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Abstract—Precisely predicting the location of the user in
a Global-Navigation-Satellite-System-degraded environment is a
highly challenging task. Localization based on cellular signal
fingerprints is one of the promising solutions to this problem
and has attracted increasing attention. Long Term Evolution
(LTE) signal is popularly utilized for localization due to its global
usage, extensive urban coverage, and favorable signal properties.
This paper proposes a new multiband multicell Reference Signal
Received Power (MBMC-R) fingerprint, which properly fuses
LTE signals’ carrier band information, the physical cell identifier
information, and RSRP values. Next, a sequential block-matching
weight K nearest neighbor algorithm with a cosine similarity cri-
terion is specially designed for performing the pattern-matching
localization with the MBMC-R fingerprint. The proposed method
also includes the derivation of the Cramer-Rao lower bound,
which reveals the impact of various factors on the lower bound
of position error. Simulation and on-field experiments prove
the performance superiority over other fingerprint localization
algorithms reported in the literature.

Index Terms—fingerprint location, LTE signal, CRLB, sequen-
tial matching, WKNN.

I. INTRODUCTION

IN recent years, location-based services have become in-

creasingly important in various applications. Although

Global Navigation Satellite Systems (GNSS) can achieve

satisfactory localization precisions in many outdoor scenarios,

it still suffers from severe performance degradations or fix

failures in dense urban environments [1], such as narrow

urban canyons, tunnel, and electromagnetic interference envi-

ronments. Therefore, many wireless signals, such as Frequency

Modulation (FM), Digital Television (DTV), Long Term

Evolution (LTE), the 5th Generation Mobile Communication

Technology (5G), Wireless Fidelity (WiFi), Ultra-wideband

(UWB), and Bluetooth, are utilized for localization as a com-

plement to GNSS [2]. These techniques typically adopt the tri-

lateration principle to perform localization with measurements
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from multiple transmitter nodes [3]. The measurements may

include the time-of-arrival (TOA) [4], [5], the time-difference

of arrival (TDOA) [6], the angle of arrival (AOA) [7], or the

received signal strength (RSS) [8]. However, these localization

techniques are normally susceptible to multipath or non-line-

of-sight signals and require precise timing synchronization

among transmitter nodes [9].

Another approach for wireless localization is based on the

principle of fingerprint matching. This type of method needs to

create a database of fingerprints by measuring a certain signal

fingerprint that normally contains a close relationship with

the position information. During the online localization phase,

a pattern-matching method is often utilized to estimate the

unknown user positions with the known fingerprint database.

Traditionally, the RSS value is mainly adopted for forming

the fingerprint database due to its computational simplic-

ity [10]. However, the inconsistency and non-standardization

of the RSS fingerprint among different user devices will lead

to large positioning errors. Therefore, differential RSS (DRSS)

is further proposed to increase the signature robustness [11],

[12]. The multipath channel state information (CSI) contains

abundant information about the local wireless propagation

environment of the user, making it a valuable fingerprint for

localization [13]–[15]. This type of fingerprint is less suscep-

tible to signal fluctuations than the RSS/DRSS fingerprint in

multipath environments.

It is still found that the localization with a single type of

fingerprint is quite sensitive to environmental variations. If

more types of fingerprints can be jointly used, it will naturally

enhance the localization accuracy and robustness. In [16], the

DRSS and the hyperbolic location fingerprints are combined to

leverage the mutually complementary features. In [17], Peng

et al. proposed a joint fingerprint that is composed of the RSS

indication (RSSI) and the phase difference of arrival (PDOA).

Guo et al. combined RSS, power spectral density, covariance

matrix, signal subspace, fourth-order cumulant, and fractional

low-order moment of the received signals to form a compound

fingerprint for localization [18]. The fusion of RSS and CSI

fingerprints was frequently employed by researchers, although

they contain abundant signal strength information [19], [20].

Tao et al. proposed the combination of the RSS and AOA as

a joint fingerprint [21]. Generally speaking, the fusion of the

RSS with the AOA/TOA/CSI information is typically adopted

in the literature.

As the cellular signal communication system evolves and

progresses, the LTE system has covered most of the cities

and villages around the world, and the utilization of mid-
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band spectrum for 5G deployment is currently limited to

approximately 25% of existing 4G sites worldwide [22]. With

the advantages of broad coverage and high signal quality, the

LTE system signal has become a promising candidate for local-

ization, especially in the urban environment [23]. Furthermore,

the study of LTE lays a solid foundation for future research

on 5G technology. The LTE Reference Signal Received Power

(RSRP) fingerprint is often used due to its easy access by

the user terminals [24]. Besides, the CSI of the LTE signal

is another popular candidate for fingerprint [25]. Hu et al.

utilized the spectrum of the Zadoff-Chu sequence spectrum

of the LTE signal as a fingerprint to alleviate the random

fading noise [26]. Li et al. converted the original LTE signal

measurements into a type of grayscale image fingerprint to

reveal more details in the signal propagation information [27].

In [28], 1-dimensional (1D) RSSIs associated with LTE signal

IDs, generated from a combination of a physical cell identifier

(PCI) and E-UTRA absolute radio frequency channel number

(EARFCN), were extracted to create the combined fingerprint.

He et al [29] leveraged the TDOA measurements to estimate a

rough approximation of the user’s position and then employed

the RSS fingerprint to obtain a more precise positioning

estimation.

As to the online localization phase, the methods like the

deterministic-model-based algorithms [30], the probabilistic-

model-based algorithms [18], [20], and the machine-learning-

based algorithms [31]–[39] are all widely used. Due to the sig-

nificant progress in innovations in artificial intelligence in re-

cent times, the machine-learning-based method has shown re-

markable localization accuracy enhancement over other types

of approaches. The K Nearest Neighbor (KNN) algorithm

[31], [32], the Weight K Nearest Neighbor (WKNN) algo-

rithm [33], [34], the Convolutional Neural Network (CNN)

algorithm [35], [36], the Artificial Neural Network (ANN)

algorithm [37], [38], and the Deep Neural Network (DNN)

algorithm [39] are popular for the localization with finger-

prints.

How to assess the effects of different types of fingerprints

on positioning precision is another important research work.

Jiseon et al. developed the Cramer-Rao lower bound (CRLB)

of the positioning precision using the RSS fingerprint [40]. Gui

et al. derived the localization accuracy CRLB with the CSI fin-

gerprint for the indoor environment [41]. Jiang et al. analyzed

the CRLB of localization errors with joint fingerprints, such as

RSS/AOA, RSS/TOA, AOA/TOA, and AOA/RSS/TOA [42].

A. Motivations

Through the analysis of the current research status, it is

found that most of the proposed fingerprint-based localization

algorithms are aimed to work in the indoor environment. For

the outdoor environment, the space dimensionality and the

surrounding random objects are much larger and much more

complex than that of the indoor environment. Thereby, the CSI

fingerprint, which is frequently used for indoor localization,

may not be a better choice because it is quite susceptible

to the small variations of the surrounding environment. This

susceptibility will make the localization performance unstable.

In contrast, the RSRP value is more robust against small-

scale propagation channel changes for the outdoor environ-

ment [43]. Unfortunately, the conventional way of designing

the RSRP fingerprint is just packing the RSRP values of

signals transmitted from different base stations (BSs) into an

array and leaving it in the pattern-matching algorithm. This

format of the fingerprint abandons the underlying frequency

and cell identifier information associated with the RSRP

values. Thus, the localization precision with this format of

the RSRP fingerprint is unsatisfactory.

The LTE network contains multiple BSs physically located

at different positions. Each BS is divided into three sectors, and

each sector corresponds to one PCI. According to the 3GPP

standards of the LTE signal [44], to enhance the quality of

communications, multiple cells operate at different frequencies

cover the same sector, and a device can receive LTE signals

from different cells simultaneously. Therefore, UE can receive

different LTE signals at one position. The carrier bands and

PCIs of all the observed LTE signals depend on the nearby

BSs. Suppose all the observed RSRPs at a position are

properly manipulated along with their corresponding carrier

bands and PCI information. In that case, it can be expected

that the new type of fingerprint will have a closer and un-

ambiguous bond with its geometrical location. This advantage

will naturally improve the localization performance.

Furthermore, with the introduction of the multi-bands and

multi-cells information, it can be expected that the fingerprints

of adjacent locations will have a certain similarity because

nearby locations will receive the signals of most of the same

BSs. However, the RSRP values will be different to a certain

extent. This similarity property can be utilized in the pattern-

matching algorithm to mitigate the localization error further.

B. Contributions

In this paper, a novel type of fingerprint, expressed as a 2-

dimensional (2D) RSRP array, is designed. The row index of

the array stands for all the carrier bands allocated to the BS

transmitters by the service provider. The column index of the

array stands for all PCIs defined by the 3GPP standards for

the LTE signal. The RSRP values of the received LTE signals

are padded in the array according to their corresponding band

and cell PCI indices. If there is no received signal at a band or

a PCI, a zero is filled into the corresponding position of the

array. Therefore, this fingerprint looks more like a featured

image than a vectorized datum. We name this design as

multiband multicell RSRP (MBMC-R) fingerprint. The novel

MBMC-R fingerprint design brings a few advantages over the

traditional LTE signal’s fingerprint schemes:

First, the proposed 2D MBMC-R fingerprint utilizes the

multi-band and multi-cell RSRP information. Compared to

the classical 1D RSS fingerprints constructed using multiple

access points, the proposed fingerprint fully utilizes spatial

and frequency diversity, enhancing the number of fingerprint

features while providing a clearer and more detailed descrip-

tion of RSRP variations in spatial and frequency dimensions.

The obtained MBMC-R fingerprint exhibits a clearer and

closer relationship with the sampled position. It also mitigates
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the instability caused by the small-scale variations in the

propagation channel.

Second, the proposed sequential block-matching weight K
nearest neighbor (SWKNN) algorithm fully leverages the fea-

tures and advantages of MBMC-R fingerprints to achieve accu-

rate online positioning. Sequential block-matching is adopted

based on spatial continuity and frequency continuity 2D

MBMC-R fingerprint. The cosine similarity criterion is well

suited for 2-D and sparse MBMC-R fingerprints. It improves

the similarity measurement method of the online matching

positioning algorithm, thereby enhancing the accuracy and

robustness of the matching. The WKNN method utilizes the

fingerprint of the training dataset for matching, and it can adapt

to different offline datasets. It adjusts the matching results

with weights to effectively reduce the influence of noise and

outliers, making the localization algorithm more robust.

Third, the CRLB bound for the MBMC-R fingerprint lo-

calization method is derived. The Fisher information matrix

(FIM), which provides the lower bound of the variance of

the location estimation, has been confirmed to be related to

the number of carrier bands, the number of cells, and the

location of BS and UE. It has also been demonstrated that

the localization accuracy increases with the number of carrier

bands and cells.

In addition, it is essential to emphasize that the proposed

fingerprinting methods are not limited to specific types of

cellular signals. This method can be applied to various cellular

signals, such as GSM, 5G, etc. This versatility makes the

proposed fingerprint localization methods more flexible and

scalable in practical applications.

The structure of the remainder of this paper is outlined

below: The system model is presented in Section II. In Section

III, the design of the MBMC-R fingerprint is given. The

SWKNN positioning algorithm is used in Section IV. Next,

the CRLB of the proposed fingerprints is analyzed in Section

V. Performance evaluation by simulations and experimental

is presented in Section VI. Finally, Section VII provides the

conclusion of the study.

II. SYTEM MODEL

With the broad deployment of the LTE system around the

world, signal coverage in most places has reached quite a good

status. Often, a UE at a position can receive the signals with

different PCIs in different carrier bands that are transmitted

from multiple BSs. For the purpose of communication, the UE

will mainly connect with a single BS to get communication

access. For the purpose of localization, all the signals received

from different BSs can be simultaneously analyzed to obtain

the most accurate estimation of the UE position. Fig. 1

illustrates this scenario.

A. LTE Signal Model

In the following, we consider that the LTE downlink signal

uses Orthogonal Frequency Division Multiplexing (OFDM),

normal Cyclic Prefix (CP) length, and one antenna port in one

carrier band corresponding to center frequency. Without loss

of generality, this analysis can be applied to other pilot cellular

Fig. 1. Illustration for the multiple BS signals’ observation at a position.

signals, such as 5G and future generations. In the OFDM

system, the transmitted symbols that represent the smallest

time intervals in the LTE frame are mapped to different sub-

carriers. The spacing of adjacent subcarriers is ∆f . Assume

that Nr subcarriers are assigned for data transmission. Then,

zero-padding is used to extend Nr data symbols to Nc to

reduce the interference in the received signal. Next, the CP

is created by repeating the final Ncp elements of the symbol

at its beginning, which helps mitigate interference caused by

multipath propagation. Finally, the symbol sequence undergoes

an inverse fast Fourier transform and is then up-converted to

the carrier frequency for transmission.

On the UE side, all the received LTE signals are first down-

converted and then sampled. Then, the cyclic prefix removal

and the fast Fourier transform operation are applied to the

digitized samples. Hence, the isth symbols received signal [4],

[45] is expressed as

Ris
(k) =ejπef ej2π(is(Nc+Ncp)+Nc)

ef
Nc ejeϕYis

(k)His
(k)

+Wis
(k), (1)

where k = 0, ..., Nc − 1 is the subcarrier index, ef = fD
∆f

,

and fD is the overall carrier frequency offset by summing up

all the effects of Doppler frequency, clock drift, and oscillator

mismatch. eϕ represents carrier phase errors normalized by

the sampling interval Ts. Yis
(k) denotes the frequency domain

representation of the transmitted signals and His
(k) is the

channel frequency response (CFR). Wis
(k) ∈ N(0, σ2) signi-

fies the sum of all interfering factors, including thermal noise

and signals from adjacent cells, which follows a Gaussian

distribution with zero mean and variance σ2. It needs to be

noted that the Doppler frequencies of different subcarriers vary

slightly. However, this difference is very small and can be

neglected in the following study.

In the LTE signal, the cell-specific reference signal (CRS)

subcarrier is broadcast in every frame regardless of whether

any data is transmitted to any UE. Hence, it is suitable to be

used for positioning. CRS subcarriers are allocated based on

the PCI and symbol number. The PCI serves as an identifier for

the cell, numbered from 0 to 503. The way of decoding the PCI
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number can be referred to [45]. In this study, the kth subcarrier

and isth symbol transmission CRS signal is represented as

Sis
(k), where k = ms∆CRS + κ with ms = 0, ...,Ms − 1

and Ms= ⌊Nr/∆CRS⌋. Here, ∆CRS = 6 and κ ∈ {0, ..., 5} is

a constant shift determined by the PCI, transmission antenna

port number and the symbol number is.
As the CRS sequence is already known at the receiver

after coarse symbol synchronization, the CFR estimation by

utilizing the pilot CRS tones transmitted in symbol is can then

be obtained as

Ĥis
(k) = Ris

(k)S∗

is
(k) = ejδθisHis

[k] +Wis

′[k], (2)

where δθis
= πef [Nc + 2(is(Nc +Ncp) +Ncp)] /Nc+eϕ

denotes the average carrier phase error and

Wis

′(k)=Wis
(k)S∗

is
(k).

Thus, the RSRP is calculated based on the vectors Ĥis
(k)

as

RSRPis
=

1

Ms

Nc−1
∑

k=0,k∈ms∆CRS+κ

∣

∣

∣Ĥis
(k)
∣

∣

∣

2

. (3)

B. LTE Signal Propagation Model

We consider that the RSRP value (in dBm) of the LTE signal

with different carrier bands follows the simple log-distance

radio propagation model as

Pikm
= P0km

+ L(fmc ) + βkm
log dikm

+Xσfm
c
, (4)

where Pikm
is the RSRP with the distance dikm

between

the ith location of UE and the kmth BSs. P0km
denotes the

transmission power of the kmth BS. fmc denotes the center

frequency corresponding to the mth carrier band. L(fmc )
represents the fading that corresponds to the mth carrier band.

The path-loss exponent βkm
is determined by the propagation

conditions. Xσfm
c

is a Gaussian random variable with a mean

zero and a variance of σ2
fm
c

.

Outdoor LTE signal transmission satisfies the Okumura

model. Hence, there holds βkm
= 44.9− 6.55 log hkte, where

hkte represents the effective height of the kmth BS antenna.

The fading loss function L(fmc ) is expressed as

L(fmc )=

{

46.3+33.9 log fmc +ψ+CM, 1.5GHz≤fmc ≤ 2GHz,
69.55+26.16 log fmc +ψ, 150MHz≤fmc ≤ 1.5GHz,

(5)

where CM denotes the metropolitan center calibration factor,

and ψ is computed as

ψ = −13.82 log hte − α(hre) + Ccell + Cterrain, (6)

where hre stands for the effective height of the UE. α(hre)
represents the effective antenna correction factor. Ccell is the

cell type correction factor. Cterrain is a topographic calibration

factor.

III. DESIGN OF MULTIBAND AND MULTICELL RSRP

FINGERPRINT

The traditional RSRP fingerprint design methods use a

vectorized format to contain all the RSRP values of the

signals transmitted from different BSs [10], [28]. This type of

fingerprint format ignores the PCI and carrier band information

associated with the LTE signals. Actually, different BSs have

different PCIs and carrier bands. Properly incorporating these

two types of information will naturally enhance the differen-

tiability between the fingerprints of different locations, which,

in turn, will improve localization accuracy.

To solve the aforementioned problem, a 2D RSRP array

fingerprint is designed. The row indices of the array represent

the carrier bands that are allocated to the BS transmitters by

the service provider, and the column indices are the PCI values

defined by the 3GPP standards. In each cell of the array,

the RSRP value of the signal for the corresponding carrier

band and PCI is filled. Therefore, the proposed MBMC-R

fingerprint is expressed as

F inpi =











RSRP
pi

1,PCI1
· · ·RSRP

pi

1,PCIN
...
. . .

...

RSRP
pi

Mf ,PCI1
· · ·RSRP

pi

Mf ,PCIN











, (7)

where pi = (xi, yi) stands for the location at which the

MBMC-R fingerprint is collected, Mf denotes the number of

carrier bands occupied by the LTE signals in the area, and N
is the number of PCIs.

It needs to be pointed out that the PCI values range from

0 to 503, as defined by the standards, while the range of

carrier bands, as well as the center frequency of each band, is

decided by the local wireless service provider. Therefore, the

occupied carrier band information for the local area needs to

be investigated in advance.

The RSRP value ranges from −140dBm to −44dBm ac-

cording to the 3GPP regulations [46]. The value of −140dBm

indicates a very weak signal strength, while the value of

−44dBm indicates a very strong one. If the RSRP value of

the received signal is lower than −140dBm or there is no

signal for the cell of a combination of a carrier band and a

PCI number, a NULL0 flag is filled correspondingly, which

stands for an absolute zero value. It is defined as the purpose

of conveniently utilizing the cosine similarity criteria in the

localization algorithm. If we use F inpi

m,PCIn
to denote the value

of the cell (m,PCIn) in the MBMC-R fingerprint array F inpi ,

it has

F inpi

m,PCIn
=

{

RSRPm,PCIn , if RSRP ≥ −140dBm,
NULL0, if RSRP < −140dBm,

(8)

where m ∈ [1,Mf ] represents the mth carrier band index, and

PCIn ∈ [1, N ] denotes the nth PCI index.

Fig. 2 illustrates an example of the MBMC-R fingerprint. In

this example, the MBMC-R fingerprint is shown as a grayscale

image for an easier illustration. The size of the image is Mf ×
N , which is equivalent to the size of the fingerprint array. Each

pixel in the image is equivalent to the cell of the array. The

brightness of a pixel depends on the value of the RSRP for

that cell. The brighter the pixel, the higher the RSRP. It is

readily seen that the MBMC-R fingerprint is typically sparse.

Fig. 3 shows the results of obtaining the RSRP by Universal

Software Radio Peripheral (USRP) on the campus of Shanghai

Jiao Tong University at different times. The center frequency

of the LTE signal is 2145 MHz. The RSRP with different
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Fig. 3. Illustration of RSRP results for different PCIs. (a) RSRP results versus
days. (b) RSRP results versus seconds.

PCI values remains relatively stable over time, indicating the

time-stability of the proposed MBMC-R fingerprint.

Remark 1. Here, it is noted that offline fingerprints possess

temporal stability and spatial relevance. Consequently, the

fingerprint database does not need frequent updates. The fin-

gerprint database only needs updating when the surrounding

infrastructures or the positions of transmitting signal BSs

significantly change. Furthermore, database filling can be

achieved through interpolation and matrix prediction methods,

facilitating the establishment of large-size fingerprint datasets.

IV. SWKNN LOCALIZATION ALGORITHM BASED ON

MBMC-R FINGERPRINTS

The fingerprint-based localization method typically com-

prises two principal steps: The first is the offline phase,

in which the fingerprints are sampled at reference positions

within the application area. The second is the online phase,

in which the real-time localization is performed based on

the established fingerprint database. An offline dataset is

constructed with MBMC-R fingerprints measured at reference

points (RP), i.e., points with measured coordinates. In the on-

line phase, UE’s MBMC-R fingerprint is compared with those

in the offline database to determine the location. Only devices

capable of measuring MBMC-R fingerprints are needed during

the online localization phase, such as smartphones or USRPs.

Fig. 4 illustrates the workflow of the MBMC-R fingerprint

localization algorithm.

Sweep and capture the 

LTE signal across all 

carrier bands

Calculate the PCI and 

RSRP corresponding to 

each carrier band
MBMC-R fingerprint

UE

BSs

Preprocessing

Geographic

 coordinate

Offline database

Online LTE 

signal data

SWKNN 

algorithm

Estimated 

location

Online phaseOffline phase

Construct 

MBMC-R 

fingerprint

Cellular

 signals

Cellular

 signals

Fig. 4. Overall MBMC-R fingerprint localization architecture.

A. Offline Fingerprint Construction

First, all the carrier bands that are utilized by the BSs in

the target application area need to be investigated. The number

of the carrier bands and their center frequencies determine the

row size Mf and the indices of the MCMB-R fingerprint array.

The indices of the column of the array always span from 0 to

503 according to the definition given in Section III.

Next, evenly divide the target area into small grids. UE

sweeps the LTE signal across all the carrier bands at an

offline grid point. The PCIs and RSRPs of all observed LTE

signals are computed. Then, the MBMC-R fingerprint for a

grid point can be obtained. The coordinates of the grid points

are recorded as the location information associated with this

fingerprint. Repeat the above process for all grid points in the

target area, and the entire MBMC-R fingerprint database can

be established.

B. Online SWKNN Localization Algorithm

Many fingerprint localization algorithms have been pro-

posed in the past decade [18], [20], [30]–[35], [38], [39].

Plenty of matching time is essentially required for the online

matching phase of the neural networks, increasing the im-

plementation complexity of the localization method. During

these two relatively extended processes, it is possible that

the environment undergoes alterations, rendering the measure-

ments collected for online positioning phase obsolete [47]. In

the small size of the offline training database, WKNN can

realize quick and robust localization. This section introduces

the method for constructing offline fingerprints and formulates

the online fingerprint SWKNN matching methodology.

It has been known that MBMC-R fingerprint given in (7)

has a sparse property. According to the propagation model in

(4), it can be predicted that the MBMC-R fingerprints between

adjacent positions also have a spatial correlation property. This

is because the RSS changes with the distance of the UE to the

transmitting BS. According to (4), if we ignore the effect of

the random term Xσfm
c

, the Pikm
will be a continuous function

about dikm
, which means that the RSRPs at nearby positions
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(a) fm

c
= 2145MHz, PCI = 134. (b) fm

c
= 1815MHz, PCI = 98.

Fig. 5. Illustration of RSRP variation with Localization.

are highly possible to be similar to each other. In addition,

experimental results conducted on the campus of Shanghai

Jiao Tong University, as shown in Fig. 5, reveal a high

correlation in signal RSRP observability for UEs located at

adjacent positions. This suggests that the illumination patterns

in the MBMC-R fingerprint arrays exhibit similarity for nearby

positions.

According to these properties of the MBMC-R fingerprint,

a SWKNN localization algorithm is proposed in this paper

to improve the matching accuracy. This algorithm employs

the sequential block-matching (SBM) method, as described

in [50], which is suitable for matching continuous information

and can improve matching accuracy. The cosine similarity

distance [49] is utilized to quantify the similarity between

two fingerprints. This is because the cosine similarity criteria

are insensitive to zero values and, therefore, more suitable for

sparse data, which is just the case with the MBMC-R fin-

gerprint. The online fingerprint localization method primarily

utilizes SBM and cosine similarity to calculate the similarity

between the fingerprint to be located and the fingerprints

in the offline database. Then, the WKNN algorithm is used

to estimate the UE position. This algorithm is elaborated in

Algorithm 1.

Therefore, the entire fingerprint localization process can be

summarized into the following three steps.

Step 1: Obtain PCI and RSRP information for every LTE

frequency. Grid the geographical area, and the number of grid

points is NUE. Obtain the position p = p1, p2, ..., pNUE
of

the grid points. Sweep the area and obtain information about

the LTE signals. Obtain PCI and RSRP information of every

carrier band.

Step 2: Construct the offline database. Measure the RSRP

and PCI corresponding to the different carrier bands of the

UE at each received point, and save them in a matrix F inpi .

The fingerprints of all received points in the geographical area

to be located from the offline fingerprint database F in =
{F inp1 , F inp2 , ...., F inpNUE}.

Step 3: Online matching. By comparing the fingerprint

F inpi of test point with the KSBM consecutive fingerprints at

geographical locations in an offline database, we can identify

K nearest RPs whose features closely resemble the test point.

It should be noted that the cosine similarity distance dij is

Algorithm 1: Online fingerprint localization algorithm

input : The offline MBMC-R fingerprint database F in

calculated by (7). The geographic coordinates

p of the reference points. The number of

weights for WKNN K. The number of SBM

matches KSBM.

1 Offline mode

2 Calculate the SBM cosine similarity distance between

the F inpi and the offline KSBM F inpj fingerprints.

The pseudocode is presented below:

3 for j ∈ {1, 2, ...NUE} do

4 F in
pi

KSBM
= repeat(F inpi ,KSBM);

5 F in
pj

KSBM
=[F in

p
j−

KSBM
2 , ..., F inpj , ..., F in

p
j+

KSBM
2 ] ;

6 dij = cos(∠(F in
pi

KSBM
, F in

pj

KSBM
))

7 end

8 Sort the distance calculated between the online

fingerprint of user to be located and all offline

fingerprint. Select K smallest distance values

dkd

ij , kd = 1, ...,K;

9 Calculate the weight wi;

10 Select the first smallest K dij to calculate the p̂i;
output: p̂i = (x̂i, ŷi): the estimated position.

adopted to quantify the dissimilarity between two fingerprints.

dij =cos(∠(F in
pi

KSBM
, F in

pj

KSBM
))

=
F in

pi

KSBM
⊙ F in

pj

KSBM
∣

∣F in
pi

KSBM

∣

∣ �
∣

∣F in
pj

KSBM

∣

∣

, (9)

where ⊙ is Hadamard product. We then calculate the weights

and utilize the WKNN method to estimate the location p̂i as

follows

wi =
dkd

ij

K
∑

kd=1

dkd
ij

, (10)

p̂i=

K
∑

i=1

wipi. (11)

C. Complexity Analysis and the Summary of Algorithm

Based on the above analysis, the fingerprint positioning

method is determined. The computational complexity of the

fingerprint method arises from the following components:

1) The complexity for step 1 is O(
Mf
∑

m=1
Nm). In order to ac-

quire all RSRPs in the reference points,
Mf
∑

m=1
Nm demodulations

are required.

2) The complexity for step 2 is O(NUE). Thus, the com-

plexity of offline database construction is O(NUE

Mf
∑

m=1
Nm).

3) The complexity for step 3 is O(N2
UEKSBM

Mf
∑

m=1
Nm +

NUE logK). The complexity for loop to calculate the co-

sine similarity distance is O(N2
UEKSBM

Mf
∑

m=1
Nm). Besides, the
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WKNN algorithm to calculate the estimation positioning is

O(NUE logK).
Therefore, the complexity for the total fingerprint localiza-

tion process is O(N2
UEKSBM

Mf
∑

m=1
Nm+NUE logK). Compared

with traditional RSRP fingerprints, the proposed MBMC-R

fingerprint construction method increases the complexity of

the algorithm by adding the distinction between the RSRPs

corresponding to different carrier bands and PCIs. While SBM

improves matching accuracy, it also increases the complexity

of the algorithm.

V. CRLB OF MBMC-R FINGERPRINT

In this section, we derive the CRLB bound of the SWKNN

algorithm with the MBMC-R fingerprint. We further analyze

the impacts of the number of instantaneously observed signal

carrier bands on the CRLB and demonstrate the superiority of

utilizing multiband and multicell RSRP information.

A. The Derivation of CRLB

The MBMC-R fingerprint includes multiband and multicell

RSRP information, which is transmitted from multiple BSs.

Assume that the RSRP collected from different BSs follows

a multivariate normal distribution, which aligns with the as-

sumption of RSRP following a normal distribution. Therefore,

each vector of RSRP measurements from a BS is assumed to

exhibit independent and identical distribution characteristics,

and the joint probability density function obtained from dif-

ferent BSs can be defined as

fpi

(

P1, ...PMf

)

=

Mf
∏

m=1

(

Nm
∏

km=1

1√
2πσm

exp

(

− ξ
m

2

2σm2

)

)

,

(12)

where ξm = Pikm
− P0km

− L(fmc ) − βkm
log dikm

is men-

tioned in Section II B. σ2
m denotes the variance corresponding

to the mth carrier band. Nm represents the number of PCIs

associated with the mth carrier band.

Let p̂i = (x̂i, ŷi) be the unbiased estimate of the ith real

location pi = (xi, yi) and the position of the kmth BS is

denoted as pkm
= (xkm

, ykm
). If p̂i is determined based on

the unbiased estimate of the measurement (e.g., RSRP) Pikm

at the ith real location, the FIM [42] is utilized to derive the

following relationships, which provide the lower bound of the

variance of p̂i as follows

E
{

(p̂i − pi) (p̂i − pi)
T
}

≥ J(pi)
−1, (13)

where E {•} denotes the expectation operation and (•)−1

denotes the inverse of a matrix. J(pi) represents the FIM with

respect to pi as

J(pi) = E

{

∂2 ln fpi

(

P1, ...PMf

)

∂p2i

}

=

[

Jxixi
(ξm) Jxiyi

(ξm)
Jyixi

(ξm) Jyiyi
(ξm)

]

. (14)

Therefore, the FIM can be expressed as

VMf
=

λiMf

ln 10ηiMf

, (15)

where

xikm
=
βkm

σm

(xi − xkm
)

dikm

2 , (16)

yikm
=
βkm

σm

(yi − ykm
)

dikm

2 , (17)

λiMf
=

Mf
∑

m=1

Nm
∑

km=1

(

xikm

2 + yikm

2
)

, (18)

ηiMf
=

Mf
∑

m=1

Nm
∑

km=1

xikm

2

Mf
∑

m=1

Nm
∑

km=1

yikm

2−





Mf
∑

m=1

Nm
∑

km=1

xikm
yikm





2

.

(19)

The detailed derivations are given in Appendix A.

B. Impact Factors for CRLB

Theorem 1. The introduction of additional carrier bands

leads to a decrease in the CRLB, except for the case when

pMf+1 = pkm
, km = 1, ...,Mf .

Proof. The detailed derivations for Theorem 1 are given in

Appendix B.

Theorem 2. The increasing number of cells leads to a

decrease in the CRLB, except for the case when pNm+1 =
pkm

, km = 1, ..., Nm.

Proof. The proof is omitted due to space limitations. The

derivation method is similar to that used by Theorem 1.

Theorem 1 and Theorem 2 explains that the variance of

positioning error is influenced by the number of carrier bands

and cells. An increase in the number of carrier bands or cells

can reduce the positioning error. However, when the number

of carrier bands or cells is extremely large, the computational

complexity of the fingerprint localization algorithm becomes

intolerable. Furthermore, equation (15) shows that the location

error of the proposed fingerprint depends on σm for different

center frequencies of LTE signals. The positioning error grows

as the shadow fading factor increases. Besides, the distance

between the UE and BS also affects the variance of the

localization error. When the distance between the UE and BS

diminishes, the variance of positioning error increases.

VI. MEASUREMENT RESULTS

In this section, we introduce the data collection method and

experimental results. A set of experiments has been conducted

in order to evaluate the effectiveness of the proposed architec-

tures to clarify the superiority of the proposed algorithm com-

pared with the traditional fingerprint localization algorithm.
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A. Data Collection

The real time measurement data are collected along the tree-

lined roads on the campus of Shanghai Jiao Tong University

from September 10, 2023 to September 24, 2023. The outdoor

trajectories, including Street 1 and Street 2, are depicted in Fig.

6. For Street 1, a Huawei Mate20 mobile phone is utilized to

collect LTE signals across 13 carrier bands. The total length

of the road is approximately 1326.620 m, with an average

sampling interval of 6.378 m. In the case of Street 2, the

USRP device is used to collect LTE signals at 9 carrier bands.

The total length of the road is approximately 1700.302 m,

and the sampling interval is 5.844 m. We have used 13 carrier

bands and 66 PCI numbers for LTE signals in Street 1, and 9

carrier bands and 60 PCI numbers for LTE signals in Street 2.

At a single position, the UE can receive signals from at least

nine carrier bands in the LTE network.

Street 1

Street 2

(a)

(b) (c) (d)

Fig. 6. The satellite and photographs of the localization area in Shanghai
Jiao Tong University. (a) Satellite map. Different trajectories of the outdoor
sequences are visualized with different colors in the map. (b-d) Real scene.

The data can be acquired by mobile phone or USRP. Mobile

phones can directly obtain RSRP, PCI, carrier band, and

coordinate information. Next, we focus on the process of using

USRP for signal acquisition. The multiband and multicell LTE

data are acquired by the setup illustrated in Fig. 7 to collect

data from different BSs. To collect the LTE I/Q signals, we

run Gnuradio on an ACP-2010 Industrial Personal Computer

(IPC) with a USRP B210 platform. The computer runs on

the Ubuntu 16.04 operating system. The configuration of the

ACP-2010 IPC includes 32 GB of DDR4 RAM, a 1TB HDD,

and USB 3.0 interfaces. The IPC, connected to the USRP

through USB 3.0 interfaces, serves as a system controller

and data recording unit. The longitude and latitude coordinate

information is obtained by the NovAtel FANS System with

a Lenovo T440P processor. Subsequently, the MATLAB LTE

toolbox is utilized to obtain the carrier band, PCI, and RSRP

information. Finally, we construct the proposed MBMC-R

fingerprint using the method proposed in Section III.

Remark 2. It is worth noting that this experiment utilizes

GNSS to collect location tags to verify fingerprint accuracy.

Other precise positioning methods, such as sensor-based po-

sitioning, can also be employed to obtain location tags and

replace GNSS. Regarding the acquisition of offline tags, the

proposed algorithm offers a high degree of freedom and

flexibility in tag selection, making the proposed algorithm

versatile and scalable.

NovAtel Receiver

GNSS RTK

PC

windows

IPC  
Ubuntu 

Gnuradio

USRP B210

Sample rate:8Msps

LTE 

antenna

GPS 

antenna

USB3.0

703MHz~

3800MHz

LTE I/Q datas

Coordinate datas

(a) Block scheme

LTE 
Antenna

GPS 
Antenna

GNSS 
RTK

USRP

IPC 
Gnuradio

PC 

(b) Experimental setup

Fig. 7. Measurement system.

B. Performance Results

In this section, the performance of the MBMC-R finger-

print localization algorithm is evaluated in multiple urban

wireless propagation scenarios. The experiments adopt two

devices, e.g., mobile phone and USRP, to collect LTE signals

and construct fingerprints. The leave-one-out cross-validation

method [51] is adopted in the localization accuracy evalua-

tion. Furthermore, the performance is evaluated from multiple

perspectives, including localization accuracy, the impact of

system parameters, time overhead, etc.

Fig. 8 illustrates the variation of the CRLB with an in-

creasing number of carrier bands and the change in CRLB

with the average distance between the BSs and the UEs. It

can be observed that the CRLB decreases as the number of

carrier bands increases. Moreover, when the number of carrier

bands is sufficiently large, the change in CRLB becomes more

gradual. On the other hand, the CRLB increases as the average

distance between BSs and UEs increases. These results align

with the theoretical analysis, confirming the accuracy of the

theoretical derivation.

Fig. 9 displays the cumulative distribution function (CDF)

of localization inaccuracies with MBMC-R, CSI [48], radio

channel [25] and RSSI [28] fingerprints by SWKNN approach.

Since mobile phones are unable to obtain CSI directly, LTE

signals obtained by USRP are chosen for the experiment.
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Fig. 8. Comparison under different numbers of carrier bands and the average
distance for BSs and UE.

Taking the 67% point of the CDF as the localization accuracy

criteria, MBMC-R, RSSI, CSI, radio channel fingerprint local-

ization method achieve the accuracy of 21.947 m, 108.724 m,

181.105 m, and 215.681 m, respectively. Taking the 90% point

of the CDF as the localization accuracy criterion, MBMC-R,

RSSI, CSI, and radio channel fingerprint localization methods

achieve the accuracies of 47.217 m, 191.614 m, 302.710
m, and 360.665 m, respectively. The CSI and radio channel

fingerprint methods provide the lowest accuracy for that the

multiple-path information is deeply coupled in CSI and CSI

fingerprint only uses one carrier band. The MBMC-R and

RSSI, fingerprint localization algorithms, provide improved

location accuracy due to their ability to capture various fea-

tures such as RSRP/RSSI, PCI, and frequency information.

Besides, RSRP/RSSI, which is the average received signal

power, reduces the impact of environment noise. Incorporating

these diverse features captures a richer set of information about

the environment, making it more resilient to variations and

enhancing localization accuracy. Furthermore, the proposed

MBMC-R method achieves more accurate positioning than the

RSSI algorithm due to the higher information dimensions and

more PCI information in the fingerprint.
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Fig. 9. Comparison of CDFs among different algorithms with USRP collected
data.

Table I presents the positioning errors for the compared

algorithms, respectively, the WKNN localization method

with cosine similarity distance (referred to WKNN+cos), the

WKNN localization method with Euclid distance (referred

to WKN+Euclid), the SWKNN localization method with co-

sine similarity distance (referred to SWKNN+cos), and the

SWKNN localization method with Euclid distance (referred

to SWKNN+Euclid) by using the MBMC-R fingerprint. It is

evident that SWKNN+cos achieves the smallest error among

the methods compared. SBM considers the spatial relationship

between consecutive positions and leverages the contextual

information to refine the localization estimate. This contex-

tual awareness significantly enhances positioning accuracy

compared to the WKNN algorithm, which treats positions

independently. The cosine similarity criterion provides better

performance for fingerprint matching than Euclidean distance

due to its robustness to scale, improved discrimination, and

higher efficiency.

Fig. 10 shows the estimation results of the MBMC-R

SWKNN method on street 2. The figure shows the actual

test points from the offline database, the estimated points,

and the deviations between the real and estimated results. The

estimated results are predominantly in the offline fingerprint

collection route. However, due to the similarities in the data

collection environment, certain data points may deviate from

their actual positions, introducing ambiguity into the results.
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Fig. 10. Localization estimation results of the proposed method on street 2.

The CRLB analysis results illustrate that position accuracy

primarily depends on the number of carrier bands. Large

values of Mf result in higher positioning accuracy. Therefore,

in Fig. 11, the number of carrier bands is increased from 1

to 9 in an outdoor scene to evaluate the positioning accuracy

by utilizing our proposed localization approach. Taking the 67

% point of CDF as a reference point, the figure indicates that

the MBMC-R SWKNN method with Mf = 1 − 9 achieves

localization accuracies of 101.884 m, 77.100 m, 61.693 m,

45.490 m, 44.845 m, 32.066 m, 28.283 m, 25.402 m, and

21.947m accuracy. The experimental results align with the

derived results from the CRLB, indicating consistency between

them. Additionally, as the number of carrier bands increases,

the change in positioning accuracy becomes more gradual and

less pronounced.
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TABLE I
THE POSITION ERROR OF FOUR POSITION METHODS, UNIT: M.

equipment Item WKNN+cos WKNN+Euclid SWKNN+cos SWKNN+Euclid

USRP

50% error 17.452 18.491 12.387 18.240
67% error 26.314 31.037 21.947 29.911
75% error 33.403 36.914 28.364 37.383
95% error 60.209 98.183 62.418 137.578
Average error 23.237 29.405 20.413 33.041

phone

50% error 7.963 10.356 6.921 6.757
67% error 13.023 15.636 11.607 11.655
75% error 17.561 21.183 15.541 15.616
95% error 46.620 53.381 44.968 48.218
Average error 13.786 16.625 13.340 15.207
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Fig. 11. Localization estimation results of the proposed method with different
numbers of carrier bands on Street 2.

Fig. 12 shows the estimation results of the MBMC-R

SWKNN method in street 1. The figure shows the actual

test points, the estimated points, and the deviations between

them. The estimated results are mostly in the offline fingerprint

collection route. Compared to the results of Street 2, the local-

ization results of Street 1 exhibit smaller deviations between

the true and estimated positions. This can be attributed to

the relatively simpler collection route of Street 1, while also

incorporating a greater number of carrier bands to construct

the fingerprint.
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Fig. 12. Localization estimation results of the proposed method on street 1.

Fig. 13 illustrates the localization accuracy as the number

of carrier bands increases from 1 to 13 in the outdoor scene

of Street 1. Taking the 67 % point of CDF as a reference

point, the figure demonstrates that the MBMC-R SWKNN

method with Mf = 1 − 13 realizes location with 277.684m,

95.332m, 26.530m, 25.277m, 23.488m, 20.657m, 20.304m,

11.607m, 11.607m, 11.607m m, 11.607m m, 11.607m, and

11.607m accuracy. The experimental results align with the

derived results from the CRLB. Furthermore, it is observed

that as the number of carrier bands increases, the variations in

positioning accuracy become more gradual or less significant,

which is consistent with the simulation results for the CRLB.

0 100 200 300 400 500 600 700

Positioning error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

M
f
 = 1

M
f
 = 2

M
f
 = 3

M
f
 = 4

M
f
 = 5

M
f
 = 6

M
f
 = 7

M
f
 = 8

M
f
 = 9

M
f
 = 10

M
f
 = 11

M
f
 = 12

M
f
 = 1320 30 40

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Fig. 13. Localization estimation results of the proposed method with different
numbers of carrier bands on Street 1.

The positioning performance depends not only on posi-

tioning accuracy but also on position time overhead. For

the above methods, the fingerprints and the corresponding

coordinates are calculated and saved by MATLAB R2022b.

Our experiment is carried out on a workstation equipped

with Intel(R) Core(TM) i5-10400F CPU and 16 GB of RAM.

During the experiment, the unknown position of 292 points is

estimated, and the average positioning time for each unknown

point is calculated. The time overhead of different position

approaches is shown in Table II. As we can see, the proposed

MBMC-R fingerprint localization method is able to provide

a location estimation in less than 1s, outperforming the other

methods. The MBMC-R fingerprint localization method en-

hances positioning accuracy and reduces computational time
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TABLE II
THE POSITION TIME OVERHEAD OF FOUR FINGERPRINT POSITION

METHODS, UNIT: S.

Method MBMC-R CSI radio channel RSSI

Time 0.0147 8.451 0.0350 0.0146

TABLE III
LOCALIZATION RESULTS BASED ON USRP DATASET (292 DATA) AND

PROPOSED MBMC-R FINGERPRINT.

Fingerprint MBMC-R

Methods SWKNN MLP CNN DCNN

Average error (m) 20.413 111.997 204.17 141.780

Time (s) 0.0147 0.200 0.0264 0.0256

compared to other CSI-based fingerprint localization methods.

Table III compares the proposed SWKNN algorithm with

multilayer perceptron (MLP), CNN [36], and deep convo-

lutional neural network (DCNN) [37] algorithms in USRP

dataset. The MLP has 1024 neurons in hidden layers 1, 2,

and 3, and 2 neurons in the output layer. Both CNN and

DCNN adopt regression models. It is worth noting that all

these positioning techniques employ the MBMC-R fingerprint.

Table III shows that the SWKNN algorithm has the shortest

localization time and the best accuracy compared to MLP,

CNN, and DCNN methods. The SWKNN method utilizes data

from the training dataset for matching. It adjusts the matching

results with weights to effectively reduce the influence of noise

and outliers, making localization more accurate and robust.

In addition, traversing and matching the small-size training

dataset requires little time, enabling quick positioning. The

MBMC-R fingerprint achieves richer and higher-dimensional

fingerprint characteristics strongly correlated with geographi-

cal locations. Due to the high similarity between fingerprints of

adjacent positions, the SWKNN algorithm can provide higher

positioning accuracy than neural network matching algorithms.

By utilizing the CSI fingerprint, the localization results of

SWKNN, MLP, CNN [36], and DCNN [37] are shown in

Table IV. The CSI fingerprint only uses one carrier band and

cell, as shown in (2). In the small-size USRP dataset, the

localization accuracy of CSI is relatively low. Compared to

the CSI fingerprints, by utilizing the MBMC-R fingerprint, the

SWKNN algorithm improves the localization accuracy by over

80%. The proposed MBMC-R fingerprint outperforms the CSI

fingerprint because the impact of noise is reduced, and space

and frequency diversity are utilized.

Increasing the value of KSBM raises the computational cost,

TABLE IV
LOCALIZATION RESULTS BASED ON USRP DATASET (292 DATA) AND

CSI FINGERPRINT.

Fingerprint CSI

Methods SWKNN MLP CNN DCNN

Average error (m) 152.265 225.219 234.193 181.987

RMSE 183.236 257.188 258.002 205.975

TABLE V
THE POSITION TIME OVERHEAD OF DIFFERENT KSBM FOR PROPOSED

FINGERPRINT LOCALIZATION METHOD, UNIT: S.

Number of SBM 1 2 3 4 5

Time 0.0967 0.0122 0.0147 0.0169 0.0199

consequently increasing the time complexity of the local-

ization algorithm. This occurs because more computational

resources are required to compare the UE signal with multiple

candidate signals to determine the best match at each matching

step. To select the optimal number of sequential matching

steps, we consider the balance between the computation cost

and accuracy. As shown in Tab. V, the SWKNN method with

KSBM = 3 increases the computational cost while significantly

reducing positioning accuracy. Therefore, the SWKNN method

chooses K = 3 and KSBM = 3 as the optimal sequential

matching value.

Fig. 14 depicts the average localization error of the proposed

MBMC-R SWKNN algorithm with different values of KSBM

and K. As shown in Fig. 14, the minimal average positioning

error occurs when K = 3,KSBM = 3. With a small value

of K and KSBM, the algorithm tends to be more sensitive

to outliers or noisy data points. On the other hand, with a

large value of K and KSBM, the algorithm may lose its ability

to capture local patterns effectively. By choosing K = 3
and KSBM = 3, a balance is struck between these extremes,

resulting in a smoothing effect. It considers the contributions

of the three nearest neighbors without being overly influenced

by individual outliers, thus providing a more stable and reliable

prediction.
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Fig. 14. The average positioning error of SWKNN algorithm with different
K and KSBM.

C. Performance Results with Public database

The proposed method’s superiority is verified using the

Deep MIMO dataset [52], which includes more carrier bands,

cells, and signal types. The proposed algorithm is not limited

to LTE signals but applies to all cellular signals. This dataset is

acquired from the widely used ray-tracing simulator Remcom

Wireless InSite and validated with real-world channel mea-

surements. The parameters are summarized in TableVI. For

LTE signals, the center frequency is 3.4 GHz with a 20 MHz

bandwidth. For 5G signals, the center frequencies are 3.5 GHz,

28 GHz, and 60 GHz, with bandwidths of 100 MHz, 200 MHz,

and 2 GHz, respectively.

The dataset consists of outdoor urban street scenarios with

dimensions of 550 m × 36 m. The reference fingerprint
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TABLE VI
MAJOR WIRELESS PARAMETERS FOR DEEP MIMO DATASET.

Parameters Value

Normalized antenna spacing 0.5
Number of paths 25
BS antenna ULA
Subcarrier number 64
Number of active BS in each carrier band 12
Grid spacing 1 m
Height of BS 6 m
Height of users 2 m
Number of users to localization 5000
Signal type LTE, 5G

database consists of 551 y-axis and 37 x-axis positions,

collected from a grid of 20387 locations. The test database

contains 5000 randomly distributed test points.

TABLE VII
LOCALIZATION RESULTS BASED ON DEEP MIMO DATASET (20387

DATA) AND PROPOSED MBMC-R FINGERPRINT.

Fingerprint MBMC-R

Methods SWKNN MLP CNN DCNN

Average error (m) 0.847 177.720 19.996 8.517

Online time (s) 0.0446 0.00210 0.00461 0.00458

Table VII compares the proposed SWKNN algorithm with

MLP, CNN [36], and DCNN [37] algorithms in Deep MIMO

dataset. Table VII depicts the SWKNN achieves higher accu-

racy compared to other localization methods. The SWKNN

algorithm improves the localization accuracy by 90% com-

pared to neural network matching methods. The reason is that

the SWKNN method can adaptively select features for local-

ization and is robust to environment changes. Furthermore,

the superior localization accuracy of the proposed SWKNN

algorithm over the CNN algorithm is attributed to the fact that

the SWKNN algorithm is suitable for MBMC-R fingerprints.

Although the SWKNN takes longer to test online than neural

networks, its offline training time is much shorter. In contrast,

neural networks must design and adjust network parameters

for different training datasets, requiring abundant computing

resources and a large amount of offline training time, which

limits practical applications to a certain extent.

TABLE VIII
LOCALIZATION RESULTS BASED ON DEEP MIMO DATASET (20387

DATA) AND CSI FINGERPRINT.

Fingerprint CSI

Methods SWKNN MLP CNN DCNN

Average error (m) 172.830 150.72 186.060 177.857

RMSE 206.46 175.81 224.695 211.761

The positioning results of different localization methods for

CSI fingerprint are shown in Table VIII. In the large-size

DeepMIMO dataset, the accuracy of the CSI fingerprint is also

low, as shown in Table VIII. Compared to the CSI fingerprints,

by utilizing the MBMC-R fingerprint, the SWKNN algorithm

improved the localization accuracy by over 99% for the

proposed MBMC-R fingerprint.

The proposed MBMC-R SWKNN algorithm achieves the

highest localization accuracy in both USRP and Deep MIMO

datasets. On the one hand, the proposed MBMC-R fingerprint

outperforms the CSI fingerprint because the MBMC-R fin-

gerprint reduces the impact of noise and utilizes space and

frequency diversity. On the other hand, compared to neural

network matching methods, the SWKNN algorithm improves

the localization accuracy by 90%. The SWKNN algorithm

fully leverages the continuous features of the MBMC-R fin-

gerprints in spatial and frequency dimensions. Multiple-path

information is deeply coupled in CSI, and suitable neural

networks need to be designed to learn the relationship between

CSI and geographic information. In conclusion, by jointly

improving fingerprint features and matching algorithms, our

algorithm has achieved the best localization performance.

VII. CONCLUSIONS

In this study, a new type of multiband multicell RSRP

fingerprint, named MBMC-R, is proposed. The MBMC-R

fingerprint shows a clearer and closer relationship with the

actual position, improving the positioning accuracy. A lo-

calization algorithm, SWKNN, is used to perform position

estimation by utilizing MBMC-R fingerprints. The CRLB has

been derived to explain the positioning accuracy of MBMC-

R fingerprints and simultaneously confirm that multiband and

multicell fingerprints can significantly enhance the localization

accuracy of the algorithm. Experimental results conducted on

the campus of Shanghai Jiao Tong University validate the

superior performance of the proposed method compared to the

current algorithms mentioned in the references. Our method is

not only applicable to LTE signals but also suitable for cellular

signals such as 5G. In addition, we will collect sensor-based

tags and validate the performance of the proposed algorithm

for localization in environments where GNSS is entirely

unavailable in future work. Further, combining 5G PRS with

the proposed algorithm and using their respective advantages

to improve positioning accuracy is precious research and a

challenge. We will work on this in future work.

APPENDIX A

FIM can be solved by (14), and the first order derivative

E

{

∂ ln fpi(P1,...PMf )
∂xi

}

is solved as

−E







∂

∂xi

Mf
∑

m=1

Nm
∑

km=1

(

ln
1√

2πσm
− ξ

m

2

2σm2

)







= −E







∂

∂dikm

Mf
∑

m=1

Nm
∑

km=1

(

ln
1√

2πσm
− ξ

m

2

2σm2

)

∂dikm

∂xi







= −E







Mf
∑

m=1

Nm
∑

km=1

(

ξm
σm2 ln 10

βkm

1

dikm

∂dikm

∂xi

)







. (20)

Then, the second order derivative of

E

{

∂2 ln fpi(P1,...PMf )
∂x2

i

}

is solved as

Jxixi
(P1, ...PMf

)=

Mf
∑

m=1

Nm
∑

km=1

(

1

σm2 ln 102
βkm

2 1

dikm

2

∂dikm

∂xi

)

,

(21)
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where

∂dikm

∂xi
=

(xi − xkm
)

dikm

. (22)

Substituting (22) into (21), (21) can be derived as

Jxixi
(P1, ...PMf

) =

Mf
∑

m=1

Nm
∑

km=1

(

βkm

2

σm2 ln 102
(xi − xkm

)
2

dikm

4

)

.

(23)

Similarly, we can derive that

Jyiyi
(P1, ...PMf

) =

Mf
∑

m=1

Nm
∑

km=1

(

βkm

2

σm2 ln 102
(yi − ykm

)
2

dikm

4

)

,

(24)

Jxiyi
(P1, ...PMf

)

=

Mf
∑

m=1

Nm
∑

km=1

(

βkm

2

σm2 ln 102
(xi − xkm

)(yi − ykm
)

dikm

4

)

. (25)

This concludes the derivation process of (15).

APPENDIX B

When an additional (Mf + 1)th carrier bands LTE signal

is added to the MBMC-R fingerprint, the CRLB can be

represented as

VMf+1 =
λiM+1

ln 10ηiM+1
, (26)

where

λiMf+1 = λiMf
+

NMf+1
∑

kMf+1=1

(

xikMf+1

2 + yikMf+1

2
)

, (27)

ηiMf+1 = ηiMf
+

Mf
∑

m=1

Nm
∑

km=1

x2ikm

NMf+1
∑

kMf+1=1

y2ikMf+1

+

Mf
∑

m=1

Nm
∑

km=1

y2ikm

NMf+1
∑

kMf+1=1

x2ikMf+1
+

NMf+1
∑

kMf+1=1

x2ikMf+1

NMf+1
∑

kMf+1=1

y2ikMf+1

− 2





Mf
∑

m=1

Nm
∑

km=1

xikm
yikm









NMf+1
∑

kMf+1=1

xikMf+1
yikMf+1





−





NMf+1
∑

kMf+1=1

xikMf+1
yikMf+1





2

. (28)

To prove that an increased number of carrier bands enhances

fingerprint localization accuracy, it is sufficient to demonstrate

the following formula

VMf
− VMf+1 =

λiMf
ηiMf+1 − λiMf+1ηiMf

ln 10ηiMf
ηiMf+1

≥ 0. (29)

The denominator of (29) is non-negative since

ηiMf
, ηiMf+1 ≥ 0 and ln 10 > 0. It can be proven

through mathematical induction that ηiMf
, ηiMf+1 ≥ 0,

and the induction proof of this inequality is omitted for

conciseness.

Next, we analyze the non-negativity of the numerator in

(29). There holds

λiMf
ηiMf+1 − λiMf+1ηiMf

≥













√

λiMf

Mf
∑

m=1

Nm
∑

km=1
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2 − ηiMf

NMf+1
∑
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yikM+1

−
√

λiMf

Mf
∑

m=1

Nm
∑

km=1

yikm
2 − ηiMf

NMf+1
∑

kM+1=1

xikMf+1













2

+ 2

√

√

√

√λiMf

Mf
∑

m=1

Nm
∑

km=1

xikm
2 − ηiMf

NMf+1
∑

kMf+1=1

yikMf+1

×

√

√

√

√λiMf

Mf
∑

m=1

Nm
∑

km=1

yikm
2 − ηMf

NMf+1
∑

kMf+1=1

xikMf+1

−2λiMf





Mf
∑

m=1

Nm
∑

km=1

xikm
yikm









NMf+1
∑

kMf+1=1

xikMf+1
yikMf+1





≥













√

λiMf

Mf
∑

m=1

Nm
∑

km=1

xikm
2 − ηiMf

NMf+1
∑

kMf+1=1

yikMf+1

−
√

λiMf

Mf
∑

m=1

Nm
∑
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yikm
2 − ηiMf

NMf+1
∑

kMf+1=1

xikMf+1













2

≥ 0. (30)

The case VMf
− VMf+1 = 0 arises only for the scenario

pkMf+1
= pkm

. In the real environment, the locations of the

BSs with different carrier bands must be distinct. Thus, there

holds VMf
− VMf+1 > 0, and adding a BS with different

carrier bands does indeed lower the CRLB of the localization

method.

This concludes the proof process for Theorem 1.
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