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Abstract

Macrophages play a wide range of roles in resolving the inflammatory damage that

underlies many medical conditions, and have the ability to adopt different phenotypes

in response to different environmental stimuli. Categorising macrophage phenotypes

exactly is a difficult task, and there is disparity in the literature around the optimal

nomenclature to describe these phenotypes; however, what is clear is that macrophages

can exhibit both pro- and anti-inflammatory behaviours dependent upon their pheno-

type, rendering mathematical models of the inflammatory response potentially sensi-

tive to their description of the macrophage populations that they incorporate. Many

previous models of inflammation include a single homogenised macrophage popula-

tion with both pro- and anti-inflammatory functions. Here, we build upon these ex-

isting models to include explicit descriptions of distinct macrophage phenotypes and

examine the extent to which this influences the inflammatory dynamics that the models

emit.

This research aims to provide useful insights into the essential role of macrophage phe-

notypes in inflammation. We present a series of corresponding mathematical models

of increasing biological complexity and examine the resulting dynamics via numerical

simulation and bifurcation analysis. We begin by examining three ordinary differential

equation (ODE)-based models that describe: a single homogenised macrophage pop-

ulation; two distinct macrophage populations with opposing pro/anti-inflammatory

phenotypes; and a variant of the second model that also includes neutrophil-driven

dynamics. We then build on these models to construct a partial differential equation

(PDE) model that considers macrophage phenotypes to lie on a continuous spectrum

of inflammatory activity.

We analyse our models via numerical simulation in Matlab and dynamical systems

analysis in XPPAUT. We investigate the different qualitative behaviours presented by

our models via Matlab and discuss them in terms of the inflammatory response and

its potential outcomes. We also use bifurcation diagrams provided by XPPAUT to

investigate how variation in the system’s key parameters influences the switch be-

ii



tween chronic and healthy outcomes. We show that models that account for distinct

macrophage phenotypes separately can offer more realistic steady state solutions than

precursor models do (better capturing the anti-inflammatory activity of tissue-resident

macrophages), and that variations in macrophage polarisation can underlie a switch

between chronic steady state outcomes and oscillations reminiscent of inflammatory

conditions with relapsing-remitting characteristics. Finally, we reflect on the conclu-

sions of our analysis in the context of the ongoing hunt for potential new therapies for

inflammatory conditions, highlighting manipulation of macrophage polarisation states

as a potential therapeutic target.
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CHAPTER 1

Introduction

Inflammation plays a critical role in the development of many diseases and health con-

ditions. Therefore, a comprehensive understanding of the inflammatory process and

its resolution is essential for the development of new treatments and therapies. In-

flammation is a natural response of the immune system to infection, injury or harmful

stimuli, and it involves a multiplicity of cellular and molecular events. Inflammation

serves as the body’s first line of defence against harmful agents, and plays a pivotal role

in the healing process. The primary function of inflammation is to protect living tissue

by eliminating injurious stimuli and restoring tissue homeostasis. Inflammation can

be either acute or chronic. Acute inflammation is the immune system’s initial response

to injury and is generally beneficial to the body. In contrast, chronic inflammation is a

harmful type that can lead to significant organ dysfunction. It is associated with a wide

range of chronic diseases and is one of the leading causes of death worldwide (Pahwa

et al., 2018). Therefore, it is crucial to pay attention to chronic inflammatory diseases

and seek to provide more effective treatment methods to promote healing in chronic

conditions or reduce harm to damaged tissues.

Inflammation is the biological reaction of the innate immune system, which can en-

hance the body’s immune system against infections and other diseases. However, it can

be potentially detrimental to the body and lead to further tissue damage, contributing

to the development of various inflammation-related diseases. Therefore, the inflamma-

tory response is a strictly regulated process that seeks to maintain tissue homeostasis

and prevent excessive tissue damage that could lead to prolonged inflammation.

Macrophages are crucial components of the immune system and play an essential role

in the initiation and resolution of inflammation. They are also considered a poten-

tial therapeutic target for maintaining tissue integrity and homeostasis. Macrophages

are multifunctional immune cells that play pivotal roles in resolving the inflammatory
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CHAPTER 1: INTRODUCTION

damage that underlies many medical conditions. Their functions include recognising

and eliminating diseased cells and foreign materials, removing debris and dead cells,

releasing of pro-inflammatory and anti-inflammatory cytokines, and repairing tissue

(Eming et al., 2007; Hirayama et al., 2018). These activities are vital for maintaining

overall health and tissue integrity. Macrophages are heterogeneous and highly plas-

tic cells, and thus, they have the ability to switch between different phenotypes with

different functional properties in response to diverse micro-environmental stimuli.

Strictly classifying macrophage phenotypes is a challenging task due to the high plas-

ticity and heterogeneity of macrophages, and there is a contrast in the literature on

the ideal nomenclature to describe these phenotypes. However, it is evident that

macrophages can exhibit both pro- and anti-inflammatory behaviours depending on

their phenotype. Moreover, they can display a spectrum of intermediate behaviours

among these contrasting phenotypes, with the ability to switch into different pheno-

types in response to gradual changes in their microenvironment (Palma et al., 2018).

Therefore, mathematical models of the inflammatory response are sensitive to the de-

scription of the macrophage populations they incorporate.

Many previous theoretical models of inflammation have focused largely on its tempo-

ral dynamics, and how the inflammation outcomes fluctuate between a healthy res-

olution and chronic inflammation. These models typically neglect macrophage phe-

notypes and include a single population of macrophages with both pro- and anti-

inflammatory functions. In this research, we build upon these existing models by incor-

porating detailed descriptions of distinct macrophage phenotypes and exploring how

much this impacts the inflammatory dynamics generated by these models. The aim

of this work is to construct and analyse four related models of inflammatory dynam-

ics that include increasing levels of complexity regarding descriptions of macrophage

phenotypes and other aspects of the inflammatory response.

In this chapter, we present an overview of the main topics covered in this work. Firstly,

Section 1.1 begins with an introduction to inflammation and a brief overview of the

medical conditions associated with it. Section 1.2 provides a biological description of

the mechanisms underlying the inflammatory response and the types of inflamma-

tion. In Section 1.3, we review the immune cells involved in the inflammation process

with a focus on describing macrophage phenotypes and their role in the inflammatory

response. Section 1.4 reviews relevant literature in the mathematical modelling of in-

flammation. Finally, we provide an overview of the major topics discussed in the whole

thesis by outlining each chapter’s content in Section 1.5.
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CHAPTER 1: INTRODUCTION

1.1 Inflammation and its roles in health and disease

Inflammation is a complex biological response to injury, infection, or tissue damage,

and it involves a wide range of cellular and molecular processes, including recognis-

ing and eliminating noxious agents, removing damaged cells and debris, and repairing

tissue (Chen et al., 2018; Pahwa et al., 2021). Inflammation plays an essential part in the

body’s natural defense mechanism, protecting living tissue by destroying and remov-

ing injurious stimuli to maintain overall health and restore tissue homeostasis (Gabay,

2006; Chai et al., 2015; Placha & Jampilek, 2021). Here, we briefly review inflamma-

tion within organs with a focus on the correlation between inflammation and related

diseases, along with biomarkers associated with these diseases.

When tissues are injured, an inflammatory response is activated in order to identify

and eliminate the causative agent of the damage to protect the tissues from injury or

disease. The causes of inflammation, also known as etiologies, are varied and may

be non-infectious or infectious agents (Chen et al., 2018). Non-infectious agents may be

physical (such as burns, foreign bodies, tissue injury, or trauma), chemical (such as toxic

compounds, fatty acids, or chemical irritants), or biological (such as damaged cells).

Infectious agents may be pathogens, such as viruses, bacteria, and other organisms

(Chen et al., 2018; Furman et al., 2019; Pahwa et al., 2021). Sometimes, inflammation

occurs due to the immune system mistakenly perceiving the body’s cells or tissues as

harmful agents (foreign intruders). Thus, this immune system’s reaction may lead to

autoimmune diseases like type 1 diabetes (Noble, 2015; Kakleas et al., 2015).

As a part of the immune system, inflammation plays a key role in protecting the body

from disease-causing pathogens and repairing damaged tissues. However, inflamma-

tion can evolve into a chronic condition due to constant stimulation of the inflamma-

tory factors, which increases the risk of developing several diseases (Furman et al., 2019;

Niu et al., 2021). Recent studies have revealed that inflammation plays a major role in

the development of a variety of fatal or chronic diseases and have focused on identi-

fying inflammation-associated biomarkers and investigating associations between pro-

longed inflammation and disease (Chen et al., 2018; Reddy et al., 2019). Figure 1.1 il-

lustrates some common diseases and conditions that are associated with chronic in-

flammation. Hence, targeting inflammation and identifying the causes of prolonged

inflammation provides an alternative approach to developing effective treatments and

improving therapeutic outcomes for associated diseases (Liu et al., 2017; Furman et al.,

2019; Niu et al., 2021).

Nowadays, obesity poses a serious threat to public health worldwide due to its associ-
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Figure 1.1: Immune cells are involved in the inflammatory response and may con-

tribute to the development of inflammation-related diseases. Source: Niu et al. (2021).

ation with potential risks of diseases such as cardiovascular diseases, type 2 diabetes,

and fatty liver disease (Piché et al., 2020; Blüher & Müller-Wieland, 2022). Recently, in-

creasing evidence suggests that inflammation plays a central role in the development

of obesity and obesity-associated diseases such as type 2 diabetes (Wellen et al., 2005;

Zatterale et al., 2020). Increased accumulation of macrophages in adipose tissues leads

to an elevated level of reactive oxygen species, resulting in metabolic disorders and

insulin resistance (Du Clos, 2000; Wang et al., 2021). In addition, the overproduction of

tumour necrosis factors (TNF-α) in adipose tissue is a key feature of obesity and con-

tributes significantly to insulin resistance (Wellen et al., 2005; Engin, 2017). Hence, in

order to enhance obesity treatment outcomes, attention should be directed towards de-

veloping effective treatment options that target inflammation and the signalling path-

ways that underlie it (Zatterale et al., 2020; Piché et al., 2020).

Similarly, inflammation is associated with neurodegenerative diseases such as Parkin-

son’s disease, multiple sclerosis, and Alzheimer’s disease (Paolini P. et al., 2021). Ac-

cording to World Health Organisation estimates, the number of people affected by neu-

rodegenerative diseases is expected to exceed 70 million by the year 2030 and over

106 million by 2050 (Amor et al., 2014). Recent research suggests that various stimuli
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such as ageing, injury, or illness, may induce microglia, thus initiating an inflamma-

tory cascade (Griffin, 2006; Amor et al., 2014). With a thorough understanding of both

neurodegenerative disorders and the innate immune system, it is crucial to protect the

central nervous system from damage by precisely controlling the immune response

(Ransohoff & Brown, 2012; Andreasson et al., 2016; Paolini P. et al., 2021). Therefore,

inflammation-targeted therapeutic approaches are necessary to protect the central ner-

vous system from harm, providing alternative treatment possibilities for neurodegen-

erative diseases.

The prevalence of type 2 diabetes is rising worldwide, and 90% of diabetic patients

have insulin resistance (Zimmet et al., 2001; Sjöholm & Nyström, 2006). The precise

mechanisms by which inflammation affects pancreatic cells and leads to the devel-

opment of insulin resistance are still poorly understood (Donath & Shoelson, 2011).

Type 2 diabetes is associated with significant public health issues such as obesity and

premature cardiovascular morbidity (Dandona et al., 2004; Sjöholm & Nyström, 2006;

Wondmkun, 2020). Several studies have described inflammation as a key pathogenetic

factor in type 2 diabetes and the development of insulin resistance (Bloomgarden, 2003;

Taylor, 2012; Cruz et al., 2013; Wen & Duffy, 2017) . Hallmarks of inflammation linked

with type 2 diabetes include tumour necrosis factor (TNF-α), interleukin-6 (IL-6), and

some antidiabetic agents such as glitazones that reduce insulin resistance and insulin

itself (Krentz & Bailey, 2005; Mirza et al., 2012; Liu et al., 2016; Chaudhury et al., 2017).

Recent research has shown that anti-inflammatory drugs may counteract inflammation,

improve glucose tolerance, and reduce the risk of type 2 diabetes (Deans & Sattar, 2006;

Esser et al., 2015; Kuryłowicz & Koźniewski, 2020) although traditional treatments still

focus on reducing hyperglycemia (Inzucchi et al., 2012). In order to improve the pre-

diction of early disturbances in insulin sensitivity, it is essential to identify the inflam-

matory signalling pathways and biomarkers associated with type 2 diabetes in greater

detail. This may lead to new perspectives on the diagnosis and treatment of insulin

resistance.

There is a growing need to understand the inflammatory mechanisms underlying the

pathogenesis of heart disease. Metabolic syndrome, which comprises type 2 diabetes

and obesity, is among the significant factors that drive the development of heart disease

(Han & Lean, 2016). Many studies have established that inflammatory cells and path-

ways can contribute to the development of heart diseases (Anker & von Haehling, 2004;

Ferrucci & Fabbri, 2018). Due to the impact of these diseases (type 2 diabetes and obe-

sity) and their close associations with heart disease, researchers have been motivated

to investigate further the common inflammatory biomarkers between these often over-
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lapping medical conditions (Han & Lean, 2016; Ferrucci & Fabbri, 2018). Following

this pattern, Anker & von Haehling (2004) and Madjid & Willerson (2011) demonstrate

that the progression of chronic heart failure is associated with pro-inflammatory cy-

tokines such as interleukin (IL)-1, IL-6, and tumour necrosis factor (TNF-α), which are

also prevalent indicators of type 2 diabetes and obesity. As illustrated by Koenig (2001)

and Ferrucci & Fabbri (2018), high levels of inflammatory markers, such as C-reactive

protein, are linked to an increased risk of cardiovascular disease events. With an im-

proved understanding of inflammation-related heart disease, new insights are opening

up into potential markers of underlying cardiovascular and atherosclerosis risk.

In recent decades, the robust association between tumour malignancies and inflam-

mation has been gradually recognised. In some types of cancer, inflammatory con-

ditions precede the development of malignancy, and thus tumour cells often tend to

develop in areas of infection due to the body’s natural response (Colotta et al., 2009;

Gkretsi et al., 2017). Inflammation increases the risk of developing certain cancers be-

cause an inflammatory component is often present in the microenvironment of most

neoplastic tissues (Mantovani et al., 2008; Colotta et al., 2009). Therefore, the triggers of

chronic inflammation may increase the risk of various types of cancer, such as mucosal

lymphoma, liver carcinoma, gastric cancer, cervical, colon cancer, and prostate cancer

(Mantovani et al., 2008; Candido & Hagemann, 2013). It is estimated that 15–20% of

cancer deaths worldwide are associated with inflammatory responses and underlying

infections (Mantovani et al., 2008). One of the critical hallmarks of cancer-related in-

flammation is the infiltration of immune cells into tumour tissues, especially tumour-

associated macrophages, to counteract infection by producing nitrogen and reactive

oxygen species (Kuper et al., 2001). In addition, the presence of inflammatory cytokines

and inflammatory mediators in tumour tissues, such as tumour necrosis factor (TNF-α),

interleukin-1 (IL-1), IL-23, and IL-6, promotes a pro-inflammatory microenvironment

metastasis and cancer progression (Voronov et al., 2003; Karin, 2006; Langowski et al.,

2006). In the tumour microenvironment, cancer-related inflammation affects many as-

pects of malignancy, including angiogenesis, malignant cell proliferation and survival,

and subverts adaptive immune responses (Mantovani et al., 2008; Colotta et al., 2009;

Candido & Hagemann, 2013). Increased vascular permeability is a common character-

istic of inflammation and is also frequently observed in solid tumours with leaky arter-

ies (Küppers et al., 2013). Thus, recent studies have revealed molecular pathways that

connect inflammation and cancer, leading to the identification of new target molecules.

These molecules and pathways involved in cancer-related inflammation may help im-

prove the diagnosis and therapies that target the inflammatory components of the mi-

croenvironment (Mantovani et al., 2008; Colotta et al., 2009).
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Figure 1.2: Cytokines as biomarkers for various inflammatory diseases. Image based

on material taken from Liu et al. (2021).

Inflammation is a major driving force underlying many fatal or serious diseases and

their progression. As a result, biomarkers of inflammation are certainly of attain grow-

ing significance in clinical research (Brenner et al., 2014; Reddy et al., 2019). Studies

conducted by Reddy et al. (2019) and Liu et al. (2021) reveal that when the body ex-

periences inflammation due to an injury or disease, it often exhibits a higher level of

certain substances known as inflammatory markers or biomarkers, such as cytokines

(e.g. tumour necrosis factor (TNF-α) and interleukin-1 (IL-1)), acute-phase proteins (e.g.

C-reactive protein), and inflammation-related growth factors. These biomarkers play a

key role in identifying and monitoring the level of inflammation in the body. Figure 1.2

illustrates cytokines that act as biomarkers of inflamation in associated diseases. Con-

trolling inflammation by targeting biomarkers of inflammation may reduce associated

risks and lead to the development of more effective strategies for treating patients.

1.2 The biology of the inflammatory response

Inflammation is a natural response of the immune system to a variety of factors, includ-

ing both infectious and non-infectious agents (Chen et al., 2018). These factors trigger

an inflammatory response, in which inflammatory cells migrate from blood vessels

into damaged tissues to eliminate the aetiologies of inflammation that can potentially

cause tissue injury or disease (Chen et al., 2018). This response can be defined as a
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protective mechanism that stimulates the body’s defences against harmful agents and

maintains the body’s normal function (Ortega-Gómez et al., 2013). Inflammation has

been recognised as a major force underlying many serious diseases, such as type 2

diabetes (Zatterale et al., 2020), cardiovascular disease (Piché et al., 2020), rheumatoid

arthritis (Libby, 2008), and inflammatory bowel disease (Ansar et al., 2016). Here, we

briefly review the basic mechanisms of the inflammatory response and the types of

inflammations: acute and chronic.

1.2.1 Inflammatory response mechanisms

The immune system is activated when the body suffers an injury or detects harmful

agents that may cause infection or disease. In response to injury or disease, the body

releases a cascade of inflammatory mediators that vary in nature, function and times-

pan of effectiveness to regulate, stimulate, and eventually resolve inflammation (Chen

et al., 2018; Liu et al., 2021). Inflammatory mediators oversee and regulate the inflamma-

tory response through a complex network composed of a wide range of molecules and

chemical signals, including chemokines, cytokines, leukotrienes, prostaglandins, and

other signalling molecules (Abdulkhaleq et al., 2018; Liu et al., 2021). They can have

both pro- and anti-inflammatory effects and are used as biomarkers for many diseases

(Abdulkhaleq et al., 2018; Liu et al., 2021; Małkowska & Sawczuk, 2023). During the

inflammatory process, the immune system triggers several reactions to initially move

proteins, fluid, and immune cells from the bloodstream to the injury site (Soehnlein &

Lindbom, 2010; Ortega-Gómez et al., 2013). This can be achieved through the following

mechanisms that occur within microcirculation as reported in Medzhitov (2008) and

Granger & Senchenkova (2010): (i) vasodilation (expansion of small blood vessels); (ii)

increased blood flow and fluid exudation to the site of inflammation; (iii) increased

vascular permeability; (iv) infiltration of cells (increased leukocyte recruitment and ac-

cumulation at the site of injury), controlled by cytokines and chemotactic factors; (v)

the release of plasma proteins and inflammatory mediators; and (vi) activation of the

immune system.

Upon tissue injury, immune cells, such as dendritic cells and tissue-resident

macrophages, release a wide array of chemokines and pro-inflammatory cytokines

such as interleukins IL-1, IL-4, IL-6, and tumour necrosis factor-alpha (TNF-α), that

induce the chemotaxis of leukocytes from the general circulation into the injury sites

(Davies et al., 2013; Liu et al., 2021). Tissue-resident macrophages play a crucial role

in eliminating harmful stimuli by phagocytosis (Davies et al., 2013). Once leukocytes

reach the injury sites, they are activated by various cytokines and chemokines released
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by the tissue-resident macrophages. When activated, leukocytes secrete more pro- and

anti-inflammatory cytokines that facilitate and inhibit inflammation and mediators of

inflammation to regulate the inflammatory response (Muller, 2013). Neutrophils are

the initial and most prevalent inflammatory cells in the early stages of inflammation

(Soehnlein & Lindbom, 2010; Ortega-Gómez et al., 2013). Neutrophils can eliminate the

detrimental stimuli by phagocytosis or release reactive oxygen species and cytokines

(such as IL-1, IL-6, and TNF-α) and reactive oxygen species (Mantovani et al., 2011).

Macrophages and neutrophils provide an early response to harmful agents in an ef-

fort to contain and eliminate them (Sherwood & Toliver-Kinsky, 2004). Phagocytic

cells play a critical role in the body’s immune defense, but their action is amplified by

lymphocytes such as T-lymphocytes and B-lymphocytes (Sherwood & Toliver-Kinsky,

2004). Lymphocytes play a critical role in mediating inflammation through many com-

plex mechanisms, including the stimulation of lymphocytes, release of cytokines, and

antibody production (Ansar et al., 2016). Platelets can also play a primary role in in-

flammation via platelet aggregation and thrombus formation (Deppermann & Kubes,

2018).

Although the processes underlying the inflammatory response may vary depending

on the site of injury and the initial triggers, they all share a common mechanism (Fran-

gogiannis, 2014). According to Chen et al. (2018), this common mechanism involves:

i) recognition of harmful stimuli by cell surface pattern receptors; ii) activation of in-

flammatory pathways, which contribute to the production of inflammatory mediators;

iii) release of inflammatory markers, including cytokines, proteins, and enzymes, to

activate inflammatory cells; iv) recruitment of inflammatory cells to the injury sites.

The resolution of inflammation occurs when the pro-inflammatory response is sup-

pressed to prevent further tissue damage (Ortega-Gómez et al., 2013; Chen et al., 2018).

This involves halting the recruitment and infiltration of circulating leukocytes to sites of

injury by ceasing pro-inflammatory signalling, resulting in a return of tissue mononu-

clear cell numbers (such as macrophages) to their normal levels in healthy tissues

(Ortega-Gómez et al., 2013).

Therefore, inflammation is a complex process in which both pro- and anti-inflammatory

components cooperate to restore a tissue’s healthy structure. However, disruption of

this process can cause chronic conditions (Ortega-Gómez et al., 2013; Chen et al., 2018).

Based on pathological features, inflammation can be classified into two main cate-

gories: acute and chronic, each varying in duration and intensity (Pahwa et al., 2021).

We explore these types further in the following section.
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1.2.2 Acute inflammation

Acute inflammation is the immune system’s early (almost immediate) biological re-

sponse to a variety of factors such as harmful stimuli, microbial invasion, toxic com-

pounds, or trauma, involving a complex series of reactions at both cellular and molec-

ular levels (Medzhitov, 2008; Chen et al., 2018; Pahwa et al., 2021). The acute inflamma-

tory response begins rapidly and escalates over a short time (Chandrasoma & Taylor,

1998; Pahwa et al., 2021).

Symptoms of an acute inflammatory response may persist for a few hours or days,

such as cellulitis or acute pneumonia (Chandrasoma & Taylor, 1998; Pahwa et al., 2021).

Acute inflammation is characterised by five cardinal signs that can be felt or seen: pain

around the area of injury due to the release of chemicals that stimulate sensory (pain-

sensitive) nerve endings at the affected area; swelling (tumour) due to accumulation

of fluid; warmth (increased heat); visible redness of the inflamed skin due to increased

blood flow to the capillaries in the area of the injury; loss of tissue function due to

vascular changes (Chandrasoma & Taylor, 1998; Takeuchi & Akira, 2010; Chen et al.,

2018; Placha & Jampilek, 2021). These signs are most noticeable when acute inflam-

mation occurs on the body’s surface, but not all of them will be apparent when acute

inflammation occurs in the internal organs (Chandrasoma & Taylor, 1998). Therefore,

symptoms of acute inflammation are not always present because they vary depending

on the cause of the injury or the site of injury (Chandrasoma & Taylor, 1998; Chen et al.,

2018). However, general symptoms associated with acute inflammation include pain,

fatigue, and fever (Chandrasoma & Taylor, 1998).

The acute inflammatory reaction initiates with the release of several pro-inflammatory

mediators, including interleukins IL-1, IL-6, IL-8, IL-11, and TNF-α (Abdulkhaleq et al.,

2018; Liu et al., 2021). The process of acute inflammation involves changes in the micro-

circulation system, including the dilation of capillaries and arterioles, changes in vascu-

lar permeability contributing to increased blood flow and fluid exudation, the release

of inflammatory mediators, and the recruitment and accumulation of white blood cells

(Chandrasoma & Taylor, 1998; Chertov et al., 2000; Ferrero-Miliani et al., 2007; Chen

et al., 2018; Placha & Jampilek, 2021). During an acute inflammatory response, vari-

ous types of leukocytes are recruited at different times to perform diverse functions.

These leukocytes migrate from the vasculature to the site of tissue damage (Soehnlein

& Lindbom, 2010; Muller, 2013). Neutrophils are typically the first inflammatory cells

to reach at the site of tissue damage, moving rapidly compared to other inflammatory

cells at a rate of up to 20 m/min in the interstitial tissue, dominating the early phase

of inflammatory response (Ferrero-Miliani et al., 2007; Mantovani et al., 2011). There-
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fore, infiltration of neutrophil cells into the inflammation site is one of the hallmarks

of acute inflammation (Gabay, 2006; Mantovani et al., 2011). Neutrophils are produced

in the bone marrow and released into the bloodstream in an already active form. They

are the most abundant type of white blood cells in humans (Kolaczkowska & Kubes,

2013). Following this phase, macrophages and immunologically active cells, such as

plasma cells and lymphocytes, arrive at the site of inflammation and predominate the

area. These inflammatory cells play a crucial role in the resolution of inflammation

(Chandrasoma & Taylor, 1998; Gabay, 2006; Ferrero-Miliani et al., 2007).

Acute inflammation can be thought of as a protective reaction against infections and in-

jury, primarily aimed at eliminating and removing the injurious agent (the agent caus-

ing the damage) (Chandrasoma & Taylor, 1998; Ortega-Gómez et al., 2013). However,

there are several possible outcomes of the acute inflammatory response: resolution of

inflammation where injured tissues return to normal, in which mononuclear leuko-

cytes, such as neutrophils and macrophages, remove the noxious agent and debris; re-

pair, when tissue necrosis occurs before debris and damaged cells have been removed,

repair begins with either replacing dead cells with regeneration or repairing them by

scar formation; chronic inflammation, when the harmful agent is not eliminated during

the acute inflammatory response, the inflammation progresses into chronic inflamma-

tion (Chandrasoma & Taylor, 1998; Zhou et al., 2016).

The acute inflammatory response is a process that involves a series of localised cel-

lular changes, which typically resolve within hours to days (Serhan & Savill, 2005).

This response is considered healthy when the factors causing the damage are removed,

including the return of the number of inflammatory cells to normal and the produc-

tion of pro-inflammatory mediators is halted while anti-inflammatory mediators are

released to promote tissue repair and restoration of function. Otherwise, inflamma-

tion can progress to a chronic condition (an unhealthy response) (Serhan & Savill, 2005;

Ortega-Gómez et al., 2013; Chen et al., 2018).

1.2.3 Chronic inflammation

Although the process of inflammation is complex and involves a wide range of cellu-

lar and molecular interactions, dysfunctions of these reactions may affect the normal

physiological course of inflammation and cause chronic inflammation (Serhan & Sav-

ill, 2005; Pahwa et al., 2021). Chronic inflammation can result from a wide range of

factors contributing to its development and proliferation, leading to further damage to

tissues. Therefore, chronic inflammation is the sum of body tissue responses against a

persistent offending agent, such as viruses, bacteria, toxic chemicals and other noxious
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stimuli that can inevitably cause tissue injury or disease (Chandrasoma & Taylor, 1998;

Lawrence & Gilroy, 2007). The chronic inflammatory response is slow and persists for

an extended time, ranging from months to years or even a lifetime in some chronic in-

flammatory diseases due to a sustained inflammatory response, such as autoimmune

diseases and atherosclerosis (Chandrasoma & Taylor, 1998; Pahwa et al., 2021).

Most manifestations of acute inflammation persist when the inflammation progresses

into a chronic state, including increased blood flow in capillaries and arterioles, vasodi-

latation, vascular permeability, fluid extravasation, and the influx of inflammatory cells

into the affected tissue (Ferrero-Miliani et al., 2007; Pahwa et al., 2021). Although the

symptoms of chronic inflammation can be silent, common signs may include chronic

fatigue, arthralgia, body pain, anxiety, mood disorders, or frequent infections (Chan-

drasoma & Taylor, 1998; Pahwa et al., 2021). In general, the extent and impact of chronic

inflammation vary with the immune system’s ability to overcome the cause of the

injury and repair damaged tissue (Pahwa et al., 2021; Placha & Jampilek, 2021). At

the cellular level, chronic inflammation is characterized by the continuous recruitment

of mononuclear cells, such as lymphocytes, macrophages, plasma cells, and fibrob-

lasts (Ferrero-Miliani et al., 2007; Yousuf et al., 2019; Placha & Jampilek, 2021; Pahwa

et al., 2021). Thus, a hallmark of chronic inflammation is the presence of mononu-

clear cells (monocytes), such as macrophages and lymphocytes, at the site of inflam-

mation. Monocytes migrate into the injured tissue through the capillary wall to replace

short-lived neutrophils (Gabay, 2006; Ferrero-Miliani et al., 2007). Monocyte-derived

macrophages produce a range of pro-inflammatory cytokines, chemokines, and growth

factors. Overproduction of these mediators negatively affects tissues, leading to dys-

function of organs and plasma cells and further developing tissue damage (Milenkovic

et al., 2019). According to the preceding, the inflammatory response involves a series

of biochemical events that may lead to either resolution (a healthy response) or chronic

inflammation (an unhealthy response). Figure 1.3 demonstrates the possible outcomes

of inflammation.

Chronic inflammation is associated with a wide range of chronic diseases including,

but not limited to, heart disease, numerous autoimmune diseases, type 2 diabetes,

cancer, arthritis, kidney and liver diseases, and bowel diseases (Chandrasoma & Tay-

lor, 1998; Zhou et al., 2016). The prevalence of chronic diseases is expected to in-

crease throughout the world over the next three decades (Pahwa et al., 2021; Placha &

Jampilek, 2021). Thus, chronic inflammatory diseases are considered to be some of the

world’s most common causes of death (Deepak et al., 2019; Placha & Jampilek, 2021).

Chronic inflammation is accompanied by a persistent release of pro-inflammatory me-
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Figure 1.3: The possible outcomes of inflammation are varied. Resolution occurs when

damaged tissue returns to its normal morphology, function, and homeostasis. How-

ever, tissue necrosis may precede the removal of debris and damaged cells, resulting in

healing through the replacement of connective tissue (dead and damaged cells) with

regeneration via fibrosis formation or repair through scar formation. Acute inflamma-

tion progresses into chronic inflammation when harmful agents remain uneliminated,

leading to the sustained release of inflammatory mediators and persistent recruitment

of leukocytes to the inflammation site.

diators and the accumulation of inflammatory cells at the inflammation site due to

the inability of the immune system to eliminate pathogens and their penetration into

affected tissues (Medzhitov, 2008; Placha & Jampilek, 2021; Pahwa et al., 2021). Un-

fortunately, chronic inflammation can eventually lead to loss of tissue function due to

abnormalities in tissue structure after regeneration and replacement by fibrous tissue

(Ferrero-Miliani et al., 2007).

Finally, we can think of acute inflammation as the immune system’s natural response to

injury that is generally beneficial to the body, particularly during infectious challenges.

In contrast, chronic inflammation is the persistent harmful type because it is associated

with many chronic inflammatory diseases that can subsequently lead to significant or-

gan dysfunction. Table 1.1 summarizes some of the major differences between acute

and chronic inflammation.
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Feature Acute Chronic

Onset immediate delayed

Duration short (hours to days) long (weeks to years)

Cause

tissue injury or harmful

pathogens that the immune

system can eliminate

foreign bodies and pathogens

that remain in the body and the

immune system can not remove

them

Inflammatory

cells

mainly neutrophils, followed by

macrophages

macrophages, lymphocytes, and

plasma cells.

Vascular changes

(Outcomes)

resolution of inflammation, ab-

scess formation, chronic inflam-

mation

tissue destruction, scar tissue, fi-

brosis

Table 1.1: Differences between acute and chronic inflammation.

1.3 Key cells involved in inflammation

White blood cells, also known as leukocytes, are the primary cellular components

of human blood that contain a nucleus, distinguishing them from other blood cells

(Khamael et al., 2020; Kannan et al., 2023). They are produced by hematopoietic stem

cells found in the bone marrow and are present throughout the body, including the

lymphatic system, connective tissues, and the bloodstream (Yao et al., 2021). White

blood cells play a vital role in the immune system by protecting the body from infec-

tions and diseases.

White blood cells can be categorized into two main groups: granulocytes (including

neutrophils, basophils, and eosinophils) and agranulocytes. The agranulocytes are fur-

ther divided into monocytes, which differentiate into either macrophages or dendritic

cells, and lymphocytes (including B-cells and T-cells) (Yao et al., 2021; Baghel et al.,

2022). Each type of white blood cell has different morphological features such as size,

nucleus, shape, texture, and shape of the cytoplasm (Khamael et al., 2020). They also

have the unique function of defending the body against foreign particles. Figure 1.4

illustrates the different types of white blood cells in the body.

Granulocytes have large nuclei and visible granules in the cytoplasm, and their lifes-

pan within the tissue ranges from hours to days. The diameter of the largest cell is

about 12–20 µm (Al-Dulaimi et al., 2018). Neutrophils are the most abundant type of

white blood cells, representing 50–70% of the total white blood cells, with a diameter

of approximately 10–18 µm (Al-Dulaimi et al., 2018; Yao et al., 2021). Monocytes are
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Figure 1.4: Different types of white blood cells.

longer-lived cells and the largest type of white blood cells with a diameter of approxi-

mately 10–30 µm, containing only a single nucleus (Abbas & Rydh, 2012). Neutrophils

and monocytes both function as phagocytic cells. The sizes and lifespans of white blood

cells can be influenced by various factors, including the cell’s activation state, the type

of infection, and their specific tissue environment (Al-Dulaimi et al., 2018).

White blood cells account for only 1% of the total human blood volume (Jiang et al.,

2022). In a healthy body, the count of white blood cells ranges from 4,500 to 11,000

per microliter (Riley & Rupert, 2015; Gajbhiye & Aate, 2023). These cells play a sig-

nificant role in monitoring an individual’s health condition and diagnosing various

blood-related diseases. A low count of white blood cell can be due to several reasons,

such as certain medications or due to something more serious, like a weakened im-

mune system (HIV/AIDS) or blood cancer (leukaemia) (Suryani et al., 2015; Gajbhiye

& Aate, 2023). Therefore, a human body that suffers from a low number of white blood

cells is more susceptible to infections and chronic diseases due to the body’s lack of

immune cells to counter foreign particles such as invading bacteria and viruses. On the

other hand, when the number of white blood cells in the body is higher than normal

(also known as leukocytosis), it often indicates that the body is fighting infection, in-

jury, or inflammation (Riley & Rupert, 2015), but in rare cases, it indicates something

more serious, such as myelodysplastic syndrome (Ghoti et al., 2007). The following

section briefly reviews macrophages and their function in the body.
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1.3.1 Macrophages and their functions in the body

Circulating macrophages are a type of white blood cell originating from circulating

monocytes produced by hematopoietic stem cells in the bone marrow (Wynn et al.,

2013; Chen & Zhang, 2017; T’Jonck et al., 2018). Tissue-resident macrophages have di-

verse origins, such as fetal liver monocytes and yolk sac macrophages (Davies et al.,

2013; Ginhoux & Guilliams, 2016; Chen & Zhang, 2017). Macrophages are the largest

type of white blood cell, with a diameter ranging from 10 to 30 µm, and have a lifes-

pan that varies from months to years (Krombach et al., 1997; Prinyakupt & Pluempiti-

wiriyawej, 2015).

Macrophages are mononuclear phagocytic cells capable of motility and spread in all

tissues and organs of the body (Laskin et al., 2011). They are responsible for engulf-

ing and digesting foreign particles, diseased cells, pathogens, and harmful substances

in the body (Wynn et al., 2013). Macrophages are also referred to as “cell-eating ma-

chines“ or “big eaters of immune cells“ (Kain & Halade, 2015; Weigert et al., 2019). In

general, macrophages are versatile cells that fulfil various essential activities as part

of the innate immune system, including the clearance of cellular debris, tissue main-

tenance, and regulation of the immune response (Eming et al., 2007; Chen & Zhang,

2017). In response to inflammatory signals, they are rapidly recruited to the site of in-

flammation or infection to fulfil their role in defence against pathogens (Grabher et al.,

2007).

Macrophages and neutrophils are the first white blood cells to respond to infection,

acting as the body’s first line of defence against pathogens (Wynn et al., 2013; Jackson,

2016). Macrophages recognise foreign invaders, such as bacteria and other harmful

organisms, through a special receptor system on their surface called Toll-like receptors

(TLRs) (e.g. Dectin-1 and the mannose receptor (CD206)). For instance, the mannose re-

ceptor (CD206) recognises mannosylated ligands on fungi, viruses, and bacteria (Mills,

2012; Jackson, 2016). Macrophages are attracted to the site of an injury or infection by

receiving chemical signals sent by bacteria. Macrophage receptors interact with the

surface of the pathogen. They then phagocytose bacteria or unwanted particles, pro-

ducing reactive oxygen species that kill the phagocytosed cell through a process called

phagocytosis, as shown in Figure 1.5. Macrophage receptors can distinguish healthy

body cells from foreign particles, such as bacteria, by recognizing the specific structure

of proteins on the surface of healthy body cells and pathogen-specific carbohydrate or

lipid structures (Taylor et al., 2005; Plüddemann et al., 2006; Gordon, 2016). Therefore,

macrophages play a central role in detecting, eliminating and destroying pathogens,

apoptotic cells and other harmful organisms by engulfing them (Rogler, 2017).
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Figure 1.5: Phagocytosis of bacteria by macrophages. Source of image: https:

//basicmedicalkey.com/immune-system. (Jan. 2023)

Macrophages play a critical role in initiating the inflammatory response by releas-

ing a wide array of cytokines, chemokines, and growth factors that attract other im-

mune cells to the site of inflammation (Hirayama et al., 2018). Moreover, macrophages

activate the action of other immune system cells such as lymphocytes. They work

to destroy potential pathogens, such as viruses, by presenting antigens (usually

protein molecules) to T-lymphocytes to regulate the immune response, and to B-

lymphocytes for antibody production (Jackson, 2016). In addition to the prominent

role of macrophages in alerting the immune system in case of tissue damage and in-

fection, macrophages also function in physiological healing, repair and remodelling of

tissues, and maintaining tissue homeostasis (Laskin et al., 2011; Chen & Zhang, 2017;

T’Jonck et al., 2018).

Tissue-resident macrophages have several main common functions, such as phagocy-

tosis, antigen presentation, and initiation of immune responses. Besides these com-

mon functions, each macrophage population has a unique function and identity that

depends on the tissues in which they reside (Tamoutounour et al., 2013). For exam-
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ple, lung alveolar macrophages are involved in the clearance of inhaled pathogens and

xenobiotics (Trapnell et al., 2003; Laskin et al., 2011). Microglia macrophages in the

brain are essential for brain development and homeostasis, and they are also involved

in brain monitoring by constantly probing the cellular environment (Paolicelli et al.,

2011). Cardiac macrophages facilitate electrical conduction in the heart through con-

nexin 43-containing gap junctions with cardiomyocytes (Hulsmans et al., 2017). Resi-

dent macrophages in the liver (also known as Kupfer cells) are involved in removing

endotoxin and other foreign materials from the portal circulation (Laskin et al., 2011).

The function of macrophages varies depending on their response to various signals

that they receive from inflammatory mediators. For instance, upon exposure to pro-

inflammatory mediators such as tumour necrosis factor (TNF-α) and interleukins IL-8

and IL-12, macrophages are stimulated to recognise and eliminate harmful stimuli, in-

cluding apoptotic neutrophils (Mantovani et al., 2002; Mosser & Edwards, 2008; Mills,

2012; Hirayama et al., 2018). On the other hand, when exposed to anti-inflammatory

mediators such as transforming growth factor-β and interleukins IL-4, IL-10, and IL-

13, macrophages are prompted to regulate the inflammatory response and tissue re-

modelling and repair (Mills, 2012; Dunster, 2016; Ponzoni et al., 2018). Pro- and anti-

inflammatory mediators play contrasting roles in the inflammatory response, and

macrophages’ functions are closely associated with the type of signals they receive from

these mediators.

Despite the crucial role that macrophages play in fighting diseases as part of the normal

immune response to acute inflammation, they may also have a negative impact on

inflammation in the case of aberrations in their activities (Laskin et al., 2011). Several

studies have revealed that pathogens directly affect tissue injury, while macrophages

indirectly impact the affected tissues, exacerbating tissue injury and its progression

into a chronic disease (Laskin et al., 2011; Chen & Zhang, 2017; T’Jonck et al., 2018).

This concept regarding the contribution of macrophages to the pathogenesis of many

chronic diseases has become popular and well-established, with ample evidence to

support it in various organs such as skin (Aitcheson et al., 2021), lung (Gwyer Findlay

& Hussell, 2012; Aggarwal et al., 2014), liver (Sica et al., 2014), brain (Hu et al., 2015),

and kidney (Cao et al., 2015).

Macrophages exhibit remarkable plasticity and heterogeneity in response to various

stimuli, allowing them to change into distinct phenotypes with different functional

properties during the inflammatory response (Biswas & Mantovani, 2010; Saqib et al.,

2018). The functional phenotype of macrophages changes gradually in response to the

alterations in their environmental signals and molecular mediators, a process known as
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polarisation (Mantovani et al., 2005; Mosser & Edwards, 2008). The process of macrophage

polarisation is tightly regulated by a range of chemical signals produced by both pro-

and anti-inflammatory mediators, which aim to resolve inflammation and maintain

tissue homeostasis (Murray et al., 2014; Saqib et al., 2018).

The classification of macrophages is still considered a controversial topic. How-

ever, macrophages can be classified into two main subtypes based on their function:

pro-inflammatory macrophages (referred to as M1 or classically-activated) and anti-

inflammatory macrophages (also known as M2 or alternatively-activated) (Mosser &

Edwards, 2008; Wynn et al., 2013; Martinez & Gordon, 2014; Rigamonti et al., 2014). Al-

ternatively, some scientists claim that a continuum of intermediate phenotypes exists

lying between the two extremes above, with phenotypic changes occurring in response

to gradual changes in their microenvironment (Palma et al., 2018). These subtypes

differ in morphology, cell surface markers, biological functions, type of identifiable

pathogens, and secreted cytokines (Torres et al., 2019). However, it should be noted

that the binary classification oversimplifies the complex functional activity of these

cells and cannot represent most types of macrophages’ in vivo environments (Wynn

et al., 2013; Porcheray et al., 2005).

Dysfunctions in macrophage phenotypes have been associated with several chronic

diseases (Funes et al., 2018). For instance, increased infiltration or prolonged activation

of pro-inflammatory macrophages can cause an increase in their oxidation products,

such as reactive oxygen species, resulting in malfunction, cancer, or autoimmune dis-

eases (Smith et al., 2009). On the other hand, an increased influx of anti-inflammatory

macrophages has been associated with a poor prognosis, while a reduced population of

anti-inflammatory macrophages could be implicated in the development of injurious

inflammation and autoimmunity (Funes et al., 2018). Therefore, understanding the pre-

cise roles of macrophage phenotypes may help to reveal potential therapeutic targets

in inflammatory diseases. In the following section, we delve into the main features of

pro- and anti-inflammatory phenotypes.

1.3.2 Pro-inflammatory macrophage polarisation and related mediators

In the context of inflammation, a cascade of inflammatory mediators, including cy-

tokines and chemokines, is released that direct the inflammatory response and attract

immune cells to damaged tissue. Monocytes are recruited from the bloodstream and

change into macrophages upon entering infected tissue. These macrophages have

the ability to switch towards pro-inflammatory activity in response to environmen-

tal cues present at the inflammation site, during which they identify and eliminate
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harmful stimuli (Mosser & Edwards, 2008; Sica et al., 2012; Saqib et al., 2018). How-

ever, macrophages can also switch to anti-inflammatory activity, suppressing the pro-

inflammatory response, removing unwanted substances, and promoting tissue repair.

Macrophage influx is expected to become more pro-inflammatory in proportion to the

concentration of pro-inflammatory mediators. Conversely, it tends to be anti-inflammatory

in proportion to the concentration of more anti-inflammatory mediators (Mosser & Ed-

wards, 2008), as illustrated in Figure 1.6.

Macrophages produce both pro- and anti-inflammatory mediators during the inflam-

matory response. As a result, these cells have the ability to perform various functions

in response to stimuli, including cytokine production, phagocytosis, and tissue repair

and remodelling. These macrophages acquire a pro-inflammatory phenotype upon ex-

posure to pro-inflammatory mediators, including interleukins (IL-1β, IL-8 and IL-12),

tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and lipopolysaccharides (LPS)

(Mosser & Edwards, 2008; Classen et al., 2009; Sica et al., 2012; Dunster, 2016; Saqib

et al., 2018). In addition, several pathways drive macrophages to pro-inflammatory

macrophage polarisation, including the LPS/TLR4, IRF/STAT, and NF-KB/PI-3 kinase

pathways (Huang et al., 2018).

Macrophages with pro-inflammatory properties eliminate pathogens, present their

antigens to the adaptive immune system, and remove debris and dead cells (including

apoptotic neutrophils). Moreover, they are involved in producing pro-inflammatory

cytokines that promote pro-inflammatory response, such as interleukins (IL-1β, IL-6,

IL-12, and IL-23), TNF-α, reactive oxygen spices, reactive nitrogen species, and in-

ducible nitric oxide synthase (Biswas & Mantovani, 2010; Laskin et al., 2011; Saqib et al.,

2018; Atri et al., 2018). Therefore, the function of pro-inflammatory macrophages is

associated with the high production of pro-inflammatory cytokines. Moreover, phe-

notypes of pro-inflammatory macrophages are associated with high levels of Th1 cell-

attracting chemokines and the major histocompatibility complex class II (MHC II), and

the cluster of differentiation like CD68, CD80, and CD86 (Biswas & Mantovani, 2010).

Therefore, pro-inflammatory macrophages exhibit potent microbicidal and tumoricidal

activity and release several mediators that promote strong pro-inflammatory immune

responses (Laskin et al., 2011).

Pro-inflammatory mediators play a crucial role in polarizing the pro-inflammatory

macrophage phenotype. However, prolonged activation of pro-inflammatory

macrophages can cause exacerbating tissue injury, leading to chronic diseases (Sieweke

& Allen, 2013; Italiani & Boraschi, 2014). Macrophages can switch from pro-

inflammatory to anti-inflammatory macrophages in response to microenvironmental
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Figure 1.6: Phenotypic switching in macrophages is a dynamic process regulated by

the microenvironment, wherein macrophages adopt distinct functions with molecular

properties that differentiate phenotypes. Macrophages can change their phenotype in

response to environmental cues, with inflammatory mediators playing a crucial role

in the polarisation of macrophage phenotype.

cues and vice versa. Pro- and anti-inflammatory macrophages differ in phenotype,

stimuli, cytokine release, and functions (Mosser & Edwards, 2008; Martinez et al.,

2009; Hirayama et al., 2018). In the following section, we will briefly review anti-

inflammatory macrophages.

1.3.3 Anti-inflammatory macrophage polarisation and related mediators

The activity of pro-inflammatory macrophages is balanced by the role of anti-

inflammatory macrophages, which endeavour to suppress inflammation (Laskin et al.,

2011). The phenotype of anti-inflammatory macrophage can be activated by various

stimuli, including interleukins IL-4, IL-10 and IL-13, apoptotic cells, and transforming

growth factor-β (TGF-β) (Mosser, 2003; Gordon & Martinez, 2010; Biswas & Mantovani,

2010; Atri et al., 2018). Anti-inflammatory macrophages produce anti-inflammatory cy-

tokines such as interleukin IL-10 and transforming growth factor-β (TGF-β) (Mosser &

Edwards, 2008; Martinez et al., 2009; Gordon & Martinez, 2010; Hirayama et al., 2018).

Anti-inflammatory macrophages promote an anti-inflammatory response, clear apop-

totic cells and debris, promote cell growth, and tissue repair and maintain tissue home-

ostasis (Atri et al., 2018; Shapouri-Moghaddam et al., 2018). Figure 1.7 illustrates the

main triggers and the production linked with each distinct macrophage phenotype.
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Figure 1.7: Schematic overview of macrophage polarisation: triggers, cytokine release,

and functions. Monocytes are recruited from the bloodstream to differentiate into

macrophages, acquiring specific phenotypes upon exposure to stimuli. Monocyte-

derived macrophages exhibit a continuum of intermediate phenotypes that lie be-

tween pro- and anti-inflammatory macrophages, which change in response to grad-

ual changes in their microenvironment. Pro- and anti-inflammatory macrophages

differ in phenotype, stimuli, cytokine release, and functions. Pro-inflammatory

macrophage polarisation is triggered by interleukins (IL-1β, IL-8, IL-12), lipopolysac-

charide (LPS), tumour necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). In contrast,

anti-inflammatory macrophage polarisation is stimulated by interleukins (IL-4, IL-10,

IL-13) and transforming growth factor-β (TGF-β). Pro-inflammatory cytokines, such

as IL-1β, IL-6, IL-12, IL-23, TNF-α, reactive oxygen species (ROS), and reactive ni-

trogen species (RNS), are typically released by pro-inflammatory macrophages. In

contrast, anti-inflammatory macrophages produce anti-inflammatory cytokines, such

as IL-10 and TGF-β. Both pro-and anti-inflammatory macrophages have different

functions. Anti-inflammatory macrophages suppress inflammation by releasing large

amounts of IL-4, IL-10 and TGF-β, contributing to the maintenance of tissue home-

ostasis. Uncontrolled polarisation of macrophages can contribute to chronic disease.

In contrast to pro-inflammatory macrophages, anti-inflammatory macrophages secrete

a low level of inflammatory cytokines such as IL-1, IL-6, and TNF-α, but release an

elevated level of anti-inflammatory cytokines such as IL-4, IL-10, and IL-13, and trans-

forming growth factor (TGF)-β, to suppress inflammation (Laskin et al., 2011; Chen &

Zhang, 2017; Atri et al., 2018). Therefore, maintaining an optimum balance between

pro- and anti-inflammatory macrophages is critical in resolving inflammation. Ta-

ble 1.2 summarises markers used to distinguish between pro- and anti-inflammatory

macrophages.
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Phenotype Stimuli
Cytokines, chemokines,

and other secreted mediators

Cell expression

markers

Pro-inflammatory

macrophages

LPS, IFN-γ,

TNF-α

TNF-α, IL-1β, IL-6, IL-12, IL-23,

IL-27, NOS, ROS, RNS, CXCL9,

CCL8, CCL19, CCL20,

CXCL10, CXCL11, CXCL16

IL-12 high, NOS, TLR-2,

IL-10 low, TLR-4, MHC-II,

CD16, CD32, CD64, CD68,

CD80

Anti-inflammatory

macrophages

IL-4, IL-13,

TGF-β

IL-10, TGF-β, VEGF, TNF-α,

IL-1β, IL-6, CCL17, CCL18,

CCL22, CCL24, CXCL13

IL-10 high, MMR/CD206,

IL1-ra, TLR-1, VEGF,

TNF-α low, IL-12 low, CD86,

CD115, CD204, CD163

Table 1.2: Summary of the major biological and physiological markers of pro- and

anti-inflammatory macrophage phenotypes observed in living organisms. Abbrevia-

tions: LPS= lipopolysaccharide; IFN=interferon; TNF= tumour necrosis factor; IL =

interleukin; TGF= transforming growth factor; ROS/RNS= reactive oxygen/nitrogen

species; NOS= nitric oxide synthase; CXCL/CCL= chemokine; VEGF= vascular en-

dothelial growth factor; TLR= toll-like receptor; IL1-ra= receptor antagonist; MHC=

major histocompatibility complex; MMR= macrophage mannose receptor; CD= clus-

ter of differentiation.

1.4 Previous mathematical models of inflammation

The interest in inflammation has been surging due to its association with a wide range

of chronic inflammatory diseases, including cancer, type 2 diabetes, Alzheimer’s dis-

ease, arthritis, and asthma (Piché et al., 2020; Paolini P. et al., 2021; Wang et al., 2021;

Blüher & Müller-Wieland, 2022). The lack of full knowledge of the interactions that

regulate the inflammatory process has hindered the development of effective and ap-

propriate therapeutic strategies. Therefore, mathematical modelling of biological pro-

cesses has captured great interest among the scientific community as it aims to provide

reliable simulations that enable us to predict possible outcomes of complex biological

issues (Tomlin & Axelrod, 2007; Vasieva et al., 2013). Hence, mathematical models can

be used to shed light on some of these aspects to better understand the mechanisms

underlying chronic inflammation and identify the inflammatory pathways involved in

chronic diseases, which may represent new therapeutic targets.

Various techniques are used in mathematical modelling to capture the interactions un-

derlying the inflammatory process in both a generic context and tailored to particu-

lar infections/disease scenarios. These techniques include statistical-technique-based,

mathematical analysis-based, and machine learning-based models. (A review of these
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is given by Prasad et al. (2022).) Furthermore, Vodovotz et al. (2013) proposed various

approaches that can be used to understand and potentially control the acute inflam-

matory response, such as in silico trials (computational simulations of clinical trials),

equation-based models, agent-based models, and hybrid models (combining computa-

tional models comprising multiple scales). This section delves into recent studies that

model macrophages computationally and mathematically and their role in the inflam-

matory process.

To date, many mathematical models have been proposed that capture the roles of

macrophages and other immune cells in the mechanisms that underlie inflammation.

These aspects can be summarized as follows: the influence of motility of inflammatory

cells (including neutrophils and macrophages) driven by chemotaxis on the response

outcome (Bie et al., 2010; Dunster et al., 2014; Brady et al., 2016; Bayani et al., 2020a;

Solis & Azofeifa, 2020); particular roles played by macrophages, such as clearing apop-

totic neutrophils (Sherratt & Dallon, 2002; Liang et al., 2007; Raza et al., 2010; Kraak-

man et al., 2014) and clearing debris or releasing inflammatory mediators; the ability of

the inflammatory response to resolve (Reynolds et al., 2006; Delavary et al., 2011; Pen-

ner et al., 2012; Shu et al., 2020); and the examination of certain inflammatory diseases

that involve macrophage populations (Vodovotz et al., 2004; Marée et al., 2006, 2008;

Parameswaran & Patial, 2010; Baker et al., 2013; Dobreva et al., 2021).

1.4.1 Models containing a single homogenised macrophage population

Numerous mathematical models have been proposed to elucidate the roles of

macrophages in the resolution of inflammation. However, many of these models take

the simplistic approach of assuming a homogenised macrophage population that may

encompass a wide range of distinct phenotypes (Kumar et al., 2004; Lelekov-Boissard

et al., 2009; Herald, 2010; Penner et al., 2012; Dunster et al., 2014; Bianca et al., 2015;

Cooper et al., 2015; Bangsgaard et al., 2017; Bayani et al., 2020a,b; Solis & Azofeifa,

2020). Kumar et al. (2004) developed a simple three-dimensional ordinary differential

equation model of the inflammatory response to infection, which combines the effects

of early-responding immune cells (neutrophils, mediators) and late pro-inflammatory

feedback. The model includes interactions between a generic pathogen and two classes

of pro-inflammatory responses. After clarifying how model parameters influence re-

sponse outcomes, the authors provide a diverse therapeutic approach for persistent

infectious inflammation (sepsis), focusing on reducing late pro-inflammatory reac-

tions. Reynolds et al. (2006) expanded on this work by including a time-dependent

anti-inflammatory response and examining how modifying this response might lead
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to possible new therapeutic interventions.

Mathematical modelling has been extensively applied to the inflammation process,

which involves a single homogenised population of macrophages in response to tissue

damage or pathogenic infection, focusing largely on how total numbers/concentrations

of cells and mediators evolve temporally in the tissue of interest. Serhan et al. (2008)

proposed a model of inflammation that studies the dynamics of anti-inflammatory pro-

cesses. This study presented mechanisms for inflammation resolution involving anti-

inflammatory and pro-resolution lipid mediators with neutrophils and macrophages.

The authors suggest that the resolution of inflammation derives from anti-inflammatory

processes, whereby pro-resolution molecules promote the clearance of apoptotic cells

and microbes by macrophages, and anti-inflammatory mediators act to stop and lower

neutrophil infiltration to inflamed tissues, enabling return to homeostasis. To overcome

the bias of the model toward anti-inflammatory dynamics in the interactions between

bacteria and phagocytosing cells, Brady et al. (2016) proposed a mathematical model

investigating the pro- and anti-inflammatory interactions arising from pathogenic mi-

crobial infection. The model was calibrated to experimental data obtained from a

sample of 20 healthy young males who received a low-dose intravenous injection of

lipopolysaccharide (LPS). This trial measured levels of pro-inflammatory cytokines

(chemokine ligand-8 (CXCL8), interleukin-6 (IL-6), and tumour necrosis factor (TNF))

and anti-inflammatory cytokines (interleukin-10 (IL-10)) over 8 hours in a chosen sam-

ple. Since relevant cytokines are modelled and taken into account independently, the

model lacks the analysis of inflammatory pathways resulting from other mediators that

are left out. Brady et al. (2018) and Dobreva et al. (2021) expanded this work to include

the prediction of blood pressure and changes in heart rate variability.

The removal of apoptotic neutrophils by macrophages was considered a significant

driver of inflammation resolution in the models developed by Dunster et al. (2014). The

study used a series of models formulated as systems of ordinary differential equations

(ODEs). The minimal model focused on the interactions of a single homogenised pop-

ulation of macrophages, active and apoptotic neutrophil populations, and generic pro-

inflammatory mediators. The basic model was expanded to integrate additional posi-

tive feedbacks, representing an active neutrophils’ ability to release pro-inflammatory

mediators and cause damage to healthy tissue. Eventually, anti-inflammatory media-

tors produced by macrophages were included. The study suggested that the resolution

of inflammation is an active anti-inflammatory process, in which macrophages remove

the pro-inflammatory activity generated by apoptotic neutrophils that can damage

healthy tissue when their toxic content leaks out. The study reported that an effec-
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tive approach to resolving inflammation requires targeting both macrophage phago-

cytosis and neutrophil apoptosis rates. This work was later extended to incorporate

spatial descriptions of motile cells and inflammatory mediators via corresponding par-

tial differential equation models (Bayani et al., 2020a) and agent-based models (Bayani

et al., 2020b), the latter of which were calibrated against relevant in vivo cell trajectory

data. Solis & Azofeifa (2020) developed a mathematical model to describe an inflamma-

tory disease that targets macrophages as a potential therapeutic target for resolving in-

flammation. The ODE model includes a single population of macrophages, active and

apoptotic neutrophils and pathogens, and a few pro-inflammatory cytokines. The res-

olution of inflammation can be improved by stimulating the death rate of neutrophils

and the rate at which macrophages engulf dead neutrophils. However, the study did

not include all the pro- and anti-inflammatory mediators to investigate the possible

outcomes of the inflammatory response.

Many studies have revealed that macrophages produce pro- and anti-inflammatory

mediators in response to various environmental cues (Stout et al., 2005; Porcheray et al.,

2005; Mosser & Edwards, 2008; Mills, 2012; Martinez & Gordon, 2014; Hirayama et al.,

2018). However, it has been observed that many single homogenised macrophage mod-

els ignore the inclusion of both generic pro- and anti-inflammatory mediators. For in-

stance, Dunster et al. (2014) and Bayani et al. (2020a) assumed macrophages only release

generic anti-inflammatory mediators to promote their anti-inflammatory role by re-

moving apoptotic neutrophils, overlooking their crucial role in a pro-inflammatory ac-

tivity involving the release of pro-inflammatory mediators. Many researchers suggest

that therapeutic strategies derived from macrophage-centric models, assuming that re-

solving inflammation solely involves suppressing it, are ineffective because these mod-

els ignore the pro-inflammatory role played by macrophages. Instead, they advocate a

therapeutic approach that focuses on controlling and reprogramming inflammation as

a more effective strategy (Vodovotz et al., 2013; Brady et al., 2016).

1.4.2 Models containing multiple macrophage populations

Some existing models do account for distinct phenotypes separately and have explicitly

incorporated two distinct macrophage populations, normally referred to as M1 and M2

(Waugh & Sherratt, 2006; Wang et al., 2012; Lee et al., 2017; Torres et al., 2019; Shu et al.,

2020; Minucci et al., 2021; Dunster et al., 2023; Nelson et al., 2023). Macrophage phe-

notypes play a crucial role in the development and resolution of inflammation. Dys-

function or disruption between pro- and anti-inflammatory macrophage activities has

been implicated in many inflammatory diseases. For instance, the accumulation of M1
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macrophages in adipose tissue can lead to atherosclerosis and type 2 diabetes (Mosser

& Edwards, 2008; Bie et al., 2010), while overpopulation of M2 macrophages can cause

disorders such as allergies and asthma (Delavary et al., 2011). Lee et al. (2017) devel-

oped a mathematical model of the macrophage response to viral infection to predict the

outcomes of the inflammatory response by manipulating the strength and duration of

viral infection. The model includes two distinct populations of macrophages (M1 and

M2), two cytokines (interferons and IL-4), and two enzymes (nitric oxide synthase and

arginase-1). However, the model lacks the analysis of inflammatory pathways resulting

from other mediators that have been excluded.

Many researchers have already developed and investigated mathematical models of

inflammation that include two distinct populations of macrophages classified into pro-

and anti-inflammatory activities with a focus on their dynamics and progression led by

infectious sources. To capture the contradictory roles of macrophage phenotypes, Tor-

res et al. (2019) developed a cellular-level inflammatory response model focusing on the

sequential influx of immune cells in response to a bacterial stimulus. The ODE model

includes M1 and M2 macrophages, active and apoptotic neutrophils, pathogens, and

an inflammatory stimulus. The model was calibrated to experimental data obtained

from a mouse peritonitis model of inflammation, which is frequently used to assess

endogenous processes in response to an inflammatory stimulus. The model can pre-

dict the outcomes of acute inflammatory responses targeting macrophage phenotypes.

The model also reveals that dysfunction of a phenotypic switch of macrophages can

disrupt the timely influx and egress of immune cells within the healing process and

cause chronic disease. Knowing which subpopulations of macrophages to modulate

is essential for development of therapeutic interventions that promote inflammation

resolution. The study excluded pro- and anti-inflammatory mediators from the model

components since they cannot be measured experimentally; instead, it used feedback

loops to describe their effects on the inflammatory response. On the other hand, the

authors recommended including pro- and anti-inflammatory mediators to improve a

future model since they influence the function of infiltrated immune cells.

To investigate the effects of M1 and M2 macrophages on tumour growth, Shu et al.

(2020) proposed a simple mathematical model that describes the interactions between

the macrophages and tumour cells. The model excluded inflammatory mediators and

instead relied on tumour cells to trigger the response. The model consists of three

ordinary differential equations, and bifurcation analysis was used to investigate how

changes in model parameters affect the outcomes. The study suggests that targeting

both the activation rate of M1 and M2 macrophages by tumour cells and the switching
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rate between M1 and M2 macrophages could be a dual therapeutic strategy to reduce

tumour cells. This study provides evidence of the significant role played by the rate

of macrophage phenotype switching (between M1 and M2) as a potential therapeutic

target for chronic diseases.

Mathematical modelling has extensively been applied to inflammation in various con-

texts, including cells, tissues, and organs. Traditional models that take the approach

of incorporating all macrophages into a single homogenised population, regardless

of their phenotype, provide a useful approach in terms of model tractability. How-

ever, they could potentially bias the resulting dynamics if macrophage descriptions

are not sufficiently robust. Prior mathematical modelling reveals that the explicit in-

clusion of distinct populations of opposing macrophage phenotypes can potentially

give rise to a more complex range of behaviours than is exhibited by models with a

single homogenised population. However, it is currently unclear to what extent this

modelling choice affects the range of dynamics and outcomes that the models predict.

Furthermore, constructing models that include the full repertoire of macrophage phe-

notypes in a typical inflammatory environment is challenging, not least given the fast-

evolving picture of the complexity of polarisation states, with many intermediate phe-

notypes lying between the M1 and M2 extremes (Murray et al., 2014). In this work, we

seek to further elucidate the potential impact that distinct modelling choices regarding

macrophage phenotype descriptions have upon resulting model dynamics, by system-

atically building the complexity of corresponding models and carefully analysing the

resultant changes in our models’ predictions. An outline of the structure of this thesis

is provided in the following section.

1.5 Thesis overview

In this work, we will present and analyse four models of inflammatory dynamics that

incorporate increasing levels of detail regarding the complex roles that macrophages

play in resolving inflammatory damage. We begin with three ordinary differential

equation (ODE) models and examine the resulting dynamics via numerical simula-

tion in Matlab and bifurcation analysis in XPPAUT. Firstly, in Chapter 2, we present a

simple baseline model that neglects a detailed description of the range of macrophage

phenotypes involved in a typical inflammatory environment, focusing instead on the

interactions of a single homogenised macrophage population with groups of generic

pro- and anti-inflammatory mediators. In this chapter, we are primarily interested in

how variations in model parameters affect a switch between resolving and chronic out-
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comes.

Additional levels of complexity will be added to the ODE model in the following Chap-

ter 3, where the macrophage population is separated into two distinct phenotypes,

with pro- and anti-inflammatory roles, the latter being reminiscent of tissue-resident

macrophages. Through comparison of the extended model of Chapter 3 with the base-

line model of Chapter 2, our aim here is to explore the extent to which the explicit

incorporation of distinct macrophage phenotypes influences the models’ resulting dy-

namics.

Macrophages and neutrophils are the main components of the inflammatory response

and are the first inflammatory cells to reach the site of inflammation. Neutrophils,

which are the most abundant type of white blood cells, play a pivotal role in causing

inflammatory damage. Therefore, in Chapter 4, we extend the biological scope of the

inflammation model by incorporating additional feedbacks from populations of active

and apoptotic neutrophils, and we examine the resulting dynamics. Since the rate of re-

moval of apoptotic neutrophils by macrophages depends strongly on macrophage po-

larisation, we incorporate corresponding phagocytosis terms into the model of Chap-

ter 4 to further explore these interactions, and elucidate the extent to which phenotype

switching affects resulting outcomes in the presence of a potentially damaging neu-

trophil population.

Crucially, the models of Chapters 3 and 4 incorporate only two distinct macrophage

phenotypes with opposing pro- and anti-inflammatory roles; however, as discussed

above, there is evidence to suggest that there are a wide range of intermediate

macrophage phenotypes that lie between these two extremes. To address this, in Chap-

ter 5, we construct a partial differential equation (PDE) model in which macrophage

phenotypes are considered to lie on a continuous spectrum of inflammatory activity. As

in previous chapters, we employ numerical simulation in Matlab and bifurcation anal-

ysis in XPPAUT to analyse this model. The latter is achieved via semi-discretisation

of the PDE model to construct a corresponding ODE approximation that is tractable

for bifurcation analysis. Our primary aims here are two-fold. Firstly, we seek to un-

derstand the extent to which model observations and conclusions are sensitive to the

modelling approach; and, secondly, we seek to expose how intermediate macrophage

phenotypes contribute to resulting inflammatory dynamics.

Ultimately, the main conclusions drawn from this work will be presented in Chapter 6,

outlining the significant results derived from our investigation into the temporal mod-

elling of inflammation. Potential directions for future work will also be addressed.
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A Simple Baseline Model With One

Homogenised Macrophage

Population

Macrophages are a critical constituent immune cell type that plays an essential role in

the inflammatory response, acting as the immune system’s first line of defence against

infection and tissue damage. These versatile immune cells are involved in various

aspects of inflammation, including the recognition and phagocytosis of foreign sub-

stances, the clearance of cellular debris, and the release of inflammatory mediators

(e.g., cytokines and chemokines). Therefore, macrophages play a crucial role in initi-

ating and resolving inflammation. On the other hand, dysregulation of macrophage

functions can lead to chronic inflammation.

In this chapter, we construct a simple model of the inflammatory response focusing

on the resolution of inflammation and examine the interactions between a single pop-

ulation of macrophages and groups of generic pro- and anti-inflammatory mediators

within a sterile environment. Our aim here is to construct a simple baseline model

against which we can compare more advanced models (in later chapters) that take more

detailed descriptions of distinct macrophage phenotypes. In our initial inflammatory

response model, we are primarily interested in how variations in model parameters af-

fect a switch between resolving and chronic outcomes. We analyse our models through

numerical simulation in Matlab and bifurcation analysis in XPPAUT.
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POPULATION

2.1 Model derivation

In our simple baseline model, we include a single population of macrophages
(
of size

m∗ (t∗)
)
, focussing on the interactions between these and generic groups of pro- and

anti-inflammatory mediators (of concentrations c∗(t∗) and g∗(t∗) respectively), where

t∗ denotes time and stars are used to distinguish dimensional variables from their di-

mensionless counterparts throughout. We assume that there is no direct pathogenic

action affecting the physiological behaviour of macrophages, that is the environment

is sterile. Thus, the physiological trigger for our inflammation model would be the

baseline level of macrophage proliferation occurring in the absence of a mediator, de-

noted as c∗T, rather than assuming usual pathways triggered by pathogen detection.

We neglect the macrophages’ initial activation and differentiation phases. We assume

that the macrophage population grows logistically up to a maximum carrying capacity

m∗
max, but that the rate of proliferation is enhanced in the presence of pro-inflammatory

mediators (as is indicated in Jenkins & Allen (2021)). In addition, we assume that

macrophages produce both pro- and anti-inflammatory mediators at rates κ∗c and κ∗g re-

spectively, and that anti-inflammatory mediators mitigate against inflammatory dam-

age by removing pro-inflammatory mediators at rate δ∗. Our (dimensional) equations

for this model are as follows:

dm∗

dt∗
= k∗ (c∗ + c∗T)m∗

(
1 − m∗

m∗
max

)
− γ∗

m m∗, (2.1a)

dc∗

dt∗
= κ∗c m∗ − δ∗c∗g∗ − γ∗

c c∗, (2.1b)

dg∗

dt∗
= κ∗g m∗ − γ∗

g g∗, (2.1c)

where k∗c∗T is the rate of proliferation of macrophages in the absence of pro-inflammatory

mediators, and the parameters γ∗
m, γ∗

c and γ∗
g represent natural decay of the corre-

sponding quantities.

The interactions featuring in this baseline model are illustrated in Figure 2.1. We note

that the model incorporates both a positive feedback loop via κ∗c and a negative feed-

back loop via κ∗g and δ∗. The positive feedback is based on the ability of macrophages

to produce pro-inflammatory mediators via κ∗c in response to a concentration gradient

in the pro-inflammatory mediators, which attract more macrophages to the damaged

site. The negative feedback operates through macrophages and anti-inflammatory me-

diators via κ∗g and δ∗.

Macrophages produce both pro- and anti-inflammatory mediators, which can either

inhibit or promote inflammation. These mediators can influence the behaviour and
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Figure 2.1: Schematic diagram representing (2.1) and illustrating component interac-

tions between a single population of macrophages (m∗) in response to pro- and anti-

inflammatory mediators (c∗ and g∗), respectively. Arrows indicate positive feedbacks

or supply terms; lines terminated with bars indicate negative feedbacks or loss terms.

function of macrophages, thereby affecting the inflammatory response and its regu-

lation and tissue repair. Pro-inflammatory mediators c∗ induce macrophages m∗ to

recognise and eliminate noxious stimuli, while anti-inflammatory mediators g∗ stim-

ulate macrophages m∗ to tune the inflammatory response, initiate the healing phases

during which damaged tissue is replaced (by proliferation) and remodelled, and en-

hance angiogenesis. Therefore, inflammation is a highly regulated process in which

macrophages and pro- and anti-inflammatory components work together to ensure

rapid repair and restoration of healthy tissue structure. On the other hand, disruption

of this process can contribute to the development of chronic inflammatory diseases.

A summary of the dimensional parameters appearing in (2.1) is presented in Table 2.1.

The dimensional parameters are not all known and available in absolute values. Thus,

we rely upon empirical data and the current literature to derive proper estimates for the

dimensional parameter values. We review these parameter values in detail in Section

2.1.1.

2.1.1 Parameters

Accurately determining many of the dimensional rate parameters that govern a typical

inflammatory response is a difficult task, due to a lack of suitable non-invasive ex-

perimental protocols (Waugh & Sherratt, 2007), the fact that relevant mechanisms dif-
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Parameter Definition Range of values and units References

γ∗
c

Decay rate of pro-inflamma-

tory mediators
0.7 − 20 day−1

Waugh & Sherratt (2007)

Smith et al. (2011)

γ∗
g

Decay rate of anti-inflamma-

tory mediators
0.04 − 12.86 day−1

Reynolds et al. (2006)

Minucci et al. (2020)

γ∗
m Decay rate of macrophages 0.2 − 1.41 day−1

Waugh & Sherratt (2007)

Cooper et al. (2015)

κ∗g
Rate of production of anti-

inflammatory mediators
0.00243 − 1.67 pg cell−1 day−1 Minucci et al. (2020)

κ∗c
Rate of production of pro-

inflammatory mediators
0.24 − 41.22 pg cell−1 day−1 Minucci et al. (2020)

k∗ Rate of macrophages growth 0.693 mm3 pg−1 day−1 Waugh & Sherratt (2007)

m∗
max

Maximum macrophage pop-

ulation size
1 × 105 − 11.7 × 105 cell mm−3 Furth (2012)

c∗T
Rate of macrophage prolifer-

ation in the absence of c∗
pg mm−3

δ∗
Rate at which mediators g∗

respond to the signal from

mediators c∗

mm3 pg−1 day−1

Table 2.1: Summary of the dimensional parameter values of (2.1).

fer greatly depending on the medical condition and the affected tissue (Dunster, 2016;

Minucci et al., 2020), markers of acute inflammation are typically short-lived, measur-

ing them in vivo is difficult, and the fact that many patients report late as inflammatory

conditions worsen (Dunster et al., 2014). Here, we briefly summarise relevant esti-

mates of the dimensional parameters where available, and comment upon how these

estimates inform the corresponding choices for our baseline set of dimensionless pa-

rameters. The dimensional parameters appearing in (2.1) are summarised in Table 2.1.

Mediator decay rates are reasonably well documented in general, but can vary greatly

between individual mediators, different tissues and under differing inflammatory con-

ditions. The decay rate of the pro-inflammatory mediators (γ∗
c ) is reported to lie in

the range 0.7 − 20 day−1 (Waugh & Sherratt, 2007; Smith et al., 2011), while the decay

rate of the anti-inflammatory mediators (γ∗
g) is stated to lie in the range 0.04 − 12.86

day−1 (Reynolds et al., 2006; Minucci et al., 2020). Previous works such as Dunster et al.

(2014) and Bayani et al. (2020a) have taken γ∗
c = γ∗

g = 3 day−1 as a default value for

the decay rate of pro-and anti-inflammatory mediators, respectively. Furthermore, in
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a study by Liu et al. (2021), it was found that the half-lives of the pro-inflammatory

cytokines like IL–1β, IL–8 and TNFα lie in the range 18.2 − 24 min, and that the anti-

inflammatory cytokine IL-1RA decays more slowly with a half-life in the range 4− 6 h.

To further complicate matters, some cytokines (e.g. IL–6) can have both pro- and anti-

inflammatory effects (Liu et al., 2021). Here, in the context of our model parameters,

we expect that γ∗
g < γ∗

c .

Identifying precise values for parameters controlling macrophage population dynam-

ics is difficult in general, since these depend heavily on the tissue under considera-

tion. However, the rate of macrophage loss (γ∗
m) has been previously documented to

lie in the range 0.2 − 1.41 day−1 (Waugh & Sherratt, 2007; Cooper et al., 2015) and the

maximum macrophage population size (m∗
max) to lie in the range 1 × 105 − 11.7 × 105

cell mm−3 (Furth, 2012). Minucci et al. (2020) report that the production rate of anti-

inflammatory mediators (κ∗g) to lie in the range 2.43× 10−3 − 1.67 pg cell−1 day−1, while

the production rate of pro-inflammatory mediators (κ∗c ) to be in the range 0.24 − 41.22

pg cell−1 day−1. Macrophages play a crucial role in the production and regulation of

cytokines, but have a bias towards pro-inflammatory cytokine production during in-

flammation. Therefore, it is often observed that the rate of macrophage production of

pro-inflammatory cytokines (κ∗c ) is higher than that of anti-inflammatory cytokines (κ∗g)

(i.e. damage rate > rate of repair and resolution). In the context of inflammation, it is

often expected that κ∗c ≫ κ∗g due to the body’s natural defence mechanisms against

potential threats (Zhu et al., 2014). Waugh & Sherratt (2007) document the macrophage

growth rate (k∗) can be determined from the population doubling time, which is around

one day, therefore k∗ = ln 2 = 0.693 mm3 pg−1 day−1.

Accurately prescribing the rate of proliferation/recruitment of the macrophage pop-

ulations is hindered by the fact that proliferation rates are known to also depend on

the background levels of inflammation (i.e. the concentration of pro-inflammatory

mediators, c, in our model), as described by Jenkins & Allen (2021). Authors of pre-

vious works (Waugh & Sherratt, 2007; Dunster et al., 2014) have tuned macrophage

proliferation rate parameters against population doubling time data obtained experi-

mentally, with populations doubling in number roughly every 1 day. Here, we sim-

ply assume that proliferation rates should appreciably increase in the presence of

pro-inflammatory mediators, so we expect c∗T to be small in comparison to typical c-

values. Similarly, the value of δ∗ is known to be influenced by the concentration of

pro-inflammatory mediators (c). Therefore, we assume that δ∗ is significantly lower

than the typical c-values.
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2.1.2 Non-dimensionalisation

A non-dimensionalisation technique is usually used to rewrite equations of a dimen-

sional system in dimensionless form. This technique is highly beneficial when working

with complex systems with a large number of parameters that may complicate the anal-

ysis. The non-dimensionalisation approach simplifies system analysis, enables a more

comprehensive understanding of the system’s behaviour by identifying and retaining

the most influential parameters (i.e. reducing the number of system parameters), and

provides deeper insights into the underlying dynamics.

We use the asterisk to distinguish dimensional quantities from their dimensionless

quantities. Therefore, we nondimensionalise the system of (2.1) by applying the fol-

lowing rescalings:

t∗ =
1

γ∗
c

t, c∗ =
γ∗

c
k∗

c, g∗ =
γ∗

c
δ∗

g, m∗ =
γ∗2

c
δ∗κ∗g

m, (2.2)

to obtain

dm
dt

= (c + cT)m
(

1 − m
mmax

)
− γmm, (2.3a)

dc
dt

= κcm − cg − c, (2.3b)

dg
dt

= m − γgg, (2.3c)

in which we have introduced the following dimensionless parameters:

γg =
γ∗

g

γ∗
c

, γm =
γ∗

m
γ∗

c
, cT =

k∗c∗T
γ∗

c
, κc =

k∗κ∗c
δ∗κ∗g

, mmax =
δ∗κ∗gm∗

max

γ∗2
c

. (2.4)

The system (2.3) is solved subject to initial conditions representing a baseline presence

of macrophages m(0) = m0 > 0 and an initial stimulus of inflammation of the form

c(0) = c0 > 0, with g(0) = 0.

A review of some relevant parameter estimation can be found in Dunster et al. (2014)

and Dunster (2016); however, in most cases, it is more practical to estimate the or-

ders of magnitude of corresponding dimensionless parameter groupings based on our

knowledge of which mechanisms dominate. Where accurate parameter choices are not

known, our approach is to take baseline values that expose the full remit of dynam-

ics and then use bifurcation analysis to explore local sensitivity to these choices. The

dimensionless parameters appearing in (2.3) are summarised in Table 2.2, alongside

baseline values used in our simulations.

Liu et al. (2021) previously state that the decay rate of anti-inflammatory mediators is

slightly slower than the decay rate of pro-inflammatory mediators (i.e. γ∗
g < γ∗

c ). Here,
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Parameter Expression Meaning Baseline value

κc k∗κ∗c /δ∗κ∗g
Rate of production of pro-inflammatory me-

diators
0.35

γm γ∗
m/γ∗

c Decay rate of macrophages 0.05

γg γ∗
g/γ∗

c Decay of anti-inflammatory mediators 0.2

cT k∗c∗T/γ∗
c

Rate of macrophage proliferation in the ab-

sence of pro-inflammatory mediators
0.01

mmax δ∗κ∗gm∗
max/γ∗2

c Maximum macrophage population size 25

Table 2.2: Summary of the dimensionless parameters appearing in (2.3).

we take γg = γ∗
g/γ∗

c = 0.2 as our default value in Table 2.2, and investigate varia-

tions around this value via numerical simulation and bifurcation analysis. According

to Waugh & Sherratt (2007) and Cooper et al. (2015), the loss of macrophages (γ∗
m) oc-

curs at a slower rate than the decay of pro-inflammatory mediators (γ∗
c ); we hence set

γm = γ∗
m/γ∗

c < 1 in Table 2.2.

Macrophage proliferation rates are influenced by the prevailing concentration levels

of pro-inflammatory mediators (c) in the affected tissue, as elucidated by Jenkins &

Allen (2021). As a result, we reasonably deduce that proliferation rates should increase

noticeably in the presence of pro-inflammatory mediators. Hence, we assume that c∗T is

significantly lower than the typical c-values. We therefore set cT = 0.01 in Table 2.2 and

investigate the role of this parameter more thoroughly via bifurcation analysis below.

Likewise, since the maximal macrophage population size, m∗
max, will depend heavily on

the size of the tissue of interest, we choose mmax = 25 as a baseline value. It is known

that κ∗c is affected by both the concentration of pro-inflammatory mediators and the

size of the macrophage population, and a critical factor in inducing inflammation. We

therefore set κc = 0.35 in Table 2.2 as a baseline value and then study variations of this

parameter within our subsequent analysis.

2.2 Identification and classification of steady state solutions

This section aims to find the steady state solutions, also known as equilibrium solu-

tions, of (2.3) and classify them by their stability. The steady state solutions refer to

the points at which a dynamic system’s behaviour does not change over time. The

steady state solutions are particularly important in mathematical models because they

provide valuable insights into dynamic systems’ behaviour and stability.
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To find the steady state solutions of (2.3), we can write it in the following way:

dm
dt

= (c + cT)m
(

1 − m
mmax

)
− γmm = f (m, c, g), (2.5a)

dc
dt

= κcm − cg − c = p(m, c, g), (2.5b)

dg
dt

= m − γgg = q(m, c, g). (2.5c)

Assuming that the system has reached equilibrium, we set the derivatives of equation

(2.5) to zero. We therefore solve the following system of simultaneous equations:

f (m, c, g) = 0,=⇒ (c + cT) m
(

1 − m
mmax

)
− γm m = 0, (2.6a)

p(m, c, g) = 0,=⇒ κc m − c g − c = 0, (2.6b)

q(m, c, g) = 0,=⇒ m − γg g = 0. (2.6c)

Solving (2.6b) and (2.6c) in terms of m, we get:

g =
m
γg

, c =
κc m
g + 1

=
γg κc m
γg + m

, (2.7)

Substituting (2.7) in (2.6a) gives:

a m2 + b m + k = 0, (2.8)

where,

a = −cT − κc γg,

b = κc mmax γg − cT γg − mmax γm + mmax cT,

k = mmax cT γg − mmax γm γg.

It is straightforward to show that the system (2.3) has a steady state at FP1 = (m1, c1, g1) =

(0, 0, 0), which corresponds to a healthy response since all pro-inflammatory compo-

nents are zero. We also obtain two further steady states, which we denote by FP2 =

(m2, c2, g2) and FP3 = (m3, c3, g3) by solving (2.8), where

m2 =
−1

2
(
cT + γg κc

)[cT γg + mmax
(
γm − cT − γg κc

)
+

(
c2

T γ2
g

+ m2
max

(
c2

T + γ2
m + 2 cT γg κc − 2 cT γm + γ2

g κ2
c − 2 γg γm κc

)
+ mmax

(
2 c2

T γg + 2 cT γ2
g κc − 2 cT γg γm − 4 γ2

g γm κc

))1/2 ]
,

(2.9)

c2 =
κc m2

g2 + 1
=

γg κc m2

γg + m2
, g2 =

m2

γg
, (2.10)
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and,

m3 =
1

2
(
cT + γg κc

)[cT γg + mmax
(
γm − cT − γg κc

)
+

(
c2

T γ2
g

+ m2
max

(
c2

T + γ2
m + 2 cT γg κc − 2 cT γm + γ2

g κ2
c − 2 γg γm κc

)
+ mmax

(
2 c2

T γg + 2 cT γ2
g κc − 2 cT γg γm − 4 γ2

g γm κc

))1/2 ]
,

(2.11)

c3 =
κc m3

g3 + 1
=

γg κc m3

γg + m3
, g3 =

m3

γg
. (2.12)

It is worth pointing out that FP2 and FP3 do not exist for all parameter choices listed

in Table 2.2, as the steady state value must not be negative. To determine system be-

haviour close to the steady states, we perform a linear stability analysis; that is, we

consider the sign of the real part of the eigenvalues of the Jacobian matrix, which for

(2.6) is given by:

J =



∂ f
∂m

∂ f
∂c

∂ f
∂g

∂p
∂m

∂p
∂c

∂p
∂g

∂q
∂m

∂q
∂c

∂q
∂g


. (2.13)

The resulting Jacobian matrix J for (2.6) is given by

J =



(c + cT) (mmax − 2 m)

mmax
− γm m

(
1 − m

mmax

)
0

κc −g − 1 −c

1 0 −γg

 . (2.14)

For convenience below, we write

R = m
(

1 − m
mmax

)
, S =

(c + cT) (mmax − 2 m)

mmax
− γm. (2.15)

Finding the linear stability of the steady state requires finding the eigenvalues, λ. In

general, the steady state is stable if all eigenvalues (λ) of the Jacobian matrix J have

a negative real part. For further details about the classification of steady states in a

two-dimensional phase space, see Table 2.3.

It is straightforward to show that the eigenvalues are the roots of the following charac-

teristic polynomial

|J − λ I| = λ3 − A2 λ2 + A1 λ − A0 = 0 (2.16)
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Eigenvalues λ1, λ2 of A Case Stability

Two distinct real eigenvalues

λ1 < 0, λ2 < 0 Stable node

λ1 > 0, λ2 > 0 Unstable node

λ1 . λ2 < 0 Unstable (saddle point)

Complex conjugate eigenvalues

λ = α ± βi

Re(λ) = 0 Stable centre

Re(λ) < 0 Stable focus point (spiral point )

Re(λ) > 0 Unstable focus point (spiral point)

Repeated real eigenvalue (λ1 = λ2) with

only one linearly independent eigenvector

λ < 0 Stable degenerate node (improper)

λ > 0 Unstable degenerate node (improper)

Table 2.3: Classification of steady states of x′ = Ax with |A − λI| = 0 and |A| ̸= 0.

where,

A0 = det (J) = γg S − c R + γg g S + γg κc R, (2.17a)

A1 =
1
2

(
trace2 (J)− trace

(
J2) ),

=
1
2

((
γg + g − S + 1

)2 − (g + 1)2 − 2 κc R − γ2
g − S2

)
,

(2.17b)
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A2 = trace (J) = S − γg − g − 1. (2.17c)

To determine the stability of the zero steady state, FP1 = (g1, c1, m1) = (0, 0, 0), we

need to compute the eigenvalues, λ, of Jacobian matrix J in (2.14).

Evaluating (2.14) on FP1 provides:

J|FP1
=


−γg 0 1

0 −1 κc

0 0 cT − γm

 . (2.18)

Thus, to compute the eigenvalues of the matrix J evaluated at FP1, we solve the follow-

ing equation:

det (J − λ I)|FP1
=

∣∣∣∣∣∣∣∣
−γg − λ 0 1

0 −1 − λ κc

0 0 cT − γm − λ

∣∣∣∣∣∣∣∣ = 0

= (−γg − λ)(−1 − λ)(cT − γm − λ) = 0.

(2.19)

For the zero steady state, FP1 = (g1, c1, m1) = (0, 0, 0), all three eigenvalues are real

and negative provided that γm > cT, we find (λ1, λ2, λ3) =
(
−γg, −1, cT − γm

)
. There-

fore, it is straightforward to show that the zero steady state is stable provided that γm >

cT; otherwise, it is unstable. Identifying and classifying the nature of chronic steady

states is a more complex task, however; we therefore explore the model’s broader de-

pendence on parameter values via bifurcation analysis conducted in XPPAUT.

2.3 Results

In this section, we introduce the outcomes of our investigation into the behaviour of

our simple model of inflammation, which simulates the dynamics of the inflamma-

tory response. Our investigation employs two complementary methods: numerical

simulation utilising Matlab and bifurcation analysis using XPPAUT. Utilising these ap-

proaches, we explore the various qualitative behaviours exhibited by the initial model

and examine them in relation to the inflammatory response and its potential outcomes,

as well as how alternation in the system’s main parameters affects its results.

2.3.1 Numerical results

All numerical simulations of (2.3) were generated using Matlab and, in particular, the

ODE solver ode45. Throughout our analysis, we are primarily interested in whether
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Figure 2.2: Numerical simulations of (2.3) for the parameters of Table 2.2, illustrating

that the model is bistable for these parameter values. In (a), we initialise the model

with a small stimulus of initial inflammatory damage (m(0) = 0.2, c(0) = 0.1 and

g(0) = 0), and this damage eventually subsides with the model attaining a healthy

steady state. In (b), we observe that with a larger damage stimulus (m(0) = 1, c(0) =

0.1 and g(0) = 0), the model attains a chronic steady state in which m, c > 0.

our model converges to steady states (or periodic structures) that represent either res-

olution of inflammatory damage (i.e. a healthy outcome) or chronic inflammation. The

realistic inflammation model typically exhibits bistable behaviour corresponding to a

healthy response and an unhealthy response (i.e. chronic). We describe a steady state

as ‘healthy’ if all the model’s pro-inflammatory components are zero, and ‘chronic’ if

pro-inflammatory components attain positive steady state values.

Figure 2.2 illustrates two simulations of (2.3), for the parameter values of Table 2.2 and

two differing choices of initial conditions, showing that the model has scope for bista-

bility, with both healthy and chronic steady states stable. In Figure 2.2(a), we initiate

the model with a small stimulus of inflammatory damage (c0 = 0.1) and a reasonably

small population of macrophages (m0 = 0.2), and observe that the system eventu-

ally converges to the healthy steady state, in which the level of macrophages and pro-

and anti-inflammatory mediators reaches zero. However, in Figure 2.2(b) we observe

that initiating the model with a larger population of macrophages (m0 = 1) results

in long-term growth of the macrophage population and an associated increase in pro-

inflammatory mediators via the κc term in (2.3b), alongside a significantly up-scaled

production of anti-inflammatory mediators according to (2.3c). The model attains a

steady state with all components positive, which causes sustained damage through κc;
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Figure 2.3: Numerical simulations of (2.3) with a small stimulus of initial inflamma-

tory damage (m(0) = 0.2, c(0) = 0.1 and g(0) = 0) showing how the behaviour

of the system switches to the chronic condition when we increase the values of pro-

inflammatory components. In (a) κc = 0.7, (b) cT = 0.07 and (c) γm = 0.01. All system

parameter values (other than those listed above) are held fixed to the values listed in

Table 2.2

i.e. a chronic outcome. The key switches between these two outcomes (for param-

eters fixed) are the magnitude of the inflammatory stimulus (c0) and the initial size

of the macrophage population (m0); it is pertinent to note that, since the macrophage

description of this model attributes both pro- and anti-inflammatory responses to the

same macrophage population, larger macrophage populations have the scope to be

both detrimental or beneficial as regards the long-term inflammatory outcome.

We find that simulations of (2.3) for the parameters of Table 2.2 with a small stimu-

lus of initial inflammatory damage (m(0) = 0.2, c(0) = 0.1 and g(0) = 0) converges

to the healthy steady state, as shown in Figure 2.2(a). However, we observe that the

behaviour of the system can switch into a chronic configuration under the same con-

dition (m(0) = 0.2, c(0) = 0.1 and g(0) = 0) through increasing the values of the pro-
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inflammatory components (e.g. κc, cT, γm). In Figure 2.3(a), increased production of

pro-inflammatory mediators via κc leads to an excessive and persistent release of pro-

inflammatory mediators that attract and recruit more macrophages and other immune

cells to the site of inflammation. As the concentration of these mediators increases,

they may trigger a cascade of events leading to persistent disruption of the immune re-

sponse and the immune system is unable to resolve the inflammation effectively, which

is often associated with chronic inflammation. Similarly, the behaviour of the system

exhibits an unhealthy response when the recruitment of macrophages in the absence

of pro-inflammatory mediators, through the parameter cT, is increased, and the size of

the macrophage population settled at the damage site becomes excessively large (in-

dicated by a small value of γm), as illustrated in Figure 2.3(b)and (c) respectively. The

excessive influx of macrophages into the damaged site can lead to an imbalance in the

immune response or an overactive immune response, causing exacerbation of inflam-

mation, tissue damage, and progression of the inflammatory condition into a chronic

state.

2.3.2 Bifurcation analysis

In this section, we aim to explore how the existence and stability of the steady state

solutions change as parameters are varied. We also examine how the change in param-

eter values will affect the positions of bifurcation points. To achieve this, we employ

a numerical bifurcation analysis to investigate how the variation in system parame-

ters affects the system’s behaviour. Through this analysis, we gain insights into how

changes in the system’s parameter values affect its dynamics and stability, enabling a

deeper understanding of the inflammatory response to different conditions. Further-

more, bifurcation analysis also aids in identifying unique points known as bifurcation

points, at which a dynamical system undergoes a qualitative shift in its behaviour.

Bifurcation analysis is widely used in studying non-linear system dynamics. Bifurca-

tion diagrams can be plotted using software packages such as Matlab and XPPAUT.

For more information and references about ’XPPAUT’, refer to Ermentrout (2002) and

Gandy & Nelson (2022). Figure 2.4 illustrates the basic concepts used in the bifurcation

diagram (e.g. bistable and monostable regions) where the x-axis represents the bifur-

cation parameter, and the y-axis shows the set of steady state values for the system’s

dependent variable. In addition, it shows three steady states; one is zero, located on

the x-axis, and two are non-zero steady states. The steady state is called stable if each

of its eigenvalues has a negative real part. Here, we use a solid line to indicate a sta-

ble steady state while a dashed line for an unstable steady state. The stable non-zero

43



CHAPTER 2: A SIMPLE BASELINE MODEL WITH ONE HOMOGENISED MACROPHAGE

POPULATION

Figure 2.4: An example of a bifurcation diagram illustrating a bistability range of zero

and non-zero steady states, bounded by SN and Tr. Solid and dashed lines repre-

sent stable and unstable steady states respectively; SN = saddle-node bifurcation; Tr =

transcritical bifurcation; “B” = bistable with both healthy and chronic outcomes per-

missible; “M:Res” = monostable with inflammation resolving; “M:Chr” = monostable

with a chronic outcome guaranteed.

steady state often indicates an unhealthy response (chronic inflammation), while the

stable zero steady state refers to a healthy response (resolution of inflammation).

The bifurcation diagrams of a realistic model often contain many points called bifur-

cation points. For example, the point at which the stable and unstable steady states

coalesce is defined as a saddle-node bifurcation (limit point) and is denoted by SN. An-

other case is if two fixed points do not disappear when they collide at the bifurcation

point, and they switch their stability as the parameter is varied. In other words, there

is one stable and one unstable steady state, and after they collide, the stable steady

state becomes unstable and vice versa. In that case, it is called a transcritical bifurca-

tion, a particular kind of local bifurcation denoted by Tr, see Figure 2.4. A list of the

bifurcations that appear in this thesis is given in Appendix A.

The bifurcation diagrams of the real model often exhibit monostable and bistable re-

gions. The system has a monostable region if there is a unique stable steady state in

that region. For example, in Figure 2.4, there are two monostable regions; the chronic

region from zero to the transcritical bifurcation point (Tr), and the healthy region be-

yond a saddle-node bifurcation (SN). It is clear that in the region from the transcritical

bifurcation (Tr) to saddle-node bifurcation (SN), the system has two stable steady states

separated by an unstable steady state. Thus, the behaviour of the system can evolve

into one of two stable equilibrium points for the same parameter values. So, in this

region, the system exhibits bistability. In a dynamical system, bistability means the

system has two stable equilibrium points, and it can evolve to one of two stable steady
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states for the same parameter values (i.e. switching between states requires different

initial conditions) (Piedrafita et al., 2010; Rombouts & Gelens, 2021). From a mathemat-

ical point of view, bistability occurs in the first and second-order system when an unsta-

ble equilibrium point lies between two different stable equilibrium points (Kuznetsov,

2013). Whenever the system parameters change so that a threshold value is crossed, the

system abruptly switches between the two stable steady states, and the system may not

revert to the previous state (Rombouts & Gelens, 2021). This transition is discontinu-

ous, fast, and irreversible.

In section 2.2, we show that the steady state solutions of (2.3) are three distinct steady

states, one zero when m = g = c = 0, which corresponds to a healthy response,

and two non-zero steady states which correspond to a chronic response. As we saw

earlier the zero steady state is stable provided that γm > cT. Identifying and classifying

the nature of chronic steady states is a more complex task; we therefore explore the

model’s broader dependence on parameter values via bifurcation analysis conducted

in XPPAUT (as described in e.g. Ermentrout (2002) and Gandy & Nelson (2022)).

Figure 2.5 shows bifurcation diagrams that illustrate how the steady states of (2.3) de-

pend upon the system’s parameters, holding all unspecified parameter values at the

values of Table 2.2. Solid and dashed curves represent stable and unstable steady states

respectively. In Figures 2.5(a,b), we observe that the healthy steady state at zero is sta-

ble provided that γm > cT. In Figure 2.5(a), the branch representing the chronic steady

states arises via a transcritical bifurcation (Tr) and undergoes a saddle-node bifurcation

(SN), giving rise to stable chronic solutions. In Figure 2.5(a), the saddle-node occurs for

a negative value of cT, so there exists a stable chronic steady state for all positive values

of the bifurcation parameter cT of interest here, for the parameter values of Table 2.2. In

addition, Figure 2.5(a) exhibits a bistable region (B:Chr/Res) for the bifurcation param-

eter cT ∈ [SN, Tr], with both healthy and chronic outcomes, and switching between

these outcomes depends on the initial conditions, and monostable with chronic out-

comes guaranteed (M:Chr) for cT > Tr. An increase in the value of cT enhances the

recruitment of macrophages and other immune cells to the damaged area, resulting in

a prolonged inflammatory state and potential progression to chronic inflammation.

In Figure 2.5(b), we see similar (although reflected) behaviour to that of Figure 2.5(a),

with the chronic steady state being stable for all values of γm less than SN. We can

see that Figure 2.5(b) also exhibits areas of bistability (B:Chr/Res) for γm ∈ [Tr, SN],

and monostability with inflammation resolving (M:Res) for γm > SN, and monosta-

bility with chronic outcomes guaranteed (M:Chr) for γm ∈ [0, Tr]. For large values

of γm, the macrophage population decays sufficiently quickly that it be eliminated in
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Figure 2.5: Bifurcation diagrams illustrating steady state solutions of (2.3) and their

dependence upon the model’s parameters. All system parameter values (other than

those listed above) are held fixed to the values listed in Table 2.2. Solid and dashed

lines represent stable and unstable steady states respectively; SN = saddle-node bifur-

cation; Tr = transcritical bifurcation.

the long-term, removing the model’s sole pro-inflammatory feedback and guarantee-

ing a healthy outcome. Similarly, Figures 2.5(c,d) show that large values of κc promote

chronicity as more pro-inflammatory mediators are produced, and large values of γg

promote chronicity via rapid decay of anti-inflammatory mediators. In addition, Fig-

ures 2.5(c,d) show a healthy response when the bifurcation parameter κc or γg is less

than SN. Table 2.4 summarizes all the bifurcation points mentioned in Figure 2.5.

Bifurcation analyses conducted via XPPAUT are not limited to examining single-

parameter changes; they also analyse by simultaneously changing two system param-

eters while leaving the remaining parameters fixed (unchanged). Thus, two-parameter

bifurcation diagrams can provide a clearer view of how the variation in two system

parameter values affects the stability of the steady states and the position of bifurca-

tion points. These diagrams provide valuable insights into the system’s behaviour by
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Bifurcation point Bifurcation parameter

Figure 2.5 (a)

SN cT = −9.342 × 10−3

Tr cT = 5 × 10−2

Figure 2.5 (b)

SN γm = 6.776 × 10−2

Tr γm = 1 × 10−2

Figure 2.5 (c)

SN κc = 2.438 × 10−2

Figure 2.5 (d)

SN γg = 1.345 × 10−2

Table 2.4: Bifurcation points shown in Figure 2.5.

revealing monostable and bistable regions, enabling a deeper understanding of the sys-

tem’s behaviour and the effects of parameter interactions.

In Figure 2.6, we track the coordinates of the transcritical and saddle-node bifurcations

of Figure 2.5 in two-dimensional slices of parameter space, identifying regions of pa-

rameter space in which the model is monostable with inflammation resolving (M:Res),

monostable with chronic outcomes ensuing (M:Chr), or bistable (B) with both outcomes

possible and the switching between these being driven by initial conditions. In Figures

2.6(a, c, d), we observe that the transcritical bifurcation (Tr) is at a constant value for

all values of mmax, κc, or γg. Figure 2.6(a) illustrates the general trend that we obtain

healthy outcomes for large values of γm (which result in a small macrophage popula-

tion) and chronic outcomes for small values of γm (which result in larger macrophage

populations). These regions generally straddle an intermediate region of bistability in

which both outcomes are permissible. Figure 2.6(a) illustrates how the scale of this

region of bistability depends upon the parameter mmax, which bounds the size of the

macrophage population in our model. For mmax small, this region of bistability narrows

as the chronic outcome is gradually eliminated; this is intuitive, since the macrophage

population is the only source of inflammation in this model. For mmax larger, how-

ever, we see relatively weak qualitative dependence on this parameter; while increas-

ing mmax beyond its default value of 25 here does have some effect on the size of the

bistable region, we still attain these three distinct behaviours as a function of γm.

In Figure 2.6(b) illustrates that increasing cT (which is related to the growth rate of the

macrophage population) enhances the stability of the chronic state, and the position

of the saddle-node bifurcation that bounds this exhibits an approximately linear rela-
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Figure 2.6: Two-parameter bifurcation diagrams illustrating steady state solutions of

the model and their dependence upon the model’s parameters. Red and blue lines

represent saddle-node and transcritical bifurcations respectively. “B” = bistable with

both healthy and chronic outcomes permissible; “M:Res” = monostable with inflam-

mation resolving; “M:Chr” = monostable with a chronic outcome guaranteed.

tionship between cT and γm. In Figures 2.6(c,d), we observe that increasing either κc

or γg (which corresponds to enhancing the pro-inflammatory feedback or reducing the

anti-inflammatory feedback) has the intuitive effect of promoting the chronic state. As

either of these parameters increases, the only mechanism available to return the model

to a state of guaranteed resolution of damage is to increase the parameter γm, which

acts to eliminate the pro-inflammatory feedback loop by eliminating the macrophage

population entirely.

Overall, the bifurcation analysis of (2.3) for the parameters of Table 2.2 in Figure 2.6 re-

veals that our model exhibits three distinct behaviours (referred to as (M:Chr), (M:Res),

and B) depending on changes in the bifurcation parameter. The size of macrophage

populations significantly influences the dynamics of inflammation. Larger macrophage

populations contribute to the enlargement of the bistable region, representing both
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healthy or chronic outcomes, with switching being driven by the system’s initial con-

ditions. In addition, macrophages are our model’s main source in establishing pos-

itive and negative feedback loops and increasing the concentration of pro- and anti-

inflammatory mediators in the inflamed area via κc and γg, respectively. These media-

tors play a crucial role in either resolving inflammation or causing further damage. In

particular, when the size of macrophage populations is small (indicated by large values

of γm), the system tends towards a guaranteed healthy outcome. This is achieved by re-

ducing the triggering of pro-inflammatory components (which results in small values

of mmax, cT, κc and γg), thereby eventually eliminating the stimulus of inflammation

originating from the macrophage population in the damaged area.

2.4 Discussion

In this chapter, we have presented and analysed a simple baseline model of the inflam-

matory response that involves interactions between a single population of macrophages

and groups of generic pro- and anti-inflammatory mediators. In this model, we are

primarily interested in how variations in model parameters affect a switch between re-

solving and chronic outcomes. The resolution of inflammation occurs when monocyte-

derived macrophages leave the affected tissue, the concentration of pro-inflammatory

mediators subsides, and the tissues regain their integrity and function. By contrast,

chronic inflammation occurs when macrophages release excessive pro-inflammatory

mediators in the inflamed area, exacerbating the inflammatory response and causing

further tissue damage.

In this model, our single macrophage population provides a simple switch between

resolved (healthy) and chronic steady state solutions. Depending on our choice of pa-

rameters or the model’s initial conditions, the model exhibits three distinct behaviours;

the model is either monostable with resolution guaranteed, monostable with chronic

outcomes guaranteed, or bistable with both outcomes permissible and the resulting in-

flammatory condition determined by initial conditions. Since the macrophage popula-

tion is inflammation-promoting in this model, parameter choices that reduce the size of

the macrophage population promote monostability to the resolved outcome in general.

That is, to ensure resolution, we may either decrease the rate of macrophage prolifer-

ation (by reducing cT) or increase the rate of macrophage loss (γm). Similarly, down-

scaling the rates of pro-inflammatory mediator production (κc) or anti-inflammatory

mediator decay (γg) shifts the model toward a resolved outcome.

Despite the regulated and prominent role of macrophages in alerting the immune sys-
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tem in case of tissue damage and the repair and remodelling of tissues, they can also in-

directly negatively impact the affected tissues, exacerbating tissue injury into a chronic

disease, since all macrophages exhibit pro-inflammatory effect in this model. However,

we observe that the only way to achieve a resolved outcome is to ultimately eliminate

the macrophage population entirely. We note that eliminating macrophages to mitigate

damage is not biologically realistic, as macrophages should be present to low baseline

levels even in healthy tissue; we regard this as a significant limitation of this model,

which we will seek to address in the next chapter. Nonetheless, it is pertinent to note

that many existing models of inflammatory dynamics use models akin to our simple

model (Kumar et al., 2004; Herald, 2010; Dunster et al., 2014; Bayani et al., 2020a), and

regard the macrophage variable as describing an elevation of macrophage numbers

above the healthy baseline, rather than an absolute population size. While this inter-

pretation of the zero-state is certainly justifiable in some settings, we note that this

modelling approach can potentially also come with a more limited range of dynamics

than a more advanced model may emit.

We note that the macrophage description of this model is perhaps most similar to

that of many published models (e.g. Kumar et al. (2004); Herald (2010); Dunster et al.

(2014); Bayani et al. (2020a)) since pro- and anti-inflammatory effects are attributed to

the same macrophage population. Our analysis of the model reveals a key weakness

thereof, which is that eliminating chronic outcomes is only possible via the elimina-

tion of the macrophage population as a whole. This is somewhat unrealistic, since

healthy outcomes in real tissues would typically include a baseline (positive) level of

resident macrophages (Yona et al., 2013; Jenkins & Allen, 2021; Mu et al., 2021). It is

well-established that macrophages are highly plastic cells with distinct functional phe-

notypes that play a critical role in the inflammatory response. Therefore, we aim to

understand the distinct roles of macrophage phenotypes that lead to more effective

treatment methods, promoting healing in chronic conditions or reducing harm to dam-

aged tissues. In the next chapter, we look to improve on our existing model by in-

corporating separate descriptions of pro- and anti-inflammatory macrophages, and we

examine how switching between these phenotypes affects the dynamics of the model.
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Modelling The Roles of Distinct

Macrophage Phenotypes

Macrophages play a crucial role in all stages of inflammation and exhibit remarkable

plasticity and heterogeneity in response to various stimuli, being able to differentiate

into distinct phenotypes with different functional properties. Thus, macrophages ex-

hibit a wide range of effects (both pro- and anti-inflammatory) depending on their po-

larisation state or “phenotype”. Furthermore, macrophages can switch phenotypes in

response to their environmental signals and tissue types, including in response to the

presence of various inflammatory mediators. This diversity of functional phenotypes

enables macrophages to play diverse roles in the inflammatory response as directed by

environmental signals in promoting and resolving inflammation.

Macrophages are characterised as a heterogeneous group of cells with various

functional states. Therefore, unambiguously categorising macrophages into dis-

tinct phenotypes is unresolved and contentious. However, macrophage pheno-

types can be classified into two main distinct subtypes based on their func-

tion: pro- and anti-inflammatory macrophages. Commonly, many authors re-

fer to pro- and anti-inflammatory macrophages as "M1” and "M2” phenotypes (or

similarly "classically-activated” and "alternatively-activated” phenotypes), with pro-

inflammatory macrophages often being associated with inflammation and tissue dam-

age, while anti-inflammatory macrophages are associated with tissue repair (Mar-

tinez & Gordon, 2014; Murray et al., 2014; Martin & García, 2021). What is clear is

that macrophages are involved in both the promotion and resolution of inflammation,

changing their role according to their environment, and that this plasticity and diver-

sity of macrophage phenotypes is a potential therapeutic target in inflammatory dis-

eases (Mosser et al., 2021; Ross et al., 2021).
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In this chapter, we modify the construction of the baseline model in Chapter 2 by split-

ting the macrophage population into two distinct phenotypes, with primarily pro- and

anti-inflammatory behaviours. The resulting model focuses on resolving inflamma-

tion by examining interactions between these subtypes and inflammatory mediators

within a sterile environment. Our main goal is to understand the precise roles of these

macrophage phenotypes to pave the way for finding effective treatment methods aid-

ing in repairing damaged tissue (i.e. resolving inflammation) or limiting the progres-

sion of chronic disease. Comparing the results of the models in chapters 2 and 3, we

can elucidate how the macrophage phenotype descriptions can influence the dynamics

of models of the inflammatory response.

3.1 Model derivation

In this model, we modify our description of the macrophage population in the baseline

model presented in Chapter 2, to account for two distinct phenotypes of macrophages

rather than the generic macrophages: one which is fundamentally pro-inflammatory

(denoted m∗
p) and one which is fundamentally anti-inflammatory (denoted m∗

a ), fo-

cussing on the interactions between these macrophage phenotypes and generic pro-

inflammatory mediators (c∗), and also generic anti-inflammatory mediators (g∗) within

a sterile environment. In general, a healthy tissue would include a baseline pop-

ulation of tissue-resident macrophages that are fundamentally associated with anti-

inflammatory macrophages; however, in an inflammatory context, we expect height-

ened macrophage recruitment, with recruited macrophages being largely associated

with pro-inflammatory behaviour, with the potential to cause significant tissue dam-

age if unchecked (Martinez & Gordon, 2014). The dependent variables that appear in

this model are given in Table 3.1. Asterisks indicate dimensional quantities throughout

this chapter.

Pro- and anti-inflammatory macrophages differ in triggers, cytokine release, and

biological functions (Shapouri-Moghaddam et al., 2018). The function of pro-

inflammatory macrophages (m∗
p) is often associated with the elevated production of

pro-inflammatory mediators (c∗). Therefore, m∗
p macrophages exhibit potent activity

against noxious stimuli, such as diseased cells and foreign substances, and release

several pro-inflammatory cytokines via κ∗c to trigger the pro-inflammatory response

(Ahamada et al., 2021). The action of m∗
p macrophages is counterbalanced by the

role of anti-inflammatory macrophages (m∗
a ), which aim primarily to suppress inflam-

mation and maintain tissue homoeostasis. Therefore, m∗
a macrophages secrete a low
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Variable Description Unit

g∗ Anti-inflammatory mediators pg mm−3

c∗ Pro-inflammatory mediators pg mm−3

m∗
p Pro-inflammatory macrophages cells mm−3

m∗
a Anti-inflammatory macrophages cells mm−3

Table 3.1: Summary of the dependent variables that appear in this model.

level of pro-inflammatory cytokines but release an elevated level of anti-inflammatory

cytokines via κ∗g to clear inflammation and initiate tissue repair (Mohammadi et al.,

2019). In addition, anti-inflammatory mediators (g∗) alleviate and reduce inflamma-

tory damage by removing pro-inflammatory mediators (c∗) at rate δ∗. The main func-

tional activities associated with these phenotypes can be summarized as “Fight” for m∗
p

macrophages and “Fix” for m∗
a macrophages (Mills, 2012). This functional versatility

is central for macrophages to successfully perform their homoeostatic and regulatory

roles, aiming to resolve inflammation and restore tissue homoeostasis.

The functional phenotypes of macrophages evolve in response to the gradual changes

in their environmental signals and molecular mediators. Due to the high plasticity

of macrophages, m∗
p macrophages can differentiate into m∗

a macrophages in response

to environmental signals and vice versa (Shapouri-Moghaddam et al., 2018; Moham-

madi et al., 2019; Ahamada et al., 2021). The original polarisation can also be reversible

upon environmental changes. For instance, the same cell may initially participate in

a pro-inflammatory reaction and later join in an anti-inflammatory reaction to resolve

inflammation and tissue repair. Thus, macrophages have the ability to switch phe-

notypes; we parameterise this switching by α∗
1 (anti-inflammatory macrophages be-

coming pro-inflammatory) and α∗
2 (the converse). This phenotypic switching is further

stimulated by the presence of pro/anti-inflammatory mediators; we introduce corre-

sponding parameters β∗
1 and β∗

2 to represent the strength of this mediator dependence.

Here, we model the growth of the total macrophage population as logistic, up to a

maximum carrying capacity of m∗
max. We assume that all newly recruited macrophages

are of the anti-inflammatory phenotype associated with tissue repair but, under the

assumption that the tissue being modelled has a maximal capacity for the total num-

ber of macrophages, we assume that the rate of this recruitment depends on the total

macrophage number, m∗
a +m∗

p. Since macrophages can switch phenotypes dynamically

and in both directions (Porcheray et al., 2005; Zhang et al., 2021), this approach is nec-

essary to ensure that total macrophage numbers do not become unbounded during the

course of our simulations. The interactions incorporated in this model are illustrated
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Figure 3.1: Schematic diagram representing (3.1) and illustrating component interac-

tions between pro-and anti-inflammatory macrophages (m∗
p and m∗

a ) in response to

pro- and anti-inflammatory mediators (c∗ and g∗), respectively. Arrows indicate posi-

tive feedbacks or supply terms; lines terminated with bars indicate negative feedbacks

or loss terms.

in Figure 3.1, and give rise to the following (dimensional) ODEs:

dg∗

dt∗
= κ∗g m∗

a − γ∗
g g∗, (3.1a)

dc∗

dt∗
= κ∗c m∗

p − δ∗ c∗ g∗ − γ∗
c c∗, (3.1b)

dm∗
p

dt∗
= α∗

1 β∗
1 c∗ m∗

a − α∗
2 β∗

2 g∗ m∗
p − γ∗

m m∗
p, (3.1c)

dm∗
a

dt∗
= k∗ (c∗ + c∗T)

(
m∗

a + m∗
p

) (
1 −

m∗
a + m∗

p

m∗
max

)
− α∗

1 β∗
1 c∗ m∗

a + α∗
2 β∗

2 g∗m∗
p − γ∗

m m∗
a .

(3.1d)

The interactions presented in Figure 3.1 involve positive and negative feedback loops.

The positive feedback depends on the ability of m∗
a macrophages to differentiate to-

ward pro-inflammatory reaction m∗
p at rate α∗

1 in response to different environmen-

tal stimuli, secreting pro-inflammatory cytokines via κ∗c in response to a concentration

gradient in the pro-inflammatory mediators c∗, which recruits more m∗
p macrophages

to the inflamed site. On the other hand, the negative feedback operates through m∗
a

macrophages and anti-inflammatory mediators g∗ via κ∗g and δ∗.
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3.1.1 Parameters and non-dimensionalisation

The common dimensional parameters appearing in (2.1) and (3.1) are discussed in Sec-

tion 2.1.1. Therefore, we briefly summarise the available estimates of the new dimen-

sional parameters and comment upon how these estimates inform the corresponding

choices for our baseline set of dimensionless parameters.

Transition rates between macrophage phenotypes play a crucial role in suppressing or

amplifying inflammation (Zhu et al., 2014; Shapouri-Moghaddam et al., 2018). Torres

et al. (2019) document that the dynamic transition of macrophage phenotypes from

anti-macrophage phenotypes m∗
a to pro-macrophage phenotypes m∗

p at a rate of α∗
1 lies

in the range 0.01 − 1 cell mm−3 day−1, while the reverse transition of m∗
p to m∗

a at a rate

of α∗
2 is in the range 0.1 − 100 cell mm−3 day−1.

We nondimensionalise the system (3.1) by applying the following rescalings:

t∗ =
1

γ∗
c

t, c∗ =
γ∗

c
k∗

c, g∗ =
γ∗

c
δ∗

g, m∗
a =

γ∗2

c
δ∗ κ∗g

ma, m∗
p =

γ∗2

c
δ∗ κ∗g

mp, (3.2)

to provide the following dimensionless equations:

dg
dt

= ma − γg g, (3.3a)

dc
dt

= κc mp − c g − c, (3.3b)

dmp

dt
= α1 c ma − α2 g mp − γm mp, (3.3c)

dma

dt
= (c + cT)

(
ma + mp

) (
1 −

ma + mp

mmax

)
− α1 c ma + α2 g mp − γm ma, (3.3d)

in which we have introduced the following two additional dimensionless parameters

besides the dimensionless parameter groups in (2.4):

α1 =
α∗

1 β∗
1

k∗
, α2 =

α∗
2 β∗

2
δ∗

. (3.4)

The dimensionless parameters appearing in (3.3) are summarised in Table 3.2, along-

side baseline values used in our simulations. We expect macrophage phenotype switch-

ing from the anti-inflammatory phenotype to the pro-inflammatory phenotype to dom-

inate the converse direction as many inflammatory conditions are associated with in-

creased ratios of pro-inflammatory macrophages (Zhu et al., 2014; Lissner et al., 2015);

thus we expect α1 ≫ α2. We solve (3.3) subject to the initial conditions of the form

mp(0) = mp0 > 0, c(0) = c0 > 0, and ma(0) = g(0) = 0.
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Parameter Expression Meaning Baseline value

κc k∗κ∗c /δ∗κ∗g
Rate of production of pro-inflammatory me-

diators
0.35

γm γ∗
m/γ∗

c Decay rate of macrophages 0.05

γg γ∗
g/γ∗

c Decay of anti-inflammatory mediators 0.2

cT k∗c∗T/γ∗
c

Rate of macrophage proliferation in the ab-

sence of pro-inflammatory mediators
0.01

mmax δ∗κ∗gm∗
max/γ∗2

c Maximum macrophage population size 25

α1 α∗1 β∗
1/k∗ Macrophage phenotype switching (ma to mp) 1

α2 α∗2 β∗
2/δ∗ Macrophage phenotype switching (mp to ma) 0.01

Table 3.2: Summary of the dimensionless parameters appearing in (3.3).

3.2 Identification and classification of steady state solutions

In this section, we aim to identify the steady state solutions of (3.3) and classify them

by their stability. It is relatively easy to show that (3.3) has a zero steady state corre-

sponding to a healthy response, denoted by FP1. However, it is generally challenging

to find an analytical solution for the system of non-linear equations. Therefore, it is

more appropriate to use a numerical ODE solver in Matlab to obtain the stable non-

zero steady state solutions, and verify them using XPPAUT software. It appears that

two additional non-zero steady states of (3.3) exist; we denote the non-zero steady state

as FP2 which represents a healthy response where the pro-inflammatory components

are zero (c = mp = 0) but the anti-inflammatory components remain positive (g > 0

and ma > 0). On the other hand, the non-zero steady state in which all variables are

positive represent a chronic state.

The Jacobian matrix J of (3.3) is given by

J =


−γg 0 0 1

−c −g − 1 κc 0

−α2 mp α1 ma −γm − α2 g α1 c

α2 mp T42 T43 T44

 , (3.5)

where,

T42 = −α1 ma −
(
ma + mp

) (ma + mp

mmax
− 1
)

, (3.6)

T43 = α2 g − (c + cT)

(
ma + mp

mmax
− 1
)
−

(c + cT)
(
ma + mp

)
mmax

, (3.7)
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T44 = −γm − α1 c − (c + cT)

(
ma + mp

mmax
− 1
)
−

(c + cT)
(
ma + mp

)
mmax

. (3.8)

To examine the stability of the zero steady state, we compute (3.5) at FP1, where FP1 =

(g, c, mp, ma) = (0, 0, 0, 0), giving

J|FP1
=


−γg 0 0 1

0 −1 κc 0

0 0 −γm 0

0 0 cT cT − γm

 . (3.9)

Evaluating eigenvalues of (3.9), we obtain

λ1 = −1, λ2 = cT − γm, λ3 = −γg, λ4 = −γm. (3.10)

Therefore, we can conclude that this model exhibits a healthy steady state in which all

variables are equal to zero, and this steady state is stable provided that γm > cT; other-

wise, it is unstable. However, this model can also exhibit a further healthy steady state

in which pro-inflammatory components are zero but anti-inflammatory components

reach some positive levels, allowing inflammation to remain suppressed. That is, we

have a second steady state in which

mp = c = 0, ma = mmax

(
1 − γm

cT

)
, g =

mmax

γg

(
1 − γm

cT

)
, (3.11)

which exists provided that γm < cT. This steady state can be considered representative

of a configuration in which inflammation is suppressed by a baseline population of

tissue resident (anti-inflammatory) macrophages, as would typically be present in a

healthy tissue. To examine the stability of the additional healthy steady state, we first

compute the Jacobian (3.5) at FP2, where FP2 is given by (3.11), which gives

J|FP2
=


−γg 0 0 1

0 j22 κc 0

0 j32 j33 0

0 j42 j43 γm − cT

 , (3.12)

where,

j22 =
mmax

γg

(
γm

cT
− 1
)
− 1, (3.13)

j32 = −α1 mmax

(
γm

cT
− 1
)

, (3.14)

j33 =
α2 mmax

γg

(
γm

cT
− 1
)
− γm, (3.15)
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j42 = mmax

(
γm

cT
− 1
)(

α1 −
γm

cT

)
, (3.16)

j43 = 2γm − cT − α2 mmax

γg

(
γm

cT
− 1
)

. (3.17)

Evaluating the eigenvalues of the Jacobian matrix (3.12), using the characteristic equa-

tion det(J − λI) = 0, we obtain the eigenvalues λ as follows:

λ1 = −γg, λ2 = γm − cT, λ3,4 =
(j22 + j33)±

√
(j22 − j33)

2 + 4 κc j32

2
. (3.18)

Next, we determine the stability of FP2 by examining the signs of the eigenvalues given

in (3.18). We observe that λ1 is always negative. For FP2 as defined in (3.11) to exist,

we require γm < cT, consequently ensuring that λ2 remains negative.

Moving on to λ3, for stability we need to show that it is always negative. This can be

established by examining the inequality:

j22 + j33 < 0, (3.19)

where j22 is derived from (3.13) and j33 is derived from (3.15). Substituting the expres-

sions of j22 and j33 in (3.19), we obtain

mmax

γg

(
γm

cT
− 1
)
− 1 +

α2 mmax

γg

(
γm

cT
− 1
)
− γm < 0. (3.20)

Since we require γm < cT for FP2 to exist, the bracketed terms in (3.20) are negative,

and (3.20) is satisfied for all relevant parameter values.

Now, to determine the condition for λ4 to be negative, we consider the inequality:

j22 + j33 +
√
(j22 − j33)2 + 4κc j32 < 0. (3.21)

From (3.21), we require √
(j22 − j33)

2 + 4 κc j32 < − (j22 + j33) . (3.22)

By squaring both sides of the inequality, we obtain

(j22 − j33)
2 + 4 κc j32 < (j22 + j33)

2 . (3.23)

Expanding brackets then provides

j222 − 2 j22 j33 + j233 + 4 κc j32 < j222 + 2 j22 j33 + j233, (3.24)

from which we observe that stability requires

κc j32 < j22 j33. (3.25)
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We can compute j22, j32, and j33 from (3.13), (3.14), and (3.15), respectively, to continue

solving (3.25) and find the conditions for λ4 to be negative. We simplify (3.25) as fol-

lows:

− κc α1 mmax

(
γm

cT
− 1
)
<

[
mmax

γg

(
γm

cT
− 1
)
− 1
] [

α2 mmax

γg

(
γm

cT
− 1
)
− γm

]
. (3.26)

Expanding brackets on the right-hand side of (3.26), we obtain:

α2 m2
max

γg2

(
γm

cT
− 1
)2

+mmax

(
γm

cT
− 1
)(

−γm

γg
− α2

γg

)
+γm + κc α1 mmax

(
γm

cT
− 1
)
> 0.

(3.27)

Therefore, λ4 is a negative if γm < cT and the following condition is satisfied:

α2 m2
max

γg2

(
γm

cT
− 1
)2

+ mmax

[
α1 κc −

γm + α2

γg

] (
γm

cT
− 1
)
+ γm > 0. (3.28)

Hence, by setting the conditions for all eigenvalues given in (3.18) to be negative, we

have shown that the healthy non-trivial steady state FP2 is stable when the conditions

for λ4 are satisfied, which are γm < cT and (3.28). Since we require γm/cT − 1 < 0 in

order for the steady state of (3.11) to exist, a sufficient condition for the stability of the

steady state FP2 is given by:

α1 κc −
γm + α2

γg
< 0. (3.29)

Simplifying (3.29), we obtain:

α1 γg κc < γm + α2. (3.30)

We note that the terms appearing on the left-hand side of (3.30) are all pro-inflammatory

(with α1 representing growth of the pro-inflammatory macrophage population, κc rep-

resenting production of pro-inflammatory mediators and γg reducing the influence

of anti-inflammatory mediators), while the terms on the right-hand side of (3.30) are

essentially anti-inflammatory (with α2 stimulating growth of the anti-inflammatory

macrophage population and γm acting to suppress the macrophage population as a

whole). Broadly, we therefore expect (3.28) to yield a stable steady state provided that

pro-inflammatory interactions are weak in comparison to anti-inflammatory effects.

3.3 Numerical simulations

All computational simulations were carried out using Matlab (ODE solver ode45). The

numerical simulations of (3.3) exhibit two distinct healthy responses and a chronic out-

come, as shown in Figure 3.2.
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Figure 3.2: Numerical simulations of (3.3) reveal that the model can exhibit both

chronic and healthy responses. In (a), we initialise the model with an initial stimulus

of pro-inflammatory components (mp(0) = 0.7, c(0) = 0.02 and ma(0) = g(0) = 0),

for the parameters of Table 3.2, showing that the model attains a healthy steady state in

which all variables eventually become zero. In (b), an alternative healthy steady state

is observed, where the pro-inflammatory components become zero (mp = c = 0),

while anti-inflammatory components reach some positive levels (ma > 0 and g > 0).

This state is achieved by using the same initial conditions as in (a), but with a higher

stimulus of macrophage recruitment by setting γm < cT , where cT = 0.055, while

keeping the rest of the parameters as provided in Table 3.2 . For both (c) and (d), we

set α1 = 1.7, leaving the other parameters unchanged as detailed in Table 3.2. In (c),

we initialise the model with (mp(0) = 10, c(0) = 1 and ma(0) = g(0) = 0), while in

(d) (mp(0) = 0.2, ma(0) = 0.5 and c(0) = g(0) = 0). In (c), the model attains a chronic

steady state; in (d) we observe chronic oscillations.
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In Section 3.2, we established that the zero steady state, denoted as FP1, is stable if and

only if γm > cT as defined in (3.10). As illustrated in Figure 3.2(a), the stable zero steady

state corresponds to a healthy response in which all variables eventually converge to

zero.

The presence of anti-inflammatory macrophages (ma) and anti-inflammatory mediators

(g) within healthy tissues is a prerequisite for suppressing pro-inflammatory reactions

(mp and c) and maintaining tissue homoeostasis and overall health. In Section 3.2, we

documented that a non-zero steady state, denoted as FP2, can remain stable provided

that γm < cT (as defined in (3.11)) and the condition stated in (3.28) is met. Conse-

quently, when these conditions are satisfied, an alternative healthy steady state can

be achieved, characterized by the complete absence of pro-inflammatory components

(mp = c = 0), while anti-inflammatory components reach some positive levels (ma > 0

and g > 0), as shown in Figure 3.2(b). As a result, the dynamics shown in Figure 3.2(b)

provide more biologically realistic results than that in Figure 3.2(a). This is because g

and ma must remain present in the body to fulfil their vital biological roles rather than

being assumed to be eliminated for the attainment of a healthy state.

Increasing the transition rate towards pro-inflammatory macrophages by setting α1 =

1.7 in Figure 3.2 (c) and (d) can result in chronic outcomes. In such cases, all variables

reach some positive levels, leading to persistent inflammation. In Figure 3.2(c), we can

observe that the model attains a highly-inflamed configuration, where mp ≫ ma, and

c reaches an elevated level. This configuration enhances the pro-inflammatory feed-

back from mp, leading to a significant increase in c and sustained high-level inflamma-

tion, which causes more damage. Figure 3.2 (d) illustrates that the model can exhibit

a chronic outcome characterized by oscillatory behaviour (which could be likened to

inflammatory conditions that exhibit relapsing–remitting characteristics), in which all

variables reach non-zero levels. However, these variables do not converge to a stable

steady state but rather fluctuate over time, indicating that the system follows a periodic

pattern. This suggests the presence of Hopf bifurcation.

3.4 Bifurcation analysis

Macrophages are a heterogeneous group of cells with various functional states in the

inflammatory response. Therefore, it is essential to understand the underlying mech-

anisms of macrophage functional phenotypes, including ma and mp subtypes, which

play a crucial role in resolving inflammation. Analysing the bifurcation structure of

models of the inflammatory response can help us more effectively develop potential
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Figure 3.3: Bifurcation analysis of (3.3) for the parameter values of Table 3.2, showing

how the stability of the steady states changes as γm vary. The figure on the right illus-

trates the confined region defined by the transcritical bifurcations depicted in the Fig-

ure on the left. Solid and dashed lines represent stable and unstable solutions respec-

tively; red line represents a periodic orbit. “B” indicates that the model is bistable with

both healthy and chronic outcomes permissible, while “M” denotes monostability; the

corresponding steady state solutions being that in which inflammation resolves and

all variables reach zero (labelled “Res0” or “0”), that in which inflammation resolves

but anti-inflammatory components are positive (labelled “Res+” or “+”; see (3.11)), or

chronic states (labelled “Chr”). “Osc” denotes oscillatory (chronic) solutions.

therapeutic targets for inflammation.

Figure 3.3 shows how the stability of the steady states of (3.3) changes as γm varies,

for the baseline parameter values of Table 3.2. The over-arching key observation here

(in comparison with the corresponding figures for the simple homogenised model pre-

sented in Chapter 2; Figure 2.6) is that accounting separately for distinct macrophage

phenotypes avails a much more complex array of possible outcomes. As described

above, this model supports two different types of resolved outcomes: that in which all

variables are zero (labelled “Res0” or “0” in Figure 3.3); or that given by (3.11) (labelled

“Res+” or “+” in Figure 3.3), in which the macrophage population reaches a positive

steady state value, but inflammation is suppressed by the sustained presence of the

anti-inflammatory macrophage and mediator populations. Biologically, the latter of

these represents a more realistic healthy configuration. Which of these resolved states

is permissible is controlled only by the parameters that govern the overall macrophage

population dynamics, i.e. cT, which represents baseline macrophage recruitment in the

absence of inflammation, and γm, which is the rate of macrophage loss (as macrophages

either die or vacate the tissue of interest). Figure 3.3 shows a transcritical bifurcation

lying at γm = cT = 0.01, which is independent of the model’s other parameters. For

γm > cT, the zero state is always stable and the steady state of (3.11) does not exist.
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For γm < cT, the zero state is unstable and the steady state of (3.11) is stable apart

from in a narrow region of parameter space in which this solution is also destabilised

by the model’s other pro-inflammatory interactions according to (3.28). Holding all

parameters apart from γm fixed, (3.28) provides a quadratic equation in γm, the roots

of which provide two further transcritical bifurcations as the stability of the Res+ state

changes; these transcritical bifurcations also give rise to branches of chronic solutions.

These chronic solutions persist as γm is slowly increased, until we reach the limit point

represented by SN; beyond this point, γm is sufficiently large that the only possible

outcome is the zero state. In Figure 3.3, we observe that there is also the potential for

the branch of chronic solutions to undergo Hopf bifurcations that give rise to stable

periodic orbits, represented by red lines.

Figure 3.4 illustrates bifurcation diagrams of (3.3) in terms of the parameters given in

Table 3.2. The zero steady state is stable for γm > cT as defined in (3.10). In Figure 3.4(a),

the model demonstrates a guaranteed healthy outcome where all inflammatory compo-

nents are zero, indicated as “M:Res0”, when γg is less than the saddle-node bifurcation

(occurring at SN1 = 0.2992). Within the region bounded by two saddle-node bifurca-

tions, SN1 and SN2 (where SN2 = 0.632), the model demonstrates multiple outcomes,

including a healthy zero state and varying levels of chronic inflammation (low and

high). The model becomes bistable beyond SN2, where γg is sufficiently large.

In Figure 3.4(b), a healthy outcome is achieved when κc is less than the saddle-node

bifurcation (at SN1 = 0.5236), represented as "M:Res0". However, an excessive pro-

duction of κc can result in sustained inflammation. Multiple outcomes are observed

when κc is bounded between the saddle-node bifurcation and the Hopf bifurcation

([SN1, HB2] = [0.5236, 0.6043]) , and oscillations occurring as κc approaches the vicinity

of the Hopf bifurcation region. Beyond the saddle-node bifurcation ( at SN2 = 4.177),

the model is bistable, with either the zero state or a chronic state permissible, which is

denoted as (B:Chr/0).

The behaviour of steady state solutions in Figure 3.4(c) closely resembles that observed

in Figure 3.4(b). As previously mentioned, as the bifurcation parameters (γg, κc and

α1) increase, an overproduction of pro-inflammatory mediators from mp macrophages

leads to persistent inflammation. In Figure 3.4(a–c), we observe that these chronic so-

lutions persist as the bifurcation parameters (γg, κc and α1) are gradually increased,

resulting in the model exhibiting a bistable region where both healthy zero state and

severe chronic inflammation are possible.

In Figure 3.4(d), α2 plays a role in the inflammatory response opposite to that of α1.

For the model to attain a healthy outcome, the value of α2 must be higher than the
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Figure 3.4: Bifurcation diagrams illustrating steady state solutions of (3.3) for the pa-

rameters given in Table 3.2. Black solid and dashed lines represent stable and unstable

steady-state solutions, respectively. The red line represents a periodic orbit. In (a-

d), “M:Res0” denotes monostable with inflammation resolving and all variables reach

zero; “B:Chr/0” indicates that the model is bistable with both healthy and chronic out-

comes permissible; ’multi’ denotes that the model exhibits multiple outcomes, includ-

ing healthy and low- and high-chronic outcomes; “Osc” denotes oscillatory (chronic)

solutions. In (e), SN indicates a saddle-node bifurcation, HB represents a Hopf bifur-

cation, and HC denotes a Homoclinic bifurcation.

saddle-node bifurcation, denoted as SN1 where SN1 = 0.001678.
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Bifurcation point Bifurcation parameter

Figure 3.4 (a)

SN1 γg = 2.992 × 10−1

SN2 γg = 6.32 × 10−1

SN3 γg = 2.992 × 10−1

Figure 3.4 (b)

SN1 κc = 5.236 × 10−1

SN2 κc = 4.177

SN3 κc = 5.236 × 10−1

HB1 κc = 4.172

HB2 κc = 6.043 × 10−1

Figure 3.4 (c)

SN1 α1 = 1.496

SN2 α1 = 4.849

SN3 α1 = 1.496

HB α1 = 1.668

Figure 3.4 (d)

SN1 α2 = 1.678 × 10−3

SN2 α2 = 6.328 × 10−4

SN3 α2 = 1.678 × 10−3

Table 3.3: Bifurcation points shown in Figure 3.4. SN indicates a saddle-node bifurca-

tion and HB represents a Hopf bifurcation.

It is worth noting that, at particular values of the bifurcation parameter, there is the

potential for the branch of chronic solutions to undergo Hopf bifurcations that give rise

to stable periodic orbits. This is illustrated in Figure 3.4(e), where the oscillatory region

expands. However, a branch of periodic solutions may suddenly end as the periodic

orbit curve collides with the saddle point, resulting in a homoclinic bifurcation point

(HC) and the disappearance of the periodic orbit curve. Table 3.3 summarizes all the

bifurcation points shown in Figure 3.4.

In Figure 3.5, we track the coordinates of the saddle-node and Hopf bifurcations of

Figure 3.4 in two-dimensional slices of parameter space, identifying regions of param-

eter space in which the model is monostable with inflammation resolving (M:Res0) or

bistable (B:Chr/0) with both healthy and chronic outcomes possible, and the switching

between these being driven by initial conditions. In Figure 3.5(a), it’s clear that a nar-

row healthy outcome region is present when κc has a low value. Likewise, a low value

of α1 results in a narrow healthy outcome region, even when κc is large. This observa-
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Figure 3.5: Two-parameter bifurcation diagrams illustrating solutions of (3.3) for the

parameters given in Table 3.2. Red lines represent saddle-node bifurcations and black

lines represent Hopf bifurcations.“M:Res0” denotes monostability with inflammation

resolving and all variables reach zero, while “B:Chr/0” indicates that the model is

bistable with both healthy and chronic outcomes permissible. ”multi” denotes that

the model exhibits multiple outcomes. “Osc” denotes oscillatory (chronic) solutions.

“FH” indicates a Fold-Hopf bifurcation.

tion suggests that the bistability region’s scale expands as both κc and α1 increase. In

a dynamical system’s two-dimensional slices of parameter space, a Fold-Hopf bifurca-

tion (FH) occurs when the saddle-node bifurcation (also known as the Fold Bifurcation)

curve intersects tangentially with the Hopf bifurcation curve, as shown in Figure 3.5(a).

The system undergoes a qualitative change at this point, as the Hopf curve and corre-

sponding oscillatory solutions vanish while the saddle-node bifurcation branch per-

sists.

Figure 3.5(b) suggests that the healthy monostability region arises when κc is small;

otherwise, the model is bistable. Increasing α2 expands this region, causing the saddle-

node and Hopf bifurcation curves to shift to the right. Moreover, the oscillatory region

is limited and confined between two saddle-node bifurcation curves.

Figure 3.5(c) illustrates that the resolution of inflammation, labelled as (M:Res0), can
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occur with a low value of κc regardless of the value of mmax. Moreover, the region of

oscillations labelled ”Osc” is highly dependent on the size of the macrophage popula-

tion and is eliminated when mmax is sufficiently small.

As previously mentioned, α2 plays a significant role in promoting the resolution of

inflammation by increasing the production of anti-inflammatory mediators from ma

macrophages, which mitigate the action of pro-inflammatory mediators. Intuitively,

the effects of α1 and α2 are converse to one another. Figure 3.5(d) illustrates the effects

of α1 and α2 in determining the region of inflammation outcomes; decreasing α1 or

increasing α2 has the effect of expanding of monostability region with healthy solution

guaranteed, labelled as (M:Res0).

Of particular interest in this model are the parameters α1 and α2, which control the

rates of macrophage phenotype switching (from ma to mp, and mp to ma, respectively).

As discussed above, we expect α1 ≫ α2 in general. Figures 3.6(a,b) illustrate the ef-

fects of α1 and α2 on the bifurcation structure of this model, with variations in these

two parameters affecting changes in the stability of the Res+ state via (3.28) and also

the position of the saddle-node that represents the switch from chronicity to the zero

state for large γm. Intuitively, the effects of α1 and α2 are converse to one another. For

all other parameters fixed, and assuming that γm < cT so that the Res+ state exists, in-

creasing α1 or decreasing α2 has the effect of expanding the interval of γm values within

which (3.28) is violated, so that the Res+ solution is unstable; we therefore see an ex-

panding window in which the model is monostable with a chronic solution guaranteed

(M:Chr in the figure). For sufficiently small α1 or sufficiently large α2, the model’s pro-

inflammatory facets are so weak that the Res+ state is never destabilised and the model

is monostable and guaranteed to attain the Res+ (healthy) configuration.

The parameters α1 and α2 also affect the chronic state by altering the position of the

saddle-node bifurcation shown in Figure 3.3; as illustrated by the red lines in Fig-

ures 3.6(a,b). Decreasing α1 or increasing α2 weakens the model’s pro-inflammatory

feedbacks (in comparison to anti-inflammatory feedbacks) and shifts the saddle-node

to the left in Figure 3.3, narrowing the corresponding region of bistability, until the

saddle-node meets the transcritical bifucations given by (3.28), when chronic solutions

are eliminated. Conversely, increasing α1 or decreasing α2 shifts the balance of feed-

backs towards pro-inflammation and the saddle-node shifts to the right in Figure 3.3,

resulting in a larger window of bistability, including for larger values of γm. It is in-

teresting to note that the values of α1 and α2 also have a significant influence over the

potential for oscillatory outcomes (which are present immediately above the black line

in Figure 3.6(a), and in the enclosed region labelled “Osc” in Figure 3.6(b)). In par-

67



CHAPTER 3: MODELLING THE ROLES OF DISTINCT MACROPHAGE PHENOTYPES

0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.5

1

1.5

2

2.5

3

0.0098 0.0102

0.6

0.7

γm

α
1

(Osc)

(M:Res0)

(B:Chr/+)

(B:Chr/0)
(M:Chr)

(M:Chr)(M:Res+)

(a)

0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.005

0.01

0.015

0.02

0.025

0.03

0.0098 0.0102

0.026

0.027

γm

α
2

(Osc)

(M:Res0)

(B:Chr/0)

(B:Chr/+)

(M:Chr)

(M:Chr)(M:Res+)

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03

0

10

20

30

40

50

γm

m
m
a
x

(B:Chr/0)

(Osc)

(M:Res0)

(B:Chr/+)
(M:Chr)

(M:Res+)

(c)

Figure 3.6: Two-parameter bifurcation diagrams illustrating steady state solutions of

the model and their dependence upon the model’s parameters, for the parameter val-

ues of Table 3.2. Red lines represent saddle-node bifurcations, blue lines represent

transcritical bifurcations, and black lines represent Hopf bifurcations. “B” indicates

that the model is bistable with both healthy and chronic outcomes permissible, while

“M” denotes monostability; the corresponding steady state solutions being those in

which inflammation resolves and all variables reach zero (labelled “Res0” or “0”),

those in which inflammation resolves but anti-inflammatory components are positive

(labelled “Res+” or “+”; see (3.11)), or chronic states (labelled “Chr”). “Osc” denotes

oscillatory (chronic) solutions.

ticular, we note that very small values of α2 can eliminate oscillations entirely, which

suggests that bidirectional phenotype switching specifically underpins the existence of

these oscillations, which were not observed in the simple model in Chapter 2 or in the

previous models of Dunster et al. (2014) that include only one macrophage phenotype.

The potential for such oscillations to exist depends strongly upon the size of the

macrophage population under consideration; as Figure 3.6(c) shows, the region of os-

cillatory behaviour grows as mmax is increased, and is eliminated entirely for mmax suf-

ficiently small. These chronic solutions persist as γm is slowly increased, until we reach
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the saddle-node bifurcation represented by the red lines in Figures 3.6(a–c); beyond

this point, γm is sufficiently large that the only possible outcome is the zero state.

3.5 Discussion

In this chapter, we modified the construction of the simple baseline model presented

in Chapter 2 by splitting the macrophage population into two distinct phenotypes,

with primarily pro- and anti-inflammatory behaviours, the latter being reminiscent of

tissue-resident macrophages. We note that this in itself is still an over-simplification of

a realistic inflammatory environment in vivo, in which macrophage populations are nu-

merous and still not universally categorised Gordon et al. (2014). One key result of this

modelling approach is that the model now provides a healthy (resolved) configuration

with positive macrophage numbers; i.e. a configuration in which pro-inflammatory

macrophages and mediators are absent, but anti-inflammatory macrophages remain

present to sustain the healthy configuration of the tissue. The existence of this resolved

state is dependent upon the parameters that govern the size of the macrophage popu-

lation; if γm < cT, the zero-state is unstable, and the positive healthy state exists, with

stability governed by (3.28). Therefore, the results of this model are more biologically

acceptable than those presented in the simple baseline model in Chapter 2.

Figures 3.4, 3.5, and 3.6 illustrated the full range of dynamics of this model, revealing

that the model also exhibits oscillatory solutions not observed in the simple model in

Chapter 2 (which could be considered reminiscent of inflammatory conditions with

relapsing-remitting characteristics). The existence of these oscillations is entirely re-

liant on the choice of the “two phenotype” modelling approach, and is also most ev-

ident when the total macrophage population (mmax) is large, so that there is scope

for large disparity between the sizes of the pro- and anti-inflammatory macrophage

populations. The rates of macrophage phenotype switching impact upon these dy-

namics in a largely intuitive manner: parameter choices that reduce the size of the

pro-inflammatory macrophage populations (α1 small, α2 large, or κc small) can elimi-

nate chronic outcomes entirely; choices that increase the scope for large populations of

pro-inflammatory macrophages (α1 small, α2 large, or κc small) can expand regions of

bistability or chronicity and avail more complex outcomes such as oscillations.

The inflammatory response’s severity depends on the size of mp macrophage popula-

tions and α1. If either of these factors is large, it can lead to excessive inflammation

and tissue damage. It’s also important to identify and address the underlying cause

of the rise in the size of mp macrophage populations since it’s essential to prevent the
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development of chronic diseases. Therefore, maintaining a balance between α1 and

mechanisms that reduce the size of mp macrophage populations is crucial for promot-

ing a healthy outcome and resolving inflammation.

We note that the inflammatory response is a complex biological process that involves

numerous immune cells. As such, a limitation of the model presented here is that

we incorporate only macrophages, and omit other immune cells that play key roles in

determining inflammatory outcomes. In the following chapter, we expand upon the

model presented here to also include neutrophils, which are typically the first immune

cells to arrive at the inflammation site, and also play significant roles in releasing rele-

vant inflammatory mediators. In Chapter 4, we examine the extent to which the results

of the model presented here are sensitive to the inclusion of an additional neutrophil

population.
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Incorporating The Role of

Neutrophils

Neutrophils are the most abundant inflammatory cells in the body’s immune sys-

tem. They enhance the inflammatory response by releasing chemicals that attract more

macrophages to the inflamed site. Thus, neutrophils and macrophages play a pivotal

role as the primary immune cells in the inflammatory response, including removing

dead cells and debris and engulfing foreign particles through phagocytosis. Neutrophil

cells can undergo programmed cell death, also known as apoptosis, which is a natural

process to regulate the inflammatory response. However, under certain circumstances,

neutrophils can undergo necrosis, releasing their toxic contents. This can exacerbate

the intensity of the inflammatory response, causing further damage to the surrounding

host tissue, particularly if macrophages are unable to efficiently clear the necrotic cells.

In this chapter, we expand upon the biological scope of the inflammation model in

Chapter 3 by introducing two additional groups of neutrophils: active neutrophils and

apoptotic neutrophils. We aim to gain a better understanding of the roles played by

macrophage phenotypes in the removal of apoptotic neutrophils, with the aim of pre-

venting the onset of a persistent chronic inflammatory response that can be triggered

by the leakage of the toxic content of necrotic cells into surrounding healthy cells. To

achieve this, we use numerical simulations and bifurcation analysis to investigate how

variation in the system’s key parameters influences its outcomes, contributing to de-

veloping potential therapeutic targets for chronic inflammation.
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4.1 Model derivation

In this model, we build upon the previous inflammation model presented in Chap-

ter 3 by incorporating active and apoptotic neutrophils with both anti- and pro-

inflammatory actions. Thus, this model focuses on the interactions between two

subtypes of macrophage phenotypes, two groups of neutrophil cells and groups of

generic pro- and anti-inflammatory mediators evolving over time (t∗) (with stars de-

noting dimensional variables), namely: pro-inflammatory macrophages m∗
p (t∗), anti-

inflammatory macrophages m∗
a (t∗), active neutrophils n∗ (t∗), apoptotic neutrophils

a∗ (t∗), generic pro-inflammatory mediators c∗ (t∗) and generic anti-inflammatory me-

diators g∗ (t∗). These interactions occur at the cellular level, focusing on the inflam-

mation affecting the body over time by identifying the conditions that promote tissue

damage in the absence of pathogens and highlighting its biological significance.

Neutrophils are the most abundant leukocytes in the body’s immune system, and play

a crucial role in the early stages of the inflammatory response, usually being the first-

responding immune cells to the site of inflammatory damage due to their rapid move-

ment and small size (Butterfield et al., 2006; Kolaczkowska & Kubes, 2013; Rosales,

2018). Active neutrophils (n∗) are recruited to the site of inflammatory damage in re-

sponse to high levels of pro-inflammatory mediators; we denote the corresponding

rate of recruitment by χ∗
n. During the initial phase of inflammation, active neutrophils

combat initial damage and foreign particles by phagocytosis, cytokine release, and

secretion of toxic content. As neutrophils age, they eventually die through apopto-

sis; we denote the corresponding rate of apoptosis by ν∗. Apoptotic neutrophils ul-

timately undergo secondary necrosis naturally (at rate γ∗
a ), releasing their toxic con-

tents and providing a further source of pro-inflammatory mediators (i.e. worsening

the inflammatory damage). We parameterise this additional source term by rate pa-

rameter κ∗a , but note that this source is known to saturate as the number of apop-

totic neutrophils increases, and hence (following (Dunster et al., 2014)) we also intro-

duce a corresponding saturation constant β∗
a below. In order to mitigate against po-

tential damage from apoptotic neutrophils, macrophages phagocytose apoptotic neu-

trophils before they can undergo necrosis. While phagocytosis of apoptotic cells is

a key macrophage function in general, we expect phagocytosis to be predominantly

driven by tissue-resident macrophages (Schulz et al., 2019; Jenkins & Allen, 2021),

which we associate with our anti-inflammatory macrophage population here. We in-

troduce the rate parameter ϕ∗ to parameterise phagocytosis of apoptotic neutrophils

by anti-inflammatory macrophages, and also denote the relative phagocytic ability of

pro-inflammatory macrophages by dimensionless parameter ϕ2 ≪ 1.
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Figure 4.1: Schematic diagram representing (4.1) and illustrating the interactions in-

corporated in this model, healthy neutrophils (n∗) and apoptotic notrophils (a∗), with

associated parameters. Arrows indicate positive feedbacks or supply terms; lines ter-

minated with bars indicate negative feedbacks or loss terms.

The interactions featuring in this model are shown in Figure 4.1 and provide the fol-

lowing ODE system:

dn∗

dt∗
= χ∗

n c∗ − ν∗ n∗, (4.1a)

da∗

dt∗
= ν∗n∗ − ϕ∗

(
m∗

a + ϕ2 m∗
p

)
a∗ − γ∗

a a∗, (4.1b)

dg∗

dt∗
= κ∗g m∗

a − γ∗
g g∗, (4.1c)

dc∗

dt∗
= κ∗c m∗

p + κ∗a γ∗
a

(
a∗

2

β∗2
a + a∗2

)
− δ∗ c∗ g∗ − γ∗

c c∗, (4.1d)

dm∗
p

dt∗
= α∗

1 β∗
1 c∗ m∗

a − α∗
2 β∗

2 g∗ m∗
p − γ∗

m m∗
p, (4.1e)

dm∗
a

dt∗
= k∗ (c∗ + c∗T)

(
m∗

a + m∗
p

)(
1 −

m∗
a + m∗

p

m∗
max

)
− α∗

1 β∗
1 c∗ m∗

a + α∗
2 β∗

2 g∗ m∗
p − γ∗

m m∗
a .

(4.1f)

We note that the above model incorporates a deliberately simple description of the neu-

trophil population and its roles, providing a minimal sub-model with single positive

and negative feedback loops. In the single positive feedback loop, pro-inflammatory

mediators initially recruit active neutrophils to the damaged site, which later become
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apoptotic neutrophils at rate ν∗ and undergo necrosis, leading to the production of

more pro-inflammatory mediators via κ∗a , which further attract more active neutrophils

to the damaged tissues. The negative feedback loop describes macrophages’ ability to

remove apoptotic neutrophils before they release toxic contents into healthy cells. The

previous works of Dunster et al. (2014) and Bayani et al. (2020a) additionally included a

source of pro-inflammatory mediators from active neutrophils; however, this feedback

is much weaker than that of apoptotic neutrophils and is hence omitted here for ease.

Furthermore, these works also considered a more complex recruitment term for neu-

trophils that is explictly down-regulated by anti-inflammatory mediators. We neglect

this here in order to facilitate direct comparison with the previous model introduced in

Chapter 3.

4.1.1 Parameters and non-dimensionalisation

In Section 3.1.1, we reviewed the common dimensional parameters that appeared in

(3.1). Here, we briefly introduce the available estimates for the new dimensional pa-

rameters incorporated in this model, which are listed in Table 4.1, along with their

respective value ranges. Furthermore, we comment upon how these estimates inform

the corresponding choices for our baseline set of dimensionless parameters.

Again, we nondimensionalise (4.1) by applying the scalings of (3.2) and also scale neu-

trophil populations according to

n∗ =
χ∗

n
k∗

n, a∗ =
χ∗

n
k∗

a, (4.2)

to obtain the following dimensionless equations:

dn
dt

= c − ν n, (4.3a)

da
dt

= νn − ϕ
(
ma + ϕ2 mp

)
a − γa a, (4.3b)

dg
dt

= ma − γg g, (4.3c)

dc
dt

= κc mp + κa γa

(
a2

β2
a + a2

)
− c g − c, (4.3d)

dmp

dt
= α1 c ma − α2 g mp − γm mp, (4.3e)

dma

dt
= (c + cT)

(
ma + mp

) (
1 −

ma + mp

mmax

)
− α1 c ma + α2 g mp − γm ma , (4.3f)
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Parameter Meaning Range of values and units References

χ∗
n

Maximal rate of neutrophil

influx
106 − 107 cell pg−1 day−1 Kim et al. (2008)

ν∗ Rate of neutrophil apoptosis 0.1 − 72 day−1
Summers et al. (2010)

Minucci et al. (2020)

γ∗
a

Rate of necrosis of apoptotic

neutrophils
9.6 − 48 day−1 Marée et al. (2005)

ϕ∗
Rate of phagocytosis of

apoptotic neutrophils by ma

macrophages

10−3 − 10−1 cell−1 mm3 day−1

Dunster et al. (2014)

Bayani et al. (2020a)

Nelson et al. (2023)

κ∗a
Production of c on necrosis

of apoptotic neutrophils
pg mm−3

β∗
a Saturation constant cell mm−3

Table 4.1: Summary of the new dimensional parameter values incorporated in (4.1).

in which we have introduced the following additional (to (2.4) and (3.4) dimensionless

parameters:

ν =
ν∗

γ∗
c

, ϕ =
ϕ∗γ∗

c
δ∗κ∗g

, γa =
γ∗

a
γ∗

c
, κa =

k∗κ∗a
γ∗

c
, βa =

β∗
ak∗

χ∗
n

. (4.4)

We solve (4.3) subject to the initial conditions mp(0) = mp0 > 0, c(0) = c0 > 0, and

ma(0) = g(0) = n(0) = a(0) = 0.

The newly introduced dimensionless parameters appearing in (4.3) are summarised

in Table 4.2 (see also Table 3.2) , alongside baseline values used in our simulations.

In a previous model of type 1 diabetes, Marée et al. (2005) estimate the rate at which

macrophages phagocytose apoptotic cells to be in the range 10−7–10−5 mL cell−1 h−1.

We note that this measure does not explicitly incorporate macrophage phenotype infor-

mation. Inferring the dimensionless parameter ϕ from such a measure is difficult due

to uncertainty in other relevant dimensional parameters that appear in (4.4); however,

previous works have generally considered ϕ to lie approximately in the range 10−3–

10−1 (Dunster et al., 2014; Bayani et al., 2020a; Dunster et al., 2023; Nelson et al., 2023).

Since the role of phagocytosing apoptotic neutrophils primarily falls to tissue-resident

macrophages (Schulz et al., 2019; Jaggi et al., 2020; Jenkins & Allen, 2021), which we

associate with the anti-inflammatory macrophage phenotype in our model, we assume

ϕ2 ≪ 1. Here, we take ϕ = 0.1 as our baseline choice for phagocytosis of apoptotic

neutrophils by macrophages of the ma phenotype.

Since neutrophils are known to have a shorter lifespan than macrophages (Akgul et al.,
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Parameter Expression Meaning Baseline value

ϕ ϕ∗γ∗
c /δ∗κ∗g

Rate of phagocytosis of apoptotic neu-

trophils by ma macrophages
0.1

ϕ2 —
Relative rate of phagocytosis of apoptotic

neutrophils by mp compared to that of ma
0.01

ν ν∗/γ∗
c Rate of neutrophil apoptosis 0.1

κa k∗κ∗a γ∗
a /γ∗2

c
Production of c on necrosis of apoptotic neu-

trophils
2

γa γ∗
a /γ∗

c Rate of necrosis of apoptotic neutrophils 1

βa β∗
ak∗/χ∗

n Saturation constant 0.5

Table 4.2: Summary of the newly introduced dimensionless parameters appearing in

(4.3), with baseline values used in simulations.

2001; Parihar et al., 2010), it is intuitive that ν > γm in general. We therefore choose

ν = 0.1 in Table 4.2, but also investigate the role of ν more widely in Section 4.4 below.

Once neutrophils become apoptotic, they are rapidly lost via secondary necrosis, on a

similar timescale to the rate of decay of inflammatory mediators (Haslett, 1999; Dunster

et al., 2014). We therefore set γa = γ∗
a /γ∗

c = 1 in Table 4.2.

The remaining mediator production rate parameter, κa, is not readily available from ex-

isting literature, due partly to a reasonably complex dependence on numerous dimen-

sional model parameters (as given in (4.4)) for which values are uncertain. It is known,

however, that the concentration of pro-inflammatory mediators released on necrosis

of apoptotic neutrophils is large in comparison to that from active cells (Lawrence &

Gilroy, 2007). In light of this, we choose κa > κc, and set κa = 2 in Table 4.2.

4.2 Identification and classification of steady state solutions

Here, we aim to identify the steady state solutions of (4.3) and classify them by their

stability. Since we model neutrophils as entirely pro-inflammatory in nature, healthy

steady states must have n = a = 0, with c = mp = 0 as described in Chapter 3. It is

simple to show that (4.3) has a zero steady state corresponding to a healthy outcome

where all variables converge to zero, which we denote as FP1. We compute the Jacobian
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matrix for (4.3), denoted as J, which is defined as follows:

J =



−ν 0 0 1 0 0

ν T22 0 0 −a ϕ ϕ2 −a ϕ

0 0 −γg 0 0 1

0 T42 −c −g − 1 κc 0

0 0 −α2 mp α1 ma −γm − α2 g α1 c

0 0 α2 mp T64 T65 T66


, (4.5)

where,

T22 = −ϕ(ma + ϕ2 mp)− γa, (4.6)

T42 =
2 a κa

a2 + β2
a
− 2 a3 κa

(a2 + β2
a)

2 , (4.7)

T64 = −α1 ma −
(
ma + mp

) (ma + mp

mmax
− 1
)

, (4.8)

T65 = α2 g − (c + cT)

(
ma + mp

mmax
− 1
)
−

(c + cT)
(
ma + mp

)
mmax

, (4.9)

T66 = −γm − α1 c − (c + cT)

(
ma + mp

mmax
− 1
)
−

(c + cT)
(
ma + mp

)
mmax

. (4.10)

To examine the stability of the zero steady state, we evaluate the Jacobian matrix J, at

FP1 = (n, a, g, c, mp, ma) = (0, 0, 0, 0, 0, 0), which gives

J|FP1
=



−ν 0 0 1 0 0

ν −γa 0 0 0 0

0 0 −γg 0 0 1

0 0 0 −1 κc 0

0 0 0 0 −γm 0

0 0 0 0 cT cT − γm


. (4.11)

Computing the eigenvalues (λ) of the Jacobian matrix at FP1, as given in (4.11), pro-

vides:

λ1 = −1, λ2 = −γa, λ3 = −γg, λ4 = −γm, λ5 = −ν, λ6 = cT − γm. (4.12)

As evident from (4.12), we observe that the healthy steady state in which all variables

converge to zero is stable when γm > cT, while it becomes unstable otherwise. This is

consistent with the corresponding calculation of Chapter 3; see (3.10).
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Numerical simulations of (4.3) reveal an additional non-zero steady state correspond-

ing to a healthy response, assuming the pro-inflammatory components are zero (n =

a = c = mp = 0), while the anti-inflammatory components remain positive (g > 0 and

ma > 0), allowing inflammation to remain suppressed. That is, we have second healthy

steady state, denoted as FP2, in which

n = a = mp = c = 0, ma = mmax

(
1 − γm

cT

)
, g =

mmax

γg

(
1 − γm

cT

)
, (4.13)

which exists provided that γm < cT. To examine the stability of the second healthy

steady state, we compute the Jacobian (4.5) at FP2, where FP2 is given by (4.13), which

gives

J|FP2
=



−ν 0 0 1 0 0

ν j22 0 0 0 0

0 0 −γg 0 0 1

0 0 0 j44 κc 0

0 0 0 j54 j55 0

0 0 0 j64 j65 γm − cT


, (4.14)

where,

j22 = ϕ mmax

(
γm

cT
− 1
)
− γa, (4.15)

j44 =
mmax

γg

(
γm

cT
− 1
)
− 1, (4.16)

j54 = −α1mmax

(
γm

cT
− 1
)

, (4.17)

j64 = mmax

(
γm

cT
− 1
) (

α1 −
γm

cT

)
, (4.18)

j55 =
α2 mmax

γg

(
γm

cT
− 1
)
− γm, (4.19)

j65 = 2γm − cT − α2 mmax

γg

(
γm

cT
− 1
)

. (4.20)

Evaluating the eigenvalues of the Jacobian matrix (4.14), we obtain the eigenvalues λ

as follows:

λ1 = −γg, λ2 = −ν, λ3 = γm − cT, λ4 = ϕ mmax

(
γm

cT
− 1
)
− γa,

λ5 =
(j44 + j55) +

√
(j44 − j55)

2 + 4 κc j54

2
, λ6 =

(j44 + j55)−
√
(j44 − j55)

2 + 4 κc j54

2
.

(4.21)
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We observe that when n = a = 0, the healthy steady states of this model are otherwise

identical to the model in Chapter 3; that is, there is one healthy steady state with all

variables equal to zero, which is stable provided γm > cT, and a second healthy steady

state as given in (4.13), which exists and is stable for parameter choices that satisfy the

following condition:

α2 m2
max

γg2

(
γm

cT
− 1
)2

+ mmax

[
α1 κc −

γm + α2

γg

] (
γm

cT
− 1
)
+ γm > 0. (4.22)

We note that, in addition to the healthy steady states of this model, and for positive

values of κa and βa, there also exist two steady states in which the macrophage pop-

ulations reach zero and chronic inflammation is sustained by neutrophils alone, given

by

ma = mp = g = 0, a = â, c = γa â, n =
γa â
ν

, (4.23)

where,

â2 − κa â + β2
a = 0. (4.24)

Solving (4.24) via the quadratic formula provides

â =
κa ±

√
κ2

a − 4β2
a

2
. (4.25)

Real solutions to (4.25) exist when κ2
a > 4β2

a; i.e. when neutrophil feedbacks are strong

in comparison to those of macrophages, in which case the model is much less sensitive

to macrophage dynamics. For parameter values of interest here, numerical stability

analysis reveals that the two roots of (4.25) are always saddle points and are hence

unlikely to be attained biologically. We therefore largely omit these steady states from

our discussions below (although noting their existence can be helpful in explaining

where more physiologically relevant branches of our bifurcation diagrams terminate

in the bifurcation analysis that follows). Furthermore, numerical simulations reveal

that this model has scope to support multiple stable chronic steady states, for some

parameters.

4.3 Numerical Simulations

Our primary focus throughout the analysis is to determine whether the model con-

verges to steady states, which represent the resolution of inflammatory damage, as

shown in Figure 4.2 or chronic inflammation, as illustrated in Figure 4.3.

In this model, we observe that the healthy steady states are identical to those discussed

in Chapter 3. The model attains a zero steady state, corresponding to the resolution
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Figure 4.2: Numerical simulations of (4.3) illustrate that the model exhibits two dis-

tinct steady state solutions, both of which correspond to healthy outcomes. In (a), we

initialise the model with mp(0) = 0.7, c(0) = 0.04 and ma(0) = g(0) = n(0) = a(0) =

0 to demonstrate a healthy response for the parameters of Table 4.2, where all vari-

ables converge to zero. In (b), we maintain the same initial conditions as in (a) and set

the parameter cT to 0.055, while keeping the other parameters as listed in Table 4.2,

which allows the model to attain a second healthy steady state as given in (4.13).

of inflammation, in which all immune cells and chemical mediators’ levels reach zero

over time, as shown in Figure 4.2(a). Additionally, the model achieves a second healthy

steady state where the pro-inflammatory components become zero (mp = c = n = a =

0), while the anti-inflammatory components reach positive levels (ma > 0 and g > 0),
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Figure 4.3: Convergence to two distinct chronic steady states for γm = 0.025 and all

other parameters as in Table 4.2, for two differing choices of initial conditions. In (a),

the model achieves a chronic configuration with low neutrophil numbers and compar-

atively high numbers of anti-inflammatory macrophages/mediators. In (b), very large

numbers of pro-inflammatory macrophages result in more pro-inflammatory media-

tors, more neutrophils and less phagocytosis of apoptotic neutrophils, resulting in a

more severe chronic outcome.

as depicted in Figure 4.2(b).

In general, we observe two possible chronic outcomes (as shown for γm = 0.025 in

Figure 4.3), where all immune cells and mediators’ levels settle to positive values, al-

lowing inflammation to persist and cause further tissue damage. Firstly, the model may

attain a configuration in which mp is low and ma is sufficiently large that phagocyto-

sis of apoptotic neutrophils by anti-inflammatory macrophages can mitigate against

the pro-inflammatory feedback from neutrophils reasonably successfully, resulting in

sustained low-level inflammation (as shown in Figure 4.3(a)). These solutions are rem-

iniscent of the chronic solutions of Chapter 3. Alternatively, the model may attain a

configuration in which mp is very large in comparison to ma, which results in not only

more pro-inflammatory mediator production, but also greatly reduced phagocytosis of

apoptotic neutrophils. The model can therefore attain a steady state with much greater

levels of pro-inflammatory mediators and both active and apoptotic neutrophils (as

shown in Figure 4.3(b)). These solutions represent new, highly inflamed configurations

sustained by the presence of neutrophils.
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4.4 Bifurcation analysis

In Figure 4.4, we illustrate a bifurcation diagram for (4.3), for the parameter values of

Table 4.2. We observe that low-level chronic outcomes such as that of Figure 4.3(a) ex-

hibit a bifurcation structure that heavily resembles the chronic solutions of the model

covered in Chapter 3 (see Figure 3.3); that is, for varying γm, these chronic solutions are

bounded above by a saddle-node bifurcation and bounded below by the lowest root of

(4.22), which provides a transcritical bifurcation whose location is independent of all

neutrophil-related parameters. In addition to these chronic solutions, we have a branch

of additional severely inflamed configurations, such as that of Figure 4.3(b), in which

neutrophil numbers are extremely high. This branch, shown in magenta in Figure 4.4, is

once again bounded above by a saddle-node bifurcation in γm, and provides stable con-

figurations for all γm values below this saddle-node coordinate. In order to distinguish

these chronic configurations below, we introduce the nomenclature “Chrn” to denote

the severely inflamed chronic configuration sustained by neutrophils, and continue to

use “Chr” to label chronic configurations analogous to those of the previous model pre-

sented in Chapter 3. The coexistence of these chronic states (together with the healthy

Res0 and Res+ configurations described above) provide a more complex array of clas-

sifications of parameter space than was observed in the model introduced in Chapter 3,

including regions of multistablity (with more than two stable objects present), bistable

regions involving the Chrn solution, and regions in which low-level oscillations and

high-level chronic inflammation co-exist, as illustrated in Figure 4.4. (We note that three

transcritical bifurcations exist at or close to γm = cT, where the Res0 and Res+ configu-

rations change stability. While we have omitted labellings of these narrow intermediate

regions of Figure 4.4 for clarity, these can be inferred directly from Figure 3.3, with the

Chrn state superimposed).

In Figure 4.5, we track the coordinate of the saddle node bifurcation that lies on the

Chrn branch (shown in magenta in Figure 4.4) as a function of α1 and α2. This allows us

to divide parameter space into two regions: one in which highly-inflamed Chrn solu-

tions exist (shown in red), and one in which the model qualitatively recovers the model

of Chapter 3 (shown in green). We note that for sufficiently small α1 or sufficiently large

α2 the Chrn solution is eliminated entirely (as we move parameters into the green re-

gions of Figures 4.5), and the remaining saddle-node curves (for solutions analagous to

the model covered in Chapter 3) can collide with the transcritical bifurcations of (4.22),

eliminating the potential for chronic outcomes entirely.

It is interesting mathematically to note that the macrophage and mediator dynamics of

this model recover the previous model discussed in Chapter 3 in the limit χ∗
n −→ 0, in
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Figure 4.4: Bifurcation diagrams for (4.3), for the parameter values of Table 4.2. The

magenta curve corresponds to the chronic steady state of Figure 4.3(b), in which the

system attains a severely inflamed configuration with very high neutrophil numbers.

(We label this chronic state “Chrn” in order to distinguish it from the chronic states of

that of the model presented in Chapter 3.) The remaining curves correspond qualita-

tively to the branches of Figure 3.3 for the model covered in Chapter 3.

which neutrophil recruitment is eliminated entirely. (We note that this is not a biolog-

ically relevant limit to consider, as a typical inflammatory environment involves sig-

nificantly more rapid recruitment of neutrophils than macrophages in the short term

(Butterfield et al., 2006; Kolaczkowska & Kubes, 2013; Rosales, 2018). Nonetheless, this

observation provides a useful tool in our mathematical analysis). In dimensionless

terms, the limit χ∗
n −→ 0 corresponds to taking βa −→ ∞ (due to (4.4)), which sup-

presses the pro-inflammatory feedback from apoptotic neutrophils in (4.3d).

Figure 4.6(a) illustrates how the locations of the bifurcations shown in Figure 4.4 de-

pend upon βa. In particular, we observe that in the limit βa −→ ∞, the two saddle-

node bifurcations of Figure 4.4 approach one-another and converge upon the saddle-

node coordinate of Figure 3.3 for the model covered in Chapter 3. In this limit, the

macrophage and mediator dynamics decouple from the neutrophil equations in (4.3),

and equations (4.3c–4.3f) attain identical steady states to the model in Chapter 3. Since

the dimensionless parameter βa does not explicitly govern neutrophil recruitment in

(4.3) (instead parameterising the strength of the neutrophil feedback) low levels of pro-

inflammatory mediators (c) do still trigger neutrophil recruitment, even in the limit

βa → ∞, but these neutrophils do not effect the macrophage/mediator dynamics. For
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Figure 4.5: Bifurcation diagrams for (4.3), for the parameter values of Table 4.2. In

(a,b), we track the coordinate of the saddle-node bifurcation on the Chrn branch

(shown in magenta in Figure 4.4) as a function of the macrophage phenotype switch-

ing parameters α1 and α2, dividing parameter space into two regions: one in which

highly-inflamed Chrn exists (shown in red), and one in which the model qualitatively

recovers the model of Chapter 3, which is associated with low-level inflammation

(shown in green).

this reason, the region of monostability to the Res+ state that model in Chapter 3 ex-

hibits for γm small (see Figure 3.3) is replaced by a region of bistability involving both

the Res+ state and the Chrn state in this model. Due to the persistent presence of neu-

trophils, the Chrn state never interacts with the Res+ state (for which n = 0), and hence

is not destabilised for small γm.

In Figure 4.6(b), we show an enlargement of Figure 4.6(a) for βa small — a biologically

relevant limit to consider, since neutrophil pro-inflammatory feedbacks are generally

considered to be much greater than those of macrophages (Tecchio et al., 2014). The fig-

ure illustrates that the low-level solutions analogous to the model in Chapter 3 include

chronic outcomes for values of γm lying between the transcritical bifurcation corre-

sponding to the lowest root of (4.22) (blue curve) and a saddle node bifurcation (solid

red curve), with this region also including oscillatory solutions bounded by two Hopf

bifurcations. As βa decreases, the saddle node moves to the right in the figure, result-

ing in low-level chronic outcomes for larger γm, and the upper Hopf bifurcation moves

likewise, resulting in a growing window of oscillatory solutions, until the Hopf and

saddle-node ultimately collide at a Bogdanov–Takens bifurcation. Additionally, the

severely-inflamed Chrn solution is stable to the left of its corresponding saddle-node

bifurcation, shown as a dashed red curve in Figure 4.6(b).

In Figures 4.6(c) and 4.6(d), we illustrate how these curves evolve as we manipulate α1

and α2. In these figures, we plot only the transcritical bifurcation corresponding to the

smallest root of (4.22) (dashed lines) and the saddle node bifurcation (solid lines) that
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Figure 4.6: Two-parameter bifurcation diagrams illustrating solutions of (4.3) for the

parameters given in Table 4.2. In (a), we track the positions of relevant bifurcations as

a function of βa. Red, black and blue curves represent saddle-node, Hopf and tran-

scritical bifurcations respectively; the dashed red curve represents the saddle-node

bifurcation on the Chrn branch shown in magenta in Figure 4.4. In the limit βa −→ ∞,

macrophage dynamics become independent of neutrophils and the Chrn state col-

lapses onto the chronic state of the model in Chapter 3. In (b) we show an enlarged

version of Figure 4.6(b) for βa ≤ 1. The severely inflamed Chrn solution is stable to

the left of the dashed red curve; the remaining solutions correspond approximately

to the model presented in Chapter 3. In (c,d) we illustrate how these curves shift

as we vary the macrophage phenotype switching parameters α1 and α2 respectively.

Here we plot only the saddle-node curve corresponding to the Chrn state (dotted), the

saddle-node curve that bounds the low-level chronic region above (solid lines) and the

transcritical bifurcation that bounds this region below via (4.22) (dashed lines), omit-

ting intermediate bifurcations for clarity. Reducing α1 or increasing α2 moves these

curves in the direction of the arrows shown, reducing the scope for chronic solutions.

In (c), illustrated curves are for α1 = 0.75 (red), α1 = 1 (blue), α1 = 1.25 (green) and

α1 = 1.5 (magenta). In (d), illustrated curves are for α2 = 0.005 (red), α2 = 0.01

(blue), α2 = 0.015 (green), α2 = 0.02 (magenta) and α2 = 0.025 (cyan). “B” indi-

cates that the model is bistable with both healthy and chronic outcomes permissible,

while “M” denotes monostability; the corresponding steady state solutions being that

in which inflammation resolves and all variables reach zero (labelled “Res0” or “0”),

that in which inflammation resolves but anti-inflammatory components are positive

(labelled “+”; see (4.13)), or chronic states (labelled “Chr” or “Chrn”). “Osc” denotes

oscillatory (chronic) solutions. “TB” indicates a Bogdanov–Takens bifurcation.
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together bound regions of chronic outcomes analagous to model presented in Chapter 3

(including oscillations), along with the saddle-node corresponding to the Chrn branch

(dotted lines). We observe that either decreasing α1 or increasing α2 has the effect of

shifting the transcritical bifurcation of (4.22) slightly to the right in the figures, while the

saddle-node curves both move to the left; that is, the window of bistability is narrowed

in both of these scenarios, with the potential for chronic outcomes being reduced as we

manipulate phenotypic switching in a manner that favours greater numbers of anti-

inflammatory macrophages at the expense of fewer pro-inflammatory macrophages.

Figure 4.7 more closely examines the relationship between the additional neutrophil-

driven dynamics of this model and the rates of macrophage phenotype switching, α1

and α2. In Figure 4.7, we take γm = 0.025 and βa = 0.5 as our baseline values, as this

combination of parameters has been identified to facilitate chronic outcomes in Fig-

ure 4.4, and seek to elucidate the local sensitivity to neutrophil-related parameters in

tandem with macrophage phenotype switching. Since we have observed above that the

influence of the two macrophage phenotype switching parameters (α1 and α2) are es-

sentially the converse of one another, we focus here upon α1 in isolation and infer sim-

ilar (converse) conclusions upon α2. For varying α1, we examine how the locations of

bifurcation points vary as we manipulate βa (which captures the strength of neutrophil

feedbacks relative to those of macrophages), ϕ (the rate at which anti-inflammatory

macrophages remove apoptotic neutrophils), and ν (the rate of neutrophil apoptosis).

We note that ϕ and ν have been identified as key parameters that effect the switch

from healthy to chronic outcomes in previous works (Dunster et al., 2014; Bayani et al.,

2020a).

In Figure 4.7(a), we show a bifurcation diagram illustrating the role of α1. Here, since

γm > cT, the healthy steady state at zero (Res0) is stable and the Res+ state of (4.13)

doesn’t exist. Additionally, for sufficiently large values of α1, chronic steady states

corresponding to low-level inflammation (cf. model in Chapter 3) and severe inflam-

mation (akin to Figure 4.3(b)) exist, both of which are bounded below by a saddle-node

bifurcation. While the severely-inflamed Chrn solution is stable for all α1 values be-

yond the relevant saddle node, the branch of low-level inflammatory steady states can

be destabilised via a Hopf bifurcation, giving rise to oscillatory solutions that grow in

amplitude until they collide with a nearby saddle and are eliminated via a homoclinic

bifurcation (HC). Figure 4.7(b) illustrates how these chronic solutions depend upon βa.

In particular, we note that a reduction in βa results in the Hopf bifurcation (and cor-

responding homoclinic bifurcation; not plotted) converging toward the neighbouring

saddle node on the low-inflammation branch until these points collide at a Bogdanov–
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Figure 4.7: Bifurcation diagrams illustrating solutions of (4.3) for γm = 0.025 and all

remaining parameters as given in Table 4.2. In (a), the magenta curve corresponds

to the chronic steady state of Figure 4.3(b), in which the system attains a severely in-

flamed configuration with very high neutrophil numbers, labelled as “Chrn”. The re-

maining curves correspond qualitatively to the branches of Figure 3.4(c) for the model

covered in Chapter 3, where the chronic steady states (solid black curve) represent

low-level inflammation, as shown in Figure 4.3(a), and labelled as “Chr”. In (b-d), we

track the positions of relevant bifurcations depicted in (a) as a function of α1. Red,

black and blue curves represent saddle-node, Hopf and transcritical bifurcations re-

spectively; the dashed red curve represents the saddle-node bifurcation on the Chrn

branch shown in magenta in (a); the dashed black curve shown in (b) which is given

(4.23,4.25) represents a saddle point. “B” indicates that the model is bistable with

both healthy and chronic outcomes permissible, while “M” denotes monostability;

the corresponding steady state solution being that in which inflammation resolves

and all variables reach zero (labelled “Res0” or “0”). “Chrn” denotes the severely-

inflamed chronic state sustained by high neutrophil numbers. “Osc” denotes oscilla-

tory (chronic) solutions. “HC” indicates a homoclinic bifurcation. “TB” indicates a

Bogdanov–Takens bifurcation.

Takens point at βa = βTB
a ≃ 0.28. As we continue to decrease βa, this saddle node

then collides (at βa ≃ 0.1866) with one of the saddle points given by (4.23,4.25) and is

eliminated, rendering the severely-inflamed Chrn state the sole chronic configuration.
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In Figures 4.7(c) and 4.7(d), we examine the model’s sensitivity to the rates of neu-

trophil phagocytosis by macrophages (ϕ) and apoptosis (ν). Interestingly, we observe

that the model is much less sensitive to these parameters than it is to parameters re-

lated to phenotype switching. While previous models that included only a single

macrophage population exhibited strong dependence upon these parameters, our re-

sults here suggest that actually manipulation of these parameters could instead be

thought of as a convenient proxy for capturing phenotypic switching within a ho-

mogenised model that omits a more detailed description of disparate macrophage pop-

ulations.

4.5 Discussion

In this model, we supplemented the model presented in Chapter 3 with an additional

pro-inflammatory feedback loop via a population of neutrophils, recruited in the pres-

ence of pro-inflammatory mediators. As neutrophils age, they ultimately become apop-

totic and, if not successfully phagocytosed by macrophages before they lyse, provide a

strong source of further pro-inflammatory mediators on lysis. While phagocytic ability

is a key attribute of macrophages in general, we primarily attributed this role to our

anti-inflammatory phenotype in this model since phagocytic activity is known to be

primarily linked to tissue-resident macrophage populations (Schulz et al., 2019; Jenkins

& Allen, 2021).

Our analysis revealed that the additional feedback loop in this model resulted in a

diverse range of potential steady states that includes the two resolved outcomes of the

model discussed in Chapter 3, chronic outcomes similar to those in the previous model

in Chapter 3 in which inflammation is sustained but at a reasonably low level, a new

chronic state in which inflammation is severe and sustained by very high numbers of

both neutrophils and pro-inflammatory macrophages, and also various unstable states

including those of (4.23,4.25). Furthermore, the model continues to exhibit oscillatory

solutions as in the model of Chapter 3. We have shown (in Figure 4.4) that the dynamics

of this model are essentially those of the model of Chapter 3 but with the new severely-

inflamed chronic state overlayed, in a manner that is strongly dependent upon the

model’s parameters.

In the limit βa −→ ∞ (in which the influence of neutrophils is vanishingly small com-

pared to that of macrophages), this model qualitatively reduces to the model covered

in Chapter 3. For βa ∼ O(1), the additional severely-inflamed chronic state can ex-

ist depending on (in particular) the rates of macrophage phenotype switching. For α1
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large or α2 small, for which we promote the pro-inflammatory macrophage population,

the severely-inflamed state exists and the model has scope to be multistable with the

potential for healthy outcomes, low-level inflammation or severe inflammation for the

same parameters. In the opposing limit, the model recovers the model of Chapter 3.

While previous models (Kumar et al., 2004; Lelekov-Boissard et al., 2009; Herald, 2010;

Penner et al., 2012; Dunster et al., 2014; Bianca et al., 2015; Bangsgaard et al., 2017; Bayani

et al., 2020a,b) that have only included a single homogenised macrophage population

have highlighted the rates of neutrophil apoptosis (ν) and phagocytosis of apoptotic

neutrophils (ϕ) as key in determining the switch between chronic outcomes and resolu-

tion (and therefore points of potential focus for therapeutic intervention), our analysis

of this model reveals that the model has only weak sensitivity to these parameters in

comparison to phenotype switching via α1 and α2. This further highlights the fact that

explicitly incorporating distinct macrophage phenotypes in future models of inflam-

mation is key in fully describing resultant dynamics, and also indicates that manipula-

tion of macrophage polarisation states could itself be a viable therapeutic target.

We note that the question of how to categorise macrophage phenotypes is a contentious

one, especially given that the diversity and complexity of documented macrophage po-

larisation states is expanding (Murray et al., 2014). We have here chosen to focus on two

opposing polarisation states, the first anti-inflammatory (which could be equated with

resident macrophages that exist in a wide range of tissues, or the traditionally labelled

M2 phenotype), and the second pro-inflammatory (which could be equated with the

M1 phenotype). This is doubtlessly an over-simplification in itself; however, this ap-

proach enabled us to expose how model outcomes (such as the existence of a second

healthy steady state in which inflammation is suppressed by a continual presence of

anti-inflammatory macrophages) and dynamics (including oscillations) depend upon

our models’ inclusion of distinct macrophage phenotypes. We believe that models that

exhibit this additional healthy outcome, which is dependent on a resident macrophage

population, are physiologically more realistic than those with only a trivial healthy

state. An alternative approach to modelling macrophage phenotypes is to consider

these as lying on a continuous spectrum of pro/anti-inflammatory activity, perhaps

utilising a model based on partial differential equations. This could potentially allow

the capture of more subtle macrophage phenotypes that no doubt play a role in mul-

tiple disease states (Tabas & Bornfeldt, 2016; Chauhan et al., 2016; Hesketh et al., 2017;

Atri et al., 2018). We explore this idea further in the following chapter.

89



CHAPTER 5

Modelling The Continuum of

Macrophage Phenotypes

Macrophages are a key component of the inflammatory response; they protect the

body by eliminating harmful foreign particles and repairing damaged tissues. Once

macrophages acquire a functional phenotype, they can continue to change their phe-

notypes in response to novel environmental influences, and this process is known as

polarization (Murray, 2017). Numerous factors can be involved in macrophage polar-

ization to produce a diverse and extensive range of functional phenotypes (Martinez

et al., 2008; Murray et al., 2014; Juhas et al., 2015). Therefore, there is no definitive clas-

sification stating the exact number of macrophage phenotypes, and their classification

remains the subject of ongoing research and debate. In chapters 3 and 4, we classified

macrophages into two distinct phenotypes based on whether their functional activity

is pro- or anti-inflammatory. However, this binary classification is an oversimplified

description and cannot represent the majority of macrophage phenotypes due to the

heterogeneity and plasticity of macrophages (Martinez & Gordon, 2014; Murray et al.,

2014; Martin & García, 2021).

Here, we describe a more advanced model in which macrophage phenotypes are con-

sidered to lie on a continuous spectrum of inflammatory activity, with a range of

intermediate phenotypes lying between the fully pro-inflammatory and fully anti-

inflammatory classifications of chapters 3 and 4. As a result, our corresponding model

takes the form of a system of partial differential equations. As in previous chapters, we

analyse the model via numerical simulation in Matlab and bifurcation analysis in XP-

PAUT, the latter being achieved via a semi-discretisation of the PDE model to construct

a corresponding ODE approximation that is tractable for bifurcation analysis.

90



CHAPTER 5: MODELLING THE CONTINUUM OF MACROPHAGE PHENOTYPES

5.1 Model derivation

We model macrophages on a continuous spectrum of phenotypes, classified accord-

ing to their levels of pro/anti-inflammatory activity. We denote the number of

macrophages by m∗ (t∗, p), where t∗ represents time and stars are used to distinguish

dimensional variables from their dimensionless counterparts below. The independent

variable p ∈ [−1, 1] here parameterises macrophage phenotypes, with p = 1 corre-

sponding to a fully pro-inflammatory phenotype and p = −1 corresponding to a fully

anti-inflammatory phenotype. Additionally, we introduce variables c∗ (t∗) and g∗ (t∗)

to represent concentrations of generic pro- and anti-inflammatory mediators present

in the tissue of interest; thus, c∗ and g∗ together describe the inflammatory landscape

upon which macrophages reside. We expect macrophages to switch phenotype dy-

namically in response to changes in the inflammatory context, with high levels of

inflammation (c∗ high, g∗ low) driving a shift toward pro-inflammatory macrophage

phenotypes, and low levels of inflammation (c∗ low, g∗ high) promoting a shift to the

anti-inflammatory phenotypes typically found in resident macrophage populations in

healthy tissues (Davies et al., 2013).

We model phenotype switching via two convective fluxes, q+∗ and q−∗, which shift

macrophages toward pro-inflammatory and anti-inflammatory phenotypes respectively.

We expect pro-inflammatory mediators, c∗, to drive macrophages to become more pro-

inflammatory, and expect the strength of the corresponding flux to be largest for fully

anti-inflammatory macrophages (with p = −1), with macrophages at the fully pro-

inflammatory end of the phenotype spectrum (p = 1) not to be affected at all. Thus, we

write

q+∗ = α∗
1c∗ (1 − p)m∗. (5.1)

Similarly, anti-inflammatory mediators, g∗, drive phenotypic switching in the opposing

direction, with the greatest effect on macrophages when p = 1. We write

q−∗ = −α∗
2 g∗ (1 + p)m∗. (5.2)

Here, the parameters α∗
1 and α∗

2 describe the rates of phenotypic switching in response

to environmental cues from mediators. We also note that these choices of flux terms

constrain macrophages to the domain p ∈ [−1, 1], since q+∗ is zero when p = 1 and

q−∗ is zero when p = −1.

Following the model in Chapter 2, we assume that macrophages proliferate logistically

up to some maximum population size m∗
max and decay at constant rate γ∗

m, and that

the rate of proliferation is enhanced in the presence of pro-inflammatory mediators.
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Thus, we have the following partial differential equation that governs the macrophage

population:

∂m∗

∂t∗
+

∂

∂p
(α∗

1c∗ (1 − p)m∗ − α∗
2 g∗ (1 + p)m∗) = k∗ (c∗ + c∗T) R(p)m∗

T

(
1 − m∗

T
m∗

max

)
− γ∗

mm∗, (5.3)

in which k∗c∗T is the baseline rate of macrophage proliferation in the absence of pro-

inflammatory mediators, R(p) is a function specifying which phenotypic configuration

newly acquired macrophages reside in (chosen below), and m∗
T(t

∗) is the total number

of macrophages present in the system at a given time, given by:

m∗
T (t∗) =

∫ 1

−1
m∗ (t∗, p) dp. (5.4)

To prescribe mediator dynamics, we take the interactions given in the model of Chap-

ter 2 as a guide, noting that macrophages can produce both pro- and anti-inflammatory

mediators (in a manner that depends on their phenotype). Our mediator dynamics are

governed by the following ordinary differential equations:

dg∗

dt∗
= κ∗g

∫ 1

−1
f1(p)m∗dp − γ∗

gg∗, (5.5)

dc∗

dt∗
= κ∗c

∫ 1

−1
f2(p)m∗dp − δ∗c∗g∗ − γ∗

c c∗, (5.6)

in which κ∗g and κ∗c parameterise rates of mediator production, γ∗
g and γ∗

c parame-

terise rates of mediator decay, δ∗ represents a mitigating effect of anti-inflammatory

mediators against pro-inflammatory mediators, and the functions f1(p) and f2(p) de-

scribe how the rates of production of each group of mediators varies as a function of

macrophage phenotype. For simplicity, we assume linear dependences for the latter,

i.e.

f1(p) =
1 − p

2
, f2(p) =

1 + p
2

; (5.7)

that is, macrophages that are in a fully pro-inflammatory configuration (p = 1) produce

no anti-inflammatory mediators at all and, likewise, macrophages that are fully anti-

inflammatory (p = −1) produce no pro-inflammatory mediators.

We solve the system (5.3–5.7) subject to initial conditions representing an initially pos-

itive population of macrophages and some appropriate mediator concentrations. We

therefore prescribe

m = m∗
0(p), c∗ = c∗0 , g∗ = g∗0 at t∗ = 0. (5.8)

The interactions featured in this model are illustrated in Figure 5.1. Macrophage phe-

notype is a dynamic process regulated by the microenvironment. Due to macrophages’
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Figure 5.1: Schematic diagram representing (5.3–5.7) and illustrating the interactions

between a single population of macrophages (m∗(t∗, p)), which involves a continu-

ous spectrum of phenotypes, ranging from a fully anti-inflammatory to a fully pro-

inflammatory phenotype, with generic groups of pro- and anti-inflammatory medi-

ators (c∗(t∗) and g∗(t∗), respectively). Arrows indicate positive feedback or supply

terms, while lines terminated with bars indicate negative feedback or loss terms.

remarkable adaptability, they can alter their phenotype to a continuous spectrum of

phenotypes in response to environmental cues. As a result, the same macrophage cells

have the ability to perform various functions in response to inducers, including cy-

tokine production, phagocytosis, and tissue repair and remodelling. We assume that

both fully anti- and pro-inflammatory macrophages represent the two extremes of the

phenotypic continuum while omitting the role of neutrophils introduced in Chapter 4

to simplify the model.

5.1.1 Nondimensionalisation

To simplify our analysis below, we nondimensionalise (5.3–5.8) by introducing the fol-

lowing scalings:

t∗ =
1

γ∗
c

t, g∗ =
γ∗

c
δ∗

g, c∗ =
γ∗

c
k∗

c, m∗ =
γ∗2

c
δ∗κ∗g

m, (5.9)

which yields the following system of dimensionless equations:

∂m
∂t

+
∂

∂p
(α1c (1 − p)m − α2g (1 + p)m) = (c + cT) R(p)mT

(
1 − mT

mmax

)
− γmm,

(5.10)
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dg
dt

=
∫ 1

−1
f1(p)m dp − γgg, (5.11)

dc
dt

= κc

∫ 1

−1
f2(p)m dp − cg − c, (5.12)

with

mT(t) =
∫ 1

−1
m(t, p)dp. (5.13)

In (5.10–5.12) above, we have introduced the following dimensionless parameter group-

ings:

γg =
γ∗

g

γ∗
c

, γm =
γ∗

m
γ∗

c
, κc =

κ∗c k∗

κ∗g δ∗
, cT =

k∗c∗T
γ∗

c
(5.14)

α1 =
α∗

1
k∗

, α2 =
α∗

2
δ∗

, mmax =
δ∗κ∗gm∗

max

γ∗2
c

. (5.15)

We solve (5.10–5.13) subject to the initial conditions:

m = m0(p), c = c0, g = g0 at t = 0. (5.16)

5.1.2 Parameters

We note that theoretical studies of inflammation, in general, suffer from difficulties in

accurately inferring corresponding model parameters due to limitations in available

experimental data. This is due to a variety of factors, including a lack of suitable non-

invasive experimental protocols, the fact that parameter values would be likely to have

significant variability between differing inflammatory conditions and affected tissues,

and the fact that many patients with inflammatory conditions are late to report to med-

ical professionals, limiting the extent to which the onset of the acute inflammatory

phase can be interrogated. Furthermore, we note that inferring rate parameters, in par-

ticular, would require temporal data that is difficult to obtain in vivo. In light of these

limitations, it is more practical to estimate the orders of magnitude of corresponding

dimensionless parameter groupings based on our knowledge of which mechanisms

dominate. Our approach is to construct a baseline set of parameter values (given in Ta-

ble 5.1) which reflects available knowledge around dominant mechanisms, and to then

analyse the impact of variations in these parameters via numerical simulation and bi-

furcation analysis. Where possible, we configure our baseline parameter choices to be

consistent with the parameters listed in Table 2.2 in order to facilitate comparison of

the PDE model discussed here with related ODE model discussed in Chapter 2.

The decay rates of individual mediators are reasonably well documented, but can vary

according to the medical context in question. The half-lives of the pro-inflammatory
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cytokines IL–1β, IL–8 and TNFα have been indicated to lie in the range 18.2 − 24 min,

while the anti-inflammatory cytokine IL–1RA decays more slowly with a half-life in the

range 4 − 6 h (Liu et al., 2021). In our model, this could suggest that γg = γ∗
g/γ∗

c ≪ 1.

However, some cytokines (e.g. IL–6) can have both pro- and anti-inflammatory effects

(Liu et al., 2021), suggesting that γg ∼ 1 in some contexts. Here, following the model of

Chapter 2, we take γg = 0.2 as our default value in Table 5.1.

Identifying accurate values for the parameters that govern macrophage population dy-

namics is difficult in general, since these depend upon the scale of the affected tis-

sue. However, the rate of macrophage loss (γ∗
m) has been documented (in the con-

text of wound healing) to lie in the range 0.2 – 1.41 per day (Waugh & Sherratt, 2007;

Cooper et al., 2015), indicating that macrophage loss occurs at a slower rate than decay

of pro-inflammatory mediators; we hence set γm = γ∗
m/γ∗

c < 1 in Table 5.1. Accu-

rately prescribing the rate of proliferation/recruitment of the macrophage populations

in isolation is hindered by the fact that macrophage proliferation rates are known to

depend on background levels of inflammatory mediators (Jenkins & Allen, 2021). In

(5.10), we assume that macrophage proliferation rates take a linear dependence upon

pro-inflammatory mediator concentrations (i.e. of the form c + cT) and, under the ex-

pectation that proliferation rates should appreciably increase in the presence of pro-

inflammatory mediators, we expect cT to be small in comparison to the scale over

which c varies. We therefore set cT = 0.01 in Table 5.1. Likewise, since the maximal

macrophage population size will depend heavily on the size of the tissue of interest, we

follow the model of Chapter 2 in choosing mmax = 25 as a baseline value in Table 5.1.

We expect macrophage phenotype switching toward the pro-inflammatory end of the

spectrum (α1) to dominate the converse direction (α2) as many inflammatory conditions

are associated with increased ratios of pro-inflammatory macrophages (Zhu et al., 2014;

Lissner et al., 2015); thus we expect α1 ≫ α2.

The remaining mediator production rate parameter, κc, is not readily available from

existing literature. Following the model of Chapter 2, we choose κc = 0.35 as our

baseline value; however, we note that our definition of κc here varies slightly from

that of the model of Chapter 2, since its interpretation here is inherently linked to the

manner in which the mediator production functions f2(p) and, indirectly, f1(p) are

prescribed. Here, we choose f1(p) and f2(p) to be O(1) functions, and vary the strength

of the production of mediators via κc. Variations of all parameter values around these

baseline values are examined throughout our analyses below.
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Parameter Expression Meaning Baseline value

κc k∗κ∗c /δ∗κ∗g
Rate of production of pro-inflammatory me-

diators
0.35

γm γ∗
m/γ∗

c Decay rate of macrophages 0.05

γg γ∗
g/γ∗

c Decay of anti-inflammatory mediators 0.2

cT k∗c∗T/γ∗
c

Rate of macrophage proliferation in the ab-

sence of pro-inflammatory mediators (c)
0.01

mmax δ∗κ∗gm∗
max/γ∗2

c Maximum macrophage population size 25

α1 α∗1 β∗
1/k∗

Macrophage phenotype switching (anti- to

pro-inflammatory phenotype)
1

α2 α∗2 β∗
2/δ∗

Macrophage phenotype switching (pro- to

anti-inflammatory phenotype)
0.01

Table 5.1: Summary of the dimensionless parameters appearing in the model. Param-

eter values are estimated as described in Section 5.1.2.

5.2 Numerical scheme

We solve the system (5.10–5.13) numerically via a method of lines approach, by dis-

cretising in the phenotype variable, p, to obtain a system of ODEs which we solve via

in-built ODE solvers in Matlab and XPPAUT.

We discretise in p by introducing N + 1 equally-spaced meshpoints pj given by

pj = −1 + j dp for j = 0, . . . , N, (5.17)

where dp = 2/N is the corresponding meshpoint spacing. Furthermore, we write

mj(t) ≃ m(t, pj) to represent the approximation of the macrophage variable at a given

phenotype meshpoint.

We approximate the flux terms in (5.10) via standard, first-order finite difference ap-

proximations. To ensure numerical stability, we take an upwinding approach in which

we choose forward or backward finite difference approximations depending on the

direction of the flux. Since the term containing α1c represents flux in the positive p–

direction, we employ a backward difference approximation for the derivative evalu-

ated on meshpoint j, writing

∂

∂p
((1 − p)m)

∣∣∣∣
p=pj

=
1

dp
((

1 − pj
)

mj −
(
1 − pj−1

)
mj−1

)
+O (dp) , (5.18)

for all j = 1, . . . , N. Conversely, since the term containing α2g represents flux in the
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negative p–direction, we employ the following forward difference approximation:

∂

∂p
((1 + p)m)

∣∣∣∣
p=pj

=
1

dp
((

1 + pj+1
)

mj+1 −
(
1 + pj

)
mj
)
+O (dp) , (5.19)

for all j = 0, . . . , N − 1. On the boundaries, we adapt (5.18) and (5.19) to reflect that

m = 0 for all points outside of the domain p ∈ [−1, 1], writing

∂

∂p
((1 − p)m)

∣∣∣∣
p=p0

=
1

dp
(1 − p0)m0 +O (dp) , (5.20)

∂

∂p
((1 + p)m)

∣∣∣∣
p=pN

= − 1
dp

(1 + pN)mN +O (dp) . (5.21)

We evaluate the integrals in (5.11) and (5.12) via trapezium rule, writing∫ 1

−1
fi(p)m dp ≃ dp

2

(
fi (p0)m0 + fi (pN)mN + 2

N−1

∑
j=1

fi
(

pj
)

mj

)
≡ Fi(t), (5.22)

for i = 1, 2. Similarly, we evaluate mT(t) according to

mT(t) ≃
dp
2

(
m0 + mN + 2

N−1

∑
j=1

mj

)
. (5.23)

We note that the approximations arising from the trapezium rule in (5.22) and (5.23)

are, in isolation, second-order; however, the accuracy of our numerical method overall

is limited to first-order due to the errors associated with (5.18–5.21). We restrict to first-

order finite difference schemes in (5.18–5.21) for simplicity here, and confirm sufficient

numerical accuracy by examining results for differing choices of N when constructing

and testing corresponding numerical codes.

Under the approximations above, the system (5.10–5.13) gives rise to the following

system of N + 3 ODEs at leading order:

dm0

dt
= −α1c

dp
((1 − p0)m0) +

α2g
dp

((1 + p1)m1 − (1 + p0)m0)

+ (c + cT) R(p0)mT

(
1 − mT

mmax

)
− γmm0, (5.24)

dmj

dt
= −α1c

dp
((

1 − pj
)

mj −
(
1 − pj−1

)
mj−1

)
+

α2g
dp

((
1 + pj+1

)
mj+1 −

(
1 + pj

)
mj
)

+ (c + cT) R(pj)mT

(
1 − mT

mmax

)
− γmmj, for j = 1, . . . , N − 1, (5.25)

dmN

dt
= −α1c

dp
((1 − pN)mN − (1 − pN−1)mN−1) +

α2g
dp

(− (1 + pN)mN)

+ (c + cT) R(pN)mT

(
1 − mT

mmax

)
− γmmN , (5.26)
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dg
dt

= F1(t)− γgg, (5.27)

dc
dt

= κcF2(t)− cg − c, (5.28)

with mT as given in (5.23). Throughout this chapter, numerical simulations and bifur-

cation analyses are based upon implementations of the system (5.23–5.28) in Matlab

and XPPAUT with N = 100. In Matlab, this ODE system is solved using the in-built

solver ode45. In XPPAUT, we implement the adaptive, implicit solver CVODE as de-

scribed in Ermentrout (2002). In both cases, convergence tests have been performed

across a range of N values to ensure that our choice of N does not adversely affect the

accuracy of our results. In Matlab, we trialled values of N in the range N ∈ [60, 500]. In

XPPAUT, we are limited by the capabilities of the software to N ≤ 253 (since XPPAUT

can handle a maximum of 256 ODEs in total). For N = 100, we found that both the

numerical simulations in Matlab and the bifurcation analysis in XPPAUT captured the

Matlab numerical results for higher choices of N with good accuracy. Hence, we chose

N = 100 for all of the remainder of our analysis.

5.3 Results

In the following sections, we use a combination of numerical simulations conducted

in Matlab and bifurcation analyses conducted in XPPAUT to analyse the system (5.10–

5.13). In both cases, the corresponding codes involve a finite difference discretisation in

the phenotype variable p, which converts our PDE system into a system of ODEs that

can be simulated using standard in-built solvers. More details of the numerical scheme

are given in Section 5.2. Throughout, we are interested in whether (for a given set of pa-

rameter values) the system emits a positive steady state that represents chronic inflam-

mation, returns to a ‘healthy’ steady state in which pro-inflammatory components are

zero, or provides more complex dynamics such as oscillatory solutions (which could

be likened to inflammatory conditions that exhibit relapsing–remitting characteristics).

We will observe that, often, the system may exhibit multiple of these potential solutions

for a fixed parameter set, with the switch between outcomes being governed by initial

conditions. We will also draw comparisons of the results of this PDE model against the

model of Chapter 2, which has less detailed descriptions of macrophage phenotypes,

to elucidate the extent to which our conclusions may be sensitive to the modelling ap-

proach.
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5.3.1 Stability of the zero state

It is trivial to see that the system (5.10–5.13) has a steady state at m = g = c = 0. Since

this steady state contains no pro-inflammatory components, we regard this configura-

tion as one type of resolved outcome. In order to determine the stability of this steady

state, we linearise (5.10–5.13) by introducing the following scalings:

m(t, p) = εm̂(t, p), g(t) = εĝ(t), c(t) = εĉ(t), (5.29)

and write

mT = ε
∫ 1

−1
m̂(t, p)dp = εm̂T. (5.30)

At O (ε), (5.10–5.12) reduce to

∂m̂
∂t

= cTR(p)m̂T − γmm̂, (5.31)

dĝ
dt

=
∫ 1

−1
f1(p)m̂ dp − γg ĝ, (5.32)

dĉ
dt

= κc

∫ 1

−1
f2(p)m̂ dp − ĉ. (5.33)

For the linear choices of f1(p) and f2(p) given in (5.7), we can simplify the integrals in

(5.32) and (5.33) by noting the following (in which we write f (p) in place of f1(p) or

f2(p) for compactness):∫ 1

−1
f (p)m̂ dp =

1
2

∫ 1

−1
(1 ± p) m̂ dp

=
1
2

∫ 1

−1
m̂ dp ± 1

2

∫ 1

−1
pm̂ dp

=
1
2

m̂T ± 1
2

pm̂T

∣∣∣∣∣
1

−1

−
∫ 1

−1
m̂T dp

 . (5.34)

Noting that m̂T is independent of p, the bracketed terms in (5.34) cancel and we have∫ 1

−1
f (p)m̂ dp =

1
2

m̂T. (5.35)

Since (5.35) reveals that (5.32) and (5.33) depend only upon m̂T, rather than m̂ itself, it

is helpful to reformulate (5.31) in terms of m̂T and eliminate m̂ entirely. We note that

dm̂T

dt
=

d
dt

∫ 1

−1
m̂ dp

=
∫ 1

−1

∂m̂
∂t

dp
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=
∫ 1

−1
cTR(p)m̂T − γmm̂ dp, (5.36)

in which the final equality comes from (5.31). Restricting attention to the case R(p) = 1

for ease, (5.36) then provides

dm̂T

dt
= cT

∫ 1

−1
m̂T dp − γm

∫ 1

−1
m̂ dp = (2cT − γm) m̂T, (5.37)

in which we have again noted that m̂T is independent of p.

With (5.37) replacing (5.31), and with (5.32) and (5.33) rewritten according to (5.35),

(5.31–5.33) can be expressed as the following linear system:

d
dt


m̂T

ĝ

ĉ

 =


2cT − γm 0 0

1
2 −γg 0
κc
2 0 −1


︸ ︷︷ ︸

J


m̂T

ĝ

ĉ

 . (5.38)

Since the Jacobian matrix J is triangular, its eigenvalues are given by its diagonal en-

tries. For the zero state to be stable, we require all the eigenvalues of J to have negative

real part. Thus, the zero state is stable provided that

cT <
γm

2
. (5.39)

The stability of the zero state is therefore determined by the underlying growth/decay

dynamics of the macrophage population in the absence of inflammatory stimuli, with

cT representing the rate of growth of the macrophage population in the absence of pro-

inflammatory mediators, and γm being the rate of loss of macrophages as they vacate

the tissue or die.

5.3.2 Analysis for R(p) = 1

For simplicity, we begin our numerical analysis with consideration of the case R(p) =

1, for which all macrophage phenotypes are recruited uniformly. While this is not

necessarily a biologically realistic assumption, it provides a useful starting point for

our mathematical analysis; we examine the impact of non-uniform choices of R(p) in

Section 5.3.3 below.

Figure 5.2 illustrates some typical solutions to (5.10–5.13). Here, we hold all param-

eters fixed at the values of Table 5.1 but vary γg to illustrate the range of permissi-

ble solutions. For γg = 1 (Figure 5.2(a)), the system attains a steady state configura-

tion in which pro-inflammatory mediator concentrations are high, anti-inflammatory
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mediator concentrations are low, and macrophages are polarised entirely toward pro-

inflammatory phenotypes. This configuration represents a chronic inflammatory out-

come. Reducing γg to its default value of 0.2 (Figure 5.2(b)), results in higher lev-

els of anti-inflammatory mediators which stimulates macrophage phenotype switch-

ing toward anti-inflammatory phenotypes (via the flux term arising from (5.2)). Here,

the system attains a stable oscillatory configuration (periodic orbit) with macrophages

mostly polarised toward anti-inflammatory activity but also with periodic surges of

more pro-inflammatory phenotypes that prevent the inflammation being mitigated

against entirely. Levels of pro-inflammatory mediators are lower than in Figure 5.2(a)

due to the upscaled role of the anti-inflammatory mediators and macrophages, but

the solution is nonetheless chronic. In Figure 5.2(c), we set γg = 0.01 and observe

that, while pro-inflammatory mediator concentrations are initially sufficiently high to

drive macrophages toward pro-inflammatory phenotypes, rapid accumulation of anti-

inflammatory mediators then reverses the direction of phenotypic switching, moving

macrophages toward anti-inflammatory configurations. Here, pro-inflammatory me-

diator concentrations eventually reach zero and the macrophage population ultimately

leaves the tissue entirely as the macrophage decay term via γm outweighs the grows

term (cT) in (5.10); the system reaches the zero state, which is stable for these parameter

choices according to (5.39). We regard this configuration as a healthy outcome in which

inflammation is resolved entirely.

We note that, in Figure 5.2, we have illustrated typical outcomes by varying one of

our model parameters (γg in this case). Equally, for some parameters, we could illus-

trate similar results by holding parameters fixed and varying our initial conditions, the

model often being bistable for many parameter choices. In order to elucidate how our

model’s solutions depend on each of our parameters more fully, we perform bifurcation

analysis in XPPAUT to track the coordinates of steady states and oscillatory solutions

as a function of each parameter. (See Section 5.2 for further details of the numerical

scheme used.)

In the bifurcation diagrams presented in this section, we use the following abbrevia-

tions to indicate the model’s behaviour: (Res) indicates that the only stable solution is

the steady state at zero, where inflammation resolves and all variables reach zero; (Chr)

denotes that the only stable solution is a single chronic steady state corresponding to

chronic inflammation; (B) indicates that the model is bistable with both resolving and

chronic steady states permissible; (Multi) represents that the model permits more than

two stable steady states, one of which is the zero state; (Chr:2) means that the model

has two stable chronic steady states and the zero state is unstable; Osc denotes oscil-
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Figure 5.2: Numerical simulations of (5.10–5.13) subject to initial conditions c(0) =

g(0) = 0.5 and m(0, p) = 10 for (a) γg = 1, (b) γg = 0.2 and (c) γg = 0.01, R(p) = 1

and all unspecified parameters as given in Table 5.1.

latory (chronic) solutions; (Res/Osc) indicates that the model converges to either the

zero state or an oscillatory solution; (B/Osc) denotes that the model converges to either

the zero state, a unique chronic state, or an oscillatory solution.

Figure 5.3 illustrates bifurcation diagrams for each of our seven model parameters,

holding all unspecified parameters at the values given in Table 5.1. The vertical axes in

the figures show pro-inflammatory mediator concentrations, c, which is a proxy for the

severity of chronically inflamed states. The inset figures in the top-right of each panel

provide an indication of the corresponding macrophage phenotypes for each branch;

colouring represents the ‘median’ macrophage phenotype, calculated according to

pmedian = min p̂ ∈ [−1, 1] :
∫ p̂

−1
m dp ≥ mT

2
, (5.40)

with configurations for which mT = 0 coloured black. Dark blue or dark red colourings
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indicate that the distribution of macrophage phenotypes is mostly anti-inflammatory

or mostly pro-inflammatory, respectively.

For the parameter values of Table 5.1, the model permits resolution via convergence

to the zero state (as per (5.39), labelled “Res” in Figure 5.3), or chronic oscillatory out-

comes as shown in Figure 5.2(b) (labelled “Osc” in Figure 5.3). In general, we observe

that changes in parameter values that stimulate macrophage numbers, either directly

(γm smaller, or cT larger) or indirectly via pro-inflammatory mediators (κc larger), can

act to overwhelm oscillations, eliminating them via a Hopf bifurcation and often giv-

ing rise to a chronic steady state. Furthermore, increasing cT and/or reducing γm can

destabilise the zero state via a transcritical bifurcation corresponding to (5.39), result-

ing in a configuration of the model in which a chronic steady state outcome is guar-

anteed (demarked by “Chr” in Figure 5.3). Conversely, increasing γm or decreasing

cT (both of which reduce the size of the macrophage population) results in a growth of

the amplitude of oscillatory solutions, until the periodic orbit ultimately collides with a

neighbouring saddle (with c ≃ 0) and is hence eliminated via a homoclinic bifurcation.

For sufficiently large choices of γm, in particular, the only permissible solution is one of

resolution, the zero state being the only stable solution here. Intuitively, we may make

converse conclusions regarding stimulation or repression of anti-inflammatory medi-

ators, in comparison to those of pro-inflammatory mediators: for γg small, we have

large numbers of anti-inflammatory mediators and chronic outcomes are eliminated;

oscillations exist for values of γg lying between a Hopf bifurcation and a homoclinic

bifurcation; and moderate to large choices of γg (for which anti-inflammatory media-

tor contributions are lesser) reveal regions of bistability or multistability (labelled “B”

and “Multi” in Figure 5.3) in which there are two or more stable steady states and the

system may attain either resolved or chronic steady-state outcomes.

The existence of oscillatory solutions requires a reasonably large macrophage popu-

lation, oscillations being eliminated entirely for mmax small, see Figure 5.3(b). Fur-

thermore, we observe that oscillatory solutions generally correspond to macrophage

configurations that comprise primarily anti-inflammatory phenotypes; large numbers

of pro-inflammatory macrophage phenotypes generally correspond to the existence of

stable chronic steady states.

The phenotype switching parameters, α1 and α2, play a joint role in controlling many

of the above observations. For α1 fixed at its default value of Table 5.1, varying α2

reveals a window of α2–values in which oscillations exist, bounded between two Hopf

bifurcations. (See Figure 5.3(d).) For α2 fixed at its default value, smaller choices of

α1 result in a bistable configuration in which the model attains either the zero state or
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Figure 5.3: Bifurcation diagrams illustrating solutions of (5.10–5.13). All unspecified

parameters are as in Table 5.1. Solid/dashed curves represent stable/unstable solu-

tions; black and red represent steady states and periodic orbits respectively. Inset: the

same curves, but instead coloured according to the median macrophage phenotype

given by (5.40).
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a weakly-inflamed chronic state that is mitigated by macrophage polarisation toward

anti-inflammatory phenotypes. Meanwhile, a larger choice of α1 can give rise to a new

chronic state in which pro-inflammatory mediator concentrations are much higher and

macrophages are primarily polarised toward pro-inflammatory phenotypes (as shown

in Figure 5.3(c)). In order to fully understand the joint effect of these two parameters

(and others), it is helpful to track the coordinates of the bifurcations observed above in

two-dimensional slices of parameter space, as illustrated in Figure 5.4.

Figure 5.4 reveals a reasonably complex interdependence between our model param-

eters, illustrating numerous areas of parameter space in which model outcomes are

distinct. In Figure 5.4(a,b), we expose how the macrophage phenotype switching pa-

rameters (α1 and α2) act in tandem with the rate of macrophage decay (γm) to control

the location of corresponding bifurcations. From (5.39), we know that the zero state

(which corresponds to resolution of inflammation) is destabilised via a transcritical

bifurcation at γm = 0.02 (for the parameter values of Table 5.1). This transcritical bi-

furcation is shown as blue curves in Figures 5.4(a,b). To the left of these curves, γm

is relatively small and the macrophage population is relatively large, and the model

is relatively sensitive to phenotype switching via α1 and α2, which together determine

the number of chronic steady states that exist. For α1 small or α2 large, macrophage

polarisation is driven primarily toward anti-inflammatory phenotypes and there exists

a unique chronic state corresponding to relatively low-level inflammation. For α1 large

or α2 small, macrophage phenotype switching in the direction of pro-inflammatory

phenotypes is stronger and we may obtain a second chronic steady state correspond-

ing to more severe inflammation (i.e. with c larger). (See, also, Figure 5.3(c,d).) For γm

larger, so that the zero state is stable, α1 and α2 effect a switch in the existence/stability

of chronic steady states, moving the model between configurations of guaranteed res-

olution (α1 small or α2 large) or bistability with both chronic and resolved outcomes

permissible (α1 large or α2 small). This joint role of α1 and α2 is further elucidated in

Figure 5.4(c), in which we track bifurcations in (α1, α2)–space. For intermediate values

of γm, α1 and α2, we find Hopf bifurcations that can give rise to oscillations as shown

above in Figures 5.2(b) and 5.3.

In Figure 5.4(d), we draw similar conclusions regarding the parameters that control the

sizes of the two mediator concentrations (i.e. κc, which controls the rate of growth of

the pro-inflammatory mediators, and γg, which controls the rate of decay of the anti-

inflammatory mediators). Intuitively, for κc and γg both small, the pro-inflammatory

mediator population is small and the anti-inflammatory mediator population is large

and the model attains a configuration in which resolution of inflammation is guaran-
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Figure 5.4: Bifurcation diagrams illustrating bifurcations of (5.10–5.13) in two-

dimensional slices of parameter space. Red curves represent saddle-node bifurcations;

black curves represent Hopf bifurcations; blue curves represent transcritical bifurca-

tions. All unspecified parameters are as given in Table 5.1.

teed. When these parameters are both large, chronic steady states are promoted and the

model attains a bistable configuration (noting that the resolved state at zero is always

stable here due to the values of γm and cT satisfying (5.39)). Intermediate choices of

κc and γg can give rise to oscillatory solutions or additional chronic states as we have

already observed in Figure 5.3(f,g).
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5.3.3 The effect of variations in R(p)

We, here, investigate the extent to which our choice of recruitment function R(p) = 1

above influences the observed dynamics. That is, we seek to understand the man-

ner in which the existence or stability of healthy and chronic outcomes depends upon

the polarisation state of newly recruited macrophages. Here, we take R(p) to be of a

Gaussian-like shape given by

R(p) = exp

(
− (p − µ)2

σ2

)
, (5.41)

where µ ∈ (−1, 1) parameterises the ‘mean phenotype’ of newly recruited

macrophages and σ captures the level of variability in recruited macrophage pheno-

types. In the limit µ → 1, newly recruited macrophages are primarily polarised toward

pro-inflammatory activity, whereas the limit µ → −1 corresponds to recruitment of

primarily anti-inflammatory phenotypes. We note that in the limit σ → ∞ we have

R(p) → 1, and we recover the previous case of Section 5.3.2.

In Figure 5.5, we show bifurcation diagrams akin to Figure 5.3(a) but with R(p) as

given by (5.41), for a range of µ and σ values. Here, we treat the rate of macrophage

loss γm as our bifurcation parameter and examine how the number and nature of

steady states and the positions of related bifurcations are influenced by changes in

R(p). In Figure 5.3(a), for R(p) = 1 we observed that the healthy state is stable for

γm > 0.02 (as per (5.39)), and for sufficiently large values of γm this is the only stable

configuration. Additionally, two branches of chronic configurations exist for smaller

choices of γm: a stable branch of low-level chronic solutions exists for γm ≲ 0.043

and is then destabilised via a Hopf bifurcation giving rise to low-level oscillations sup-

ported by a primarily anti-inflammatory macrophage population; meanwhile, a second

branch of higher-level chronic inflammation (supported by a largely pro-inflammatory

macrophage population) exists for values of γm below a corresponding saddle-node

bifurcation (at γm ≃ 0.033). As Figure 5.5(g–i) show, we recover these results in the

limit σ → ∞. For σ ∼ O(1), the three fundamental branches of solutions above persist,

but may shift in parameter space and/or exhibit stability changes.

Taking the limit σ → 0, so that the distribution of recruited macrophage phenotypes

becomes increasingly narrow, results in some small changes to the location of the tran-

scritical bifurcation that bounds the stability of the healthy steady state. However,

this appears to be an artefact of having no normalising constant in (5.41) – a deliber-

ate choice here to ensure that R(p) → 1 as σ → ∞. As we gradually reduce σ, we

slightly slow the total rate of recruitment of new macrophages, and hence slightly en-
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Figure 5.5: Bifurcation diagrams illustrating solutions of (5.10–5.13) with R(p) given

by (5.41), for varying choices of µ and σ. All unspecified parameters are as in Table 5.1.

Solid/dashed black curves represent stable/unstable steady state solutions. Solid red

curves represent stable periodic orbits. (Unstable periodic orbits are omitted in (c) for

clarity.)

hance the stability of the healthy state (shifting the transcritical bifurcation to the left in

Figure 5.5). This behaviour is symmetrical in variations of µ.

Changes to the healthy steady state and its corresponding transcritical bifurcation are

relatively slight in comparison to the influence of R(p) upon chronic states. Intuitively,

polarisation of recruited macrophages toward pro-inflammatory activity has the effect

of promoting chronic configurations. In the case of the higher-level chronic state of

Figure 5.3, the saddle node that provides the upper bound in γm for this branch shifts

toward larger γm–values as µ → 1, rendering this state permissible for a broader range

of choices of γm. Additionally, the limit µ → 1 can also drive stability changes on the
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low-level chronic branch, as shown for σ = 0.5 in Figure 5.5(c). Here two additional

(subcritical) Hopf bifurcations are introduced, providing additional stable steady-state

solutions (and unstable periodic orbits, not plotted) in regions of parameter space in

which restoration of the healthy state was previously guaranteed.

In Figure 5.6, we track the γm–coordinates of the bifurcations shown in Figure 5.5 as

we vary σ, for µ = −1 (dashed lines) and µ = 1 (solid lines). At the top of the fig-

ure, as σ → ∞, all bifurcation curves converge to the corresponding γm–coordinates of

the bifurcations in Figure 5.3(a). As we reduce σ, the extent to which the dashed and

solid lines diverge from one-another reflects the extent to which the model is sensitive

to the prescription of R(p). Shown in blue in Figure 5.6, the position of the transcrit-

ical bifurcation that determines the stability of the healthy zero state has very weak

dependence on σ; furthermore, its position is identical for µ = −1 and µ = 1. The

healthy state is unstable to the left of the illustrated blue curve, guaranteeing chronic

outcomes here. As we move from µ = −1 toward µ = 1, the saddle-node bifurcation

that bounds the high-level branch of chronic solutions (shown in magenta) traverses

left to right, availing an expanding region of stable, high-level chronic solutions as σ

reduces. Meanwhile, for σ ∼ O(1), the low-level chronic branch expands as µ → 1

or shrinks as µ → −1. As shown in Figure 5.3(a), solutions on the low-level chronic

branch are mostly unstable in the limit σ → ∞; however, for µ ∼ 1, reducing σ ulti-

mately results in a pair of new subcritical Hopf bifurcations which bound a region of

additional stable steady states on this low-level branch. These additional stable states

exist below the corresponding black curve in Figure 5.6. These additional Hopf bifur-

cations collide with the corresponding saddle-node branch via fold–Hopf bifurcations

at the points labelled “FH” in Figure 5.6.

In Figure 5.7, we show two-parameter bifurcation diagrams that correspond to taking

a horizontal cross-section through Figure 5.6 at σ = 0.5. For ease of tracking the exis-

tence of the various solutions that underlie these figures, we note that taking vertical

cross-sections through the three panels in Figure 5.7 at µ = 0 provides one-parameter

bifurcation diagrams that qualitatively correspond to those shown for R(p) = 1 in Fig-

ures 5.3(a,c,d). In Figure 5.7(a), we observe (as was the case for R(p) = 1) that for γm

large the model guarantees resolution regardless of the choice of µ, since the rate of loss

of macrophages is sufficient to remove the macrophage population entirely, and hence

eliminate damage. For smaller γm, there are various chronic solutions that coexist with

the zero state provided that γm is above the transcritical bifurcation shown in blue in

the figure; below this transcritical bifurcation curve chronic outcomes are guaranteed.

The magenta curve in Figure 5.7(a) represents the saddle-node bifurcation on the high-
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Figure 5.6: Bifurcation diagram illustrating how the bifurcations of Figure 5.3(a) move

as we vary µ and σ in (5.41). As σ → ∞, we recover the bifurcation coordinates

of Figure 5.3(a), for R(p) = 1. Solid and dashed curves illustrate the positions of

bifurcations for µ = 1 and µ = −1 respectively. Red and magenta curves represent

distinct sets of saddle-node bifurcations; black curves represent Hopf bifurcations.

The blue curve represents the position of the transcritical bifurcation where the zero

state changes stability, and is identical for µ = ±1. FH = fold-Hopf bifurcation.

level chronic branch (also plotted in magenta in Figure 5.6); a stable highly-inflamed

chronic state exists below this magenta curve. The principal effects of varying the re-

cruited macrophage phenotype (µ) are as follows: i) as µ → 1, the highly-inflamed state

exists for a greater range of γm–values, pushing the model toward more-severe chronic

outcomes; ii) for µ ∼ 1, additional low-level chronic solutions are created, bounded by

a neighbouring curve of Hopf bifurcations; iii) as µ → −1, the model is driven towards

resolution for a widening range of γm–values, with additional low-level chronic steady

states and oscillatory solutions being confined to an increasingly narrow γm–range.

In Figures 5.7(b,c), we track these bifurcation points as functions of the macrophage
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Figure 5.7: Two-parameter bifurcation diagrams illustrating the bifurcations of Fig-

ure 5.6 for σ = 0.5. Red and magenta curves represent saddle-node bifurcations on

the low-level and high-level branches of Figure 5.5 respectively; black curves represent

Hopf bifurcations. The blue curve represents the position of the transcritical bifurca-

tion where the zero state changes stability. FH = fold-Hopf bifurcation.

phenotype switching parameters α1 and α2. Since these figures use our baseline values

for other parameters (in particular γm = 0.05), the zero state is stable throughout, and

this is independent of µ, α1 and α2 here. The highly-inflamed chronic state is stable

above the magenta curve in Figure 5.7(b) and below the magenta curve in Figure 5.7(c).

Again, we see similar effects to above when varying µ; i.e. recruited macrophages being

polarised toward pro-inflammatory phenotypes (µ → 1) stimulates chronic outcomes

on the highly-inflamed branch (in particular), and the converse (µ → −1) promotes

resolution. (We note that the saddle-node bifurcation represented by the upper red

111



CHAPTER 5: MODELLING THE CONTINUUM OF MACROPHAGE PHENOTYPES

curve in Figure 5.7(b) effects only the number of unstable steady states. This is also

the case for the two saddle-node bifurcations shown in red in Figure 5.7(c), for those

portions of the bifurcation curves lying to the right of the corresponding fold-Hopf

(FH) bifurcations.)

5.4 Discussion

Macrophages are highly plastic cells with the propensity to polarise into a diverse spec-

trum of phenotypes. Our model, presented here, has sought to address the fact that

many previous mathematical models of inflammation-related systems take one of two

approaches to describing diverse macrophage populations: either by incorporating a

single homogenised population that averages phenotype-specific interactions; or, by

incorporating two distinct and opposing phenotypes, typically representing e.g. the

M1/M2 categorisation nomenclature. Instead, our model allows for intermediate phe-

notypes, by placing all possible macrophage phenotypes on a continuous spectrum ac-

cording to their levels of pro/anti-inflammatory activity. Our model incorporates phe-

notype switching via nonlinear flux terms that are enhanced by environmental cues,

with high concentrations of pro-inflammatory mediators driving macrophages to po-

larise toward pro-inflammatory phenotypes (synonymous with the M1 classification),

and high concentrations of anti-inflammatory mediators driving the converse (result-

ing in phenotypes associated with tissue-resident macrophages and the M2 classifica-

tion). Through numerical simulation (in Matlab) and bifurcation analysis (in XPPAUT),

we have examined the manner in which the rates of macrophage population growth,

phenotype switching, and mediator interactions affect switches between healthy and

chronic outcomes.

We note that macrophage numbers in tissues can increase due to both proliferation

and recruitment, or a combination of both of these (Rückerl & Allen, 2014). In our

model, we do not distinguish between these mechanisms explicitly; however, we as-

sume that the net effect of these mechanisms can be modelled via a corresponding

logistic growth term (in (5.3)) up to a tissue-specific carrying capacity m∗
max. Impor-

tantly, our model incorporates, via the function R(p), the potential for us to specify the

phenotype-coordinates of macophages that are newly added to the tissue of interest.

For simplicity and mathematical tractability, we began our analysis by focusing on the

case R(p) = 1 representing the idea that all phenotypes are recruited uniformly. While

this is unlikely to be biologically realistic in many settings, this provided a useful start-

ing point for our analysis, and allowed us to separately examine the manner in which
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variations in R(p) affect the resulting dynamics.

For R(p) = 1, we observed that the model exhibits three fundamental types of solu-

tion, as follows. Firstly, the model may attain a steady state in which all components

of the model reach zero. We regard this as a ‘healthy’ state, since it encompasses no in-

flammatory stimuli. This zero state is stable provided that the rate of macrophage loss

(γ∗
m) sufficiently outweighs the basal rate of macrophage proliferation/recruitment in

the absence of pro-inflammatory mediators (c∗T), as per (5.39). Secondly, the model

may attain a chronic steady state with positive macrophage numbers and (in partic-

ular) pro-inflammatory mediators. Often, these chronic steady states are supported

by a macrophage population that is mostly polarised toward pro-inflammatory phe-

notypes. Thirdly, the model may converge toward stable oscillatory solutions that are

reminiscent of conditions that exhibit relapsing-remitting characteristics. Throughout

our analysis, oscillatory solutions have always been supported by macrophage popu-

lations that are mostly polarised toward anti-inflammatory phenotypes. In many ar-

eas of parameter space, two or more of the above solutions co-exist, and the model

is bistable or multistable, with resulting inflammatory outcomes dependent upon our

choice of initial conditions. In Figures 5.3 and 5.4, we exposed the extent to which

the existence/stability of the above solutions depends upon our model parameters.

In particular, we observed that rapid rates of macrophage loss (γ∗
m) can eliminate

chronic outcomes entirely (since macrophages are the only pro-inflammatory source in

this model), while rapid macrophage proliferation/recruitment (c∗T) promotes chronic

outcomes, and that strong rates of macrophage phenotype switching toward pro-

inflammatory phenotypes (α∗
1) promotes chronic steady-state outcomes, while pheno-

type switching toward anti-inflammatory phenotypes (α∗
2) can promote both resolution

and low level chronic oscillations (in a manner that is dependent upon the model’s re-

maining parameters).

In Section 5.3.3, we examined the extent to which the observations above are sensitive

to our prescription of the phenotype of newly recruited macrophages. To do so, we set

the corresponding recruitment function R(p) to have a Gaussian-like shape, and exam-

ined the effects of variation of the mean (µ) and standard deviation (σ) of this Gaussian.

In the limit σ → ∞, our analysis recovers the case R(p) = 1 exactly. For σ ∼ O(1),

while the fundamental solutions discussed for R(p) = 1 above still persist, the loca-

tions of corresponding bifurcation points shift somewhat as a function of the recruited

macrophage phenotype. Our analysis revealed the stability of the healthy (zero) state

exhibits very weak sensitivity to the phenotype of recruited macrophages, and instead

depends more broadly on overall macrophage numbers. This is partially an artefact
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of the fact that our prescription of the pro-inflammatory mediator production function

f2(p) in (5.7) equips all macrophages with p ̸= 1 with at least some pro-inflammatory

influence. Chronic solutions, however, exhibit more sensitivity to recruited pheno-

types, with recruitment weighted toward pro-inflammatory phenotypes (µ → 1) result-

ing in the expansion of regions of parameter space that permit chronic outcomes and (in

some cases) the creation of new chronic steady state configurations. Meanwhile, bias-

ing macrophage recruitment toward anti-inflammatory phenotypes (µ → −1) largely

promotes resolution of inflammation. We highlight, once again, that the function R(p)

here incorporates both proliferation of existing macrophages and recruitment of new

macrophages from the vasculature. This provides a potentially complex landscape of

newly added macrophage phenotypes, with proliferation of existing tissue-resident

macrophages more likely to provide macrophages polarised toward anti-inflammatory

activity, and recruitment of macrophages from the blood stream more likely to provide

macrophages that are pro-inflammatory in nature. In most biologically relevant cases,

we expect the latter of these mechanisms to dominate, with Figure 5.6 illustrating that

this can result in a relatively complex spectrum of chronic outcomes.

It is helpful to draw comparisons of our PDE model against previous ODE models

of similar macrophage interactions in inflammatory settings. In particular, we note

that our PDE model presented here is designed as a natural extension of the model

presented in Chapter 3 to account for intermediate macrophage phenotypes. Broadly,

we find that many of our observations share commonality with those of the model

in Chapter 3. The macro-scale roles of each parameter indicated in Figure 5.3 largely

align with those of the previous ODE model: large rates of macrophage loss (γm) drive

the model toward a healthy zero state, while γm small yields chronic configurations;

oscillatory solutions exist for reasonably large macrophage populations (mmax large);

and strong macrophage polarisation toward pro-inflammatory phenotypes (α1) drives

chronic outcomes with the converse (α2) generally driving resolution. While these over-

araching conclusions result readily from both the ODE and PDE constructions of the

model, some intermediate bifurcations do differ slightly. For example, one key differ-

ence between these models is that the ODE model exhibits a healthy steady state with

positive anti-inflammatory components (macrophages and mediators), while the PDE

model exhibits just a unique healthy state at zero. In the ODE model, the zero state

tends to change stability through collision with the positive healthy state at a trans-

critical bifurcation, whereas in the PDE model the zero state bifurcates to a solution in

which macrophages are slightly biased toward pro-inflammatory phenotypes (e.g. yel-

low configurations in Figure 5.3). This is an artefact, partly, of our choice of f2, which

is non-zero for all p ̸= −1, rendering all macrophage phenotypes with p ̸= −1 slightly
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pro-inflammatory. We note that it is common for models of inflammation to regard a

steady state at zero to correspond to resolution (Reynolds et al., 2006; Dunster et al.,

2014; Bayani et al., 2020a; Dunster et al., 2023; Nelson et al., 2023) on the basis that the

macrophage population being modelled represents the extent to which macrophage

numbers in a given tissue are elevated above a certain baseline level of tissue-resident

macrophages.

Our PDE model is in line with this perspective; however, we note that a reformulation

of the model in which a baseline population of entirely anti-inflammatory macrophages

sits at or below p = −1, for example, would be a simple task to allow the model to re-

cover the potential for positive healthy steady states to exist. Furthermore, we note

that our PDE model incorporates a more advanced description of macrophage pro-

liferation/recruitment than the corresponding ODE model of Chapter 3 does, which

focuses entirely on proliferation of existing macrophages and a resultant source of en-

tirely anti-inflammatory macrophages. Through our analysis above, particularly that

of Section 5.3.3, we have illustrated that this more-advanced description has the poten-

tial to generate a more diverse range of solutions than is afforded by the corresponding

ODE model. Additionally, a key observation from the PDE model is that oscillatory so-

lutions are generally supported by a macrophage population that is largely polarised

toward anti-inflammatory phenotypes. In the corresponding ODE model (which in-

corporates two explicit and opposing phenotypes) we can draw similar observations

with oscillatory solutions having a high proportion of anti-inflammatory macrophages;

however, our PDE model more readily exposes the extent to which intermediate phe-

notypes may play a supporting role.

In constructing our PDE model, we have modelled the complex range of macrophage

phenotypes on a continuous spectrum of inflammatory activity. This has presented

novel mathematical insight into the role of intermediate phenotypes, in particular.

However, we note that the biological classification of specific macrophage phenotypes

and where they may sit on our inflammatory spectrum is an extremely complex task

that is hampered not only by the multi-factorial nature of macrophages’ roles in in-

flammation, but also by a significant lack of experimental data against which to vali-

date mathematical models of inflammation in general. In order to construct the model,

we have deployed reasonably speculative choices of fluxes representing phenotype-

switching (q+∗, q−∗) and terms representing the extent to which differing phenotypes

produce differing levels of pro/anti-inflammatory mediators ( f1(p) and f2(p), which

we assume are linear in p here). Throughout, our approach has been to make the

simplest possible choices of such terms, while retaining essential biological realism.
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However, we note that our choices of f1 and f2, in particular, are likely to somewhat

over-simplify a more complex dependence upon phenotype. Our model elucidates the

role that intermediate phenotypes can play in a complex inflammatory environment,

but (as with any other mathematical model of inflammation) requires greater availabil-

ity of experimental data in order to fully justify some inherent modelling assumptions.

This remains an area for consideration in the future, should further experimental data

become available.
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CHAPTER 6

Conclusions

The growing interest in inflammation is due to its association with a wide array of

chronic diseases. Macrophages play a crucial role in resolving inflammation and its

progression, changing their role according to their environment, and this plasticity and

diversity of macrophage phenotypes is a potential therapeutic target in inflammatory

diseases. In this work, we have presented a series of mathematical models to eluci-

date the manner in which macrophage phenotype selection impacts inflammatory dy-

namics. Below, we briefly summarise the key conclusions of this thesis, and outline

potential targets for future investigation.

6.1 Thesis summary

In this work, we have presented and analysed a series of related models of inflam-

matory dynamics that include increasing levels of complexity regarding descriptions

of macrophage phenotypes and other aspects of the inflammatory response. Our pro-

posed models seek to further elucidate the potential impact that distinct modelling

choices regarding macrophage phenotype descriptions have upon resulting model dy-

namics, by systematically building the complexity of the corresponding models and

carefully analysing the resultant changes in our models’ predictions.

In Chapter 2, we presented and analysed a simple model of inflammatory dynamics

that omits a detailed description of the range of macrophage phenotypes that a typical

inflammatory environment involves, focusing instead on the interactions of a single

macrophage population with groups of generic pro- and anti-inflammatory mediators.

Through numerical simulation (in Matlab) and bifurcation analysis (in XPPAUT), our

model exhibits a simple switch between resolved (healthy) and chronic steady state

solutions. Furthermore, the model offers various possible outcomes depending on our
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choice of parameters or the model’s initial conditions. These outcomes include monos-

tability with either resolution guaranteed or chronic outcomes guaranteed, or bistabil-

ity with both healthy and chronic outcomes permissible and the resulting outcome is

determined by initial conditions. The main feature of chronic conditions is the accumu-

lation of monocyte-derived macrophages in the inflamed tissue, leaving the body in a

persistent state of alert due to the elevated concentration levels of pro-inflammatory

mediators produced by macrophages. Since the macrophage population is the induc-

ing source of inflammation in this model, a guaranteed strategy for resolving inflam-

mation revolves around reducing the size of macrophage populations. This means that

manipulating parameter choices that negatively affect the size of the macrophage pop-

ulation, thereby reducing the number of macrophages, promotes a healthy response

in general. In view of this, to ensure resolution, we may either increase the rate of

macrophage loss (γm) or decrease the rate of macrophage recruitment in the absence

of mediators (by reducing cT). Likewise, reducing the rates of anti-inflammatory me-

diators’ decay (γg) or pro-inflammatory mediators’ production (κc) shifts the model

toward a healthy outcome. Since all macrophages exhibit a pro-inflammatory effect

in this model, complete elimination of the macrophage population is essential for at-

taining resolution of inflammation. However, we note that even in healthy tissues,

macrophages must be present at low baseline levels to maintain general health, mak-

ing this assumption biologically unrealistic. It is noteworthy that many existing mod-

els of inflammatory dynamics assume that the entire removal of macrophages is a

healthy response, which considers the macrophage variable as describing an elevation

of macrophage numbers above the healthy baseline, rather than absolute population

size.

In Chapter 3, we separated macrophages into two populations with pro- and anti-

inflammatory functions. We note that this in itself is still an oversimplification of the

actual inflammatory environment that occurs in vivo, as macrophage populations are

numerous and not yet universally classified. In addition to the trivial healthy steady

state observed in the model presented in Chapter 2, the model in Chapter 3 admits a

non-trivial healthy configuration where macrophage numbers are positive. Specifically,

this configuration suggests a scenario devoid of pro-inflammatory macrophages and

mediators while retaining the existence of anti-inflammatory macrophages and medi-

ators, which are essential for maintaining the tissue’s healthy state. A positive healthy

state is considered more biologically realistic and acceptable than a zero healthy state.

However, the existence of this positive healthy state depends on the parameters that

control the size of the macrophage population; if γm < cT, the zero-state is unstable,

and the positive healthy state exists, with stability governed by (3.28).
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The model of Chapter 3 also exhibits oscillatory solutions (chronic states) that were

not observed in the simple model of Chapter 2. The existence of these oscillations de-

pends entirely on the choices of the macrophage phenotype switching rates (α1 and

α2). These oscillations are most evident when the total macrophage population (mmax)

is large enough to allow the emergence of multiple inflammatory dynamics and signif-

icant differences between the sizes of pro- and anti-inflammatory macrophage popu-

lations. Conversely, these oscillations are eliminated entirely when mmax is sufficiently

small. The rates of macrophage phenotype switching reflect the difference in sizes be-

tween the pro- and anti-inflammatory macrophage populations in an intuitive manner.

The parameter choices that promote the model’s pro-inflammatory feedbacks and in-

crease the size of the pro-inflammatory macrophage populations (α1 large or α2 small),

can expand regions of bistability or chronicity and have a significant influence over the

potential for oscillatory outcomes. It is noteworthy that very small values of α1 can

eliminate oscillations entirely, which suggests that bidirectional phenotype switching

specifically underpins the existence of these oscillations. On the other hand, parameter

choices that promote the model’s anti-inflammatory feedbacks and increase the likeli-

hood of larger populations of anti-inflammatory macrophages, such as α1 small or α2

large, can eliminate chronic outcomes entirely.

In Chapter 4, we incorporated populations of active and apoptotic neutrophils into

our analysis and examined the resulting dynamics – neutrophils are the most pivotal

cell type in causing inflammatory damage. Upon analysis of our model, it became

evident that introducing an additional feedback loop of neutrophil populations into

the model resulted in the emergence of various potential stable steady states. These

outcomes included two distinct healthy states similar to those presented in Chapter 3

(zero and positive healthy states). The model also still exhibits oscillatory solutions

similar to those in the model of Chapter 3. In addition, chronic outcomes are observed,

similar to the model of Chapter 3, where inflammation persists but at a relatively low

level. Notably, a new chronic state emerged, characterized by severe and sustained

inflammation driven by very high numbers of both neutrophils and pro-inflammatory

macrophages, signifying a crucial interaction between these cell types that might pro-

mote and perpetuate inflammation. Briefly, the model presented in Chapter 4 shares

the same dynamics as the model in Chapter 3, but with the existence of a new, severely

inflamed chronic state. In the limit βa −→ ∞, the pro-inflammatory feedback from

apoptotic neutrophils is suppressed. As a result, the effect of neutrophils becomes very

small compared to that of macrophages, the dynamics of macrophages and mediators

become independent of neutrophils, and our model qualitatively returns to the model

presented in Chapter 3. If we consider the rate of macrophage phenotype switching,

119



CHAPTER 6: CONCLUSIONS

we note the potential existence of an additional severely inflamed chronic state, partic-

ularly when βa is small. In cases where α1 is large or α2 is small, we have strong polari-

sation toward pro-inflammatory macrophage phenotypes, which upscales neutrophil-

driven dynamics since the removal of apoptotic neutrophils is primarily driven by anti-

inflammatory macrophage phenotypes. As a result, the model exhibits the scope to be

multistable, with the potential for healthy outcomes, low-level inflammation, or severe

inflammation (driven by neutrophils) for the same parameters, and the resulting in-

flammatory condition is determined by initial conditions. In the opposing limit, the

model recovers the one presented in Chapter 3. Our analysis revealed that the model

is less sensitive to the rates of neutrophil apoptosis (ν) and phagocytosis of apoptotic

neutrophils (ϕ) when compared to the influence of phenotype switching via α1 and α2.

This finding contrasts with previous models (Herald, 2010; Penner et al., 2012; Dun-

ster et al., 2014; Bayani et al., 2020a,b) that have only included a single homogenised

macrophage population and focused on these parameters (ϕ and ν) as potential ther-

apeutic targets. This highlights the importance of including distinct macrophage phe-

notypes in inflammation models and suggests that manipulation of macrophage polar-

isation states could be a promising therapeutic target.

In Chapter 5, we presented a partial differential equation (PDE) model that consid-

ers macrophage phenotypes to lie on a continuous spectrum of inflammatory activity,

with a range of intermediate phenotypes lying between the fully pro-inflammatory

and fully anti-inflammatory activities. Our model incorporates phenotype switching

via nonlinear flux terms that are enhanced by environmental cues, with high concen-

trations of pro-inflammatory mediators driving macrophages to polarise toward pro-

inflammatory phenotypes (synonymous with the M1 classification), and high concen-

trations of anti-inflammatory mediators driving the converse (resulting in phenotypes

associated with tissue-resident macrophages and the M2 classification). We began

our analysis by focusing on the case R(p) = 1, representing the idea that all pheno-

types are recruited uniformly. Our model exhibits three fundamental types of solu-

tion for R(p) = 1, as follows. Firstly, the model may attain a steady state in which

all components of the model reach zero. We consider this state as "healthy", since it

involves no inflammatory stimuli. This zero steady state is stable provided that the

rate of macrophage loss (γ∗
m) sufficiently exceeds the rate of macrophage prolifera-

tion/recruitment in the absence of pro-inflammatory mediators (c∗T), as per (5.39). Sec-

ondly, the model may attain a chronic steady state with pro-inflammatory mediators

and positive macrophage numbers. These chronic states are often supported primarily

by pro-inflammatory macrophage populations. Thirdly, the model may converge to-

ward stable oscillatory solutions, supported mostly by anti-inflammatory macrophage
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populations. In many regions of parameter space, two or more of the above solutions

co-exist, and the model displays bistable or multistable behaviour, with the resulting

inflammatory outcomes depending upon our choice of initial conditions. In addition,

the stability/existence of the above solutions depends on our model parameters, such

that rapid rates of macrophage loss (γ∗
m) can eliminate chronic outcomes entirely, while

rapid macrophage proliferation/recruitment (c∗T) promotes chronic outcomes, and high

rates of macrophage phenotype switching toward pro-inflammatory phenotypes (α∗
1)

promotes chronic steady state outcomes.

We then examined the extent to which the observations above are sensitive to our pre-

scription of the phenotype of newly recruited macrophages by setting R(p) to have a

Gaussian-like shape and investigating the effects of variation of the mean (µ) and stan-

dard deviation (σ) of this Gaussian. Our analysis recovered the case R(p) = 1 exactly in

the limit as σ → ∞. For small σ, while the fundamental solutions for the case R(p) = 1

above still persist, the locations of corresponding bifurcation points shift somewhat

as a function of the recruited macrophage phenotype. Our analysis revealed that the

stability of the healthy (zero) state exhibits very weak sensitivity to the phenotype of

recruited macrophages, and instead depends more on overall macrophage numbers.

However, chronic solutions exhibit more sensitivity to recruited phenotypes, with re-

cruitment weighted toward pro-inflammatory phenotypes (µ → 1) expanding regions

of parameter space that permit chronic outcomes. Meanwhile, biasing macrophage re-

cruitment toward anti-inflammatory phenotypes (µ → −1) largely promotes resolution

of inflammation.

Our PDE model is an extension of the ODE model presented in Chapter 3 to account

for intermediate macrophage phenotypes. Broadly, we found that many of our ob-

servations largely align with those of the model in Chapter 3. For instance, large

rates of macrophage loss (γm) drive the model toward a healthy zero state, while γm

small yields chronic configurations, and strong macrophage polarisation toward pro-

inflammatory phenotypes (α1) drives chronic outcomes with the converse (α2) gener-

ally driving resolution. While these overall conclusions result easily from both the ODE

and PDE constructions of the model, some intermediate bifurcations do differ slightly.

For instance, one major difference between these models is that the ODE model emits

a healthy steady state with positive anti-inflammatory components (macrophages and

mediators), while the PDE model exhibits only a unique healthy state at zero. In the

ODE model, the zero state changes its stability by colliding with the positive healthy

state at a transcritical bifurcation, whereas in the PDE model the zero state bifurcates

by colliding with a solution in which macrophages are slightly biased toward pro-
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inflammatory phenotypes. This is partly due to our choice of f2, which is non-zero

for all p ̸= −1, rendering all macrophage phenotypes with p ̸= −1 slightly pro-

inflammatory. In addition, a key observation from the PDE model is that oscillatory

solutions are generally supported by a macrophage population that is largely polarised

toward anti-inflammatory phenotypes. This observation was also the case in Chapter 3.

From what we have seen, most of the oscillations in Chapter 3 generally have ma ≫ mp.

We note that the PDE model includes a more advanced description of macrophage pro-

liferation/recruitment than the corresponding ODE model of Chapter 3, resulting in a

more diverse range of solutions than is afforded by the corresponding ODE model.

In summary, in this work, we developed a series of mathematical models of inflamma-

tion. We further highlighted the fact that explicitly incorporating distinct macrophage

phenotypes in models of inflammation is key in fully describing resultant dynamics,

and also indicates that manipulation of macrophage polarisation states could itself be

a viable therapeutic target. We initially chose to focus on two opposing polarisation

states, the first anti-inflammatory (which could be equated with resident macrophages

that exist in a wide range of tissues, or the traditionally labelled M2 phenotype), and

the second pro-inflammatory (which could be equated with the M1 phenotype). This

is doubtlessly an over-simplification in itself; however, this approach enabled us to

expose how model outcomes (such as the existence of a second healthy steady state

in which inflammation is suppressed by a continual presence of anti-inflammatory

macrophages) and dynamics (including oscillations) depend upon our models’ inclu-

sion of distinct macrophage phenotypes. We believe that models that exhibit this ad-

ditional healthy outcome, which is dependent on a resident macrophage population,

are physiologically more realistic than those with only a trivial healthy state. We also

developed an alternative approach to modelling macrophage phenotypes, which is to

consider these as lying on a continuous spectrum of pro/anti-inflammatory activity.

This would allow the capture of more subtle macrophage phenotypes that no doubt

play a role in multiple disease states (Tabas & Bornfeldt, 2016; Chauhan et al., 2016; Hes-

keth et al., 2017; Atri et al., 2018). These models have emerged as potent tools in explor-

ing novel therapeutic interventions, offering insights into manipulating macrophage

phenotypes as potential targets for therapeutic strategies.

6.2 Targets for future work

The association of inflammation with a wide range of chronic diseases has prompted

scientists from diverse scientific domains to conduct extensive research in order to com-
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prehend the complexities inherent in the inflammatory response and provide deeper

insights into the mechanisms that perpetuate chronic inflammatory conditions. Mathe-

matical inflammation models have significantly contributed to understanding the com-

plex nature of the inflammatory response and identifying the pathways that drive in-

flammation to develop into chronic conditions. These models highlight vital factors

and pathways that govern the inflammatory response and focus on interactions be-

tween immune cells, cytokines, and other mediators. Mathematical models play a sig-

nificant role in developing and refining therapeutic interventions for inflammation,

such as targeting specific pro-inflammatory cytokines (Masters et al., 2013; Cohen &

Mosser, 2013), removing apoptotic neutrophils (Liang et al., 2007; Kraakman et al., 2014;

Dunster et al., 2014) and regulating the levels of pro-inflammatory mediators (Waugh

& Sherratt, 2007). Moving forward, we can delve deeper into understanding the in-

flammatory response through exploration of various suggested aspects.

6.2.1 Context-specific models

Our research focused on examining how macrophage phenotypes and generic pro- and

anti-inflammatory mediators influence the outcome of the inflammatory response in a

general context. The results of our work are interesting and can be further expanded

and investigated in future studies. However, our models are deliberately generic in

context, with relevance to various inflammatory conditions or affected tissues. One

target for future work, is to consider the design of models that examine specific cy-

tokines, disease scenarios or distinct tissues. Specifically, we suggest that future studies

could focus on examining specific cytokines that stimulate pro- and anti-inflammatory

macrophages (including Interleukins IL-1, IL-6, IL-10, tumour necrosis, and tumour

growth factor) rather than assuming the existence of generic mediators. This approach

would provide a more precise understanding of the dynamics of the inflammatory re-

sponse.

The behaviour of macrophages varies depending on the type of tissue in which they

are located and the pathological conditions to which they are exposed. The search for

a more accurate characterization of macrophages, identifying their diverse phenotypes

and responses to environmental cues, remains an ongoing challenge. Therefore, the

classification of macrophages into specific phenotypes is very complex and still unre-

solved, especially given that the diversity and complexity of documented macrophage

polarisation states are expanding Murray et al. (2014). Future efforts could include

developing models that incorporate more than two specific macrophage phenotypes

with two neutrophil populations (activated neutrophils and apoptotic neutrophils),
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which may reveal new therapeutic interventions and provide insights into manipulat-

ing macrophage phenotypes as potential targets for therapeutic strategies. In addition,

enhancing these models with detailed descriptions of individual mediators may pro-

vide a more comprehensive understanding of macrophage plasticity and their diverse

responses to stimuli. However, at this stage, we don’t have enough information (or

data) to build such a model accurately. This remains a challenge.

A key point of interest that prompts further studies is the introduction of inflammatory

stimuli (or pathogens) and the inclusion of additional immune cells, such as T and B

lymphocyte cells, in our models. This approach will offer a better understanding of the

complex interactions underlying the inflammatory response, leading to more targeted

investigations of potential therapeutic interventions.

This work could also be expanded and modified to more precisely describe and explore

specific inflammatory mechanisms and diseases that arise from persistent inflamma-

tory responses such as atherosclerosis (Thon et al., 2019), heart disease (Wirtz & von

Känel, 2017), and psoriasis (Ringham et al., 2019). This approach will provide valuable

insights into the progression of diseases and assist in developing tailored therapeutic

strategies.

While the modelling presented in this thesis relates to a wide range of medical condi-

tions, one specific group of chronic diseases that are a priority for ongoing work are

those related to tumour development. The pursuit of potential therapeutic targets re-

mains crucial in the treatment of tumour-associated diseases. Macrophages exhibit a

dual role; they can induce both pro-tumour and anti-tumour effects in response to the

type, concentration and longevity of exposure to stimulating agents. Targeting specific

macrophage phenotypes associated with tumour growth or suppression could lead

to innovative therapeutic strategies (Tamura et al., 2018; Shu et al., 2020). With care-

ful parameterisation and validation against experiemental data, mathematical models

of inflammation offer great potential to supplement laboratory and clinical studies to

guide the identification of therapeutic interventions related to a broad range of medical

conditions.

6.2.2 Addressing the lack of corresponding experimental data

The significant lack of experimental data is a major obstacle in the mathematical mod-

elling of inflammation, against which we can validate and calibrate our models. The

lack of empirical data hampers the development of proposed therapeutic interventions,

the accuracy and reliability of our mathematical representations of inflammatory pro-
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cesses, and the clinical applicability of inflammation models. This insufficiency under-

mines our ability to evaluate these models’ efficacy and predictive power. On the other

hand, the availability of experimental data helps expand the horizons of mathemat-

ical models of inflammation, increase the effectiveness of inflammatory models, and

enhance their predictive power and clinical relevance. Consequently, future efforts in

this field should focus on obtaining extensive experimental data that can be used to

validate and improve mathematical models of inflammation, thus enhancing our un-

derstanding of chronic inflammatory diseases and enabling more accurate predictions

of inflammatory dynamics. This challenge needs the cooperation of the scientific com-

munity to bridge the gap between theoretical and experimental studies, allowing the

effectiveness of inflammation models to be enhanced and their applicability in clinical

and therapeutic contexts.

In our constant endeavour to improve our models, parametrisation remains a signifi-

cant challenge in our work. Mathematical models have been developed to understand

how macrophages change their function in diabetic conditions (Marée et al., 2008; Mas-

ters et al., 2013; Richards & Endres, 2014). These models specifically focus on the role of

macrophages in removing apoptotic cells. Comparison of the models against in vitro

experimental data led to improving the accuracy of the models and directed further ex-

periments, helping to understand the mechanisms that contribute to the reduced rate of

removal of apoptotic cells observed in macrophages from diabetic-prone mice. While

generic models of the inflammatory response have shown some success in particular

disease contexts (Reynolds et al., 2006; Kumar et al., 2008; Torres et al., 2019), their ef-

fectiveness is limited by the lack of available data and the difficulty in inferring many

parameters included in such models. To tackle this, we need to develop an appropriate

experimental design that accurately captures the parameters of interest to which the

model is sensitive, including those responsible for immune cell recruitment, regulation

of pro-inflammatory mediators, and chemotaxis.

6.2.3 Alternative modelling approaches

We used ordinary and partial differential equations in our models to understand the

underlying dynamics of inflammation. However, considering the various techniques

that can be used in mathematical modelling, an interesting approach for future studies

would be to replicate our analysis within the context of an agent-based model. Agent-

based models offer the capability to simulate and study individual cells’ precise in-

teractions and behaviours, providing a more accurate reflection of biological systems.

Compared to mathematical representations such as bifurcation diagrams, these models
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are inherently more accessible and understandable for biologists, facilitating clearer in-

terpretation of results. While agent-based models of inflammation have been proposed

previously (Vodovotz et al., 2008; Vodovotz & An, 2019; Bayani et al., 2020b), these do

not fully account for the diverse range of macrophage phenotypes. An agent-based

model that carefully accounts for macrophage polarisation may offer more clinical rel-

evance and provide new perspectives to enhance our understanding of inflammatory

dynamics and potentially lead to new therapeutic interventions.

Macrophages play a critical role in promoting the inflammatory response and tissue

repair process. They are characterized by their ability to move and migrate towards

inflammatory stimuli. However, our current models lack spatial descriptions encom-

passing the leukocyte’s chemotaxis, cells’ motion, mediator spreading, and the posi-

tions (such as vasculature) from which macrophages are recruited. Addressing this

gap in our work, we recommend future studies to develop spatial models of the in-

flammatory response and investigate the biological interactions occurring at the tissue

level between macrophage (M1 and M2) phenotypes, neutrophils and pro-and anti-

inflammatory mediators. These models can be tailored to fit individual tissue configu-

rations, accounting for factors such as proximity to blood vessels.
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List of bifurcations

Bifurcation analysis is a powerful tool for understanding the behaviour of dynamical

systems. The system’s qualitative behaviour can undergo significant changes as param-

eters vary. These qualitative changes are called bifurcations, and the parameter values

at which they occur are called bifurcation points. Bifurcation points usually involve

changes in the system’s behaviour, such as changes in the stability of fixed points, the

emergence of new fixed points, the onset of oscillations, or the disappearance of fixed

points. This appendix briefly overviews the various local bifurcations discussed in our

chapters, see Table A.1.

Type of bifurcation Brief description Reference

Saddle node
Two fixed points move toward each other,

collide and mutually annihilate.
Strogatz (2018), (p. 46)

Transcritical
Two fixed points move toward each other,

collide, exchange stabilities and move apart.
Strogatz (2018), p. 52

Hopf

One fixed point changes stability at the same

time that a periodic orbit is created or de-

stroyed.

Strogatz (2018), p. 249

Homoclinic
A periodic orbit collides with a saddle point

resulting in the orbit being destroyed.
Strogatz (2018), p. 263

Fold-Hopf
Tangential intersection of curves of saddle

node (fold) and Hopf bifurcations.

Kuznetsov et al. (1998),

p. 299

Bogdanov-Takens
Non-tangential intersection of curves of sad-

dle node (fold) and Hopf bifurcations.

Kuznetsov et al. (1998),

p. 298

Table A.1: Summary of the bifurcation points appearing in Chapters 2–5.
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