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This paper presents a novel approach for diagnosing Community-Acquired Pneumonia (CAP) in children using
single-channel photoplethysmography (PPG) using machine learning Traditional diagnostic methods (x-rays
systems and blood tests) for pneumonia suffer from limitations e.g., unavailability in remote rural areas, time
consumption, financial burden, and reliance on invasive procedures. This novel approach uses the PPG recording
alone to generate accurate and rapid diagnoses of CAP in children that may facilitate healthcare practitioners in
low-resource clinical settings in future. A cross-sectional study was carried out to collect the PPG recordings of 67
paediatric participants (31 CAP and 36 healthy). Five different machine learning classifiers namely Fine Decision
tree, Linear Discriminant Analysis, Weighted K Nearest Neighbour, Wide Neural Network, and Ensemble of
Bagged Trees using eight PPG signal features were employed. Using weighted KNN we predicted 9 out of 10 test
subjects correctly. These results demonstrate the potential of the system to improve clinical decision-making and
patient outcomes since despite the thriving advancements in healthcare paediatric pneumonia remains a major

health concern.

1. Introduction

The mortality rate due to paediatric pneumonia has reduced drasti-
cally in the last 20 years, however, it is still the major cause of morbidity
and mortality in children especially under five years of age [1,2]. The
situation is particularly alarming for middle- and lower-income coun-
tries given the prevalence of risk factors like environmental pollution,
lack of immunization coverage and the rising burden on the global
healthcare system especially after the COVID-19 pandemic [3,4]. Ac-
cording to the UN estimate, almost 5 million children die annually [5],
with lower respiratory tract infections and pneumonia being the leading
cause of these deaths [6]. According to WHO criteria, pneumonia for
paediatric subjects under five years of age who have either cough and/or
difficulty breathing with or without fever is diagnosed by the presence of
tachypnoea or lower chest wall indrawing [7]. The Integrated Man-
agement of Childhood Illness (IMCI) Guidelines clearly outlines specific
guidelines for the management and classification of childhood diseases
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like pneumonia, diarrhoea etc according to danger signs and classifi-
cation of illness [8]. However, despite the widespread dissemination of
standardised guidelines, many cases of pneumonia are missed and there
is a need for alternative options for low-income countries [9]. Even with
suspicion of pneumonia according to valid signs and symptoms on
clinical grounds needs further investigation for confirmation of diag-
nosis so unnecessary antibiotics can be prevented when a diagnosis is
more likely to be viral bronchitis that too has overlapping symptoms
[10]. Severe cases of pneumonia in early childhood may give rise to
complications like bronchiectasis [11] and lead to Chronic Obstructive
Pulmonary Disease (COPD) in adulthood [12]. There is a variety of
testing methods including blood tests and radiology-based tests along
with clinical correlations by a trained medical professional that are
generally employed to diagnose pneumonia, however, the aetiology for
bacterial and viral pneumonia is difficult to establish in the case of
paediatric patients where sputum samples are difficult to extract for
culture testing [13]. Amid the rapid progress in the field of biomedical
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signal processing and Artificial Intelligence (Al), it is both challenging
and fascinating to explore new physiological signals and methods that
have the potential to carry valuable information about the physiology of
the respiratory system. Researchers need to strive for new diagnostic
methods for paediatric pneumonia that are painless and cost-effective.

A photoplethysmography (PPG) uses an optical sensor used to detect
blood volume changes. A PPG is often obtained by using a pulse oxim-
eter which illuminates the skin and measures changes in light absorption
[14]. PPG sensor has a simple design and principle to extract the signal
however the PPG signal itself is complex and has a variety of compo-
nents with diverse biological functions, with slight variation of sensor
design and site, different applications are achieved [15]. Therefore, over
the past few years, it has been extensively employed as an interesting
research tool and various research objectives have been achieved by
employing the technique [16]. With the strong computational power of
machine learning, the possibilities of using PPG as a diagnostic tool are
immense [17-19] PPG and its derivatives commonly known as velocity
PPG (VPPG) and acceleration PPG (aPPG) have been found to have
strong correlation with various diseases especially coronary artery dis-
eases (CAD), Iokebe et al [20]conducted a study on aPPG for various
outpatient and inpatient diseases and concluded that it contains valu-
able bioinformation for screening and diagnosis of many diseases other
than CAD e.g., liver injury, traumas etc. Recently PPG have been
employed to detect arrythmias [21], diagnosing type-2 Diabetes Melli-
tus (DM) [22]. Saritas et al [23] found statistically significant difference
in morphology of PPG signal between control subjects, subjects with
CAD with Chronic kidney disease (CKD), this making PPG a suitable
non-invasive tool for diagnosing CAD in CKD patients.

Vital signs like heart rate, breathing rate, body temperature, and
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oxygen saturation are typically employed in clinical settings along with
many blood and radiology tests to diagnose community-acquired
pneumonia in both paediatric patients and adults. Also, the use of
pulse oximetry is extremely common in triage units of all healthcare
centres. The main idea is to have a non-invasive, fast, and low-cost point-
of-care device that could assist and increase community-acquired
pneumonia diagnostic accuracy by medical practitioners or healthcare
professionals. In the present work, a novel attempt has been made to
diagnose pneumonia using single channel PPG signal only. A cross-
sectional study was performed using 31 Community-Acquired Pneu-
monia (CAP) participants who were admitted to the paediatric intensive
care unit (PICU) at Dr Ziauddin Hospital from January 2022 to
September 2022. These were compared with a control group of 36
healthy paediatric participants. To the best of our knowledge, it is the
first attempt to record the PPG signal of paediatric subjects and to use
the PPG signal alone to diagnose pneumonia. We extracted time and
frequency domain-based features from the recorded signal. After PPG
signal pre-processing and the feature extraction, five supervised ma-
chine learning classifiers were trained and tested with these PPG fea-
tures to predict CAP in children among random participants.

The entire process is summarized in Fig. 1 below. The presented
paper is organized as follows, in section 2 we have discussed the related
work, in section 3 the methodology employed for the data collection and
subsequent processes are discussed in detail. Section 4 presents the pre-
processing results and training and test results for all five used classi-
fiers, in section 5, results of data collection, pre-processing and the
machine learning classifier have been discussed, and finally, in sections
6 and 7, some future directions of work has been given and the present
work has been concluded.
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Fig. 1. Workflow for the proposed study: (a) Data collection: Photoplethysmogram of both healthy and pneumonia-infected individuals were recorded. A team of
trained medical professionals under a consultant paediatrician diagnose and label the participant PPG data with PCAP or healthy tag. The PPG recordings were made
using an FDA-approved oximeter connected to a host computer via a USB interface. The recordings were exported as csv files and were subsequently used in the next
step; (b) Pre-processing: The PPG recordings were filtered, detrended, minimum and maximum points of the waves were marked, and locations were saved, and
finally, the signal was normalized. The normalized signal was exported as csv files; (c) Features extraction: first the normalized PPG waves along with the key points
detected previously were utilized to extract time and frequency domain features. The feature table with the clinician decision tag as a reference was then used to train
five different machine-learning algorithms with 85% of the participants’ data (57 participants) was used for training and tested with 15% participants’ data (10

participants).
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2. Related work

In the last few years, researchers have used chest sound as a signal of
interest to diagnose and monitor respiratory disorders including pneu-
monia. K. Kosasih et al. Porter et al. and A. Imran et al used cough
sounds for diagnosis and reported good sensitivities as [24-26]. Porter
et al. used an audio recording of cough to diagnose pneumonia in
restricted settings such as telehealth consultations [25]. Symptoms re-
ported by patients (fever, acute cough, productive cough, and age) and
audio files of cough were recorded and were analysed by the
smartphone-based algorithm to generate a prediction for Community-
Acquired Pneumonia (CAP). The proposed algorithm had high Per-
centage Agreement (PA) with the clinical diagnosis of pneumonia, (n =
322, positive PA [PPA] = 86.2%, negative PA [NPA] = 86.5%). H. Chen
categorized wheeze, crackle, and normal respiratory sound using opti-
mized S transform and deep residual network ResNet and obtained ac-
curacy, sensitivity, and specificity up to 98.79%, 96.27%, and 100%,
respectively [27]. E. McCollum et al. used a random-effects regression
model to evaluate the association between lung sounds and radiographic
pneumonia [28].

Rao et al. developed a proof-of-concept non-invasive device to
identify the fluid accumulation in the lungs (consolidation), a specific
characteristic of pneumonia [29]. This device, named Tabla utilized the
technique of auscultatory percussion; a percussive input sound is sent
through the chest and recorded with a digital stethoscope for analysis. It
analyses the differences in sound transmission through the chest at
audible frequencies as a marker for lung consolidation. The presented
preliminary data from five pneumonia patients and eight healthy sub-
jects demonstrated 92.3% accuracy in distinguishing between healthy
subjects and patients with pneumonia after data analysis with a K-
nearest neighbours’ algorithm.

Another approach is to use vital signs such as respiratory rate, body
temperature, heart rate etc. to monitor pneumonia. Baker et al.
employed Community Health Workers (CHW) in resource-strained set-
tings to use four different RR timers and predict pneumonia in children
based on RR [30]. Four devices were evaluated and none of them per-
formed well based on agreement with the reference standard.

W. Karlen extracted the respiratory rate using PPG, the respiratory
rate gives a fair estimation since tachypnoea is an important symptom of
pneumonia [31]. Capelastegui et al. suggested the use of RR along with
other factors such as urea level, mental state, and blood pressure level
effective enough [32]. Amirav et al. suggested that the diagnostic yield
of tachypnoea among children with true bacterial pneumonia appeared
to have been low, implying that it might be neither an appropriately
sensitive nor a specific sign of bacterial pneumonia, thus questioning the
role of this parameter in the diagnosis of pneumonia [33]. It is worth
mentioning that oxygen saturation alone is not used for diagnosing
Pneumonia however it is a good predictor [34]. Low oxygen saturation
however could be because of reasons other than pneumonia and thus
could be misleading. M. J. Lyu et al. presented the idea for the diagnosis
of pneumonia using the smart dog as part of the care set-up for patients
with Alzheimer’s disease [35]. K. Mala et al. used three different sensors
heart rate, body temperature, and respiration rate [36]. T. Salti et al.
used only two sensors [37]. In a true sense, both researchers presented a
mode of monitoring the relevant vital signs by medical staff rather than
independently diagnosing Pneumonia. Chiu et al. described an elec-
tronic nose to detect metabolite of pneumonia in its early stages from
expired gas from the patient circuit in a ventilator [38]. S. Daulou et al.
described a novel Optical Biosensor (OB) using the principle of photo-
plethysmography to detect sepsis and severe covid-19 induced pneu-
monia [39]. The OB diagnosed severe COVID-19 with 83.3% sensitivity
and 87.5% negative predictive value.

It is worth noting that the majority of the research targeting non-
invasive methods of diagnosing pneumonia is in the prototype phase.
The vital signs-based methods discussed above are in the actual sense a
method of monitoring pneumonia after it has been diagnosed. After the
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COVID-19 pandemic, the need for remote point-of-care diagnostic tools
is extremely highlighted. Therefore, finding such a tool for pediatric
pneumonia is extremely important.

3. Methods
3.1. Data collection

The data for pneumonia-infected individuals was collected first from
the Paediatric Intensive Care Unit (PICU) of Dr Ziauddin Hospital. The
study has been approved by the Ethical Review Committee (ERC) of
Ziauddin University under reference code 0140421FAENG. A team of
doctors under a Paediatric Consultant diagnosed the patients with
Pneumonia. The data was collected before any antiviral or antibiotic
treatments were started for the subjects. In total 31 subjects were
recruited in the study, 21 males and 10 females with a mean age of 2.53
years whereas the standard deviation was 4.15 years for the group. For
healthy subjects, data were collected at various premises of Ziauddin
Hospital and University according to the following protocol. For the
healthy group we had 36 subjects, 17 of the subjects were male and 19
females. The mean age for the healthy group was 4.59 years with a
standard deviation of 0.8 years. The PPG has been recorded using an
FDA-approved pulse oximeter CMS 50D+, the recording software has a
sampling frequency of 58.6 Hz. For each paediatric participant, a 3-min-
ute-long PPG recording was made from right-hand fingers. We recorded
other information like non-invasive blood pressure, heart rate, manual
respiratory rate for one minute, and SpO,, All the participants were in
relaxed supine position and were asked to keep hand on a flat surface.

3.1.1. Inclusion and exclusion criteria
The inclusion criteria for healthy kids were as follows:

1. The subjects should not have any active infection or fever.

2. The subjects should not have any chronic condition (Diabetes, Ju-
venile arthritis, hypertension etc.) or genetic disorder.

3. The BMI should be normal [40].

The inclusion and exclusion criteria for subjects with pneumonia
infection are as follows:

1. A team of doctors under a consultant paediatrician has confirmed
pneumonia as CAP and no case of Healthcare-Associated Infection
(HAI) i.e., Hospital Associated Pneumonia (HAP) and Ventilator-
Associated Pneumonia (VAP) was included.

2. The subject does not have other chronic comorbid like Diabetes,
Juvenile arthritis, hypertension etc.

3.2. Pre-processing

The preprocessing steps are defined below in detail, the entire pro-
cess is summarized as follows in Fig. 2.

3.2.1. Segmentation

All the collected data were segmented using into a 3-second-long
signal segment. The segment length was chosen to get 4-6 clear beats
so that further processing steps of filter and screening of data are easier
to visualize and comprehend. Eventually, for feature extraction in-
dividuals one complete beat at a time was used. The segmentation was
done to remove bad-quality signal segments due to various artefacts and
placement difficulties given the age of the study participants and
glitches that occurred during the recording.

3.2.2. Filter selection

For the presented work, the bandpass Chebyshev 2 filter of order 12
(n = 6; number of poles) has been implemented. The cut-off frequencies
for the bandpass filter have been estimated using the 256-point Fast
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Fig. 2. Preprocessing steps employed for the presented work: the blocks in blue are performed using automated codes. The only manual expert input is needed in the

data screening step exhibited in gray.

Fourier transform of the raw signal as shown in Fig. 3. The upper and
lower cut off frequencies for the designed filter is 0.5 Hz to 5 Hz.

3.2.3. Data screening

The collected data was manually screened given the age group of the
targeted subjects. Another code has been developed that plots each raw
signal segment and filtered version, and each segment was screened and
only high-quality clean data segments without electronic glitches and
disturbances were saved in a different csv file. The segments were
judged based on the heartbeat of the given subject and whether the
overall morphology of the signal is good. The heart rate per minute of
each subject was compared with beats per segment as higher beats per
segment could indicate data is corrupted. Then only those PPG segments
were included for subsequent steps where beat quality was excellent for
diagnosis. This step has been performed similar to annotations for
screening excellent quality PPG waveforms done by Elgendi [41]. This
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Fig. 3. Single-sided Amplitude Spectrum of the raw PPG signal as a result of
taking Fast Fourier Transform (FFT) of the signal. The plot shows the main
components are low frequencies below 5 Hz.

step requires manual input from expert.

In total, approximately 4000 segments (each of three seconds) were
obtained. Manual screening yielded nearly 3000 good-quality segments
that were used for further processing and feature extraction. The
remaining nearly 1000 segments were bad quality and not used for the
current study as shown in Fig. 4. Out of 1000 bad quality segments,
approximately 667 segments were from pneumonia infected partici-
pants and 333 from the healthy group.

3.2.4. Detection of crests and troughs

To extract features from the PPG signal, it is vital to detect the
fiducial points in the signal so that each wave can be separated. After the
manual screening, the filtered signal was used to detect and mark all
relative extremum points. First order derivative test has been used for
the purpose that implies that all the points where the derivative of the
given PPG segment changes from positive to negative are crests, whereas
it changes from negative to positive are troughs. The index position of
these crests and troughs is marked, saved, and plotted.

For each given PPG segment,

y=f(x @
dy
=) @

for each critical point c,f’(x) changes from negative to positive at c, then
f(c) is a trough.f’(x) changes from positive to negative at c, then f(c) is a
crest.

3.2.5. Detrend and normalize

After the detection of the fiducial point, the signal segments were
detrended and amplitude normalization was done. The detrending was
done by subtracting the best-fit line from the signal. The amplitude or y-
axis normalization was done. For the normalization of each segment, we
performed linear transformation on the data in a way that all the values
were scales between 0 and 1.

X — Xnmin

Xscaled = 367 (3)

‘max — Xmin

where Xpi, = minimum value of PPG signal in each segmentand Xpyax =
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Fig. 4. Examples of bad PPG segments that were screened and discarded during the data screening process.

maximum value of PPG signal in each given segment

3.3. Feature extraction

Individual waves were extracted using the troughs. Every two
consecutive points of troughs constitute one complete wave. When a
single wave is extracted along with the fiducial points, all the relevant
features can be extracted from it. A custom code has been implemented
to perform the processing steps defined. We have extracted 8 features
from each wave as shown in Fig. 5. Six features from the eight are time
domain features namely, Onset, Rise time Pulse interval, Slope,,, Area,
and width. The remaining two are frequency domain features namely,
Fpase and Spase. These two features were extracted by taking the FFT of
the waveform [42]. These are the set of features that were extracted
using the key points detected on every wave in the signal. More features
can be extracted after calculating the first and second derivatives of the
signal, however not used for the proposed study. The features were
extracted from the cleaned data of all participants separately and a
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Fig. 5. Single PPG wave and the time domain features extracted from it.

feature table was made after the features were extracted to a csv file. A
brief description of each feature is presented in Table 1.

3.4. Data preparation for Machine learning

For all the healthy subjects a pneumonia infection status of 0 was
marked against that feature, and for the subjects with a pneumonia
status of 1 was assigned. All the files were merged resulting in 411,413
feature rows. 47% (195,298 rows) features of the data belong to the
healthy group and 53% (216,115 rows) features belong to subjects with
pneumonia. We randomly chose 57 participants (85% of the total) for
the training and remaining 10 participants (15% of the total) for the test.

3.5. Statistical analysis

Since the feature table has all eight variables containing continuous
values against the dichotomous or binary outcome variable i.e., infec-
tion status. First point biserial correlation analysis was considered.
Before computing the correlation coefficient, the feature table was
checked for outliers and data distribution, since the point biserial cor-
relation analysis is extremely sensitive to outliers and applies to datasets
having normal distribution only [43]. For detecting outliers, box plots
were made for each continuous variable as shown in Fig. 6 and the
Anderson-Darling test was conducted to check for the normal distribu-
tion of the data [44]. The null hypothesis was made that the data came

Table 1

Lists the features extracted from each PPG wave. The individual waves were
extracted from clean data segments of all subjects that in turn extracted the
below features from each wave.

Feature Description

Name

Onset Value of the signal at the start of each wave

Rise Time Time is taken by the signal to attain maximum value (systolic peak)
Pulse Interval Time is taken by the signal to complete one wave

Slopeop The slope between onset and systolic peak

Area The total area of the wave

Width Width of the wave at the half-systolic peak

Fhase The fundamental frequency of the wave

SBase The magnitude of the fundamental component of the wave
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Fig. 6. Boxplots for the feature values of both healthy and pneumonia-infected individuals. It can be seen that features have a small range of values and Area and

Fpase has outliers.

from a population having a normal distribution with a 5% significance
level. However, the box plots revealed outliers and the null hypothesis
was rejected confirming that the data is not normally distributed.
Therefore, a non-parametric test was employed to investigate the rela-
tionship between feature vectors from the healthy and pneumonia-
infected individuals. We employed the Mann-Whitney U test or Wil-
coxon rank sum test, and it confirmed that the features from healthy and
pneumonia-infected individuals are different and can be used for
designing a machine learning-based classifier. The test was employed
because the sample size was consistent with the central limit theorem,
(ny, ny > 30) [45,46]. The test is also insensitive to different lengths of
samples from the two populations. The null hypothesis was the features
came from the same population; the alternate hypothesis was the pop-
ulations are not the same with a 95% confidence interval. A two-sided
test was performed, and the null hypothesis was rejected for all the
variables confirming the feature values for healthy and pneumonia-
infected individuals are significantly different.

3.6. Data splits

3.6.1. Random splitting of data

In order to examine the performance of the machine learning clas-
sifier with the recorded data, we trained and tested the classifier with
carrying data splits by breaking the data pool into different combina-
tions of train and test dataset randomly as follows,

1. Experiment 1: 70-30 data split
2. Experiment 2: 85-15 data split
3. Experiment 3: 90-10 data split

3.6.2. Participant based split

The data was split into 85 and 15 percent participant, 85% was used
for the training and 15% was set aside for the tesst. After the classifiers
have been trained, the test pool was used for testing the data. Five
different classifiers have been trained and for all of them, 5-fold cross-
validation has been done during the training which implies each clas-
sifier has been trained 5 times on the training data by splitting the total
training data into 5 parts. Each time 4 parts were used for training and
one part for validation and hence training confusion matrix and AUC-
ROC curves were generated for the best results. The best classifier in
each case was then used for the test with separate test data.

3.7. Machine learning classifiers

Fine Decision trees, Linear discriminant Analysis (LDA), Weighted K-
Nearest Neighbour (KNN), Wide Neural Network, and Ensemble of
bagged trees are the algorithms implemented for the given work. All the
classifiers were trained on an i7-1065G7 CPU operating at 1.30 GHz and
1.50 GHz with 16 GB RAM and a high-performance NVIDIA processor.

3.7.1. Fine decision trees

The decision tree is one of the first algorithms to choose when the
problem is binary classification. They are based on greedy algorithms
that classify on a series of rules about the class properties. For the pre-
sented work, a fine decision tree was implemented. The node impurity is
calculated using Gini’s diversity index. If the ‘D’ dataset contains ‘M’
samples from ‘c’ different classes the Gini index, Gini (D) is calculated as

Gini(D) =1-"" p} “

pi is the relative frequency of class c in dataset D.

Since there are two classes, healthy and pneumonia infected and can
be symbolised as D; and D, respectively with samples M; and My, the
Gini index is,

Giniy(D) = %Gini(D,) + %Gini(Dz) 5)

The maximum number of splits or depth of the tree was set to 100.
The Gini index for each feature is calculated for the dataset and the root
node is the feature variable with the lowest Gini. The pruning level for
the constructed tree is 348. Pruning is a technique used in decision tree
algorithms to reduce the complexity of the tree and prevent overfitting.
Pruning involves removing certain branches or nodes from the decision
tree that do not contribute significantly to the overall accuracy or per-
formance of the tree. It implies that nodes or branches were removed till
348 depths of the tree. Fig. 7 represents the simplified process diagram
for the described algorithm for our application.

3.7.2. Linear Discriminant analysis

The Linear Discriminant Analysis (LDA) algorithm uses a linear
combination of predictors to predict the response variable [47]. The
algorithm works by creating a new axis and projecting the data in the
new axis in such a way that the distance between the mean of the classes
is maximized and the variation within the class is minimized. As
described in Fig. 8 below, the algorithm works by taking some feature
values from each group and transforming them onto a new axis, the
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Fig. 7. Simplified flow diagram for Fine Decision Tree (DT) implemented: To the left are the eight predictors. These are the features extracted from the PPG signal.
Since the data is labelled as two classes healthy and pneumonia infected, the dataset is divided into D1 and D2. The Gini diversity index for each predictor is
calculated and the predictor with the lowest Gini is selected as the root node and then the tree is branched on based on branching rules. At the leaf nodes, the output
is the response variable or health status. For the implemented fine tree, the maximum number of splits was set as 100. The training data is used to make the rules on
which the tree is branched and constructed. The test data is used to establish the generalization capability of the formed tree.
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Fig. 8. Simplified flow diagram for Linear Discriminant Analysis (LDA). A predictive group discrimination model has been made using eight input features to classify
them as healthy or pneumonia infected. Discriminant functions are made by selecting data points from each class and then a combination of those is used to predict
the class. The misclassification cost is computed, and the model is used if the misclassification cost is acceptable. The model with maximum accuracy is used for
validation and testing.
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mean and covariance for each group are calculated and new points are
then taken and their similarity with previously transformed data is
determined. A linear combination of the models of different classes is
established based on the similarity of new data with previous and then
misclassification costs are calculated. If the model is acceptable, it is
used for validation and then test.

3.7.3. Weighted K Nearest Neighbour

K Nearest Neighbour (KNN) algorithms are non-parametric super-
vised machine learning algorithms that classify the data points on basis
of proximity between classes. Here a weighted KNN algorithm has been
implemented that uses a weighted distance to measure the difference
between the classes. Many distance matrices are employed however we
have used the square inverse Euclidean distance matric. The number of
neighbours was set to 10. The data were standardized first. A simplified
flow diagram is presented in Fig. 9.

3.7.4. Wide Neural network

A wide neural network implies a neural network with fewer hidden
layers but more neurons per layer [48]. A wide neural network has been
implemented with feedforward, one fully connected layer of 100 nodes,
other two layers have 10 neurons. The classifier used the ReLu activation
function for the internal layer nodes and SoftMax is used with the pre-
dictor layer as shown in Fig. 10. Bayesian optimization was used for
hyperparameter optimization, and the loss function is Minimal expected
misclassification cost.

3.7.5. Ensemble of bagged trees

Bagging implies bootstrap aggregation, and, in an ensemble, it is
meant to avoid overfitting and improve generalization [49]. In the
ensemble of the bagged tree, Random Forest is bagged with a decision
tree. For the implemented classifier 30 learners have been used as pre-
sented in Fig. 11.
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4. Results
4.1. Data representation

Fig. 12 represents the gender distribution for the subjects included in
the study. In total, 67 volunteers participated in the study. This study
recruited 36 (17 males and 19 females) healthy and 31 (21 males and 10
females) pneumonia participants. After the screening, the total number
of PPG waves was 411,413 observations, which were used for feature
extraction. 53% (216,115 feature rows) of the data belonged to the
infected group and 47% (195,298 feature rows) of the data belonged to
the healthy group. Table 2 represents the age, height, and weight dis-
tribution of the two groups.

The standard deviation for age, height and weight of the healthy
group is small hence the majority of the healthy individuals have age,
height, and weight around the mean because it was possible to control
the group parameters. The standard deviation for these parameters in
pneumonia infected group is relatively high.

Table 3 represents the frequency of participants within each healthy
and pneumonia infected group throughout the age range of participants
included in the study. Majority of the participants in both groups are in
similar age category.

4.2. Pre-processing

Fig. 13 (a) represents the raw PPG signal, and Fig. 13 (b) represents
the filtered signal in blue and the detrended PPG signal in red. It can be
observed that the trend line is removed. Amplitude normalization has
been done so that the amplitude of the wave is between 0 and 1, it en-
sures the standardization of the features that are extracted consequently
and the difference in the features between the two classes is not
dependent on the skin properties of the subjects as shown in Fig. 13 (c).
Skin pigmentation refers to quantity of melanin present in the skin
which gives the skin its colour. The pigmentation has effects on light
absorption and affects value of signal. However signal processing can
effectively remove any such effects. Finally, in Fig. 11 (d) the crests and
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Fig. 9. A simplified process flow diagram for the weighted KNN algorithm implemented. The K value is set initially as 10 which implies that 10 neighbours will be
checked for each query. For each set of training data, it works by finding the Euclidean distance between the given point with K neighbours. Then classify the data
point with the most frequent class within the neighbours. The distance weights are updated if the classification accuracy is low.
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Fig. 10. Simplified flow diagram for the wide neural network. Each neuron of the first layer receives the standardized inputs. The first layer is the fully connected
layer and has 100 neurons. The second- and third layers have 10 neurons each. The activation function between the layers is ReLu and the predictive layer has a
SoftMax activation function. The epochs limit was set at 1000.
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Fig. 11. Visual representation of an ensemble of bagged trees. The ensemble algorithms are based on the ideology of the wisdom of crowds. The decision-making and
generalization ability of more trees is better than individual trees. The random forest is bagged with the decision trees with 30 learners. The combined trees are used
to make predictions on the data.
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Pneumonia

Fig. 12. Distribution of gender for subjects included in the study for both groups.

Table 2
Mean and standard deviation for age, height, and weight of the subjects included in the study.
Parameters Healthy Pneumonia
Minimum Maximum Mean Standard Deviation Minimum Maximum Mean Standard Deviation
Age (Years) 3.5 6 4.6 0.8 0.2 15 2.5 4.1
Height (cm) 91 107 101.9 5.7 48 148 75.6 25.2
Weight (kg) 13 40 15.6 2.2 3 19.5 8.6 7.3
4.5. Classification with varying data splits
Table 3

Cross table for number of participants in each group healthy and pneumonia
infected through the age range of participants included in the study.

Age Healthy Pneumonia
0-5 year 31 24

5-10 year 5 5

10-15 year 0 2

Total 36 31

troughs in the given segment have been marked. Each PPG wave was
then extracted using the marked troughs.

4.3. Wilcoxon rank sum test

Table 4 lists the results of the non-parametric correlation test known
as the Wilcoxon Rank sum test. The null hypothesis was rejected for all
the feature tests confirming that the feature values from healthy and
pneumonia-infected individuals differ significantly under a 95% confi-
dence interval.

4.4. Feature selection — Minimum Redundancy maximum relevance
(MRMR)

To determine distinctiveness of used features between the two clas-
ses, a feature ranking algorithm known as Minimum Redundancy
Maximum Relevance (MRMR) has been used. The MRMR algorithm
tends to rank individual features from a given set of features with
maximum correlation with a class (or maximum relevance) and least
correlation within themselves (or minimum redundance) [50]. The
feature ranking using MRMR is exhibited in Fig. 14. The drop in scores
between Slope,, and Spase is large and is small between rest of the fea-
tures which implies importance of these features. The large drop means
the algorithm is confident of selecting most important predictor.

Fig. 15 shows a plot of PPG recorded from participants of similar age
from the healthy and pneumonia infected group. The plot shows the
difference in pulse width, pulse interval, rise time, and the area is sig-
nificant between them.
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To ensure the classifiers built are robust, the models were trained on
three different data splits apart from the one presented above as follows,

1. Experiment 1: 70-30 data split
2. Experiment 2: 85-15 data split
3. Experiment 3: 90-10 data split

Table 5 summarizes all the performance measures for all classifiers
and experiments conducted on the collected data. The classifiers offer
the least sensitivity of 80.26% and specificity of 71.79% with linear
discriminant-based classifiers. Weighted KNN and Ensemble of Bagged
Trees outclass all the classifiers for all experiments. For each experiment,
in a given classifier only a slight change in performance measure ensures
consistency in both validation and test results. This gives a proof of
concept that using the PPG signal alone, it may be possible to diagnose
pneumonia infection in paediatric patients.

4.6. Classification using participant based split

A divide of 85% and 15% was done and 57 (85% of the total par-
ticipants) were kept in the training dataset, out of these 31 were from the
healthy group and 26 from the pneumonia infected group. The Table 6
presents the results for test data from this participant-based split.

4.6.1. Fine decision tree

Fig. 16 represents the Decision Fine tree classifier results. The Area
under the Curve (AUC) for the Receiver Operator Characteristic curve
(ROC) is 0.92 for training validation and the test. The sensitivity is
86.1% and 85.2% and the specificity of 83.4% and 84.1%, for training
validation and test respectively.

4.6.2. Linear Discriminant

Fig. 17 represents the linear discriminant classifier results where
75% of data has been sued for training and the rest for the test. The Area
under the curve for the Receiver operator Characteristic curve is 0.83 for
training validation and 0.84 for the test. The sensitivity is 80.2% and
80.3% and the specificity is 72.0% and 71.8%% for training validation
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(b) Detrending Data (Pediatric Data)
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Fig. 13. Representation of detrending, normalization and detection of crests and troughs of the PPG waves in a given data segment. (a) shows the raw PPG segment
(in blue), along with the detrended signal (in orange) and filtered signal (in red). (b) shows amplitude normalization of the PPG segment, and min-max normalization
has been done using the minimum and maximum values of each PPG wave. (c) Each crest and trough are marked in the given segment, marking the starting and
ending point of each wave along with the peak value. This has been achieved using the first derivative test.

Table 4

Results for Wilcoxon Rank Sum test: The test was performed by comparing the
feature values from the healthy and pneumonia-infected individuals under a 5%
significance level. The null hypothesis was the values come from the same
population which was rejected for all sets of features.

Features P value Null Hypothesis Z value Rank Sum

Onset 6.1 x 1077 Rejected 4.99 4.03 x 101°
Rise Time 0 Rejected 111.89 4.44 % 100
Pulse Interval 0 Rejected 268.37 5.04 x 10'°
Slopeoy 0 Rejected —144.58 3.47 x 10'°
Area 0 Rejected 333.01 5.28 x 10'°
Width 0 Rejected 303.49 5.17 x 100
Fbase 0 Rejected —156.28 3.42 x 1010
Spase 0 Rejected 51.78 4.21 x 100

and test respectively.

4.6.3. Weighted KNN

Fig. 18 represents the weighted K Nearest Neighbour (KNN) classifier
results for the training and the test. The Area under the curve for the
Receiver operator Characteristic curve is 0.99 and 1 for training vali-
dation and the test. The sensitivity and specificity are 100.0% for both
training validation and test.

4.6.4. Wide Neural network

Fig. 19 represents the wide Neural Network classifier results for the
classification. The Area under the curve for the Receiver operator
Characteristic curve is 0.97 for training validation and the test. The
sensitivity is 90.9% and 91.8% and the specificity is 91.0% and 92.2%
for training validation and test respectively.

4.6.5. Ensemble of bagged trees
Fig. 20 represents the last classifier Ensemble of boosted trees results
for the classification. The Area under the curve for the Receiver operator
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Characteristic curve is 1 for both training validation and the test. The
sensitivity is 100.0% for training validation and the test, and the spec-
ificity is also 100.0% for both training validation and the test.

Table 7 summarizes the training time, speed, and costs for both
training and testing. The wide neural network took the highest time for
training, Weighted KNN had the most reasonable training time given the
low-cost Ensemble of Bagged Trees has the lowest cost for the test tool.
Linear discriminant was the fastest to train however with the highest
training cost, it has lowest training cost but offers poor specificity.

4.7. Comparison of classification results with SpO2

In order to diagnose these 10 patients, we used the mean values of
the feature as input to each of the classifier. Fine tree predicted 7 out of
10 participants correctly giving accuracy of 70%, sensitivity of 100%
and specificity of 40% only. Linear Discriminant classifier correctly
predicted 8 out of 10 participants with accuracy of 80%, sensitivity and
specificity of 100% and 71.43% respectively. Weighted KNN correctly
predicted 9 out of 10 participants yielding 90% accuracy, 100% sensi-
tivity and 80% specificity. Wide neural network classifier that correctly
predicted 7 out of 10 participants giving accuracy of 70%, sensitivity
and specificity of 80% and 60% respectively. Ensemble of bagged trees
predicted 7 out of 10 patients correctly giving accuracy of 70%, sensi-
tivity of 80% and specificity of 60%.

Table 8 compares the outcome of classification by the machine
learning algorithms to the actual infection status recorded and level of
SpOa recorded at the time of PPG data recording. It is worth noting that
even with SpOy which can be considered within normal range, the al-
gorithms were able to pick the infection status using the PPG features
alone. This implies that SpO5 alone might not be an accurate measure to
predict pneumonia and with help of PPG signal alone accurate classifi-
cation between healthy and pneumonia infected individuals is possible.
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Feature Ranking Scores Sorted using MRMR Algorithm
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Fig. 14. Feature ranking scores using MRMR algorithm.
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Fig. 15. The PPG recorded from individuals of healthy and pneumonia infected participants of the study. The age of both subjects is 4 years. The difference in
morphology is consistent with feature ranking as exhibited by MRMR algorithm.

Table 5

Comparison of performance between the employed classifiers for the three experiments: Weighted KNN and Ensemble of Boosted trees gives the best results for all the
experiments. For all the classifiers, the AUC-ROC is above 0.8, implying the classifiers can distinguish pneumonia-infected individuals from healthy subjects. The
sensitivity is also high for all the classifiers, the linear discriminant has the lowest specificity.

Classifier Experiment Accuracy (%) Error (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC-ROC
Fine Tree 1 84.93 15.07 85.93 83.82 85.4542 0.86 0.93

2 84.96 15.04 85.30 84.58 85.9559 0.86 0.93

3 84.48 15.52 85.31 83.56 85.1672 0.85 0.92
Linear Discriminant 1 76.28 23.72 80.33 71.79 75.9088 0.78 0.83

2 76.41 23.58 80.26 72.16 76.1317 0.78 0.84

3 76.48 23.52 80.42 72.10 76.1356 0.78 0.83
Weighted KNN 1 99.99 0.00 100 99.99 100 1 1

2 99.99 0.00 100 99.99 99.99 1 1

3 100 0 100 100 100 1 1
Wide Neural Network 1 91.29 8.7076 91.22 91.3700 92.12 0.92 0.97

2 91.46 8.5424 92.32 90.5191 91.33 0.92 0.97

3 91.37 8.6258 91.27 91.4909 92.23 0.92 0.97
Ensemble Bagged Trees 1 99.99 0.0097 99.98 100 100 0.99 1

2 99.99 0.0049 100 99.99 99.99 1 1

3 99.99 0.0073 99.99 99.9898 99.99 0.99 1

12
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Table 6
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Comparison of performance between the employed classifiers when data has been split using Participants. The training data contains 57 participants, and the trained
classifiers were tested on the remaining 10 participants data. The classifiers exhibit good sensitivity, the highest of 94% for linear discriminant and highest specificity of

69% for the weighted KNN. The highest AUC-ROC value of 0.82 is associated with Linear Discriminant classifier.

Classifier Accuracy (%) Error (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC-ROC
Fine Tree 79.63 20.37 89.67 45.51 84.83 0.87 0.77
Linear Discriminant 84.09 15.91 94.17 49.81 86.44 0.90 0.82
Weighted KNN 77.87 22.13 80.46 69.07 89.84 0.85 0.75
Wide Neural Network 77.33 22.67 81.69 62.52 88.10 0.85 0.78
Ensemble Bagged Trees 74.37 25.63 76.29 67.85 89.10 0.82 0.79

Actual Class

(a) Fine Tree: Confusion Matrix for Test

Predicted Class

(b) Fine Tree: AUC-ROC Curve for Test
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Fig. 16. Decision Tree (Fine) Classifier results when 85% of participant were used for training and 15 percent were randomly segregated and reserved for test (a)
Confusion matrix for the test, and (b) AUC-ROC Curve for the test. The classifier has an AUC-ROC curve value of 0.77, specificity and sensitivity of 45.51% and
89.67% for the test respectively.

(a) Linear Discriminant: Confusion Matrix for Test
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Fig. 17. Classifier results trained on the linear discriminant algorithm: when 85% of participant were used for training and 15 percent were randomly segregated and
reserved for test: (a) Confusion matrix for the test, and (bb) AUC-ROC Curve for the test. The classifier has an AUC-ROC curve value of 0.82, sensitivity of 94.17% and

specificity of 49.

5. Discussion

5.1. PPG data collection and pre-processing

The PPG dataset for the study has been acquired at Dr Ziauddin
Hospital. For both groups, the number of subjects is greater than 30 so
that the central limit theorem holds applicable. It was one of its kind

81% for the test.

datasets since no PPG data exist for the age group chosen (paediatrics)
for the study and due to time and resource constraints the collection was
stopped after the initial target of 30 patients was achieved. The data
from both genders have been collected so that no gender bias is involved
however the perfect balance was both impossible and irrelevant. Over-
all, a slightly higher number of male subjects were part of the study. The
mean and standard deviation for the ages of the pneumonia-infected
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(a) Weighted KNN- Confusion Matrix for Test  (b) Weighted KNN: AUC-ROC curve for Test
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Fig. 18. Classifier results trained on weighted KNN algorithm: when 85% of participant were used for training and 15 percent were randomly segregated and
reserved for (a) Confusion matrix for the test, and (b) AUC-ROC Curve for the test. The classifier has an AUC-ROC curve value 0.75 for the test, specificity of 69.07%
for the test and sensitivity of 80.46%.

(a) Wide Neural Network- Confusion Matrix for Test  (b) Wide Neural Network: AUC-ROC Curve for Test
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Fig. 19. Classifier based on wide Neural Network: when 85% of participant were used for training and 15 percent were randomly segregated and reserved for test: (a)
Confusion matrix for the test, and (b) AUC-ROC Curve for the test. The classifier has an AUC-ROC curve value of 0.78 for the test, specificity of 62.52% and sensitivity
of 81.69%% for the test.

(a) Ensemble of Bagged Trees- Confusion Matrix for Test (b) Bagged Trees: AUC-ROC Curve for Test
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Fig. 20. Classifier based on Ensemble of Bagged Trees: when 85% of participant were used for training and 15 percent were randomly segregated and reserved for
test: (a) Confusion matrix for the test, and (b) AUC-ROC Curve for the test. The classifier has an AUC-ROC curve value 0.79 for the test, specificity of 67.85 and
sensitivity of 76.29% for the test.
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Table 7
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The training time and speed along with the total cost for training and test are presented. The weighted KNN and the linear discriminant had the least cosy. The linear
discriminant classifier was the quickest to train but highest training cost. Weighted KNN and the Ensemble of bagged trees have comparable costs for training however
ensemble of bagged trees took almost five times more time compared to weighted KNN. Wide Neural Network took the highest time to train.

Classifier Training time (seconds) Training Speed (observation/sec) Total Cost (Training) Total Cost (Test)
Fine Tree 59.197 880,000 36,771 4498
Linear Discriminant 24.727 610,000 63,810 3514
Weighted KNN 1117.1 4400 8 4887
Wide Neural Network 6723.3 2000 14,894 5006
Ensemble Bagged Trees 5483.9 38,000 3 5659

Table 8

Classification of 10 test participants using the five mentioned machine learning classifiers trained on 57 participants. The results of classification are compared with
SpO;, levels of each subject. The classifiers were able to predict pneumonia class even when SpO, levels were in the normal range. In this table the infection status of 0 is

assigned to healthy participants and 1 is assigned to pneumonia infected.

Test ID Actual Infection status Fine tree Linear Discriminant Weighted KNN Wide Neural Network Ensemble of bagged Trees SpO; (%)
1 0 0 0 0 0 0 99
2 0 1 1 0 1 1 99
3 0 1 0 0 0 0 99
4 0 1 1 1 1 1 97
5 0 0 0 0 0 0 98
6 1 1 1 1 0 1 96
7 1 1 1 1 1 1 95
8 1 1 1 1 1 1 94
9 1 1 1 1 1 1 97
10 1 1 1 1 1 0 96

individuals were not controlled because it was crucial to establish
enough data. The control group however has less standard deviation for
age. A similar data trend is observed for height and weight for the stated
reason. The preprocessing was simple as the device used to record the
signal is an accurate FDA-approved device that validates the collected
data and the features which are vital for the subsequent steps. The
collected data from PICU had glitches and artefacts and we systemati-
cally screened the data manually by breaking it into 3 sec long segments
with an average of 4-5 beats per segment. Only the clean segments were
used for feature extraction.

After the features have been extracted, the population distribution
test was conducted that confirmed that the data was not normally
distributed due to which non-parametric correlation analysis was con-
ducted to establish the relationship of both population features on the
infection status. It was confirmed using the Wilcoxon rank sum formula
that significant variation exists between features of healthy and
pneumonia-infected individuals. The PPG features extracted and then

Table 9
Comparison of proposed study with previously done similar work.

used for machine learning are primarily those that vary with heart rate
and breathing rates like the Pulse interval, Area, and width of the pulse
[51]. This could be a reason the algorithms were able to distinguish
between the healthy and pneumonia-infected individuals because the
heart rate, breathing rate, and blood pressure are known to vary [52].
However, the relationship of any PPG features with the infection status
of the paediatric subject is complex, those machine learning algorithms
have been used that can derive patterns from the complex relationship
or dependency.

Previously, Rao et al also used [53] the machine learning algorithm
KNN with chest sounds to diagnose respiratory anomalies. Kosasih et al.
[24] used logistic regression on the feature extracted from cough and
achieved 94% and 63% sensitivity and specificity respectively with the
combination of wavelets with features the results improved. To sum-
marize this attempt is the first to detect a specific pathology i.e., child-
hood pneumonia by employing PPG as a signal of interest and applying
machine learning to the PPG features. K. Mala [36] proposed a sensor-

Authors Signal used Methodology

Features

Number of subjects

A Rao (2018) Chest sound KNN

K Kosasih Cough sound Logistic regression
(2015)

K Mala Vital signs Dashboard on mobile phone, the data values are sent
(2016) for remote monitoring

T Salti (2019)  Vital signs Data transmission from sensors to a mobile app via

Bluetooth

P Porter Cough sound Logistic regression
(2021)
A. Imran Cough Sound Cloud-based Al Engine to Predict COVID-19
(2020)
H Chen Respiratory Optimized S Transform (OST) on ResNet
(2019) Sound
ED McCollum Chest Sound t-test, fisher exact test
(2020)
Proposed PPG Machine learning classifiers (Fine Decision Tree, Linear
Study Discriminant Analysis, Weighted KNN, Wide Neural

Network, and Ensemble of Bagged Trees)

MFCC, Spectral centroid
Mel Cepstral coefficients, non-Gaussian index

RR, HR, SpO,, temperature

RR, SpO,

Patient symptoms, cough sound

Mel spectrogram

Spectrogram of OST

0Odd Ratio for (Normal vs radiographic
pneumonia), (mortality vs alive) and (abnormal
vs normal

Six-time domain features (Onset, Rise time,

Pulse interval, Slope,,, Area, Width) and two
frequency domain features (Fpase, Sbase)

5 Pneumonia, 8 Healthy
91 subjects, 815 cough sounds

3 subjects (2 adults, one child)
9 human subjects

322 subjects

ESC-50 dataset

Int. Conf. on Biomedical Health
Informatics (ICBHI) Scientific
challenge database

792 enrolled paediatric subjects

(PERCH)

31 pediatric pneumonia, 36
healthy pediatric subjects
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based wearable diagnostic and monitoring device to monitor the vital
signs of patients with pneumonia. This research was more inclined to-
wards the cost feasibility and practicality of the design instead of the
sensitivity and specificity of diagnosing pneumonia. Salti et al. [37] also
proposed a device based on vital signs and showed a 70% and 90%
correlation with oxygen saturation and respiratory rate data respec-
tively. A summary of comparison of previous work and proposed study is
presented in Table 9.

5.2. Machine learning classifiers

We have implemented five different machine learning classifiers to
check the consistency of the concept that the PPG signal alone using the
extracted features can be used to predict the infection or health status of
pediatric subjects. The following five classifiers were used because they
are straightforward and easier to implement, also they are robust and
tend to avoid overfitting and work well even with fewer data. These
classifiers also have the potential to be used in real-time applications.

First Fine decision trees were selected because of their high flexibility
and easy interpretability and have been employed actively for binary
classification problems using PPG and other biological signals for similar
applications [54].

Linear Discriminant Analysis was also chosen given it is fast, accurate
and easy to interpret and the problem to solve is a classic binary clas-
sification where data is divided into two distinct classes. These classifiers
are frequently used with PPG-based applications [55].

K nearest Neighbour was employed because they give highly accu-
rate results however, they are hard to interpret and have memory usage
since all the data has been trained on a GPU-accelerated system, the
memory usage was not a concern. Also, KNN is a lazy algorithm, the
results may vary if new data is introduced in future. This limits the scope
of accuracy for the study. However, KNN-based classifiers are excellent
candidates for binary classification problems using PPG signals [56].

Neural networks have been an excellent candidate for complex pat-
terns of relationship between features and outcomes, they have been
used with PPG signals for both regression and classification problems
[57] therefore attempt has been made to utilize a wide neural network
for the proposed study and accuracy above 70% was obtained with high
specificity and sensitivity of above 60%.

The Ensemble classifier is generally expected to outclass all the other
individual classifiers and hence used as a comparison to get the
maximum performance; however we could not achieve the desired
specificity. Here the ensemble of bagged trees has attempted to utilize
the prediction capability of a pool of multiple intelligent trees to reduce
the generalization error offered by each classifier. They are employed
with various input signals for a variety of applications [58-60].

For the given data, the weighted KNN outperformed all the classifiers
with maximum accuracy, sensitivity, and specificity with the lowest
error. The wide neural network also exhibited promising results with
accuracy above 77% and further optimization and fine-tuning of pa-
rameters can be done to improve the results using a wide neural network
however it takes the most time to train given its complex nature. The fine
decision tree though very complex to interpret the given number of
predictors has a high error rate of 20% however the AUC is acceptable.
The least successful classifier is linear discriminant, it offers excellent
sensitivity with poor specificity, since the relationship of the response
variable (health status) may not be related to the linear combination of
predictors used for the study.

6. Study limitations

This research is only using PPG signal as input and based on features
extracted from the signal, machine learning classifiers have been trained
that are discussed below. The attempt to diagnose or screen from
pneumonia using chest sounds is undoubtably the most common prac-
tice. The digitized stethoscope that could pick chest sounds is also a
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promising tool as reported in literature as discussed above in section 5.1.
The abnormal chest sounds are a characteristic feature in variety of
disorders like asthma, COPDs, upper and lower respiratory infections
such as pneumonia. The sound-based methods can be more specific and
deterministic for differentiating these diseases among the unhealthy
subjects.

The current study since focused on single sensor input, doesn’t take
into account the effects of cough or any abnormal chest sounds. To study
the effects of cough on PPG, one would need an annotated dataset of PPG
with respect to coughing episode. During the PPG data collection, we
would need to note the start and end of cough episode and mark this on
PPG waveform to study these effects. We have not annotated the PPG
dataset presented in this study.

The focus of this study is to distinguish Pneumonia and healthy
participants from PPG signal only. Therefore, only pneumonia partici-
pants were recruited for the presented study against healthy volunteers
to evaluate the performance of supervised machine learning algorithm.
If we include participants, in order to train the algorithms from multiple
groups of illnesses e.g., influenza, COVID-19 and pneumonia, more
participant would be needed to differentiate among the clusters.

7. Future directions

This study reports the first-of-its-kind dataset of PPG recordings for
paediatric subjects. Since the general morphology of the PPG signal
varies considerably with age, this dataset could help test different al-
gorithms established already for applications discussed above for adults.
This study established the possibility of diagnosing respiratory tract
pathologies using the PPG signal alone because this signal is known to
carry valuable information regarding respiratory and cardiovascular
systems [61].

The research presents a novel concept of diagnosing paediatric
pneumonia using PPG however there are certain limitations of the cur-
rent work. Due to resource constraints, no follow-up data collection
could be performed. However, to have such a system in form of a
medical device, it is important to have a large-scale prospective and
longitudinal study on both the control and pneumonia-affected subjects.
It is also worth assessing if differences in PPG features exist within
subgroups of paediatric patients based on their ages, i.e., would we have
more stable and consistent models if we separate infants from older
paediatric patients? Currently, we have not included any adults in the
study, but it has been estimated that the algorithm for adults can be very
different from those for paediatric subjects. We intend to use more
classifiers for participant based split and intend to explore better ways to
use the features instead of their mean values as input to obtain better
prediction results. In future, we intend to implement the system on GPU-
based standalone controllers e.g., Jetson Nano [62,63]. It is also rec-
ommended that following the large-scale longitudinal study, the algo-
rithms go through clinical trials.

In future, using more sensors and physiological parameters, the PPG
dataset can be annotated to include effects of abnormal chest sounds and
cough on PPG. More group of participants suffering from diseases other
than pneumonia can be collected to test the specificity of PPG in each
disease.

8. Conclusion

Paediatric pneumonia remains one of the deadliest diseases for
children across the globe. It is a fact that early screening for pneumonia
with the painless and cost-effective point-of-care diagnostic tool can be
vital in making an accurate diagnosis and providing proactive treatment
which may decrease the mortality rate and help avoid complications as a
consequence of severe disease. The findings of this study suggest that
single-channel PPG could be one such tool. For the presented work a
cross-sectional study was performed as a proof of concept. PPG data has
been collected for paediatric subjects which to the best of our knowledge



K. Kanwal et al.

was never collected before [64-66]. With the collected data, it is safe to
conclude that weighted KNN and an ensemble of bagged trees are the
best classifiers to differentiate between the healthy and pneumonia-
infected subjects. Although PPG has been an established signal of
greater interest for many applications including BP estimation [67,68],
glucose [22,69] and cholesterol level estimation [70,71], sleep apnoea
detection [72,73], arrhythmia detection [74], etc., it is vital to point out
that no such attempt of screening the subjects have been made so far for
lower respiratory tract infection or pneumonia.
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