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Abstract—Graph representation learning (GRL) has become
a new learning paradigm, supporting a wide range of tasks such
as node classification, link prediction, and graph classification.
However, the effectiveness of graph analysis heavily depends on
the quality of data representation. While existing GRL methods
have made significant progress in learning from simple graphs,
addressing the challenges posed by complex graph structures
remains an active area of research. In many real-world scenarios,
graph data usually exhibits characteristics such as complex-
ity, heterogeneity, and dynamicity, where objects and their
interactions may be multi-type, multi-modal, and even multi-
dimensional, posing challenges to graph-related analysis. To
tackle these challenges, GRL has been developed and widely used
to model more complex and powerful graphs. In this survey, we
provide a comprehensive and structured analysis of the existing
literature on GRL from two clear points of view of simple
graph and complex graph. We begin by providing a detailed
and thorough analysis of state-of-the-art GRL techniques and
classify them according to their underlying learning mecha-
nisms. Furthermore, we systematically investigate GRL from the
perspective of complex graphs to address the challenges posed by
graph complexity. We emphasize the need for specialized GNN
models that can handle the complexity of such systems. Finally,
we highlight several promising directions for future research.

Index Terms—Graph Representation Learning, Graph Neu-
ral Networks, Heterogeneous Graph, Multi-dimensional Graph,
Signed Graph, Hyper Graph, Dynamic Graph.

I. INTRODUCTION

In recent years, Graph Representation Learning (GRL) has
received significant research attention from academia and

industry, due to the ubiquity of graphs in a large spectrum of
real-world applications, ranging from citation graphs [1, 2],
social graphs [3–6] to recommendation systems [7, 8]. The
analysis of information graphs heavily depends on how the
graphs are represented [9, 10], which involves modeling the
underlying graph’s vertex attributes and the essential and
relevant relations among vertices. More specifically, GRL can
encode a variety of graph semantic and topology structure
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information [11–13]. Recent GRL methods use state-of-the-
art deep graph neural networks to learn latent graph semantic
and topology structure information. For example, in traffic
networks, real-time traffic conditions can be predicted by
comprehensively analyzing the spatio-temporal correlations
of traffic flow.

To extract useful information from graph data, early graph
analysis methods used graph embedding methods to project
the graph into a low-dimensional vector space to create
new features for dimensionality reduction, while preserving
the essential characteristics of the original data. This makes
the original graph more tractable. Subsequently, traditional
vector-based machine learning methods can easily complete
the graph analysis tasks. Although the low-dimensional vector
representations obtained in this way make the graph learning
models or algorithms easier to extract useful information,
such methods usually suffer high computation and space
overhead. To alleviate this issue, graph neural network (GNN)
algorithms [14] have attracted recent attention to automat-
ically capture high-level vertex representations and graph
topology information from the given original low-level graph-
structured data [15]. Unlike traditional graph embedding
methods, GNNs operate directly on the graph structure, al-
lowing for the seamless integration of topological information
into the learning process. This enables GNNs to learn more
useful information while reducing the computational and
space overhead associated with traditional graph embedding
techniques.

In many real-world scenarios, the application of GNN-
based GRL faces a more complicated situation, because the
graphs can be more complicated, e.g., heterogeneous graphs
[1, 2], multi-dimensional graphs [4], signed graphs [3, 5],
hyper graphs [7, 8], dynamic graphs [6], etc. However, most
existing GNN-based GRL methods focus on learning simple
or homogeneous graphs containing only one type of node
and edge, which may be difficult to adapt to the various
characteristics of complex graph structures. Understanding
these complex structures has required not just new graph
models but also novel analytical tools. As a result, there
is a growing need for GRL methods that can handle the
complexity of real-world graphs, facilitating more accurate
and robust graph representations. This evolution signifies a
paradigm shift in how we model graphs, advancing from
static and simple representations to dynamic and complex
models that reflect real-world systems more accurately. Future
GRL methods should be capable of capturing information
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from various entity types, effectively modeling higher-level
structural relationships, and dynamically adjusting to changes
in graph topology over time. The survey aims to explore how
the GRL methodologies address the challenges posed by the
evolution of graph types and their inherent complexity.

A. Challenges

Due to the complexity of the graph, the research field
of GRL presents some unique challenges for researchers.
This complexity arises from the diversity of graph types.
There is a growing need to develop GRL methods that are
specifically designed to deal with the complexity of heteroge-
neous, multi-dimensional, signed, hyper, and dynamic graphs.
In this survey, we identify and explore five key challenges
in applying GNN models to these complex graphs. Each
challenge highlights a specific aspect of graph complexity
that GNN models must evolve to handle.

1) Heterogeneity in Graphs: Real-world graphs often ex-
hibit heterogeneity, with multiple types of nodes and edges,
each representing diverse entities and relationships. Tradi-
tional GNN methods may struggle to effectively capture and
distinguish these diverse entity types and relationships.

2) Modeling Multi-Dimensional Structures: In scenarios
where graphs exhibit multi-dimensional structures, GRL
methods need to learn not only from each layer’s unique
features but also from the inter-layer dependencies. The
interaction between different types of relationships can have
a significant impact on the learning process of GNN.

3) Polarity Recognition in Graphs: In signed graphs, re-
lationships are characterized by positive or negative edges,
such as trust/mistrust in social graphs. Standard GNNs lack
mechanisms to distinguish between these polarities, which are
critical for understanding the complicated social dynamics.
The sign-aware process enables GNNs to identify the senti-
ment or quality of the relationships in a graph, which can
significantly affect the propagation of information.

4) Higher-Level Structural Relationships: In hyper graphs,
relationships extend beyond dyadic interactions to encompass
connections among multiple entities simultaneously, which
may not be adequately captured by traditional GRL ap-
proaches. These higher-level structural relationships could
be essential for understanding the underlying patterns and
dynamics of the graph.

5) Adapting to Graph Evolution: In scenarios where
graphs undergo temporal changes in their topology, with
nodes and edges continuously evolving over time, the chal-
lenge for traditional GRL methods is to encapsulate not just
the structural but also the temporal dynamics of these graphs.

B. Our Contributions

Tremendous efforts have been made to address these chal-
lenges posed by complex graphs. The adopted learning mod-
els and training strategies also vary greatly, covering a wide
range of domains from homogeneous graphs to heterogeneous
graphs, from single-dimensional graphs to multi-dimensional
graphs, from unsigned graphs to signed graphs, from pairwise
graphs to hyper graphs, and from static graphs to dynamic

graphs. However, little effort has been made to systematically
summarize the differences among these diverse complex
graph architectures. This survey aims to bridge the knowledge
gap by providing a comprehensive review of GNN methods,
focusing on their application to both simple and complex
graphs. We explore the fundamentals of GNNs, elucidating
their various design architectures, training strategies, and
applications in both simple and complex graphs. In addition,
we track the evolution of GNNs from their basic applications
to more sophisticated uses in complex graph scenarios and
highlight key milestones and breakthroughs. Our goal is to
provide researchers with a thorough understanding of GRL
techniques and their applications in various domains.
• We fill the knowledge gap by conducting a comprehen-

sive review of GNN methods that are applicable to both
simple and complex graphs.

• We provide a detailed and thorough analysis of state-of-
the-art GRL algorithms and develop a unified conceptual
framework to emphasize and bridge the conceptual dif-
ferences between various GRL algorithms.

• We discuss the challenges faced by different types of
complex graphs such as heterogeneous graphs and dy-
namic graphs, and explore the applicability and transfor-
mativeness of GRL techniques in these complex graphs.

C. Related Surveys

An early version of the Graph Representation Learning
(GRL) survey was proposed by Luis et al,. [16]. They pro-
vided several key concepts of GRL, such as graph embedding
and related deep learning architectures, and summarized some
representative GRL technologies. There are several surveys
[13, 17] that cover graph embedding [11, 12] and GRL
[16] methods and summarize their applications in graph
analysis from different perspectives. For example, Zhang et
al. [18] provided a detailed review of five variant architec-
tures of GNNs, elucidating their respective model structures
and highlighting the differences between them. Moreover,
several attempts have been made to survey heterogeneous
graphs [19], large-scale graph processing systems [20, 21],
or knowledge graphs [22, 23]. Wang et al. [19] have made a
significant contribution to the field by providing a comprehen-
sive overview of heterogeneous graphs. Their work provides
insights into tools and frameworks for efficiently process-
ing and analyzing heterogeneous graph data, addressing the
unique challenges associated with such graphs. McCune et
al. [20] provided a comprehensive overview of large-scale
graph processing systems. They introduced the innovative
concept of “think like a vertex” (TLAV), in which user-
defined programs are implemented from the viewpoint of
individual vertices rather than the entire graph. This paradigm
shift offers new opportunities for efficient and scalable graph
processing. Additionally, Vatter et al. [21] summarized several
distributed systems for large-scale GNN models, emphasizing
the importance of scalable and distributed approaches for
training and deploying GNN models in real-world settings.
Furthermore, recent research [22, 23] efforts have focused on
techniques related to knowledge graph construction, aiming
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to enhance the quality and utility of knowledge graphs in
various applications. These studies facilitate more accurate
and comprehensive representations of structured knowledge.
However, these methods have neither attempted to specifically
discuss other complex graphs faced in real-world scenarios,
nor provide a broader view for analyzing other complex
graphs, such as multi-dimensional graphs, signed graphs, hy-
per graphs, and dynamic graphs. There is a lack of summary
on in-depth analysis of the state-of-the-art GRL techniques
for handling more complex graphs. Unlike previous surveys,
which may focus on a specific branch or aspect of GRL,
our survey covers a wide range of GRL technologies and
their applicability to various types of graphs. Specifically, we
provide the most comprehensive survey from the perspective
of complex graphs. We believe that our unified framework is
timely and necessary, which provides some insights into the
GRL research, and inspires more studies on complex graphs
that are ubiquitous in the real world.

D. Organization of the Survey

The rest of the paper is organized as follows. We first
introduce the formal definition of GRL as well as the related
concepts in Section II. Section III provides a detailed and
comprehensive study of the state-of-the-art GRL algorithms
from the perspective of simple graphs. Section IV compre-
hensively presents an overview of the recent development
on GRL techniques for more complex graph representations.
Section V provides experimental evidence of the effectiveness
of the GRL methods. In Section VI, we highlight some
promising directions for future research. Finally, Section VII
concludes the paper.

II. PRELIMINARIES

A. Problem Definitions

In a graph, vertices can represent real-world objects or
concepts, and edges can represent their relationships. We give
the formal definition of the graph representation learning as
follows.

Definition 2.1 (Graph Representation). Given a graph
G = (V,E,A,X), where V = {v1, ..., vn} denotes the
set of vertices, and E = {eij}ni,j=1 denotes the set of
edges. A ∈ R|V |×|V | represents the adjacency matrix, where
|V | indicates the number of vertices. X ∈ R|V |×d repre-
sents the attribute matrix, where d indicates the number
of attributes. Each vertex vi ∈ V has a d-dimensional
vector xi = {xi,1, ..., xi,d}. This is a general notation for
unweighted/weighted graph or undirected/directed graph.

B. Generic Paradigm

Graph is a ubiquitous data structure employed in a vari-
ety of applications across many disciplines, such as social
graphs, recommender systems, and biological graphs. Data
representation plays a crucial role in graph analysis, which
is useful for learning structured and relational knowledge.
Generally speaking, traditional machine learning methods
usually encode graph-structured data into feature vectors. In

this case, graph topological dependency may be lost. To
address these challenges, graph neural network (GNN) has
been proposed, which can be considered as an extension
of random walk models [24, 25]. The success of GNN is
based on the neighborhood aggregation mechanism, in which
the vertices update their states and exchange information
according to the topological relationships among the vertices.
Inspired by [26], we provide a canonical and ubiquitous
paradigm for graph modeling and learning, covering most
well-known GNN algorithms. Let G be a set of graphs, and
N be a subset of their vertices. Then, we have that:

D = {(Gi, vi,j , li,j) |,Gi = (V i,Ei) ∈ G; vi,j ∈ V i;
V i ∈ N ;yi,j ∈ Rm, 1 ≤ i ≤ |G|, 1 ≤ j ≤ si} (1)

where vi,j denotes the j-th vertex in V i, yi,j is the label
associated to vi,j , and si denotes the number of supervised
vertices in Gi. Next, we denote a local transition function
φw that captures the dependency between a vertex and its
adjacent neighbors, and a local output function ψw that
produces the output. Then, we have ov = ψw (hv,fv) ,

where hv = φw

(
fv,fne[v],xne[v],f co[v]

)
. hv ∈ Rd and

ov ∈ Rd denotes the state and output of v, respectively. fv
denotes the feature of v, fne[v] denotes the features of its
neighbors, xne[v] denotes the states, and f co[v] denotes the
features of its edges.

Let h,o,f , and fV be the vectors constructed by stack-
ing all of the states, outputs, features, and vertex fea-
tures, respectively. Then, we have h = Φw(f ,x) and
o = Ψw (h,fV ), where Φw and Ψw are the global tran-
sition function and the global output function, respectively.
Finally, the loss function can be minimized by Lw =∑|G|
i=1

∑si
j=1

(
yi,j − ϕw (Gi, vi,j)

)2
.

III. SIMPLE GRAPH REPRESENTATION LEARNING

Given the success of deep learning, increasing efforts have
been made to generalize deep learning to graph. Specifically,
deep graph neural networks gained enormous popularity in
graph representation learning. This encourages us to dedicate
more efforts to this research area. In this section, we introduce
the graph neural networks for graph-structured data, and
group them into two types: 1) the spectral domain techniques,
which filter certain frequencies in the graph signal; and 2) the
spatial domain techniques, which aims to utilize the graph
structure. We review representative algorithms for each group.

A. Spectral Method

Spectral GNN was first proposed by [27], which relies on
the spectral analysis theory. In this work, Bruna et al. [27]
generalize CNN to signals, which performs localized filtering
on the spatial and spectral domains. Moreover, Henaff et al.
[28] develop an extension of spectral graphs. However, the
matrix multiplication involved in Graph Fourier transform
(GFT) often leads to demandingly high computational costs.
To deal with this challenge, Defferrard et al. [29] propose
a Chebyshev expansion of the graph Laplacian [30], and
provide a strict control over the local support of filters.
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Moreover, Kipf et al. [31] simplify the Chebyshev expansion
to alleviate the problem of overfitting. Li et al. [32] propose
a deep learning framework DCRNN to model the traffic
flow, which incorporates the spatial and temporal dependency
information. Besides, some progress is made on graph par-
allelization by modificating filter functions in the spectral
domain, such as CayleyNet [29], AGCN [33], DualGCN [34],
GWNN [35], MSSGs [36], PFME [37], and WGGP [38].
These studies generalize the convolutional graph to the signals
through the GFT technology. Following the work [39], we
give a definition of the spectral method as follows.

Definition 3.1 (Spectral Method) Let X ∈ RN be a
signal on a graph G. The Graph Fourier transform (GFT) is
used to obtain the graph Fourier coefficients X̂ of the signal
X, which can be defined as X̂ = U>X ∈ RN×N . Then, the
graph convolution operation can be defined in the Fourier
domain [39] such that f1 ∗ f2 = U

[(
U>f1

)
�
(
U>f2

)]
,

where f1 and f2 are two signals defined on vertices, and �
represents the element-wise product. Specifically, the vertex
signal f2 is set to X, which can be filtered by the spectral
signal f̂1 = U>f1 = g. Then, we have:

Z = g(L̃)X = U
[
g(Λ)�

(
U>X

)]
= Ug(Λ)U>X (2)

where Z is the updated vertex representations, Λ is the
diagonal matrix, and g is known as frequency response
function. The goal is to learn a function g(·).

Moreover, the spectral method can be further categorized
into three subcategories below.

(1) Linear Approximation (LA): LA aims to adjust weights
on frequency components during aggregation [31, 39, 40].

Z =

(
l∑
i=0

θiλiuiu
>
i

)
X = Ugθ(Λ)U>X (3)

where θ is parameters, λ gathers the lowest frequency com-
ponents, and u is the eigenvector.

(2) Polynomial Approximation (PA): When more higher
order eigenvalues are added [29, 41], LA is extended to
PA. Then, the polynomial approximation of the frequency
response function [39] can be written as:

Z =

 l∑
i=0

k∑
j=0

θjλ
j
iuiu

>
i

X = UPθ(Λ)U>X (4)

where gθ(Λ) = Pθ(Λ) is a polynomial function of eigenval-
ues.

(3) Rational Approximation (RA): RA approximates fre-
quency response with rational function [39], which can deal
with non-smooth signals. Formally, RA can be written as:

Z =

(
l∑
i

∑k
j=0 θjλ

j
i∑n

m=1 φmλ
m
i + 1

uiu
>
i

)
X = U

Pθ(Λ)

Qφ(Λ)
U>X

(5)
where PandQ are two independent polynomial functions,
and g(·) = Pθ(·)

Qφ(·) is a rational function.

B. Spatial Method

In addition to the above spectral domain methods, there
are some spatial methods that aggregate graph signals
within the vertex neighborhood by performing convolution
on graph-structured data. DCNN [42] introduces a diffusion-
convolution operation to learn the latent representation for
graph-structured data. PATCHY-SAN [43] directly performs
convolution on locally connected regions of the input graph,
where each region contains a fixed-length ordered sequence
of vertices. Moreover, DGCNN [44] develops a SortPooling
layer to sort the vertex features. Similar to DGCNN, LGCN
[45] transforms graph-structured data into grid-like structures
by selecting a fixed number of neighboring vertices. PGC-
DGCNN [46] gives a new definition of graph convolutional
filter. In this work, the 1-D convolutions are regarded as
special cases of graph convolutions. In [47], the author
proposed a LightGCN that aims to simplify GCN. Recently,
a serises of method based on neighborhood aggregation has
been proposed [48–51]. For example, GraphSAGE [52] learns
the topological structure information and the distribution of
vertex features in a inductive way. Xu et al. [40] propose a
theoretical framework GIN to analyze the expressive power
of GNN. They emphasize that GIN is as powerful as the
Weisfeiler Lehman (WL) test. Besides, some progress is made
on spatial-based GNNs, such as ClusterGCN [53], KCGN
[54], Neo-GNNs [48], GNN-Retro [49], MST-GNN [50], and
GHNN [51]. We now give a definition of the spatial method
as follows.

Definition 3.2 (Spatial Method) Given a graph G
with vertex features X, the vertex representations Z can be
updated by:

Z = f(G)X (6)

where f(·) is a vertex aggregation function that learns how
to aggregate vertex features.

Based on the vertex aggregation, spatial-based GNNs can
be categorized into three subcategories.

(1) Linear Propagation (LP): LP aims to learn the weights
for the vertex and its first-order neighbors [31, 39, 40, 53, 54].
The general form of the linear function of LP can be defined
as follows.

Z = (φI + ψÃ)X (7)

where φ and ψ are the weights, and Ã indicates the normal-
ized A.

(2) Polynomial Propagation (PP): Many works [42] [55]
[56] involve high-order neighbors. When more neighbors of
a higher order are added, LP is extended to PP which collects
richer local structure. Formally, PP can be represented as:

Z =

φI +

k∑
j=1

ψi

(
D−

1
2 AD−

1
2

)jX = P(Ã)X (8)

where P(·) is a polynomial function.
(3) Rational Propagation (RP): In the case of GNNs, each

adjacent pair of vertices exchange information with each other
via a message-passing mechanism. When the order number is
large, this may cause over-smoothing issues. To cope with this
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challenge, some recent works [57, 58] consider the reverse
propagation method that applies a rational function on the
adjacency matrix. Formally, RP can be represented as:

Z = P(Ã)Q(Ã)−1X =
P(Ã)

Q(Ã)
X (9)

where P and Q are two independent polynomial functions.

C. Bridging Spectral and Spatial GNNs
Although the above two methods have been a great success,

there is a lack of comprehension of the representational
capabilities of GNN. To deal with this problem, some works
[26, 39, 59] tried to establish a general framework to bridge
the gap between spectral and spatial domains for GNN. Spec-
tral methods require Fourier transform and inverse Fourier
transform. In many cases, this leads to high computational
costs compared to spatial methods. Designing new graph
signal filters (e.g., CheyNet [41] and CayleyNet [29]) can
alleviate this limitation. However, most spectral methods
are only applicable to a single graph structure (i.e., node-
level and edge-level tasks), because the weights cannot be
shared among graphs with different structures, even if the
graphs have the same size. This limits the application of the
spectral-based GNNs at graph-level tasks. Instead of spectral-
based graph convolutions, spatial methods perform informa-
tion propagation by the convolution opearations in a batch
of vertices. Therefore, it can be easily generalized to new
graphs (e.g., GraphSAGE [52]), while the spectral methods
cannot. It should be noted that the graph convolutions defined
in the spatial domain are motivated directly by the spatial
relationship between vertices and other vertices, which is
similar to the traditional CNN on images. By incorporating
graph inputs into aggregation functions, spatial-based GNN
can flexibly handle multi-source graphs, such as signed graphs
and heterogeneous graphs.

In short, the spatial methods are more popular than the
spectral methods due to its greater efficiency, generality
and flexibility. Formally, we define a general framework for
information propagation on graph as belows.

H(l+1) = σ

(∑
s

C(s)H(l)W(l,s)

)
, (10)

where C(s) represents s-th graph convolutions at l-th hid-
den layer H(l), which determines how the vertex aggra-
gates information from its neibors. Specifally, at 0-th layer,
H(0) is equal to X. Eq. 10 generalizes a variety of GNNs
by supporting different graph convolutions C. For spatial
method, we extend Eq. 6 as H(l+1) = σ

(
Z(l)W(l)

)
=

σ
(
f(G)(l)H(l)W(l)

)
, where f(G) =

∑
s C

(s). For spectral
method, Eq. 2 can be regarded as a special case of this
framework in Eq. 10. According to Eq. 2, we have that
Z(l) = H(l) =

[
h

(l)
1 , . . . ,h

(l)
fl

]
. For each h

(l)
j , we have that:

h
(l+1)
j = σ

(
fl∑
i=1

U diag

(
S∑

s=1

W
(l,s)
i,j Φs(λ)

)
U>h

(l)
i

)

= σ

(
S∑

s=1

fl∑
i=1

W
(l,s)
i,j U diag (Φs(λ))U>h

(l)
i

)
.

(11)

Let C(s) = U diag (Φs(λ)) U>, we can have that

H(l+1) =σ
(
C(1)h(l)W (l,1) + · · ·+ C(S)h(l)W (l,S)

)
=σ

(
S∑

s=1

C(s)h(l)W (l,s)

)
,

(12)

This framework covers most of the well-known GNN
models. Specifically, spectral methods and spatial methods
can work in the same way. The only difference is that the
graph convolution is either designed in the spectral domain
or in the spatial domain.

Discussion. Spectral methods provide a strict mathematical
framework for learning graph representation. Spectral graph
theory provides a solid foundation for understanding the
spectral properties of graphs, facilitating the development of
principle algorithms and theoretical analysis. However, these
spectral methods often involve computationally expensive
operations, such as the eigendecomposition of the graph
Laplacian matrix. The computational complexity of spectral
methods scales with the size of the graph, which makes them
less efficient for large-scale graphs with millions or billions of
nodes and edges. In addition, spectral methods are sensitive
to changes in the graph structure, such as node permutations
and edge additions or deletions. Since the eigenvectors of the
Laplacian matrix are particularly susceptible to perturbations
in the graph, small changes in the graph topology can lead to
significant variations in the learned embeddings. Specifically,
spectral-based methods lack explicit mechanisms for localized
information aggregation and propagation, potentially hinder-
ing their ability to efficiently capture local neighborhood
information.

Unlike spectral methods, spatial methods offer translation-
invariant properties, enabling them to learn representations
that are insensitive to node order and graph perturbations.
Spatial methods can effectively extract features that are in-
variant to spatial transformations through local convolution
operations. However, spatial methods are susceptible to over-
smoothing, especially in deep architectures with multiple
layers. As information propagates through multiple layers
of spatial convolutions, the features of neighboring nodes
may become overly smoothed or indistinguishable, which
leads to the deterioration of discrimination ability and the
degradation of model performance. In addition, spatial con-
volutional operations involve aggregating information from
neighboring nodes, potentially leading to significant computa-
tional overhead, especially when dealing with dense or highly
interconnected graphs.

D. Extensions to GNNs

Apart from the above mentioned spectral- and spatial-based
GNN, several new variants of GNN have been developed in
recent years, including (but are not limited to) attention-based
GNN, gate-based GNN, graph autoencoders (GAE), and
graph generative models (GGM). These variants are derived
from the spectral and spatial methods. In the following, we
provide a brief review of various variants of GNN.
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1) Attention-based Method: One of the earliest graph
attention network is [60], which neither requires complex
matrix operations, nor does it need to know the structure
of the graph upfront. Based on the assumption that the
neighboring vertices have different contributions to the cen-
tral vertex, the multi-attention mechanism is adopted in the
propagation step to specify different weights to neighboring
vertices. Moreover, the attention-based GNNs can be easily
generalized to inductive learning problems, such as [61, 62],
etc.

2) Gate-based Method: Many gate-based methods intro-
duce a gated recurrent unit (GRU) into the GNN, and then
generate an output for each vertex based on its state. The
key idea behind attention-based GNN is to update the hidden
state of a vertex based on its previous and neighboring hidden
states. Specifically, some other gate-based GNN models (e.g.,
CCRNN [61], GAAN [62]) use attention mechanism to de-
termine which vertices are important in the current decision.

3) Graph Autoencoder (GAE): y As a generalization of
multi-layer perceptron (MLP), GAE encodes vertex features
into a latent embedding space, and then decodes graph infor-
mation from this space. By stacking multiple layers of GAE,
it can learn the graph embedding to preserve the topological
information. For example, SDNE [63] preserves the vertex
first-order proximity and second-order proximity by using
two loss functions on the encoder output and the decoder
output, respectively. It is worth noting that the variational
graph autoencoder (VGAE) [64] can be regarded as a vari-
ant of GAE, which combines dimensionality reduction with
generative models to learn the distribution of graph data. In
addition, in some autoencoder-based methods, GNN is often
considered as an encoder, such as VGAE [64], GC-MC [65],
etc.

4) Graph Generative Model (GGM): GGM enables a
wide range of applications: from discovering new chemical
structures to constructing knowledge graphs [66]. Early works
like [15] formulate graph generation as walk generation. For
example, based on a stochastic neural network, NetGAN
[15] uses the random walk method to generate graphs,
which shows promising results in teams of generating graphs.
However, the selection of vertices by random walk may
lead to inconsistent results. Some works such as [24] and
[25] consider the generation order of edges and vertices,
formulating the graph generation as a sequential decision
process.

IV. COMPLEX GRAPH REPRESENTATION LEARNING

In previous sections, we have discussed simple graphs,
where the graphs are homogeneous, with one type of vertices
and edges. In many real-world applications, graphs are often
dynamic and complex, with multiple types of vertices and
edges. Thus, the aforementioned graph-based learning models
cannot handle more complicated graphs with intricate patterns
well. Although there have been several variants of GNNs,
these methods have neither attempted to specifically discuss
more complicated graphs [67]. It is necessary to design more
robust neural graphs. In the following sections, we will briefly

describe popular complex graphs with formal definitions,
and extend the graph-based learning models to capture more
complicated patterns.

A. Heterogeneous Graphs

At present, many popular GNN models have been con-
ducted under implicit homophily assumptions, i.e., most
connections happen among vertices in the same class. This
leads to the poor performance of existing GRL models in
heterogeneous graphs (HeG) [2] that composes of multiple
types of vertices (e.g., author and paper) and edges (e.g., cite,
mention and publish), as shown in Fig. 1 (a). Moreover, most
GRL models rely heavily on contextual vertex features in the
information propagation process. However, in many cases,
contextual information is often insufficient or incomplete.
According to predefined rules, a heterogeneous graph can
be extracted from complex interactive systems. Formally, we
give a defination of the heterogeneous graph as follows.

Definition 4.1 (Heterogeneous Graphs) Given a hetero-
geneous graph HeG = {V,E,X, ϕ, ψ} with multiple types
of vertices and edges. Each vertex vi ∈ V and each edge
eij ∈ E are associated with a vertex type mapping function
ϕ(vi) : V → RV and a edge type mapping function ψ(eij) :
E → RE, respectively, where RV indicates the vertex types,
RE indicates the edge types, and |RV |+ |RE| > 2. X repre-
sents the feature matrix. Specifically, when |RV | = |RE| = 1,
the graph is homogeneous.

Recently, many meta-path-based methods have been pro-
posed [1, 2], which measures the similarity and relevance
between vertices by utilizing the graph structural information.
Fig. 1 (b) gives two examples of meta-paths [1], one of the
meta-paths P1: author → topic ← author indicates that
their paper discusses the same topic, and the other meta-
path P2: author → paper → venue ← paper ← author
indicates that the two authors published their papers in the
same venue. Next, we give a defination of metapath.

Definition 4.2 (Meta-Paths) Given a heterogeneous graph
HeG, a metapath P is defined in the form of v1

e1−→ v2
e2−→

· · · vl→ el+1, which describes a composite relation E = e1 ◦
e2◦· · · el−l◦el between vertices v1 and vl, where ◦ represents
the composition operatation.

In order to further capture complex structural informa-
tionin, researchers have proposed meta-graph-based methods,
which composes of at least two metapaths, as shown in Fig.
1 (b). We give a defination of meta-graph as follows.

Definition 4.3 (Meta-Graphs) Given a heteroge-
neous graph HeG, a meta-graph S is defined as S =
(V,E, ns, nt), where ns and nt represent the source vertex
(with 0 in degree) and the target vertex (with 0 out degree)
in the meta-graph [68], respectively.

The heterogeneous graph embedding is a foundation re-
search problem. There are different types of vertices (e.g.,
images or texts) in a heterogeneous graph, which associated
with vertex features with different attributes and dimensions.
Moreover, heterogeneous graph embedding maps different
types of vertices into a common lower-dimension space
while preserving the heterogeneous graphical semantics and
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(a) Heterogeneous Graph (b) Meta-Graph and Meta-Paths (c) Multi-dimensional Graph

Fig. 1: Three graphs to be used as running examples throughout the survey. (a) A heterogenous graph consisting of multiple
types of vertices and edges. (b) Two meta-paths (P1 and P2) is involved in the meta-graph S, i.e., P1: author → topic ←
author and P2: author → paper → venue← paper ← author. (c) A multi-dimensional graph where vertices interact with
each other in the within- and across-dimensions, such as vertex 5 in this subgraph.

structure information. Traditionally, matrix factorization is a
widely used method for learning heterogeneous graph em-
beddings. However, such methods usually require expensive
calculation costs due to the decomposition of large-scale
matrices.

Besides, due to the existence of different types of relations,
the local structure of heterogeneous graph is usually different,
and semantic dependent, e.g., metapath structure. The key
issue is to consider what kind of information or domain
knowledge should be integrated into the heterogeneous graph
embedding, benefiting various downstream applications. The
classic idea is to process them in different metric spaces. PME
[69] is a representative work, which uses a relation-specific
matrix to convert vertices into different metric spaces, where
vertices connected by different types of edges are close to
each other. Then, the heterogeneity of the graph can be easily
captured.

It is challenging to design effective GRL methods for
heterogeneous graphs to utilize neighborhood information
while overcoming the heterogeneity of the graph. Recent
GRL methods use Heterogeneous Graph Neural Networks
(HGNN) (e.g., [1, 2]) to learn complex graph structures and
vertex attributes. Moreover, it is also crucial for heteroge-
neous graphs to learn higher-order relation that describes
more complex semantic information. Meta-paths are suitable
for dealing with the heterogeneity of the graph, as it can
capture various higher-order relations between vertices with
rich semantics. Specifically, meta-paths split a heterogeneous
graph into several simple heterogeneous graphs, where a
distinct meta-path schema is adopted for each type of meta-
path. Moreover, the graph filtering can be used to capture
different local semantic information, which then are combined
to generate the final vertex representations. In HAN [70],
authors proposed a heterogeneous graph attention network to
aggregate vertex features from meta-path based neighbors.
This process can be described as follows.

β =
exp

(
1
|V |
∑
i∈V q

T tanh
(
W zΦ

i + b
))

∑
M′ exp

(
1
|V |
∑
i∈V q

T tanh
(
W zΦ′

i + b
)) (13)

where zΦ
i = σ

(∑
j∈NΦ

i
αΦ
ij · h′j

)
, q is the semantic-level at-

tention vector, and V is the set of meta-path based neighbors.
Specifically, α and β represent the nomalized weight coeffi-
cient and the weights of a meta-path Φi, respectively. Then,
the final embedding can be obtained by Z =

∑P
i=1 βΦi · zΦ

i .

Recently, meta-graphs have been proposed to capture more
complex structural relationships, which can reflect the high-
order similarity between vertices, i.e., more meta-graph in-
stances between two vertices indicate a closer relationship.
In MetaGraph2Vec [68], the meta-graph-guided random walk
is first used to generate a sequence of heterogeneous ver-
tices, and then captures structural information and high-order
similarity between distant vertices. Instead of such meta-
graph-based representation learning, most of HGNN learn
the heterogeneous vertex embeddings through the message-
passing scheme.

Discussion. Unlike homogeneous graphs, which are limited
to representing binary relationships between homogeneous
entities, heterogeneous graphs can capture multi-modal data
and incorporate domain-specific attributes associated with
various types of nodes and edges. Approaches such as HAN
and MetaGraph2Vec have been developed that employ meta-
path-based random walks or graph convolutional networks to
learn more comprehensive and informative representations.
Despite their effectiveness, there are still several challenges
in determining the optimal meta-paths or graph convolutional
architectures. In addition, in real-world scenarios, certain
node and edge types may be under-represented or under-
sampled. This data sparsity and imbalance can lead to biased
representations and suboptimal performance in downstream
tasks. The diversity of entities and relationships in hetero-
geneous graphs can introduce semantic ambiguity and noise,
potentially affecting the quality of learned representations.
Heterogeneous graphs often contain a wide range of node
and edge types, each with its own semantic meaning and
contextual significance. This complexity makes it difficult for
GNNs to distinguish meaningful relationships from noise.
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B. Multi-Dimensional Graphs

Although existing GNN-based methods have demonstrated
the superior performance on many graph-level and node-
level tasks, most of them are designed for single-dimensional
graphs, where one type of relation exists between a pair of
vertices [4, 71–73]. In many real-world applications, a graph
has multiple types of relations, i.e., a pair of vertices are
connected by multiple type of relation simultaneously. Fig.
1 (c) gives an example of multi-dimensional graph (MDG).
For example, in the video-sharing site YouTube, users can
interact with each other via various types of actions, e.g.,
“sharing” or “commenting”. Therefore, it is natural for such
a graph to be modeled as a multi-dimensional graph, where
each type of relationship is a dimension. The rich interactions
between dimensions pose a huge challenge for the design of
graph neural networks. Now, we give a defination of multi-
dimensional graph as follows.

Definition 4.4 (Multi-Dimensional Graphs) Given a
multi-dimensional graph MDG = {V,E, D}, where V
denotes a set of N vertices {v1, v2, . . . , vN}, and E denotes
D sets of edges {e1, e2, . . . , eD}. There are D types of edges
in total, and each edge set ed describes the d-th type of
relation between vertices in the corresponding d dimensions
with a adjacency metrix ad ∈ A.

Intuitively, for a dimension, its graph structure is inde-
pendent of other dimensions. To capture the within- and
across-information, multi-dimensional graphs use the map-
ping functions to construct the co-occurrence relations in
all dimensions [4]. For each vertex vi, MDG learns its
representations across all dimensions, and then integrates
the information extracted from all dimensions to generate
an overall representation. Besides, in order to update the
representation of the vertex vi in the dimension d, each vertex
aggregates information from its within-dimension neighbors
directly connected to the vertex vi in the same dimension,
and also aggregates the information extracted from its across-
dimension neighbors that can be seen as the “copies” of the
vertex vi in other dimensions.

For a multi-dimensional graph, the graph structures in
different dimensions are quite diverse since each dimension
can describe one form of interaction for a common set of
vertices. Moreover, the edges between dimensions can be
complementary. Existing methods usually leverage two com-
mon characteristics, i.e., diversity that enables information
aggregation within a single dimension, and collaboration
that enables information aggregation cross d dimensions.
Moreover, a single dimensional graph may be sparse and
noisy. Therefore, it is beneficial to take advantage of the
multiple dimensions to learn more robust representations.

For a large graph with millions of vertices, it is compu-
tationally expensive to consider all of the pairs of vertices.
To solve this issue, mGCN [4] adopts the negative sampling
approach to randomly sample n vertices in dimension d, and
then calculates the representations for those sampled vertices.
Moreover, in the within- and cross-dimension aggregation
step, some advanced combination methods have also been
considered, e.g., weighted averages, nonlinear functions and

even feedforward neural networks. The within-dimension
aggregation can be represented by Hwd = Hd · Âd, where
Âd represents the row normalized adjacency matrix. More-
over, the cross-dimension aggregation can be represented by
Had =

∑
g=1,...,D bg,d · σ (Wg ·H), where Had and Hwd

are the within- and cross-dimension aggregation, respectively.
Specifically, bg,d is the normalized importance score, which
models the importance of dimension g to dimension d.

bg,d =
tr
(
WT

g MWd

)∑D
g=1 tr

(
WT

g MWd

) (14)

Then, we can obtain the final representation Hd by combining
the within- and cross-dimension aggregations. This process
can be described as Hk

d = (1 − α) ·Hw
k
d + α ·Ha

k
d , where

α is the hyper-parameter.
In another study, Wang et al., [71] studied multi-view

graphs, and proposed a multi-view network embedding
method I2MNE, which consists of an intra-view attention that
aggregates vertex features in the single view, and an inter-
view attention that integrates vertex representations across
different views. Moreover, Zhang et al., [72] propose a
scalable multiplex network embedding (MNE), which maps
multi-type relations into a unified embedding space, and
captures the distinct property of each sub-graph. In [73],
authors extended the MNE method [72], and proposed a gen-
eral attributed multiplex heterogeneous network embedding
(GATNE), which can support both transductive and inductive
embeddings learning.

Discussion. Multi-dimensional graphs provide a powerful
framework for modeling and analyzing complex relation-
ships and dependencies in real-world systems. By consid-
ering multiple dimensions of node and edge features, these
graphs can capture rich and diverse information, leading
to improved performance in a wide range of tasks, such
as link prediction, node classification, and recommenda-
tion. However, multi-dimensional graphs often exhibit higher
computational complexity compared to traditional graphs,
especially when dealing with large-scale datasets with dense
and interconnected relationships. The presence of multiple
attributes or features associated with nodes and edges can
result in high-dimensional representations that increase the
computational burden of learning and inference tasks. This
increased computational complexity can pose challenges in
terms of resource requirements and scalability, especially for
real-time applications and resource-constrained environments.
Additionally, the curse of dimensionality may result in overfit-
ting, especially in the presence of noisy or redundant features.

C. Signed Graphs

With the development of online social graphs [5], such as
Facebook and Twitter, signed graphs (SigG) with positive and
negative links have encouraged researchers to pay more and
more attention on leveraging machine learning techniques.
Fig. 2 (a) shows an illustrative example of a signed graph
that is from a social graph. The relations among users can be
represented by positive and negative links, where the positive
links indicate friendships, followers and trust, while the
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(a) Signed Graph (b) Hyper Graph (c) Dynamic Graph

Fig. 2: Three graphs to be used as running examples throughout the survey. (a) A signed graph, where users are uniformly
modeled as vertices, while the ”unfriend” and ”friend” relations are modeled as the ”negative” and ”positive” edges,
respectively. (b) In a simple graph, each edge only connects two vertices, which is denoted by a solid line. In a hyper
graph, each hyperedge connects more than two vertices, which is denoted by a colored ellipse. (c) Top: A continuous-time
dynamic graph where each node (or edge) is associated with a timestamp. Bottom: A discrete-time dynamic graph with
topological evolution, which consists of three snapshots.

negative links indicate foes, distrust, blocked and antagonism
[5]. For a social graph with hundreds of thousands of users
and millions of links, the graph is often sparse and noisy. The
formal definition of a signed graph is given below:

Definition 4.5 (Signed Graphs) Let SigG =
{V,E+,E−} be a signed social graph, where V is the set
of vertices, E+ denotes the set of positive edges, and E−

denotes the set of negative edges. Note that E+ ∩ E− = ∅,
in other words, a pair of vertices can only be either positive
or negative links simultaneously. There is a signed adjacency
matrix A, where Aij = 1 indicates a positive edge between
vertex vi to vertex vj . Similarly, Aij = 0 and Aij = −1
indicate a negative edge and a missing edge, respectively.

Previous work [31] has mostly focused on the analysis
and mining of unsigned graphs consisting of only positive
links. However, since the algorithms and theories for unsigned
graphs cannot be simply extended to signed graphs with
negative links, it is necessary to develop more dedicated
methods for signed graphs. Therefore, mining signed graphs
still faces tremendous challenges. The existence of nega-
tive links also brings unprecedented opportunities for signed
graphs, as a few negative links could significantly improve
the performance of various analytical tasks, such as positive
link prediction and recommendation on social media.

As described in Definition 4.5, a signed graph contains
positive and negative edges. Heider et al. [74] first introduced
the structural balance theory, an important social theory,
and then conducted research on individual perceptions and
attitudes. The theory is further developed by [75], which
introduces the concept of balanced signed graph to capture
the forbidden patterns in social graphs. Recently, based on
structural balance theory, Wang et al. [76] propose a signed
graph embedding algorithm SiNE, which preserves the rela-
tive relations between “friends” and “foes”, i.e., the mapping
function maps “friends” closer than “foes” in the embedding
space. Moreover, SNE [77] uses a log-bilinear model to
capture the positive or negative relationship for each edge
by incorporating two signed-type vectors.

The growing interest for the signed graphs has led to

a deep search for ever better GNN methods over signed
graphs. However, the graph filters designed for simple graphs
cannot be directly applied signed graphs due to the existence
of negative edges. Therefore, dedicated efforts are required
to design specific graph filters for signed graphs. A naive
approach is to treat a signed graph as two independent
unsigned graphs, but each of which contains only positive or
negative edges. Then graph filters can be applied to learn the
representations of these two unsigned graphs. In this setting,
the complex interactions between the positive and negative
edges are ignored. Hence, it is a challenge to handle the two
types of edges in a single coherent model. The balance theory
provides a insight for understanding their interactions in the
complex signed graphs [5].

In [5], the graph filters are designed to aggregate informa-
tion from balanced and unbalanced neighbors as follows.

h
B(l)
i = σ

WB(l)

 ∑
j∈N+

i

h
B(l−1)
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i
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(15)
where σ is a non-linear activation function, WB(l) and WU(l)

are learning parameters. h
B(l)
i and h

U(l)
i denote the balanced

and unbalanced representations, respectively.
Discussion. Signed graphs provide a richer representation

of social dynamics compared to unipartite graphs, allowing
for the modeling of complex phenomena such as social bal-
ance, homophily, and polarization. By capturing both positive
and negative relationships, signed graphs enable the repre-
sentation of conflicting opinions, trust issues, and adversarial
relationships, providing a richer and more comprehensive
view of social interactions. However, obtaining labeled data
for signed graphs can be challenging, as it often requires
manual annotation or expert judgment, resulting in small and
imbalanced datasets. The scarcity of labeled data hinders
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the development and evaluation of signed graph analysis
algorithms, limiting their effectiveness and generalization.
Unlike unipartite graphs, where positive edges typically rep-
resent favorable interactions and negative edges represent
unfavorable interactions, the interpretation of signed edges
in signed graphs depends on context and domain-specific
factors. This contextual dependence can lead to inconsis-
tencies and inaccuracies in edge annotations. In addition,
signed graphs may exhibit heterogeneity and noise in edge
signs, particularly in real-world datasets with diverse social
interactions and ambiguous relationships. The presence of
noise in edge signs can affect the performance of signed
graph analysis algorithms, leading to suboptimal results and
unreliable predictions.

D. Hyper Graphs

In the past few years, hyper graphs have attracted
widespread attention, which can accurately represent the
underlying structure, while reducing the overall number of
links compared to regular graph representations that only
encode pairwise information via edges. In a hyper graph,
the relationships among data points could involve multiple
objects, represented by a hyperedge. Fig. 2 (b) shows an
example of hyper graph, which describes the relations be-
tween papers in the citation graph. In this case, an author may
publish multiple papers. To encode higher-order relations, the
author in the citation graph can be regarded as a hyperedge
connecting multiple papers (vertices). Formally, the definition
of hyper graph is as follows.

Definition 4.6 (Hyper Graphs) Let HyG = {V,E, T}
be a hyper graph, where V = {Vt}Tt=1 is a set of vertices with
T types, and E ∈ 2V is a collection of hyperedges consisting
of non-empty subsets of V. A hyper graph HyG degenerates
to a simple graph if each edge has exactly two vertices, i.e.,
|e| = 2 for all e ∈ E. Moreover, it could be a heterogeneous
hyper graph if the number of vertex types T is greater than
1, i.e., T > 1.

Most of the existing graph embedding methods assume that
a pairwise relationship among objects exists in the real-world
graph, i.e., each edge links only a pair of vertices, forming a
pairwise graph. However, the existence of hyper graphs poses
particular challenges to existing graph embedding methods,
especially when these hyper graphs are comprised of complex
interactions among objects of different modalities. This means
that the relationships between vertices could go beyond
pairwise. Hyper graphs usually can capture those high-order
vertex relationships.

A typical approach is to convert a hyper graph into tra-
ditional pairwise graphs, and then apply the existing graph
embedding methods developed on the pairwise graph for
further analysis. There are two representative techniques,
i.e., clique expansion and star expansion. Previous works
[78] [7] assume that the hyperedges can be constructed by
latent similarity, while preserving hyperedge either explicitly
or implicitly. Although this assumption is reasonable for
homogeneous hyper graphs, it is usually not valid when
learning heterogeneous hyper graph embeddings [8], in which

indecomposibility of hyperedges is a common property. To
deal with indecomposable hyperedges, Tu et al. [7] propose a
deep model DHNE to preserve the local and global structural
information in the heterogeneous hypergraphs.

There is a growing interest of generalizing these models
to hyper graph. The key to build graph neural networks for
hyper graphs is to extract the pairwise relations from the
hyperedges by applying the graph filters designed for simple
graphs. In HGNN [79], the authors use a set of pairwise
edges to approximate each hyperedge, where only one rep-
resentative simple edge for each hyperedge is considered as
(vi, vj) := arg maxvi,vj∈e ‖h (vi)− h (vj)‖22, where h (vi)
and h (vj) represent the vertex features. The (vi, vj) will be
“small” when h (vi) and h (vj) are “close” to each other.
Then, a graph filter [80] is used to extract pairwise relations
as follows.

X(l+1) = σ
(
D−1/2
v HWD−1

e H>D−1/2
v X(l)Θ(l)

)
(16)

where X(1) is the signal of hyper graph at l layer, and σ is a
nonlinear activation function. By the hyperedge convolution
operations, the HGNN can effectively deal with complex and
high-order data correlations. Moreover, the traditional GNN
models designed for simple graphs can be regarded as a
special case of HGNN, where the edges are seen as the
second-order hyperedges.

For real scenarios with multi-modal data [81], the data
correlation modeling is more complex, as the graph struc-
ture could be beyond pairwise connections, such as visual
connections, text connections, and social connections. To deal
with this issue, some studies have introduced the multi-hyper-
graph structure to assign weights for different sub-hyper-
graphs, each of which corresponds to a modal. For example,
in [82], the authors proposed a multi-hypergraph learning
method MHL to utilize the multi-modality data.

Discussion. Hyper graphs offer a distinct advantage over
traditional graphs by enabling the modeling of higher-order
interactions using hyperedges. Unlike traditional graphs,
which are limited to pairwise relationships between nodes,
hyper graphs can model complex interactions and dependen-
cies among multiple entities. However, the complex interplay
between multiple nodes and hyperedges can obscure the
underlying patterns and dependencies in the data, making it
challenging to extract meaningful information from learned
embeddings. Furthermore, in real-world datasets with dense
and interconnected relationships, the presence of hyperedges
connecting multiple nodes can result in high-dimensional rep-
resentations that complicate the learning process. In addition,
hyper graphs can be difficult to generalize across different
domains. Due to complex higher-order interactions, models
trained on one domain-specific dataset may exhibit limited
transferability to other domains. Improving the generalization
and transferability of GNN models across diverse domains is
essential for their broader applicability in real-world settings.

E. Dynamic Graphs

Traditionally, research has been done mostly on static
graphs where the connections between vertices are fixed.
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However, many applications involve dynamic graphs (DyG)
that changes over time as new vertices and edge are con-
tinuously emerging. For example, in online social graphs,
new users (vertices) and new friendships (edges) appear
every day. Each vertex and each edge are associated with
a timestamp. An example of dynamic graph is shown in Fig.
2 (c). A dynamic graph allows learning models to leverage
the temporal and structural patterns. Formally, we give the
definitions of continuous-time dynamic graphs and discrete-
time dynamic graphs.

Definition 4.7 (Continuous-Time Dynamic Graph) Let
CTDG = (V,E, ϕv, ϕe) be a continuous-time dynamic
graph, where V denotes a set of N vertices {vt1, vt2, . . . , vtN},
and E denotes D sets of edges {et1, et2, . . . , etD}. Each vertex
and each edge are mapped to their emerging timestamps t
through the mapping functions ϕv and ϕe, respectively.

Definition 4.8 (Discrete-Time Dynamic Graph) The
discrete-time dynamic graph can be characterized in the form
of a time series, denoted by DTDG = {G1, ...,GT }. Then,
the graph at time step t can be denoted by Gt = {Vt,Et}.

The discrete representations of a dynamic graph at different
time intervals are referred to as snapshots. Then, the static
graph analysis methods can be used for each snapshot, as
shown in Fig. 2 (c). Moreover, the static graphs can be
regarded as coarse-grained, while the dynamic graphs that
are constantly evolving can be regarded as fine-grained. As
the temporal granularity increases, the model complexity also
increases. Therefore, the dynamic graphs have carried the
most information but is also the most complex.

Dynamic graph embedding includes various of methods
such as tensor decomposition and random walks, which maps
the dynamic graph into a latent space. Tensor factorization
is similar to matrix factorization [83], where time is an
additional dimension. In other words, the dynamic graph
structure can be represented by a set of adjacency matrices
A = {A1, . . . ,AT } where A ∈ R|V|×|V|×T . T is the
timestamp. Then, tensor decomposition can be applied to
these adjacency matrices. STWalk [84] performs the space-
walk and time-walk on a temporal graph at the current
and previous time-steps to learn effective vertex trajectory
representations. Moreover, Nguyen et al. [85] use a deep
learning model based on random walk to incorporate the
temporal dependencies in the vertex embeddings.

In the discrete time dynamic graph, each snapshot can be
regarded as a static graph. Then, the learning model designed
for static graph can be applied to each snapshot, and the entire
dynamic graph can be processed. In general, the time window
is used to split a discrete graph into multiple snapshots,
which makes the graph structure appear in each snapshot.
Although reducing the size of the time window or the interval
between snapshots can increase the temporal granularity, this
may produce a snapshot without graph structure. Meanwhile,
the running time will increase linearly with the number of
snapshots. Compared with the discrete representations, the
continuous graphs can offer superior temporal granularity,
avoiding the loss of information.

Recently, there is a growing interest of generalizing GNN
models to discrete-time dynamic graphs consisting of a set of

snapshots. By combining the GNN model with the deep time-
series model (such as an RNN or a GRU), the dynamic graph
neural network can learn time series across graph snapshots
over time. In this setting, the GNN and deep time-series model
are used to model graph topology and time dependency,
respectively. Both models provide great flexibility. In [6],
authors propose a deep learning model, EvolveGCN, which
adapts the GNN to aggregate the neighbouring information for
each vertex in a graph snapshot, and uses the RNN captures
the dynamism of the graph sequence.

Recently, spatio-temporal graph convolutional networks
(ST-GCN) [86, 87] have been proposed to learn both the
spatial and temporal patterns from graph data. In general,
the ST-GCN performs the spatial graph convolution and the
temporal graph convolution to extract the spatial information
and temporal information, respectively. This process can be
described as follows.

Γ ∗T X = P � σ(Q) (17)

Y =

K−1∑
i=0

θiTi(L̃)X (18)

where θ is the Chebyshev coefficient. Γ ∗T X denotes the
spatial graph convolution operations. P and Q are input of
gates in the gated linear units (GLU) respectively. Y denotes
the output of the temporal graph convolution layer.

As mentioned earlier, it is difficult for existing GNN to
directly act on the continuous-time dynamic graphs (CTDG)
due to the inherent essence of GNN. Most existing GNN-
based research is limited to the setting of discrete-time
dynamic graph (DTDG), where each snapshot in the DTDG
can be processed by the static GNN model. Few works can
handle any continuous-time dynamic graph, where edges can
appear at any time and new vertices can be constantly added
to the graph. In order to support the continuous-time scenario,
Rossi et al., [88] proposed a generic framework, Temporal
Graph Networks (TGNs), to deal with the dynamic graphs
represented as sequences of timed events.

Discussion. Unlike static graphs, which assume the rela-
tionships between entities are constant, dynamic graphs pro-
vide the flexibility to represent time-varying interactions and
evolving graph structures. By leveraging historical temporal
information and modeling sequential dependencies, dynamic
graph models can anticipate future changes in graph structures
and interactions, enabling better prediction and decision-
making. However, dynamic graphs also present some chal-
lenges. In real-world datasets with irregular sampling intervals
and incomplete observations, the time nature of dynamic
graphs can exacerbate the data sparsity problem. Gaps in time
series may lead to unreliable representations of graph dynam-
ics and reduce the accuracy of predictive models. Moreover,
dynamic graphs often exhibit higher model complexity com-
pared to static graphs, especially when dealing with long time
series. The need to capture time dependencies and evolving
relationships can result in complex model architectures and
parameterizations that require complex algorithms and com-
putational resources for training and inference. Additionally,
dynamic graphs are susceptible to concept drift and model
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adaptation challenges, resulting in degraded performance and
outdated representations.

V. EVALUATION

In this section, we offer a systematic approach to evaluate
GRL methods and address the challenges associated with
performance evaluation and dataset standardization. First, we
summarize some commonly datasets used in GRL. Second,
we highlight some well-established benchmarks in the litera-
ture, which play a pivotal role in evaluating the effectiveness
of existing GRL methods and offer valuable guidance for
researchers in this field.

A. Benchmark Datasets

A key aspect of evaluating GRL methods is the availability
of standardized benchmark datasets that accurately represent
real-world graph scenarios. However, to date, no standard
dataset has been established for evaluating GRL methods
across different graph types. To address this gap, we provide
an overview of commonly used datasets in the literature to
provide a summary of applications and use cases of GRL
systems. Table I summarizes the selected benchmark datasets,
which can be categorized into six groups: simple graphs, het-
erogeneous graphs, multi-dimensional graphs, signed graphs,
hyper graphs, and dynamic graphs. These datasets cover
diverse domains and provide valuable resources for evaluating
the effectiveness of GNN-based learning algorithms. Each
dataset is described in detail, including its characteristics,
domain, and applicability for specific GRL tasks. Below, we
provide a brief overview of each dataset.

Simple Graphs (SimG). For simple networks, several
datasets are widely used for citation graph analysis, including
Cora, Citeseer, and Pubmed [89]. In these datasets, vertices
represent documents (such as academic papers), and edges
represent citations between them. Another dataset, NELL
[90], is derived from a knowledge graph, where nodes are
interconnected by directed and labeled edges. The PPI dataset
[52] contains 24 graphs, each representing interactions be-
tween proteins. Researchers leverage this dataset to assess the
effectiveness of algorithms in analyzing complex biological
graphs. Reddit [52], a popular online discussion forum, offers
diverse topical communities where users engage in discus-
sions and share content. In Reddit, posts are linked if the same
user comments on both, forming a graph structure that reflects
user engagement and content interaction within communities.

Heterogeneous Graphs (HeG). For heterogeneous graphs,
there are several widely used heterogeneous graph datasets
from different domains. The DBLP [91] dataset is collected
from a computer science bibliography website, where the
node features are the terms related to papers, authors, and
conferences respectively. IMDB-He [91] is an online database
containing information about movies and television programs,
including details such as cast, production crew, and plot
summaries. ACM [91] is a citation graph dataset, where
papers are labeled according to the conference of publication,
and features are constructed by the keywords. In Yelp [92],
nodes are labeled based on their category, and node features

are represented as elements of a bag-of-words derived from
keywords.

Multi-Dimensional Graphs (MDG). Several widely used
multi-dimensional graph datasets from different domains are
used to evaluate the performance of GNNs. The DBLP-MD
[4] is a co-authorship multi-dimensional graph extracted from
the DBLP dataset, where the co-authorship in each year is
treated as different relations. Epinions-MD [4] is a compre-
hensive review site where users can submit product reviews
and rate the usefulness of reviews written by other users. In
addition, users can establish relationships of trust and distrust
within the platform. Due to the scarcity of real-world labeled
high-dimensional multiplex graphs, the work [94] collected
five datasets from various sources to assess the applicability
of HMGE, including BIOGRID-Ext [93], BIOGRID [93],
DBLP-Authors [94], IMDB-MD [94], STRING-DB [95].
Moreover, the benchmark datasets, including Amazon [96],
YouTube [97], and Twitter [98], were adapted from [73].

Signed Graphs (SigG). For signed graphs, four public
real-world benchmark datasets, including Bitcoin-Alpha [99],
Bitcoin-OTC [100], Slashdot [101], and Epinions-Sig [101],
are commonly used for evaluation. Many signed GRL meth-
ods were evaluated on these datasets. Bitcoin-Alpha and
Bitcoin-OTC are collected from Bitcoin trading platforms
where members can rate each other based on trustworthiness
to prevent fraudulent transactions. Slashdot is a well-known
technology-related news website with a strong and active user
community. In this dataset, users can tag each other as friends
(positive links) or foes (negative links). The Epinions-Sig
dataset was collected from a consumer review site where
members can establish trust relationships with each other.
These trust relationships combine to form a Web of Trust.

Hyper Graphs (HyG). Table I provides a set of five
available benchmark datasets from the existing literature on
hypergraph neural networks. The benchmark datasets, namely
Cora-CA and DBLP-CA, consist of co-authorship graphs and
are sourced from the study by Sen et al. [89]. In Cora-CA
and DBLP-CA, a hyperedge is constructed to connect all
documents cited by an author. The 20News and Zoo datasets
are sourced from the UCI Categorical Machine Learning
Repository [102]. In the 20News dataset, the node features
are represented using Term Frequency-Inverse Document Fre-
quency (TF-IDF) representations of news messages, while the
Zoo dataset contains a mix of categorical and numerical mea-
surements describing different animals. Moreover, NTU2012
[103] is a dataset in the field of computer vision and graphics,
specifically focusing on three-dimensional (3D) data.

Dynamic Graphs (DyG). In Table I, we provide four
benchmark datasets commonly used in dynamic neural
networks research. The Reddit-Dy [104] dataset collects data
on active users and their posts under subreddits. When a
user creates a post in the subreddit, the interaction is formed
and the user post is transformed into a feature vector. In
Wikipedia-Dy [104], popular edit pages and active users are
nodes, and each edit is treated as a link. In Twitter [88],
users are nodes and retweets are edges. Features are vector
representations based on BERT. MOOC [104] is a dataset
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TABLE I: A summary of commonly used benchmark datasets.

Dataset #V #E #E-type #E+ #E− #Features #Class SimG HeG MDG SigG HyG DyG
Cora [89] 2708 5429 - - - 1433 7 X - - - X -
Citeseer [89] 3327 4732 - - - 3703 6 X - - - X -
Pubmed [89] 19717 44338 - - - 500 3 X - - - X -
NELL [90] 65755 266144 - - - 5414 210 X - - - - -
PPI [52] 56944 818716 - - - 50 121 X - - - - -
Reddit [52] 232965 114615892 - - - 602 41 X - - - - -
ACM [91] 8994 25922 4 - - 1902 - - X - - - -
DBLP-He [91] 18405 67946 4 - - 334 - - X - - - -
IMDB-He [91] 12772 37288 4 - - 1256 - - X - - - -
Yelp [92] 3913 77176 6 - - 82 - - X - - - -
DBLP-MD [4] 138072 2015650 - - - 20 10 - - X - - -
Epinions-MD [4] 15108 485154 - - - 15 5 - - X - - -
BIOGRID-Ext [93] 4503 311645 - - - 28 4 - - X - - -
BIOGRID [93] 4211 280979 - - - 15 4 - - X - - -
DBLP-Authors [94] 5124 33250 - - - 10 4 - - X - - -
IMDB-MD [94] 3000 224984 - - - 8 3 - - X - - -
STRING-DB [95] 4083 4923554 - - - 7 3 - - X - - -
Amazon [96] 312320 7500100 4 - - - - - - X - - -
YouTube [97] 15088 13628895 5 - - - - - - X - - -
Twitter [98] 456626 15367315 4 - - - - - - X - - -
Bitcoin-Alpha [99] 3783 14145 - 12729 1416 - - - - - X - -
Bitcoin-OTC [100] 5901 21522 - 18390 3132 - - - - - X - -
Slashdot [101] 33586 396003 - 295201 100802 - - - - - X - -
Epinions-Sig [101] 16992 327227 - 276309 50918 - - - - - X - -
Cora-CA [89] [80] 2708 1072 - - - 1433 7 - - - - X -
DBLP-CA [89] [80] 43413 22535 - - - 1425 6 - - - - X -
Zoo [102] 101 43 - - - 16 7 - - - - X -
20News [102] 16242 100 - - - 100 4 - - - - X -
NTU2012 [103] 2012 2012 - - - 100 67 - - - - X -
Reddit-Dy [104] 11000 672447 - - - 172 - - - - - - X
Wikipedia-Dy [104] 9227 157474 - - - 172 - - - - - - X
MOOC [104] 7135 411749 - - - - - - - - - - X
Twitter-Dy [88] 8861 119872 - - - 768 - - - - - - X
Industrial [105] 170243 2135762 - - - 100 - - - - - - X.

that comprises actions performed by students on a MOOC
online course. In Industrial [105], popular products and
active customers from the online grocery shopping website
are nodes, and the customer-product purchases are temporal
edges.

B. Performance Assessment

A fundamental aspect of successful research is to provide
evidence of the effectiveness of GRL approaches. Although
many GRL techniques have been proposed to address chal-
lenges in complex graphs, evaluating their effectiveness re-
quires systematic comparisons across different graph condi-
tions. After reviewing the various complex graphs, it would
be interesting to understand the performance results of the
GRL approaches when dealing with different types of graphs.
However, evaluating the performance of GRL methods across
different graph types remains challenging due to the lack
of standardized benchmarks and comprehensive evaluation
frameworks in the literature. Table II summarizes the metrics
used in the literature to evaluate the performance of the
GRL approaches. Our analysis focuses on the following
six metrics: Accuracy, Precision, Macro-averaged F1 score
(Macro-F1), Micro-average F1 score (Micro-F1), F1 score,
and Area Under Curve (AUC). For all metrics, a higher
value indicates better performance. It is important to note that
different complex graphs are applicable to varying scenarios,
which brings many challenges. For instance, heterogeneous

graphs, characterized by diverse node types and interactions,
present unique challenges that require strategies to address
this diversity. Similarly, hyper graphs, characterized by hy-
peredges connecting multiple nodes, necessitate specialized
methodologies to capture their complex interactions. By con-
sidering the unique characteristics of various graph types,
researchers can gain deeper insights into the performance of
GNNs and advance the state-of-the-art in graph analysis and
modeling.

Given the complexity and characteristics of each graph
type, we conduct a thorough review of GRL methods and ana-
lyze their performance in various graph architectures, includ-
ing simple graphs, heterogeneous graphs, multi-dimensional
graphs, signed graphs, hyper graphs, and dynamic graphs.
However, conducting a full-fledged benchmarking effort cov-
ering a wide range of graph complexities is a daunting task,
exceeding the scope of any single survey or study. Therefore,
while it may not be feasible to comprehensively evaluate all
GRL methods across diverse graph types, it is still valuable to
provide insights into the performance of state-of-the-art GRL
methods in representative scenarios. By synthesizing insights
from existing literature, we identify the most representative
GRL methods for each graph type and report the best results
presented in their papers in Table II. These results are directly
extracted from the literature, providing a reliable basis for
comparison. We aim to bridge the gap between GRL research
and facilitate future studies in this field. By leveraging these
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TABLE II: Summary of some representative algorithms.

Category Methods Datasets Accuracy Precision Macro-F1 Micro-F1 F1 AUC

Simple Graph

GCN [31]
Cora [89] 81.5 - - - - -
Citeseer [89] 70.3 - - - - -
Pubmed [89] 79.0 - - - - -
NELL [90] 66.0 - - - - -

GraphSAGE [52] PPI [52] - - - - 61.2 -
Reddit [52] - - - - 50.2 -

GAT [60]
Cora [89] 83.0 - - - - -
Citeseer [89] 72.5 - - - - -
Pubmed [89] 79.0 - - - - -
PPI [52] 97.3 - - - - -

Heterogeneous Graph HAN[70]
ACM [91] - - 90.63 90.54 - -
DBLP-He [91] - - 93.08 93.99 - -
IMDB-He [91] - - 54.38 58.51 - -

HANE[106]
ACM [91] - - 93.48 93.37 - -
DBLP-He [91] - - 91.92 92.77 - -
Yelp [92] - - 93.55 92.76 - -

MAGNN[107] DBLP-He [91] - - 94.10 94.47 - -
IMDB-He [91] - - 61.44 61.53 - -

Multi-dimensional Graph mGCN[4] DBLP-MD [4] - - 67.0 68.0 - -
Epinions-MD [4] - - 44.0 56.0 - -

HMGE[94]

BIOGRID-Ext [93] - - 98.17 98.24 - -
BIOGRID [93] - - 98.75 98.77 - -
DBLP-Authors [94] - - 57.52 71.76 - -
IMDB-MD [94] - - 43.02 43.16 - -
STRING-DB [95] - - 81.38 82.99 - -

GATNE[73]
Amazon [96] - - - - 92.87 97.44
YouTube [97] - - - - 76.83 97.44
Twitter [98] - - - - 84.96 92.30

Signed Graph
SignedGCN[5]

Bitcoin-Alpha [99] - - - - 91.7 79.6
Bitcoin-OTC [100] - - - - 92.5 82.3
Slashdot [101] - - - - 86.4 80.4
Epinions [101] - - - - 93.3 86.4

LightSGCN[108]

Bitcoin-Alpha [99] - - 76.4 91.3 - 88.1
Bitcoin-OTC [100] - - 81.6 90.2 - 89.8
Slashdot [101] - - 81.7 86.2 - 91.4
Epinions [101] - - 87.4 93.2 - 95.9

SIHG[109]

Bitcoin-Alpha [99] - - 71.15 92.79 96.14 89.81
Bitcoin-OTC [100] - - 79.49 91.65 95.28 91.54
Slashdot [101] - - 79.34 86.96 91.89 89.50
Epinions [101] - - 82.61 92.47 95.71 92.62

Hyper Graph HGCN[79] Cora [89] 81.6 - - - - -
Pubmed [89] 80.1 - - - - -

UniGCNII[110]

Cora [89] 73.6 - - - - -
Citeseer [89] 66.5 - - - - -
Pubmed [89] 75.8 - - - - -
Cora-CA [89] [80] 76.6 - - - - -
DBLP-CA [89] [80] 89.4 - - - - -

HSL[111]

Cora [89] 79.88 - - - - -
Citeseer [89] 73.79 - - - - -
Pubmed [89] 89.86 - - - - -
Cora-CA [89] [80] 84.43 - - - - -
DBLP-CA [89] [80] 91.83 - - - - -
Zoo [102] 98.08 - - - - -
20News [102] 81.98 - - - - -

AllSet[112]

Cora [89] 78.59 - - - - -
Citeseer [89] 73.08 - - - - -
Pubmed [89] 88.72 - - - - -
Cora-CA [89] [80] 83.63 - - - - -
DBLP-CA [89] [80] 91.53 - - - - -
Zoo [102] 97.50 - - - - -
20News [102] 81.38 - - - - -

Dynamic Graph JODIE[104]
Reddit-Dy [104] - - - - - 59.9
Wikipedia-Dy [104] - - - - - 83.1
MOOC [104] - - - - - 75.6

TGNs[88]
Reddit-Dy [104] - 98.46 - - - 65.56
Wikipedia-Dy [104] - 98.70 - - - 83.69
Twitter-Dy [88] - 94.52 - - - 92.31

TGAT[105]
Reddit-Dy [104] 90.73 - - - - 65.56
Wikipedia-Dy [104] 96.62 - - - - 83.69
Industrial [105] 72.08 - - - - 92.31.
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resources, researchers can rigorously evaluate and compare
the performance of their GRL methods with those reported
in existing literature, contributing to the development of more
effective and robust graph analysis techniques.

VI. FUTURE DIRECTIONS

Although GRL technologies have achieved great success in
a number of areas [36–38], it still does not provide satisfac-
tory solutions in more complexed graphs. In the following,
we summarize some future directions for GRL.

Scalability. Most real graphs are heterogeneous, dynamic,
and sufficiently complex. A key challenge is how to build
a scalable model, especially when the model is designed to
preserve the local and global properties of complex graphs.
Moreover, large-scale graphs also pose challenges to tradi-
tional graph analysis tasks. The GRL algorithm needs to be
carefully designed to ensure the effectiveness and efficiency
of large-scale graphs.

Model Depth. The success of deep learning largely relies
on the deep neural network structure, but most of existing
state-of-the-art GRL methods (i.e., GNN model) still suffer
from a shallow structure problem. This is determined by the
inherent essence of the GNNs, i.e., the graph convolutions
makes the representations of adjacent nodes similar to each
other. In theory, when the number of graph convolutional lay-
ers is infinite, the representations of all nodes will eventually
converge to one point. How to build a deeper neural network
could be a future research direction.

Pre-training Model. Existing deep learning models learn
useful patterns and trends from a large number of instances,
thereby obtaining a promising reliable performance. However,
the labeling efforts for a large amount of data are non-trivial.
The idea of pre-training is proposed to obtain pre-training
models that are not related to specific tasks from large-scale
data. After fine-tuning, this pre-trained model can be used for
various downstream tasks.

Interpretability. Interpretability is an important part of
putting the deep learning based GRL algorithms into practical
application, especially in some decision-critical scenarios,
such as disease prediction and chemical reaction prediction.
However, the lack of interpretability has drawn widespread
criticism of deep learning. Although many existing deep
learning based GRL algorithms are promising for modeling
complicated graphs, their interpretability and explainability
are more challenging than other conventional deep learning
models due to the structure-level interconnection between
vertices.

Compositionality. Another important research direction is
the compositionality of existing models. Many architectural
building blocks or functional components can be incorporated
into existing neural network models. For example, in [113],
authors used various known building blocks (e.g., a graph
nerual network layer and a capsule network layer) to construct
complex architectures. A key challenge is how to effectively
combine disparate architectural building blocks to deliver an
agile, efficient, and high-performance architecture.

VII. CONCLUSION

Over the past few years, graph representation learning has
become a practical and powerful tool in both graph analysis
and other related areas. Specifically, graph-based deep learn-
ing methods like graph neural networks constitute a critical
building block in modeling and learning structured graph data,
which significantly facilitates the graph analysis. This survey
provides a comprehensive review of the state-of-the-art GRL
techniques, with a focus on graph neural network methods.
We first introduce the formal definition of GRL as well as
the related concepts. After that, we provide a taxonomy that
groups real-world graphs into two categories: simple graphs
and complex graphs, and then summarizes of the state-of-the-
art GRL techniques within categories. This survey provides
important insights for researchers and practitioners seeking to
understand and leverage GRL methods to analyze complex
real-world graphs. Finally, we highlight a wide range of
important applications of GRL and suggest a few promising
and emerging research directions for future work. We believe
that our work will inspire the community to further advance
the research on GRL.
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