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Abstract—The application of multispectral image based par-
tial discharge detection offers a dependable solution for high-
voltage substations. Captured visible light and ultraviolet (UV)
images are denoised, transmitted and fused to enhance detection
performance. However, existing approaches separately design
the sensing-layer image denoising, communication-layer image
transmission, and computing-layer image fusion, and the lack of
unified cooperation hinders the overall performance. To address
this issue, it is crucial to integrate sensing, communication,
and computing to improve detection accuracy and timeliness.
In this paper, we formulate a timeliness and accuracy joint
guarantee problem, which aims to minimize the weighted sum
of peak age of information (AoI), false-positive detection ratio,
and false-negative detection ratio by jointly optimizing sensing-
layer filtering window size, communication-layer time division
ratio, and computing layer wavelet decomposition level. We
propose a multispectral integrated sensing, communication, and
computing algorithm based on AoI and false-negative aware
multi-experience replay cooperative learning to solve the prob-
lem. Simulation results demonstrate that the proposed algorithm
outperforms existing methods in terms of peak AoI, false-positive
detection ratio, false-negative detection ratio, and convergence
speed.

Index Terms—high-voltage partial discharge detection, multi-
spectral image detection, AoI, multi-experience replay coopera-
tive learning, sensing-communication-computing integration

I. INTRODUCTION

Partial discharge causes significant damages to high-voltage
substations and even results in breakdown of power grid. It
is caused by insulation aging and dampness, and contains
various types including corona discharge, arc discharge, sur-
face discharge, and air gap discharge [1]. Partial discharge
detection is crucial for ensuring the safe and stable operation of
power grid. Among various detection methods, multispectral
image based partial discharge detection has demonstrated great
advantages of electromagnetic immunity and high sensitivity.
It combines both visible light and ultraviolet (UV) light
to enable identification and localization of partial discharge
sources. Specifically, UV image reveals discharge existence
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by examining radiation in the UV band, while the visible
light image offers background information for discharge local-
ization. The key processes include image capture, denoising,
transmission, fusion and detection, which involve sensing
layer, communication layer, and computing layer. However,
these three key layers are generally designed separately and
lack unified cooperation, which leads to unignorable perfor-
mance degradation. Therefore, it is an urgent task to improve
detection performance by integrating sensing, communication,
and computing.

Partial discharge detection requires timely image infor-
mation [2], which indicates how closely the images match
the actual state. Although delay has been widely utilized to
measure timeliness, it only reflects the duration of single
frame transmission. A better metric is information timeliness.
Compared with delay, information timeliness spans the entire
life cycle of image sensing, transmission, processing, and
detection, which is critical for realizing real-time detection. It
is important to guarantee information timeliness awareness in
the design of multispectral integrated sensing, communication,
and computing. Some major technical challenges need to be
tackled.

First, multispectral integrated sensing, communication, and
computing requires the collaboration between device-side im-
age denoising and transmission, and edge-side image fusion
and partial discharge detection. It involves the joint optimiza-
tion of median filtering window size, time division ratio,
and wavelet decomposition level, which is a mixed inte-
ger programming problem and NP-hard. Second, timeliness
and accuracy are a pair of paradox metrics. False-positive
and false-negative detection ratios are common metrics of
detection accuracy, which are closely related with image
denoising and fusion. Utilizing more complex image denoising
and fusion mechanisms can increase accuracy but inevitably
reduces timeliness. In addition, information timeliness guar-
antee from long-term perspective is challenging due to the
coupling between states and decisions cross time slots [3].
Last but not least, the lack of collaboration among sensing,
communication, and computing leads to bound violations of
information timeliness and false-negative ratio. These failure
experiences of bound violations contain rich information of
how to guarantee detection timeliness and accuracy but are
generally ignored by classical learning methods such as deep
Q-network (DQN) and deep actor critic (DAC). It requires
thorough investigation on how to cooperatively learn from
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both success and failure experiences for joint guarantee of
timeliness and accuracy.

There exist several works on integrated sensing, commu-
nication, and computing. In [4], Wang et al. formulated
a computation rate maximization problem and proposed an
alternating direction method of multipliers-based alternating
optimization algorithm to solve it. In [5], Qi et al. proposed
a unified framework integrating sensing, communication, and
computing to optimize limited resources for wireless networks.
However, the aforementioned works do not consider informa-
tion timeliness guarantee for multispectral image-based partial
discharge detection.

Age of information (AoI) is an effective indicator to mea-
sure information timeliness. A smaller AoI reflects more con-
sistency between detected image and actual partial discharge
state [6]. Some scholars have studied coordinated resource
management from the perspective of AoI minimization. In
[7], Hu et al. designed a dynamic programming and ant
colony heuristic algorithm to minimize the average AoI of
data collected by internet of things devices. In [8], Sinha
et al. proposed two greedy scheduling policies, i.e., total
AoI minimization and jitter minimization, to improve network
stability. However, these studies ignore the contradiction be-
tween timeliness and accuracy encountered in partial discharge
detection. AoI is reduced at the cost of increased ratios of
false-positive and false-negative detection.

Deep reinforcement learning has been widely adopted to ad-
dress complex network management problem involving collab-
oration among multiple layers. It combines the advantages of
deep neural networks in feature extraction and reinforcement
learning in multivariable collaborative optimization [9]. In
[10], Liu et al. proposed a DQN-based scheme to find the near-
optimal solution that minimizes the average AoI of the system.
In [11], Li et al. proposed an AoI-aware scheduling scheme
based on DAC and primal-dual optimization to optimize the
data rate performance under AoI constraint. However, these
works have not investigated the cooperation between success
and failure experience replay. Moreover, since classical DQN
and DAC are inefficient to simultaneously handle continuous
and integer variables, they adopt variable discretization which
results in unignorable performance loss [12], [13].

Motivated by these challenges, we first construct a model for
multispectral integrated sensing, communication, and comput-
ing for high-voltage partial discharge detection with multispec-
tral images. Then, we formulate the timeliness and accuracy
joint guarantee problem. The objective is to minimize the
weighted sum of peak AoI, the ratio of false-positive detection,
and the ratio of false-negative detection by jointly optimizing
sensing-layer filtering window size, communication-layer time
division ratio, and computing-layer wavelet decomposition
level. Finally, a multispectral integrated sensing, communi-
cation, and computing algorithm based on AoI and false
negative aware multi-experience replay cooperative learning
is proposed to solve the problem. The main contributions are
summarized as follows.

• Integrated sensing, communication, and computing for
multispectral image empowered partial discharge detec-
tion: We construct a framework of integrated sensing,

communication, and computing for partial discharge de-
tection based on multispectral images. The sensing layer
realizes image denoising based on the proposed improved
median filtering. The communication layer performs
transmission of visible light and UV images based on
time division multiplexing (TDM). The computing layer
implements image fusion and partial discharge detec-
tion by combining intensity-hue-saturation (IHS), wavelet
transform and Canny edge detection operator. Integrated
sensing, communication, and computing is achieved by
jointly optimizing sensing-layer filtering window size,
communication-layer time division ratio, and computing-
layer wavelet decomposition level.

• Joint guarantee of detection timeliness and accuracy: We
develop peak AoI to characterize timeliness, and employ
the ratios of false-positive and false-negative detection to
characterize accuracy. Then, timeliness and accuracy are
jointly guaranteed from two aspects. On the one hand,
the objective is defined as a weighted sum of peak AoI,
false-positive detection ratio, and false-negative detection
ratio based on multi-objective optimization. By adjusting
the weights, we can strike the right balance between
timeliness and accuracy. After problem transformation,
AoI virtual deficit queue backlog is minimized to ensure
long-term guarantee of AoI. On the other hand, the
proposed algorithm is augmented with AoI and false-
negative awareness to avoid AoI bound violation and
false-negative detection occurrence.

• Improved learning based on DAC-DQN cooperation as
well as success-failure experience replay cooperation:
The proposed learning algorithm contains two cooper-
ative state spaces. The continuous outputs of DAC in
terms of time division ratios are forwarded as the input of
DQN and incorporated into its state space. Then, integer
optimization decisions of filter window size and wavelet
decomposition layer are made by the augmented DQN.
We further propose multi-experience replay pools and
adaptive mini-batch extraction to facilitate cooperative
learning. Success and failure experiences are extracted
and combined to construct a new mini-batch. The coop-
erative extraction ratio is dynamically adjusted to increase
convergence rate and reduce probabilistic AoI bound
violation and false-negative detection occurrence.

The rest of this paper is organized as follows. Section II
describes the system model of multispectral image empowered
partial discharge detection. The joint guarantee problem of
timeliness and accuracy is formulated in Section III. Section
IV elaborates the proposed integration algorithm. Section V
presents simulation results. Finally, Section VI concludes this
paper.

II. SYSTEM MODEL

The framework of information timeliness-aware integration
of multispectral sensing, communication, and computing for
high-voltage discharge detection is shown in Fig. 1. It consists
of three layers introduced as follows.

The sensing layer realizes image acquisition and denoising.
A multispectral camera is deployed to capture visible light
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Fig. 1. Information timeliness-aware integration of multispectral sensing, communication, and computing for high-voltage discharge detection

TABLE I
NOMENCLATURE

Notation Description Notation Description

Θl
s(t) Sensing queue backlog of visible light image Θu

s (t) Sensing queue backlog of UV image
Sl(t) Denoised frames of visible light image Su(t) Denoised frames of UV image
K(t) Frames of captured visible light and UV images O(t) Frames of fused images
τ l,qs (t) Queuing delay of denoising visible light image τu,qs (t) Queuing delay of denoising UV image
Θl

Tx(t) Communication queue backlog for visible light image Θu
Tx(t) Communication queue backlog for UV image

Cl(t) Transmitted frames of visible light image Cu(t) Transmitted frames of UV image
τ l,qTx(t) Queuing delay of visible light image transmission τu,qTx (t) Queuing delay of UV image transmission
Θl

c(t) Computing queue backlog for visible light image Θu
c (t) Computing queue backlog for UV image

τ l,qc (t) Queuing delay of visible light image fusion τu,qc (t) Queuing delay of UV image fusion
FP (t) False-positive detection ratio FN(t) False-negative detection ratio
τc(t, k) Image fusion delay of the k-th frame in slot t τd(t, k) Detection delay of the k-th frame in slot t
τ(t, k) End-to-end delay of the k-th frame in slot t PAoI(t, k) Peak AoI of the k-th frame in slot t

PAoI(t) Peak AoI in slot t AD(t) Virtual deficit queue backlogs of C10

Gl
s(t) Virtual deficit queue backlogs of C4 Gu

s (t) Virtual deficit queue backlogs of C5

Gl
Tx(t) Virtual deficit queue backlogs of C6 Gu

Tx(t) Virtual deficit queue backlogs of C7

Gl
c(t) Virtual deficit queue backlogs of C8 Gu

c (t) Virtual deficit queue backlogs of C9

and UV images of partial discharge. The light is divided into
two beams through the spectroscope, which are converted into
visible light image and UV image through visible light and
UV CMOS chips, respectively. Afterwards, improved median
filtering is performed to achieve image denoising. In the
communication layer, the denoised data of visible light and UV
images are transmitted from camera to edge server in TDM
through 4G/5G. In the computing layer, received visible light
and UV images are fused based on IHS-wavelet transform.
Then, partial discharge detection is performed based on Canny
edge detection. The goal is to achieve information timeliness-
aware multispectral integrated sensing, communication, and
computing for high-voltage discharge detection. It is necessary
to optimize the parameters of both visible light and UV
images because they are processed independently by separate
CMOS chips but are fused in the end to improve detection
performance. We employ AoI to characterize detection time-
liness, while detection accuracy is measured based on the

ratios of false-positive and false-negative detection. For ease
of reference, we list the key notations of this paper in Table
I.

A. Sensing Layer Model

1) Image denoising model: To denoise salt and pepper
noise (SPN) and Gaussian noise, we combine median filtering
and mean filtering to propose an improved median filtering al-
gorithm. This algorithm assigns weights to each pixel centered
around the median pixel and calculates the weighted sum as
the filter output. The steps are introduced as follows.

Window size selection of improved median filtering:
We consider a discrete slot model with T slots. The set is
defined as T and the slot length is τ . In each slot, K(t)
frames of visible light images and K(t) frames of UV images
are captured. Take the k-th frame UV image in slot t as an
example. Assume that the coordinate of pixel to be filtered is
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(x, y) and its gray level is denoted as Iuk (x, y, t). Construct
a window centered at (x, y) to perform median filtering on
all pixels within the window. Since visible light and UV
images are processed at separate CMOS chips, different filter
window sizes are adopted to enhance denoising performance.
Define the window sizes of visible light and UV images as
wl(t), wu(t) ∈ W = {Wmin, · · · ,W, · · · ,Wmax}, and W is
a set of odd numbers. As shown in Fig. 1, wl(t) = 3 and
wu(t) = 5 indicate that the window sizes for visible light and
UV images are 3 × 3 and 5 × 5, respectively. For example,
wu(t) = W represents that the window size is W × W .
In practical implementation, W is selected by the proposed
algorithm. Wmin and Wmax are the minimum and maximum
window sizes, respectively.

Pixel weight calculation: Derive the median pixel (i0, j0)
by sorting W × W pixels within the window based on gray
level. The weight assigned to each pixel around (i0, j0) in the
k-th frame of UV image is given by

ρuk(i, j, t) =
1/(1 + (Du

k (i, j, t))
2)∑x+W∗

i=x−W∗
∑y+W∗

j=y−W∗ [1/(1 + (Du
k (i, j, t))

2)]
.

(1)

ρuk(i, j, t) is negatively proportional to the difference be-
tween gray levels, i.e., Du

k (i, j, t) = Iuk (i, j, t)− Iuk (i0, j0, t).
W ∗ = ⌊W/2⌋, and ⌊·⌋ represents rounding down.

Output of improved median filtering: The output is the
weighted sum of gray levels of all pixels within the filtering
window, which is given by

Ius,k(x, y, w
u(t)) =

x+W∗∑
i=x−W∗

y+W∗∑
j=y−W∗

ρuk(i, j, t)I
u
k (i, j, t). (2)

The improved median filtering for visible light images is
performed similarly.

2) Sensing-layer data queue model: Define Θl
s(t) and

Θu
s (t) as sensing data queues for visible light and UV images,

respectively. As shown in Fig. 2, the frames of captured visible
light images and UV images K(t) are the inputs of Θl

s(t)
and Θu

s (t). The denoised frames of visible light images Sl(t)
and UV images Su(t) are the outputs. The queue backlogs of
Θl

s(t) and Θu
s (t) are given by

Θl
s(t+ 1) = [Θl

s(t) +K(t)− Sl(t)]+, (3)

Θu
s (t+ 1) = [Θu

s (t) +K(t)− Su(t)]+, (4)

where [·]+ represents max[·, 0]. Sl(t) and Su(t) are derived
as

Sl(t) =

⌊
τf l

s(t)

Cl
s(w

l(t))

⌋
, (5)

Su(t) =

⌊
τfu

s (t)

Cu
s (w

u(t))

⌋
, (6)

where f l
s(t) and fu

s (t) represent the computing resources
used for visible light and UV image denoising, respectively.
Cl

s(w
l(t)) and Cu

s (w
u(t)) represent the computation complex-

ity of denosing, which are related to the window size.

Based on the Little’s Law [14], the queuing delays of
denoising visible light and UV images are given by

τ l,qs (t) =
Θl

s(t+ 1)

K̃(t+ 1)
, (7)

τu,qs (t) =
Θu

s (t+ 1)

K̃(t+ 1)
, (8)

where K̃(t) = 1
t−1

∑t−1
m=1 K(m) represents the average data

arrival rate. Since sensing data queues for visible light and
UV images have consistent inputs K(t) in all slots, the same
notation can be used to represent the average data arrival rate
of denoising visible light and UV images.

B. Communication Layer Model

Define Θl
Tx(t) and Θu

Tx(t) as communication data queues
for visible light and UV images, respectively. As shown in Fig.
2, the outputs of sensing data queues Sl(t) and Su(t) are the
inputs of Θl

Tx(t) and Θu
Tx(t), respectively. The transmitted

frames of visible light images Cl(t) and UV images Cu(t)
are the outputs. The queue backlogs of Θl

Tx(t) and Θu
Tx(t)

are given by

Θl
Tx(t+ 1) = [Θl

Tx(t) + Sl(t)− Cl(t)]+, (9)

Θu
Tx(t+ 1) = [Θu

Tx(t) + Su(t)− Cu(t)]+. (10)

Denoised images are transmitted to the edge server based
on TDM, which possesses the advantages of low complexity
and strong anti-interference capability. Define δl(t) and δu(t)
as the time division ratios of visible light and UV images,
which satisfy δl(t) + δu(t) = 1, δl(t), δu(t) ∈ [0, 1]. Cu(t)
and Cl(t) are given by

Cl(t) = argmax
K

(
δl(t)τR(t)−

K∑
k=1

Al
c(t, k) ≥ 0

)
, (11)

Cu(t) = argmax
K

(
δu(t)τR(t)−

K∑
k=1

Au
c (t, k) ≥ 0

)
, (12)

where Al
c(t, k) and Au

c (t, k) respectively represent the data
sizes of the k-th frame visible light and UV images. R(t)
represents the data transmission rate derived based on Shannon
capacity. In (11), δl(t)τR(t) represents the maximum amount
of data allowed to be transmitted for visible light images in slot
t, and

∑K
k=1 A

l
c(t, k) represents the total data size of K frames

of visible light images. The maximum transmitted frame K
should satisfy the condition δl(t)τR(t)−

∑K
k=1 A

l
c(t, k) ≥ 0.

Equation (12) is calculated similarly as (11).
The queuing delays of visible light and UV image trans-

mission in the communication layer are given by

τ l,qTx(t) =
Θl

Tx(t+ 1)

S̃l(t+ 1)
, (13)

τu,qTx (t) =
Θu

Tx(t+ 1)

S̃u(t+ 1)
, (14)

where S̃l(t) = 1
t−1

∑t−1
m=1 S

l(m) and S̃u(t) =
1

t−1

∑t−1
m=1 S

u(m) represent the average data arrival rates of
denoised visible light and UV images.
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Fig. 2. Backlog evolution of sensing data queues, communication data queues, and computing data queues.

C. Computing Layer Model

In the computing layer, edge server fuses the received
visible light and UV images to detect partial discharge.

1) IHS-wavelet transform based image fusion: Image fu-
sion is performed based on the proposed IHS-wavelet trans-
form as shown in Fig. 3. It incorporates fast fusion of IHS
transform and strong information extraction ability of wavelet
transform.

IHS Transform: Transfer the visible light image from red,
green and blue (RGB) space into IHS space to obtain intensity
(I), hue (H) and saturation (S) components.

Wavelet Decomposition: Perform wavelet decomposition
to decompose UV image into four components, i.e., low-low
(LL), high-low (HL), low-high (LH), and high-high (HH).
Define d(t) as the wavelet decomposition level in slot t,
d(t) ∈ D = {dmin, · · · , dmax}, where dmin and dmax are the
minimum and maximum wavelet decomposition levels. For the
n-th level, n ≤ d(t), define the coefficient matrices of LL, HL,
LH, and HH as Zn, BH

n , BV
n , and BD

n , which are given by
Zn = Lr · Lc · Zn−1,
BH

n = Hr · Lc · Zn−1,
BV

n = Lr ·Hc · Zn−1,
BD

n = Hr ·Hc · Zn−1,

(15)

where Lr and Hr are filters operated on row, and Lc and Hc

are filters operated on column. Apply (15) to I component
of visible light image in a similar way to realize wavelet
decomposition.

Coefficient combination: Combine the coefficients corre-
sponding to each component at the same level in the I compo-
nent of visible light image and UV image. The high-frequency
coefficients corresponding to HL, LH, and HH components
are combined based on max-selection method to extract more
image details. Low-frequency coefficients corresponding to
LL component are combined based on averaging method to
improve stability.

Wavelet reconstruction: Perform wavelet reconstruction
in each level to obtain a new LL component. The wavelet
reconstruction in level d(t) is given by

Zd(t)−1 = L̄rL̄cZd(t) + L̄rH̄cB
H
d(t)

+ H̄rL̄cB
V
d(t) + H̄rH̄cB

D
d(t), (16)

where [̄·] represents conjugate transpose operation. Repeat (16)
for d(t) times, and obtain the new I component I′k,t.

Inverse IHS transform: Transform I′k,t together with Hk,t

and Sk,t components back into RGB space to obtain the fused
image.

2) Computing-layer data queue model: Define Θl
c(t) and

Θu
c (t) as computing data queues for visible light and UV

images, respectively. As shown in Fig. 2, the outputs of
communication data queues Cl(t) and Cu(t) are the inputs
of Θl

c(t) and Θu
c (t). The frames of fused images O(t) are the

outputs. The queue backlogs of Θl
c(t) and Θu

c (t) evolve as

Θl
c(t+ 1) = [Θl

c(t) + Cl(t)−O(t)]+, (17)

Θu
c (t+ 1) = [Θu

c (t) + Cu(t)−O(t)]+. (18)

O(t) depends on the wavelet decomposition level d(t),
which is given by

O(t) = argmax
K

(
τ −

K∑
k=1

τc(t, k) ≥ 0

)
. (19)

τc(t, k) represents the image fusion delay, which is derived as

τc(t, k) =
Ccom(k, d(t))Ac(t, k)

fc(t)
, (20)

where fc(t) represents the computing resources for image
fusion. Ac(t, k) represents the data size of the k-th frame
image to be fused. Ccom(k, d(t)) represents the computation
complexity of image fusion associated with d(t).

The queuing delays of visible light and UV image fusion
in the computing layer are given by

τ l,qc (t) =
Θl

c(t+ 1)

C̃l(t+ 1)
, (21)

τu,qc (t) =
Θu

c (t+ 1)

C̃u(t+ 1)
, (22)

where C̃l(t) = 1
t−1

∑t−1
m=1 C

l(m) and C̃u(t) =
1

t−1

∑t−1
m=1 C

u(m) represent the average data arrival
rates of transmitted visible light and UV images.
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3) Canny edge-based partial discharge detection: After
image fusion, partial discharge detection is performed based
on Canny edge detection.

First, the UV image is converted into a gray image, which
is binarized to obtain the binary image. The Canny operator
is used to detect the edge of the binary image and determine
the light spot region. Then, the area of the light spot region
is calculated. When the area exceeds the threshold ζ, it is
determined as a fault region. Based on the coordinates of the
edge points in faulty region that obtained from UV image, the
faulty region is localized in the fused image. In this way, the
location and extent of partial discharge fault can be clearly
identified in fused image.

We use ratios of false-positive and false-negative detection
to measure the accuracy of partial discharge detection. False-
positive detection represents that a normal image is misjudged
as faulty. False-negative detection represents that a faulty
image is misjudged as normal. Define the numbers of detected
frames with false-positive and false-negative faults in slot t as
OFP (t) and OFN (t), which can be observed at the end of
slot t. The ratios of false-positive detection and false-negative
detection are calculated as

FP (t) =
OFP (t)

O(t)
, (23)

FN(t) =
OFN (t)

O(t)
. (24)

Define τd(t, k) as the detection delay for the k-th frame
fused image in slot t, which is given by

τd(t, k) =
Cdet(t, k)Ad(t, k)

fd(t)
, (25)

where fd(t) represents the computing resources for Canny
edge detection, Ad(t, k) represents the data size of the k-th
frame fused image, and Cdet(t, k) represents the computation
complexity of detecting the k-th frame fused image in slot t.

Our model is compatible with other algorithms of image
denoising and fusion because none specific assumption is
imposed on the queue model, image data size, and channel
state. For example, the proposed communication layer model
can be easily extended to frequency division multiplexing
(FDM) by replacing variables of time division ratio with
bandwidth allocation ratios. Consequently, the adoption of
different algorithms or mechanisms only impacts the queue
inputs and outputs, and the new problem can be easily solved
by the proposed algorithm with little modification.

D. AoI Model

AoI is defined as the existence duration extending from the
capture time of the last image used for detection to the current
time. Define τ(t, k) as the end-to-end delay of the k-th frame.
As shown in Fig. 4, the initial AoI of the k-th frame in the t-th
slot is τ(t, k). AoI keeps increasing, i.e., information becomes
aging, until the (k+1)-th image has been detected. Afterwards,
information is renewed, and AoI is initialized to the end-to-
end delay of the next-frame image experienced from capture

Fig. 3. Flow of image fusion.

Fig. 4. Evolution of AoI.

to detection, i.e., τ(t, k + 1). Therefore, the peak AoI of the
k-th frame is given by

PAoI(t, k) = τ(t, k) + ∆τ(t, k), (26)

where ∆τ(t, k) is the time interval between detection of the
k-th frame and that of the next frame.

Fig. 4 presents two cases of AoI evolution. The first case
represents a typical scenario of high frame-rate capture where
the (k + 1)-th frame is already in the computing data queue.
∆τ(t, k) equals to the delay of image fusion τc(t, k + 1).
The second case represents a typical scenario of low frame-
rate capture where the (k + 1)-th frame is captured after
the detection of the k-th frame. ∆τ(t, k) depends on image
capture interval and end-to-end delay. Under these two cases,
∆τ(t, k) is modeled as

∆τ(t, k) =



τc(t, k + 1),

high frame-rate case,
τ

K(t−1) − τ(t− 1, O(t− 1)) + τ(t, k),

low frame-rate case, k = 1,
τ

K(t) − τ(t, k − 1) + τ(t, k),

low frame-rate case, k ̸= 1,

(27)
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Based on (26) and (27), the peak AoI of the k-th frame,
i.e., PAoI(t, k), includes the end-to-end delay, which is not
only related to sensing-layer queuing delay, but also related
to communication-layer queuing delay and computing-layer
queuing delay and detection delay. Therefore, the slot-index
PAoI(t, k) is different across both frame and slot. The peak
AoI in the t-th slot depends on the largest peak AoI over O(t)
frames, which is given by

PAoI(t) = max
k=1,2,··· ,O(t)

{PAoI(t, k)} (28)

From (26) and (27), it is intuitive that increasing frame
rate K(t)

τ can reduce τ
K(t−1) in the low frame-rate case,

thereby reducing peak AoI. However, this is not always valid
since high frame-rate also incurs larger end-to-end delay.
Particularly, the capacities of denoising, communication, and
image fusion jointly determine the peak AoI. Therefore, it
is important to minimize AoI by jointly optimizing sensing,
communication, and computing.

Remark 1. AoI and end-to-end delay are not exactly the
same. Reducing end-to-end delay is beneficial for peak AoI
reduction to a certain degree, but AoI keeps rising if no new
frame occurs.

Remark 2. Although using images with smaller AoI reduces
false positive and false negative, AoI minimization is not
necessarily consistent with detection accuracy improvement.
For example, increasing filtering window size and wavelet de-
composition level results in higher accuracy, but also increases
end-to-end delay and peak AoI.

Remark 3. Low end-to-end delay is achieved at the cost of
resource redundancy, which are thus not equivalent to low AoI
guarantee. Specifically, redundant storage, communication,
and computing resources are not fully utilized to transmit
useful information as much as possible, which results in high
AoI.

III. PROBLEM FORMULATION

In this paper, we address timeliness and accuracy joint
guarantee problem of partial discharge detection with mul-
tispectral images. The objective is to minimize the weighted
sum of peak AoI, the ratio of false-positive detection, and the
ratio of false-negative detection by jointly optimizing sensing-
layer filtering window size, communication-layer time divi-
sion ratio, and computing-layer wavelet decomposition level.
Considering dynamic image data arrivals and departures of
sensing, communication, and computing layers, we investigate
the optimization of time-average peak AoI over T slots,
which makes the proposed model more suitable for practical
applications with stochastic network characteristic and unig-
norable queue backlogs. We also consider a series of long-
term constraints of AoI and queuing delay. The optimization
problem is formulated as

P1 : min
{wl(t),wu(t),δl(t),δu(t),d(t)}

1

T

T∑
t=1

{
α1PAoI(t)

+ α2FP (t) + α3FN(t)
}
,

s.t. C1 : wl(t), wu(t) ∈ W,∀t ∈ T ,

C2 : δl(t), δu(t) ∈ [0, 1], δl(t) + δu(t) = 1,∀t ∈ T ,

C3 : d(t) ∈ D,∀t ∈ T ,

C4 : lim
T→∞

1

T

T∑
t=1

Θl
s(t)

K̃(t)
⩽ τ l,qs,max,

C5 : lim
T→∞

1

T

T∑
t=1

Θu
s (t)

K̃(t)
⩽ τu,qs,max,

C6 : lim
T→∞

1

T

T∑
t=1

Θl
Tx(t)

S̃l(t)
⩽ τ l,qTx,max,

C7 : lim
T→∞

1

T

T∑
t=1

Θu
Tx(t)

S̃u(t)
⩽ τu,qTx,max,

C8 : lim
T→∞

1

T

T∑
t=1

Θl
c(t)

C̃l(t)
⩽ τ l,qc,max,

C9 : lim
T→∞

1

T

T∑
t=1

Θu
c (t)

C̃u(t)
⩽ τu,qc,max,

C10 : lim
T→∞

1

T

T∑
t=1

PAoI(t) ⩽ AoImax, (29)

where α1, α2, and α3 are the wights of AoI, false-positive
ratio, and false-negative ratio, respectively, which represent the
dominance of a particular metric on the entire optimization ob-
jective. Therefore, the weights should be carefully determined
to ensure that the weighted PAoI(t), FP (t), and FN(t) are
in the same order of magnitude. C1 is the sensing constraint
on filtering window size. C2 is the communication constraint
on time division ratio. C3 is the computing constraint on
wavelet decomposition level. C4 ∼ C9 are queuing delay
constraints, where τ l,qs,max, τu,qs,max, τ l,qTx,max, τu,qTx,max, τ l,qc,max,
and τu,qc,max represent the queuing delay thresholds of Θl

s(t),
Θu

s (t), Θ
l
Tx(t), Θ

u
Tx(t), Θ

l
c(t), and Θu

c (t), respectively. C10

means that the average peak AoI should be no greater than
the threshold AoImax.

Based on virtual queue [15], the long-term constraints are
converted into queue stability constraints. Define the virtual
deficit queues of queuing delay corresponding to C4, C5, C6,
C7, C8, and C9 as Gl

s(t), G
u
s (t), G

l
Tx(t), G

u
Tx(t), G

l
c(t), and

Gu
c (t). Define the virtual deficit queues of AoI corresponding

to C10 as AD(t) . Virtual deficit queue backlogs are given by

Gl
s(t+ 1) =

[
Gl

s(t) +
Θl

s(t+ 1)

K̃(t+ 1)
− τ l,qs,max

]+
, (30)

Gu
s (t+ 1) =

[
Gu

s (t) +
Θu

s (t+ 1)

K̃(t+ 1)
− τu,qs,max

]+
, (31)

Gl
Tx(t+ 1) =

[
Gl

Tx(t) +
Θl

Tx(t+ 1)

S̃l(t+ 1)
− τ l,qTx,max

]+
, (32)

Gu
Tx(t+ 1) =

[
Gu

Tx(t) +
Θu

Tx(t+ 1)

S̃u(t+ 1)
− τu,qTx,max

]+
, (33)

Gl
c(t+ 1) =

[
Gl

c(t) +
Θl

c(t+ 1)

C̃l(t+ 1)
− τ l,qc,max

]+
, (34)

Gu
c (t+ 1) =

[
Gu

c (t) +
Θu

c (t+ 1)

C̃u(t+ 1)
− τu,qc,max

]+
, (35)
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Fig. 5. The framework of multispectral integrated sensing, communication, and computing algorithm based on AoI and false negative aware multi-experience
replay cooperative learning.

AD(t+ 1) =
[
AD(t) + PAoI(t)−AoImax

]+
. (36)

Virtual queue backlog characterizes the deviation from the
threshold. If virtual queues are mean rate stable, C4 ∼ C10

hold automatically [16].

Denoting Γ(t) =
[
Gl

s(t), G
u
s (t), G

l
Tx(t), G

u
Tx(t), G

l
c(t),

Gu
c (t), AD(t)

]
, Lyapunov function is defined as

L(Γ(t)) =
1

2

[
(Gl

s(t))
2 + (Gu

s (t))
2 + (Gl

Tx(t))
2

+(Gu
Tx(t))

2 + (Gl
C(t))

2 + (Gu
C(t))

2 + (AD(t))2
]
. (37)

The one-slot Lyapunov drift is the expected deviation of the
Lyapunov function between two adjacent slots, i.e., E[L(Γ(t+
1))−L(Γ(t))|Γ(t)]. Define Ω(t) = α1PAoI(t)+α2FP (t)+
α3FN(t). By minimizing the upper bound of drift, the long-
term optimization problem P1 is transformed into a bunch of
single-slot sequential optimization problem as

P2 : min
{wl(t),wu(t),δl(t),δu(t),d(t)}

Υ(t) = V Ω(t)

+Gl
s(t)

Θl
s(t+ 1)

K̃(t+ 1)
+Gu

s (t)
Θu

s (t+ 1)

K̃(t+ 1)

+Gl
Tx(t)

Θl
Tx(t+ 1)

S̃l(t+ 1)
+Gu

Tx(t)
Θu

Tx(t+ 1)

S̃u(t+ 1)

+Gl
c(t)

Θl
c(t+ 1)

C̃l(t+ 1)
+Gu

c (t)
Θu

c (t+ 1)

C̃u(t+ 1)

+AD(t)PAoI(t),

s.t. C1 ∼ C3, (38)

where V is the weight of E
[
Ω(t)|Γ(t)

]
, which enables ad-

justable tradeoff between Ω(t) minimization and queue stabil-
ity.

IV. INTEGRATION ALGORITHM OF MULTISPECTRAL
SENSING, COMMUNICATION, AND COMPUTING BASED ON
AOI AND FALSE-NEGATIVE AWARE MULTI-EXPERIENCE

REPLAY COOPERATIVE LEARNING

We model the transformed problem as a Markov decision
process (MDP). Conventional solutions for MDP problems
such as dynamic programming and policy iteration are not
applicable due to the following reasons. First, the optimization
problem involves both continuous and integer optimization
variables, which falls into the category of mixed-integer non-
linear programming and is NP-hard. Second, it is infeasible to
derive the state transfer probability of MDP because a priori
knowledge of stochastic variables is unknown. Therefore, the
model-free DQN is employed as a solution. However, since P2
involves both integer and continuous optimization variables, it
cannot be directly solved by conventional DQN. We address
this issue by augmenting DQN with a cooperative DAC
network, where the continuous output of DAC is incorporated
into the state space of DQN to generate integer decision. The
dual state space, action space, and reward function of MDP
are introduced as follows.

1) Dual State Space: Dual state spaces Sc(t) and Sd(t)
are constructed for DAC and DQN, respectively. Sc(t) =
{Gl

s(t), G
u
s (t), G

l
Tx(t), G

u
Tx(t), G

l
c(t), G

u
c (t), AD(t), V },

which contains virtual deficit queue backlogs of queuing
delay and AoI, and the weight of E

[
Ω(t)|Γ(t)

]
.

Sd(t) = {Sc(t), Ãc(t)}, where Ãc(t) represents the
continuous action output of DAC.

2) Action Space: The action space contains continuous
space Ac(t) =

{
δl(t), δu(t)

}
and integer space Ad(t) =

wl(t)⊗ wu(t)⊗ d(t), where ⊗ is Cartesian product.
3) Reward Function: The reward function is defined as the

negative of the optimization objective of P2, i.e., −Υ(t).
The detailed framework of the proposed algorithm is shown

in Fig. 5. The edge server constructs a pair of cooperative
DAC and DQN to learn the optimal integration strategy of
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multispectral sensing, communication, and computing. The
DAC consists of an actor network θactor and a critic network
θcritic, which are utilized to learn the continuous decisions
of time division ratios of UV and visible light images. The
continuous output of DAC is forwarded as the input of DQN,
which combines a main network θmain and a target network
θtarget to learn the integer decisions of filter window size and
wavelet decomposition layer.

We further design multi-experience replay pools to improve
convergence rate and learning optimality. The multi-experience
replay pools consist of a success experience replay pool G(t)
and a failure experience replay pool H(t). The loss function is
calculated to update DQN based on mini-batch extracted from
both success and failure pools. The proposed algorithm can
achieve fast convergence and reduce probabilistic AoI bound
violation and false-negative detection occurrence at initial-
learning and post-learning stages respectively by adjusting the
cooperative extraction ratio between G(t) and H(t).

The proposed algorithm is suitable for practical system with
stochastic nature where the global knowledge is unavailable. In
addition, the absence of any assumptions about the probability
distribution of random variables further enhances its practical
value. The implementation procedures are demonstrated in
Algorithm 1, which consists of 1) dual action generation;
2) action execution; 3) AoI and false negative-aware multi-
experience replay cooperative learning.

1) Dual Action Generation: First, the edge server inputs
Sc(t) into θactor and draws the continuous actions Ãc(t)
based on π(Sc(t)|θactor). Then, Sd(t) is generated with
Sc(t) and Ãc(t). Moreover, the edge server puts Sd(t)
into θmain to draw the integer actions Ãd(t) based on
Q(Sd(t),Ad(t),θmain) and ε-greedy method.

2) Action Execution: The edge server sends the actions of
filter window size and time devision ratios of UV and visible
light images to the multispectral camera for image denoising
and transmission.

3) AoI and False Negative-Aware Multi-Experience Replay
Cooperative Learning: After partial discharge detection, the
edge server observes AoI(t), FP (t), FN(t), and updates
queue backlogs of Θl

s(t+1), Θu
s (t+1), Θl

Tx(t+1), Θu
Tx(t+1),

Θl
c(t+1), Θu

c (t+1), Gl
s(t+1), Gu

s (t+1), Gl
Tx(t+1), Gu

Tx(t+
1), Gl

c(t+1), Gu
c (t+1), and AD(t+1) as (3), (4), (9), (10),

(17), (18), and (30)∼ (36). Then, the edge server calculates re-
ward −Υ(t), transfers to the next state Sd(t+1) and generates
a transition I(t) = {Sd(t), Ãd(t),−Υ(t),Sd(t+ 1)}.

The proposed algorithm defines success experience and
failure experience from the view of AoI bound violation
and false negative occurrence, which can both achieve fast
convergence from success experience and reduce probabilistic
AoI bound violation and false-negative detection occurrence.
Define success experience as the transition that peak AoI
bound violation and false-negative detection do not occur in
the t-th slot, i.e., PAoI(t) ≤ AoImax, FN(t) = 0. Define
failure experience as PAoI(t) > AoImax, or FN(t) > 0.
Due to the inherent hysteresis of DRL and action coupling
over slots, the proposed algorithm constructs failure experience
pool H(t) by taking the past Mf (t) experiences out of G(t)
and putting them into H(t).

Algorithm 1 Multispectral Integrated Sensing, Communica-
tion, and Computing Algorithm based on AoI and False-
Negative Aware Multi-experience Replay Cooperative Learn-
ing

1: Input: T , Sc(1), Sd(1).
2: Output: {wu(t), wl(t), δu(t), δl(t), d(t)}.
3: For t = 1, · · · , T do
4: Dual action drawing:
5: Obtain the continuous action Ãc(t) of DAC based on

π(Sc(t)|θactor) and generate Sd(t).
6: Put Sd(t) into θmain to draw the integer actions Ãd(t)

based on Q(Sd(t),Ad(t),θmain) and ε-greedy method.
7: Action execution:
8: Send actions to multispectral camera for image denois-

ing and transmission.
9: AoI and false negative-aware multi-experience replay

cooperative learning:
10: Observe AoI(t), FP (t), FN(t), and updates all queue

backlogs.
11: Calculate reward −Υ(t), transfer to the next

state Sd(t + 1) and generate a transition I(t) =
{Sd(t), Ãd(t),−Υ(t),Sd(t+ 1)}.

12: Calculate reward −Υ(t) as (38).
13: Update all queue backlogs and transfer to Sd(t+ 1).
14: if PAoI(t) > AoImax, or FN(t) > 0
15: Construct H(t) by taking the past Mf (t) experiences

out of G(t) and putting them into H(t).
16: end if
17: Calculate the cooperative extraction ratio β(t) based on

(39) and extract a mini-match B̃(t) from G(t) and H(t).
18: Calculate TD error δ(t) as (40).
19: Calculate loss function Ld(t) and Lc(t) as (41) and (42).
20: Update θmain, θcritic, and θactor.
21: Update θtarget = θmain every Td slots.
22: end for

The edge server extracts Id experiences from both success
experience replay pool G(t) and failure experience replay pool
H(t) to cooperatively construct a mini-batch B̃(t). Define
the cooperative extraction ratio β, β > 0, as the ratio of
the number of success experiences to that of experiences in
B̃(t). Define βmin and βmax as the upper and lower bounds of
β. As time slot increasing, β(t) keeps decreasing from βmax

with the step size of η0 so as to achieve fast convergence
speed by exploiting more success experiences at the initial-
learning stage, and reduce probabilistic AoI bound violation
and false-negative detection occurrence by exploiting more
failure experiences at the post-learning stage. When AoI bound
violation and false negative occurs, the cooperative extraction
ratio β increases with the step size of ηβ to improve learning
optimality. Therefore, β is given by

β(t) = max
{
βmin, βmax(1− η0t)

+ ηβI{PAoI(t+ 1) > AoImax or FN(t) > 0}
}
. (39)

I{x} represents the indicator function, where I{x} = 1
represents that x is true, and I{x} = 0 otherwise.
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The temporal-difference (TD) error of DQN are calculated
based on both success experiences and failure experiences in
B̃(t), which is given by

δ(t) =
∑

∀(Sd(t),Ad(t))∈B̃(t)

[−Υb(t)−Q(Sd(t),Ad(t),θmain)

+ γd max
Ad(t+1)

Q(Sd(t+ 1),Ad(t+ 1),θtarget)], (40)

where γd ∈ (0, 1] is the DQN discount factor.
The loss function utilized to measure the learning perfor-

mance of DQN is calculated as

Ld(t) = (δ(t))
2
. (41)

Since the continuous output of DAC is part of the state space
for DQN, the Q value output by DQN, which quantifies state-
action value, is utilized to measure the learning performance
of DAC. Specifically, given the same action, a larger Q value
indicates that the state is more superior for reducing AoI and
avoiding false-negative detection. Therefore, the loss function
of DAC is defined as the average Q value of DQN with Ãc(t)
as part of the state, which is given by

Lc(t) =

− 1

|Ad(t)|
∑

Ãd(t)∈Ad(t)

Q(Sd(t), Ãd(t),θmain | Ãc(t)),

(42)

where |Ad(t)| represents the size of Ad(t).
Finally, edge server updates the main network θmain, actor

network θactor and critic network θcritic with gradient descent
algorithm. The target network θtarget is updated every Td > 1
slots as θtarget = θmain.

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value

Wmin,Wmax 3, 9 dmin, dmax 3, 6

Al
c(t, k), A

u
c (t, k) 0.1, 0.2 Mbits K(t) 15

fu
s (t), f l

s(t) 1.2 GHz τ , Td 1 s, 20
R(t) 7 Mbits/s AoImax 0.2 s

α1, α2, α3 10, 1, 10 βmin, βmax 0.1, 0.2

η0, ηβ 0.02, 0.05 γd 0.99

V. SIMULATION RESULTS

In simulation, 800 frames of UV and visible light images
captured in practical high-voltage substations are utilized to
construct the sample base and validate the effectiveness of the
proposed algorithm. The detailed simulation parameters are
summarized in Table II [17], [18]. The proposed algorithm
can be extended to new data sets by dynamically adjusting
the optimization policy based on performance feedbacks.
Moreover, success and failure experiences of new data sets
can be extracted and combined to enhance learning capability,
increasing convergence rate, and reducing probabilistic AoI
bound violation and false-negative detection occurrence. The

TABLE III
ANALYSIS OF EXPERIMENTAL RESULTS

PAoI(t) (ms) FP (t) FN(t)

Experiment I

Proposed 194.0 1.85 0
DDPG 217.0 5.53 3.87

EE 190.8 16.47 4.98
AG 186.7 15.10 6.12

Experiment II

Proposed 183.7 0.80 0
DDPG 222.9 2.47 0

EE 155.2 16.55 5.16
AG 148.0 14.93 6.07

Experiment III

Proposed 194.7 1.87 0
DDPG 236.5 1.42 0

EE 161.7 16.59 5.11
AG 161.4 14.97 6.18

Fig. 6. Peak AoI versus time slots.

simulation environment is constructed by MATLAB and run
over ThinkStation P520 with Intel Core i7-6900K CPU and
48 GB random access memory.

Three state-of-art algorithms are employed for comparison.
The first one is the deep deterministic policy gradient algo-
rithm (DDPG) [19]. The optimization objective and variables
of DDPG are the same as the proposed algorithm. The second
one is the expert experience algorithm (EE) [17], where
filtering window size and wavelet decomposition level are
determined as ωu(t) = ωl(t) = 3 and d(t) = 4 based on
expert experience. The third one is the age-greedy algorithm
(AG) [20]. Filtering window size and wavelet decomposition
level of AG are set as the minimum values to aggressively
minimize AoI. Both EE and AG aim to minimize the peak
AoI by optimizing time division ratio.

A total of three experiments are carried out. In each slot,
K(t) frames of images are randomly extracted from the
sample base as the inputs of Θl

s(t) and Θu
s (t). Table III

presents the performances of three experiments. Compared
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Fig. 7. AoI bound violation ratio versus training round.

with EE, numerical results of three experiments show that the
proposed algorithm reduces false-positive detection ratio by
90.89% at the cost of 11.30% peak AoI increment on average.
Additionally, the false-negative detection ratio of the proposed
algorithm remains as 0 throughout three experiments, which
verifies its guarantee capability of detection accuracy.

1) Comparison of Convergence: Fig. 6 presents the peak
AoI based on experiment III. Fig. 7 shows the AoI bound
violation ratio versus training round. Each round consists of
100 slots. Peak AoI of the proposed algorithm converges to
178.3 ms and the average peak AoI is reduced by 59.62%
compared with DDPG. Besides, the AoI bound violation ratio
of the proposed algorithm is reduced to 1% after 11 training
rounds and reduced to 0 after 16 training rounds. The required
training rounds of the proposed algorithm are 38.89% and
15.79% lower than those of DDPG. The superior performances
stem from the adjustable cooperative extraction ratio β(t).
Specifically, based on (39), the proposed algorithm reduces
β(t) from βmax to βmin with the step size of η0, which enables
it to adopt a larger extraction ratio of success experience for
improving convergence speed at the initial-learning stage, and
adopt a larger extraction ratio of failure experience at the post-
learning stage to reduce probabilistic AoI bound violation and
false-negative detection occurrence from failure experience.
Moreover, when AoI bound violation occurs, β(t) is increased
with the step size of ηβ to improve learning optimality by
extracting more success experience.

2) Comparison of Detection Timeliness and Accuracy:
The impacts of different α1

α2
and α1

α3
on the peak AoI, false-

positive detection ratio, and false-negative detection ratio are
respectively shown in Fig. 8 and Fig. 9. A larger α1

α2
and α1

α3

indicate that the proposed algorithm pays more attention to
improving detection timeliness. As α1

α2
increasing from 10−4

to 105, the proposed algorithm increases the false-positive
detection ratio from 0.64% to 4.78% while decreasing peak
AoI from 205.2 ms to 152.7 ms. Therefore, α1

α2
should be

carefully selected to avoid prohibitive false-positive detection
ratio and achieve great AoI performance simultaneously. Al-

Fig. 8. Impact of α1
α2

on the peak AoI and false-positive detection ratio.

Fig. 9. Impact of α1
α3

on the peak AoI and false-negative detection ratio.

though the false-negative detection ratio increases with α1

α3
,

the proposed algorithm has the best trade-off between false-
negative detection ratio and peak AoI. The reason can be
elaborated based on Remark 2, i.e., more emphasis are put on
reducing AoI by utilizing smaller filtering window size and
decomposition level, which deteriorates the qualities of image
denosing and image fusion, and results in higher false-negative
detection ratio. However, the proposed algorithm benefits from
the AoI and false-negative awareness, which helps to trade
off the detection timeliness and accuracy better. The proposed
algorithm sheds insight on how to select α1

α3
and α1

α2
for prac-

tical application, e.g., α1

α2
= 10 and α1

α3
= 1 achieve superior

performances in both peak AoI and detection accuracy. Based
on above analysis, α1, α2, and α3 are effectively selected as
10, 1, 10 in the following simulations.

3) Impact of Sensing-Layer Frame Rate: Fig. 10 shows
the impact of frame rate, i.e., K(t)

τ , on the peak AoI and
end-to-end delay. An important finding is that AoI is not
always consistent with end-to-end delay, which is mentioned
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Fig. 10. Impact of frame rate K(t)
τ

(V = 7, α1 = 10, α2 = 1, α3 = 10,
f l
s(t) = fu

s (t) = 1.2 GHz).

in Remark 1. As frame rate increasing from 5 to 20 FPS, the
end-to-end delay increases continuously while the peak AoI
firstly falls down and then rises. Such results agree with the
mathematical analysis in (26) and (27). In the low frame-rate
case, e.g., K(t)

τ ∈ [5, 20] FPS, increasing K(t) can reduce
peak AoI by reducing τ

K(t−1) . In the high frame-rate case,

e.g., K(t)
τ > 20 FPS, peak AoI is determined by end-to-end

delay of two consecutive frames based on (26) and (27). As
K(t)
τ increasing, more frames of images are backlogged in the

queue, which results in end-to-end delay increasing. Therefore,
increasing K(t) results in substantial increment of peak AoI
in the high frame-rate case.

4) Impact of Sensing-Layer Computing Resource: Fig. 11
shows the impact of sensing-layer computing resource, i.e.,
f l
s(t), on the peak AoI and end-to-end delay. As f l

s(t) in-
creasing from 0.2 to 1.6 GHz (FPS= 15), the end-to-end delay
and the peak AoI gradually decrease. When the sensing-layer
computing resource is large enough, the peak AoI does not
continue to decrease due to the limitation of sensing-layer
queue of storage images, and similarly the AoI converges to
a stable value since frame dropping events do not occur.

5) Impact of Computing-Layer Computing Resource: Fig.
12 shows the impact of computing-layer computing resource,
i.e., fc(t), on the peak AoI and false-positive detection ra-
tio. As fc(t) increasing from 1.6 to 4 GHz, the peak AoI
firstly firstly drops quickly and then slows down, and the
proposed algorithm performs best in the false-positive detec-
tion ratio. When the computing-layer computing resource is
large enough, the peak AoI does not continue to decrease
because timely processing of fused images is required. When
fc(t) = 3.7 GHz, compared with DDPG, the proposed
algorithm reduces the peak AoI and false-positive detection
ratio by 8.69% and 68.20%, respectively.

Fig. 11. Peak AoI and end-to-end delay versus sensing-layer computing
resource f l

s(t) (V = 7, α1 = 10, α2 = 1, α3 = 10, K(t)
τ

= 15 FPS).

Fig. 12. Peak AoI and false-positive detection ratio versus computing-layer
computing resource fc(t) (V = 7, α1 = 10, α2 = 1, α3 = 10, f l

s(t) =

fu
s (t) = 1.2 GHz, K(t)

τ
= 15 FPS).

VI. CONCLUSION

In this paper, we constructed a framework of integrated
sensing, communication, and computing for partial discharge
detection based on multispectral images. We developed peak
AoI to characterize timeliness, and employed false-positive
and false-negative detection ratios to characterize accuracy.
Then, timeliness and accuracy were jointly guaranteed by the
design of optimization problem and proposed algorithm. In
addition, the proposed algorithm based on DAC-DQN coop-
eration leveraged multi-experience replay pools and adaptive
mini-batch extraction to facilitate cooperative learning. Com-
pared with DDPG, the proposed algorithm reduces the peak
AoI by 59.62%. Compared with EE and AG, the proposed
algorithm achieves the minimum false-positive detection ratio
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and false-negative detection ratio. An important finding is that
average peak AoI and end-to-end delay increased inconsis-
tently with frame rate, which sheds insight on trade-off design
between timeliness and low latency. Future work will consider
multimodal semantic communication to further reduce peak
AoI for partial discharge detection based on multispectral
images.
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