
insights for the development of more robust and effective engineering 
structures. In particular:  

• Employing the FG-X graphene distribution pattern in the thickness of 
the web and flanges of channel section struts leads to an approximate 
12 % increase in the critical buckling temperature for clamped 
channel section struts, compared to those using the FGO graphene 

distribution pattern. For cases with simply-supported boundary 
conditions, this increase is approximately 9 %.  

• This study reveals that within the shape factor, bf/bw = 0.2,
analyzed, altering the graphene distribution patterns through the 
thickness of the flanges, while maintaining a constant graphene 
distribution in the web, has a minimal effect on the critical buckling 
temperature of channel section struts. The maximum relative dif-
ferences observed are approximately 1.13 % for clamped boundary 
conditions and 2 % for simply-supported boundary conditions.  

• Conversely, modifying the graphene distribution patterns in the web, 
while reinforcing the flanges with a consistent type of graphene 
sheet, can change the critical buckling temperature by up to 12 %. 
This indicates that, for the specific shape factor considered, the 
buckling behavior of the web plays a dominant role in the overall 
instability response of channel section struts. 

• The analysis of thermally induced pre- and post-buckling free vi-
bration in channel section struts, which are reinforced with different 
graphene distribution patterns, demonstrates that, through the pre- 
buckling situation, struts featuring the FGX channel section config-
urations achieve the highest natural frequencies. However, this 
pattern alters in the post-buckling stage.  

• Introducing the same magnitude of geometrical imperfections to 
both the flanges and web of channel section struts, reinforced with 
FGX graphene distribution patterns, leads to an increase in the 
fundamental frequency by about 400 Hz near the critical buckling 
temperature of T = 425 K.  

• The enhancement of natural frequencies in FG-GRC laminated 
channel section struts through the post-buckling states, as a result of 
uniform temperature increase, can be attributed to the dominance of 
the stiffening effect, which is a consequence of static buckling 
deflection, over the softening effect caused by thermal stress.  

• The equilibrium path of perfect FG-GRC channel section struts 
typically follows a primary-secondary trajectory, wherein the out-of- 
plane displacement remains unchanged with increasing temperature 
up to the instability point, at which the structure deflects. However, 
the introduction of geometrical imperfections initiates deformation 
from the onset of thermal loading, thereby leading to an unique 
equilibrium path.  

• Incorporating an asymmetric graphene distribution pattern (FGV) or 
introducing geometrical imperfections that induce a bending 
moment throughout the structure from the initial stages of thermal 
loading effectively prevents the fundamental natural frequencies of 
FG-GRC channel section struts from reaching zero in proximity to the 
critical buckling temperature. 
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Appendix A 

According to the TSDT, the normal and transverse shear strain tensors of the FG-GRC laminated plate can be written as [51]: 
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By assuming linear stress-strain relations we have [75]: 
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Based on the transformation rule in the fiber reinforced composite materials, Qi
j denotes the transformed elastic constants. 

According to TSDT, the stress resultants Ni
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The stiffness matrices in Eq. (3) are defined as: 
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Appendix B 
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