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Abstract

Climate change is interacting with water resource pressures to alter the fre-

quency, severity and spatial extent of drought, which can thus no longer be

considered a purely natural hazard. Although particularly severe ecological

impacts of drought have occurred in drylands, its effects on temperate ecosys-

tems, including rivers, are also considerable. Extensive research spanning a

diverse range of UK rivers offers an opportunity to place the effects of past

drought in the context of intensifying climate change and to examine the likely

effects of future drought in a typically cool, wet country. Here, drought mani-

fests instream as deficits in surface water, modified flow velocities, and—
increasingly—partial or complete drying of previously perennial and naturally

non-perennial reaches. As a result, drought causes declines in the taxonomic

and functional biodiversity of freshwater communities including microorgan-

isms, algae, plants, invertebrates and fish, altering ecological processes and

associated benefits to people. Although freshwater communities have typically

recovered quickly after previous UK droughts, an increase in drought extrem-

ity may compromise recovery following future events. The risk of droughts

that push ecosystems beyond thresholds to persistent, species-poor, function-

ally simplified states is increasing. Research and monitoring are needed to

enable timely identification of rivers approaching such thresholds and thus to

inform interventions that pull these ecosystems back from the brink. Manage-

ment actions that support natural flow regimes and promote natural processes

that diversify instream habitats, including drought refuges, are also crucial to

support biodiversity within functional river ecosystems as they adapt to a

changing world.
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1 | INTRODUCTION

Drought is defined by or originates from an unusually large and typically prolonged deficit in water compared to the
long-term average, and this deficit causes a sufficient hydrological imbalance (Seneviratne et al., 2012; Van Loon, 2015;
WMO, 1992) to alter ecosystems and their capacity to benefit people (Crausbay et al., 2017). As such, despite previous
conceptualization of predictable annual dry periods as seasonal droughts (e.g., by Lake, 2003; also see Boulton, 2003;
Kovach et al., 2019; Sarremejane et al., 2022), droughts are inherently unpredictable events and thus are disturbances
sensu Resh et al. (1988). Drought can be conceptualized from multiple perspectives from meteorological to socioeco-
nomic (Haile et al., 2020; Van Loon, 2015). Hydrological droughts are events defined by a deficit in surface water and/or
groundwater (Fleig et al., 2006) which manifest as prolonged periods of abnormally low water levels in rivers and aqui-
fers (i.e., streamflow drought and groundwater drought, respectively; Van Loon, 2015). Similarly, soil moisture drought
indicates a water deficit within soil, and thus arguably also within unsaturated sediments including those associated
with river channels (DelVecchia et al., 2022; Fleig et al., 2006). These water deficits have ecological impacts, but ecologi-
cal drought has proven hard to define, particularly in river ecosystems (Box 1).

Droughts have typically been conceptualized as natural events, making hydrological drought part of the environ-
mental variability that supports biodiverse freshwater ecosystems (Bickerton, 1995; Parasiewicz et al., 2019;
Sarremejane et al., 2018). However, in ecosystems of the Anthropocene, drought increasingly interacts with other
human pressures relating to natural resource use, land use and pollution (Crausbay et al., 2020; Van Loon et al., 2016;
Wada et al., 2013). In particular, in river ecosystems, biodiversity and ecosystem functioning are limited by multiple

BOX 1 The challenges of applying “ecological drought” definitions to river ecosystems

Defining ecological drought has proven problematic (Bachmair et al., 2016; IPCC, 2022; Slette et al., 2019), but
recent attempts—in particular Crausbay et al.'s (2017) widely adopted definition (Kovach et al., 2019;
NIDIS, 2023; Sarremejane et al., 2022; Vicente-Serrano et al., 2020)—emphasize the persistent impacts of a defi-
cit in water on organism-to-ecosystem-scale structure and function, and thus on the ecosystem services avail-
able to people (Table S1). But in river ecosystems, despite sometimes severe short-term impacts, recovery from
drought is typically rapid (Table S2). This lack of ecological footprint excludes river ecosystems from Crausbay
et al.'s (2017) definition of transformational ecological drought as well as Esfahanian et al.'s (2016) definition of
stream health drought (Figure 1b; Table S1). Equally, ecological drought sensu Munson et al. (2021) and Met
Office (2023), which encompasses non-extreme ecological effects (Figure 1a; Table S1), may be difficult to detect
or attribute to a single driver (e.g., streamflow drought; Van Loon, 2015) due to concurrent ecological responses
to wider environmental variability. In short, no existing definition of ecological drought effectively represents
river ecosystems. However, midway between these ecological drought definitions, Smith (2011) defines extreme
climatic events including severe droughts based in part on their considerable but not necessarily long-term or
even permanent impacts on ecosystem structure and function (Table S1). This “Goldilocks” definition effec-
tively summarizes how drought typically alters river ecosystems (Figure 1c).

Should we develop Smith's (2011) definition of an extreme climatic event into a river-specific definition of
ecological drought? Perhaps not. Such a definition would essentially seek to describe complex, diverse continua
of biological community responses to easier-to-define, easier-to-quantify deficits in water—in particular surface
water, as well as groundwater and sediment moisture. We therefore suggest that river ecologists focus on quan-
tification of spatial and temporal variability in these responses (McMahon & Finlayson, 2003), which can be
conceptualized as drought impacts (sensu Downes et al., 2002). This suggestion comes with a caveat: definition
of ecological drought is warranted if it can be used to leverage management actions that mitigate the ecological
impacts of drought (see Section 5).
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persistent and emerging pressures including surface water and groundwater abstraction, physical habitat modification
and water pollution (Dudgeon et al., 2006; Haase et al., 2023; Whelan et al., 2022). In addition, climate change is alter-
ing drought characteristics including its frequency, magnitude, duration, rate of onset and termination, and spatial
extent and coherence, with an increasing risk of rapid-onset flash droughts (Pendergrass et al., 2020; Tanguy
et al., 2023; Yuan et al., 2023) and multiyear megadroughts (sensu Woodhouse & Overpeck, 1998; Williams et al., 2020).
Drought is also increasingly likely to coincide with other anthropogenically driven climatic extremes, including
heatwaves (Mazdiyasni & AghaKouchak, 2015; Sutanto et al., 2020; Tassone et al., 2023) and sporadic heavy rainfall
events (Jones et al., 2013; Spinoni et al., 2018; Watts et al., 2015). Drought can thus no longer be conceptualized as
purely natural (AghaKouchak et al., 2015; Van Loon et al., 2016).

Within river ecosystems, drought has highly variable effects on in-channel conditions, which collectively disrupt all
levels of ecological organization, from the genes expressed by an organism (Robinson et al., 1992) to the connectivity of
network-scale metacommunities (Robson et al., 2011; Sarremejane, Stubbington, et al., 2021) and meta-ecosystems (Cid
et al., 2022). All biological groups within a river ecosystem are affected, from microorganisms to fish, as well as species
in connected riparian and terrestrial habitats (Garssen et al., 2014; Ledger et al., 2013). Taxonomic effects include
changes in the abundance and distribution of individual species, including temporary and long-term, local and regional
losses that reduce community richness and diversity (Sarremejane, Stubbington, et al., 2021). These taxonomic changes
have consequences for ecosystem functioning, for example altering energy transfer through food webs (Ledger
et al., 2013; Lu et al., 2016). But as dynamic, disturbance-prone ecosystems, rivers typically recover from drought more
quickly than terrestrial ecosystems (Häder & Barnes, 2019).

The ecological effects of drought have been well-characterized in typically cool, wet countries, in particular the
United Kingdom (UK; Table S2), but these insights have not been synthesized nor set in the context of ongoing global
change (but see Dollar et al., 2013). Our aim is thus to synthesize research investigating how drought shapes river eco-
systems and their biodiversity in the UK's temperate (Cfb in the Köppen classification) climate. We review evidence
documenting the impacts of past droughts, and consider the predicted effects of future droughts shaped by intensifying
climate change. We discuss the effects of drought on riverine habitats, then consider ecological responses to changing
habitat characteristics, focusing on the potential for future droughts to shift ecosystems to alternative stable states. We
then explore post-drought ecological recovery, and explain variability in documented trajectories before suggesting how

Bounds of alternative stable states

Non-drought-impacted communities

Drought-driven compositional change

Drought impacted community

Post-drought compositional change

Post-drought recovering communities

Post-drought altered communities

Key

(a) (b) (c)

FIGURE 1 Contrasting definitions of ecological drought based on (a) an unquantified and potentially minor reduction in performance

(sensu Munson et al., 2021); (b) a persistent ecosystem shift to an alternative stable state, that is, drought that leaves an ecological footprint

(sensu Crausbay et al., 2017); and (c) a non-permanent shift to outside the bounds of normal variability (sensu Smith, 2011; also see

Table S1). Circle size and color intensity are proportional to ecological “health” (i.e., biodiversity and ecosystem functioning) and represent

points along continua.
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recovery may unfold after future droughts. We conclude by recommending management strategies and research priori-
ties to promote ecological resilience to drought, where resilience is defined as the capacity to cope with drought and
recover after it ends (Gunderson, 2000).

2 | FROM LOW FLOWS TO DRYING: HOW DROUGHT UNFOLDS IN UK
RIVERS

Reflecting the five core components of the natural flow regime, droughts can be described by their frequency, magni-
tude, duration, timing and rate of change in flow conditions (Poff et al., 1997), with magnitude (i.e., intensity) and dura-
tion collectively determining drought severity (Boulton, 2003; Sarremejane et al., 2022), and with rate of change
encompassing both drought onset and termination phases (Parry, Prudhomme, et al., 2016). Drought can also be
described by its spatial extent, which is often regional (e.g., within part of an island nation such as the UK; see the UK
Water Resources Portal https://eip.ceh.ac.uk/hydrology/water-resources) but can also be national (Marsh, 2014;
UK CEH, 2023) or continental (Burke & Brown, 2010; Hannaford et al., 2011). Within the UK, hydrological drought
manifests differently depending on the underlying geology. For example, in parts of the north and west, rivers under-
lain by impermeable geologies are vulnerable to even short rainfall deficits due to their limited baseflow, whereas
groundwater-fed rivers (such as chalk streams in south and east England) are susceptible to successive dry winters that
provide limited groundwater recharge (Environment Agency, 2017). However, the ecological impacts of drought are
typically experienced at the smaller (habitat patch to catchment) spatial scales at which organisms interact with their
environment (Aspin, Hart, et al., 2019; Aspin, Khamis, et al., 2019; Sarremejane et al., 2020).

2.1 | Variability in drought-driven habitat conditions within UK river networks

Within a river network, the effects of drought on the habitats within river channels can vary considerably in both space
and time (Figure 2; Sefton et al., 2019). In large, lowland rivers with perennial flow, drought effects may be limited
because flow velocities may already be slow, sediments may already be fine-grained, and water depths may remain high
enough to avoid exposing in-channel sediments (Figure 2a; Wood & Petts, 1994; McMahon & Finlayson, 2003). In
perennial mid-reaches with natural channel shapes, drought-driven low flows can manifest as declines in depth and
wetted width that expose marginal and elevated mid-channel sediments, and/or reductions in flow velocity (Figure 2b;
Boulton, 2003; Chadd et al., 2017; Stubbington, Wood, & Boulton, 2009). In the headwaters, drought may cause usually
perennial reaches to dry out (Barker et al., 2024; Bass et al., 2023; Westwood et al., 2006).

None of these in-channel habitat states is unique to drought, but drought affects where in a network a particular
state (e.g., discharge below a certain threshold) occurs and the duration for which a state persists (Sarremejane,
Stubbington, et al., 2021; Sefton et al., 2019). At any one location, drought-driven changes to in-channel habitats unfold
gradually over days to months, generally increasing in magnitude (and thus severity) to a maximum until drought con-
ditions end, sometimes with the rapid return of normal or high flows (e.g., Kendon et al., 2013; Parry, Wilby,
et al., 2016). Collectively, site-scale effects cause gradual network-scale contraction, fragmentation and sometimes
terrestrialization of aquatic habitats (Fuller et al., 2015; Sarremejane et al., 2020), although entire river networks do not
dry in the cool, wet UK climate (cf. dryland systems, e.g., Bogan et al., 2015).

As water volumes decline so too does solute dilution, potentially increasing salinity and concentrations of point
source pollutants including the organic matter, inorganic nutrients, microplastics, pharmaceuticals and other toxins in
sewage effluent (Extence, 1981; Graham et al., 2024; Parr & Mason, 2003). Conversely, drought reduces surface runoff,
limiting diffuse inputs of anthropogenic and natural solutes including inorganic nutrients, which can reduce river
nutrient loads (Graham et al., 2024; Mosley, 2015; Vicente-Serrano et al., 2020). Slow flow velocities promote deposition
of suspended fine sediment and organic matter, which can smother coarse sediments including gravels and thus reduce
habitat diversity (Figure 2b; Ledger & Hildrew, 2001; Wood & Petts, 1994; Wood & Petts, 1999; Wright & Berrie, 1987)
as well as increasing residence times and associated algal blooms (Mosley, 2015; Turner et al., 2021). Deposited fine
material can clog interstitial spaces, reducing connectivity between the surface stream and the subsurface sediments of
the hyporheic zone (Beschta & Jackson, 1979; Schälchli, 1992; Vadher et al., 2018).

The reduced thermal inertia of low water volumes increases the influence of solar radiation, causing water tempera-
ture to increase and become more variable (van Vliet et al., 2011; White et al., 2023), especially in unshaded reaches
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(Bowler et al., 2012; Dugdale et al., 2018) and surface-fed systems (Johnson et al., 2014), including both small streams
(Aspin, Hart, et al., 2019; Aspin, Khamis, et al., 2019) and larger lowland rivers (Brooker et al., 1977). Thermal peaks
are most likely during periods of hot weather including heatwaves, and in warmer regions (Whitehead et al., 2009)—
even in groundwater-fed rivers (Stubbington, Wood, & Boulton, 2009). Oxygen solubility declines with increasing water
temperatures, potentially culminating in severe deoxygenation, in particular when biological oxygen demand is high
(e.g., due to decomposition of sewage-derived organic matter or plants killed by drought-related stress) and at night,
when oxygen uptake by respiring primary producers is not balanced by its release during photosynthesis (Brooker
et al., 1977; Parr & Mason, 2003).

Non-perennial rivers, which typically lose most or all surface water either seasonally or periodically, dominate
global river networks (Messager et al., 2021) and are common and diverse in cool, wet countries such as the UK
(Stubbington et al., 2017). Near-perennial reaches dry only during drought, and these rare dry phases represent a pro-
found change in in-channel habitat characteristics (Sarremejane et al., 2022). In the UK (Hill et al., 2019; Wood &
Armitage, 2004), alpine, continental and temperate Europe (Crabot et al., 2021; Piano et al., 2019) and other global
regions (Carey et al., 2023), recent droughts have caused previously perennial systems to dry for the first time on record
(Hammond et al., 2022; Zipper et al., 2021). Drought also alters in-channel conditions in seasonally non-perennial
reaches: dry phases may start earlier and more abruptly, dry-phase durations may become unusually long (Bass
et al., 2023) and drying magnitude may be particularly high (Boulton, 2003; Coulson et al., 2021).

2.2 | How might future droughts unfold in UK river ecosystems?

Across continents including Europe, drought is increasing (Bednar-Friedl et al., 2022); in the UK, a quick succession of
streamflow droughts has occurred, in years including 2018–19 and 2022 (Barker et al., 2024; Kendon et al., 2023; Turner
et al., 2021); and in England, long-term, temperature-driven increases in soil moisture drought have been modeled
(Briffa et al., 2009; Wigley & Atkinson, 1977). Despite such observations, Watts et al. (2015) concluded that “no appar-
ent trend in summer flows, low flows or [hydrological] drought” has been detected in UK rivers (also see Barker
et al., 2019; Hannaford, 2015; Hannaford & Buys, 2012). This conclusion remains current, and despite notable dry

FIGURE 2 In-channel conditions during drought in UK rivers: (a) a ponded reach; (b) extreme low flows; (c) isolated pools; and (d) a

dry reach. (Photo credits: Environment Agency).
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periods, the UK was wetter in the decade to 2022 compared to the 1961–1990 average (Kendon et al., 2023). However,
the UK's climatic variability hampers detection of trends in low flows (New et al., 2007; Watts et al., 2015), and evidence
that climate change has altered the characteristics of UK droughts remains equivocal (Spinoni et al., 2015).

In contrast, there is greater confidence in predicted future increases in the magnitude, duration, severity, and spatial
extent and coherence of UK hydrological droughts (Kay et al., 2023; Parry et al., 2024; Rudd et al., 2019; Tanguy
et al., 2023). UK-wide reductions in streamflow are predicted to be greatest in south-east England and least pronounced
in north-west Scotland (Parry et al., 2024). However, whereas in other global regions the specter of megadroughts looms
large (Cook et al., 2022), at northern latitudes including the UK, it is unclear if the frequency of multiyear events will
change (Chan et al., 2023). Drought onset and termination characteristics may also be changing (Parry, Prudhomme,
et al., 2016). In particular, the risk of flash droughts, which are defined by their rapid onset and intensification, is
increasing globally (Pendergrass et al., 2020; Trenberth et al., 2014; Walker & Van Loon, 2023), including in humid
regions of Europe (Yuan et al., 2023). Flash droughts may have particular effects in surface-fed rivers, whereas
groundwater-dominated systems may be buffered against rapid change (Sear et al., 1999; Stoelzle et al., 2014). The char-
acteristics of future drought termination phases are unclear, but in places including the UK, observed and predicted
wetter weather (Kendon et al., 2023; Watts et al., 2015) and the increasing occurrence of heavy rainfall events (Jones
et al., 2013; Watts et al., 2015) suggest that droughts may become more likely to end more abruptly (Parry, Prudhomme,
et al., 2016; Parry, Wilby, et al., 2016), including an increase in drought-breaking flood events (Arnell & Gosling, 2016).

Interactions with other environmental factors influence how drought unfolds in river ecosystems. Future droughts
will occur in a warming climate (Arnell & Freeman, 2022; Kendon et al., 2023), resulting in hotter droughts (sensu
Allen et al., 2015). Higher temperatures promote evapotranspiration (and reduce snowpack accumulation in upland
areas; Harpold et al., 2017) and thus exacerbate drought-driven low flows by reducing the proportion of precipitation
that becomes streamflow either directly or via aquifer recharge, as well as increasing evaporation of remaining surface
water and elevating water temperatures (G�omez et al., 2017; Van Loon, 2015). The risk of heatwaves and thus of com-
pound events (i.e., heatwaves occurring during droughts) is also increasing in the UK, across much of Europe and more
widely, intensifying peaks in water temperature (AghaKouchak et al., 2020; Sutanto et al., 2020). In addition, heavy
rainfall events are increasingly likely to occur during UK droughts (Jones et al., 2013; Kendon et al., 2023), potentially
triggering runoff pulses that deliver fine sediment and solutes (including anthropogenic contaminants) to rivers, rapid
changes in water temperature (Arnell et al., 2015; Burt et al., 2016), and/or short-duration flow resumptions (i.e., “false
starts”) in non-perennial reaches (Boulton et al., 2017).

Collectively, these predictions indicate an increasing risk that future UK droughts will be moextreme events (sensu
Smith, 2011), with their rapid onset and high magnitude fueled by greater concurrence with heatwaves (Mazdiyasni &
AghaKouchak, 2015; Sutanto et al., 2020; Tassone et al., 2023).

3 | ECOLOGICAL RESPONSES TO DROUGHT IN UK RIVERS

Considerable research has characterized ecological responses to drought in river ecosystems (Bond et al., 2008;
Boulton, 2003; Lake, 2003; Lake, 2011; Lennox et al., 2019; Parasiewicz et al., 2019; Yang et al., 2023), including numer-
ous UK studies conducted over >60 years. The responses documented by key UK studies are summarized in the “peak
biotic impact of drought” column of Table S2. In short, across freshwater communities including fish,
macroinvertebrates and macrophytes, these responses comprise compositional shifts typified by reductions in taxo-
nomic richness and abundance, with drying of near-perennial reaches causing total loss of some species (Table S2).
However, we argue below that changing drought characteristics mean that ecological responses to past events may not
represent responses to future drought.

Any increase in drought magnitude and/or duration and thus severity could impair the extent and quality of refuges
(places in which drought effects are reduced and thus survival is enhanced; Carey et al., 2023; Lancaster &
Belyea, 1997), reducing the persistence of even drought-tolerant taxa, as taxon-specific tolerances of drought-related
conditions (e.g., rising temperatures and associated declines in dissolved oxygen concentrations; Johnson et al., 2024)
are surpassed. Any increase in drought frequency will make individual events increasingly likely to occur in ecosystems
that have yet to recover from a preceding drought (or other disturbance), prolonging ecological impacts (Harris
et al., 2018). Any increase in flash droughts and thus the acceleration of flow recession and, in non-perennial rivers,
wet-to-dry transitions (Yuan et al., 2023) will give organisms less time to react—physiologically and/or behaviorally, for
example by entering a desiccation-tolerant dormant state (Strachan et al., 2015) or by swimming to nearby refuges
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(Hwan & Carlson, 2016; James et al., 2008)—stranding organisms in drought-impacted reaches (Archdeacon &
Reale, 2020; Wright & Berrie, 1987). Taxon-specific responses to flash droughts could be particularly pronounced if
organisms have less time to complete seasonal lifecycle events such as fish migration and insect emergence (Elliott
et al., 1997; Harper & Peckarsky, 2006; Parmesan, 2006).

Collectively, responses to changing drought characteristics including severity, frequency and the rate and timing of
onset could push ecosystem structure and function beyond the bounds of normal variability (Smith, 2011), with the
potential for ecologically transformational droughts (sensu Crausbay et al., 2017, 2020) that shift ecosystems beyond tip-
ping points to persistent, species-poor and functionally simplified states (Ledger et al., 2013; Scheffer et al., 2001; van
Nes et al., 2016).

3.1 | Could future droughts push UK river ecosystems to new stable states?

As naturally dynamic, disturbance-prone ecosystems, rivers may be less likely to shift to alternative stable states than
other ecosystem types (Figure 3a,b; Capon et al., 2015; Scheffer et al., 2001). As such, drought-driven state shifts are rare
in river ecosystems, and have not, to our knowledge, occurred in cool, wet countries; Figure 3c illustrates a shift in
macroinvertebrate community composition, but not necessarily in ecosystem state. Nonetheless, looking beyond such
temperate regions, state shifts have occurred in river ecosystems during multiyear droughts, due to persistent changes
to in-channel aquatic habitat availability. For example, a 5-year drought in a hot, summer-dry region enabled long-term
establishment of an invasive fish population, concurrent with persistent changes to invertebrate communities (Bêche
et al., 2009); and a high-magnitude, 5-year drought in an arid region caused unprecedented drying of isolated pools,
eliminating large-bodied top predators, which were replaced by smaller predatory taxa (Bogan & Lytle, 2011).
Drought-driven shifts to alternative states could thus occur in UK river ecosystems—if drought effects are persistent,
which could result from altered flow regimes, or from loss and replacement of key species.

Alteration of flow regimes by climatic drying, for example to near-perennial flow at previously perennial sites, to
higher dry-phase frequencies at near-perennial sites, and to longer dry-phase durations at seasonally non-perennial
sites, are occurring globally and are expected to continue (Tramblay et al., 2021; Zipper et al., 2021). In the UK,
temperature-driven reductions in low flows are predicted in most catchments, and in particular in south-east England
(Kay et al., 2023; Parry et al., 2024), leading to greater drying of warming freshwaters (Johnson et al., 2024), especially
in summer. Such hydrological regime shifts (sensu Zipper et al., 2022) represent high-potential triggers of drought-
driven shifts in ecosystem state (Bogan & Lytle, 2011), but these may be localized and incremental. For example, in
space, a shift from perennial to near-perennial flow may eliminate organisms over only a short distance (Hill

FIGURE 3 Macroinvertebrate community composition (represented by circles, as ordinated by nonmetric multidimensional scaling) in

spring 2000–2017, indicating response to and recovery after two streamflow droughts (2006–2007 and 2012–2013) that affected three chalk

stream tributaries of the River Colne, Hertfordshire, UK: (a) no response of a stress-tolerant community in a human-impacted stream;

(b) response and rapid recovery to the pre-drought composition in a seasonally non-perennial stream; and (c) response and shift to an

alternative post-drought composition in a relatively natural perennial stream. Drought years were identified using local hydrological data

(Appendix S1). Missing years are those in which macroinvertebrates were not sampled.
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et al., 2019), and in time, average dry-phase durations could increase by a few days (Jaeger et al., 2014). Nonetheless,
such localized, incremental shifts collectively represent a large-scale drought-driven decline in the extent and diversity
of aquatic habitats, including those acting as drought refuges, which could compromise the biodiversity and resilience
of network-wide metacommunities (Jaeger et al., 2014; Sarremejane et al., 2020).

Both stochastic and deterministic local-scale species losses occur during drought (Table S2; Bogan & Lytle, 2011;
Sarremejane, Truchy, et al., 2021), and can include permanent local extinctions, such as the loss of the internationally
Endangered white-clawed crayfish Austropotamobius pallipes (IUCN, 2023) from a UK chalk stream (Perrow
et al., 2007). The loss of an individual species typically has limited impact on ecosystem functioning due to community-
level functional redundancy (sensu Rosenfeld, 2002). Nonetheless, each single drought-driven species loss contributes
to an incremental decline in functional redundancy, increasing the risk that the next species loss will eliminate a
unique trait or trait combination, reducing ecosystem functioning (Aspin, Khamis, et al., 2019; Fonseca &
Ganade, 2001). In addition, drought-driven declines in the population densities of functionally important species such
as shredder macroinvertebrates (which decompose leaf litter, fueling detritus-based food webs) and top predators can
also impair ecosystem functioning (Datry et al., 2011; Stubbington, Wood, & Boulton, 2009). Moreover, if key species
are lost—be that an abundant, dominant species, a habitat-forming plant species, or an ecosystem engineer or other
true keystone species (sensu Power et al., 1996)—ecosystems may shift to new stable states. Below, we evaluate the evi-
dence for three scenarios in which drought could drive species losses that lead to persistent state shifts in UK river eco-
systems, in particular if droughts become more severe and frequent.

3.1.1 | Loss of habitat-forming plants

Submerged macrophytes can provide extensive habitats for microorganisms, invertebrates and fishes, and act as ecosys-
tem engineers by trapping and stabilizing sediments, thus increasing variability in flow velocities and altering channel
morphology (Gurnell et al., 2012). For example, rheophilic species of water crowfoot (genus Ranunculus) form a funda-
mental component of habitat structure in lowland UK rivers including England's chalk streams (Gurnell et al., 2006;
Wilby et al., 1998) and support high densities of aquatic insects (Armitage & Cannan, 2000; Wright & Berrie, 1987).
During drought, as flow velocities decline, deposited fine sediment may be colonized by slow-flow-loving filamentous
algae and emergent macrophytes (Wright et al., 2004). Emergent macrophytes shade Ranunculus (Ladle & Bass, 1981;
Wade et al., 2002) while a lack of scouring flows allows biofilms to accumulate on its leaves and stems, reducing its
capacity to photosynthesize (Franklin et al., 2008; Wilby et al., 1998; Wright & Symes, 1999). As a result, established
stands of submerged plants including Ranunculus decline in health and abundance during drought (Ladle &
Bass, 1981; Westwood et al., 2006). Moreover, rheophilic plants such as most Ranunculus species may not establish
populations in drought years if flows fail to meet their growing-season requirements (Wright et al., 2002).

The loss of habitat-forming plants such as Ranunculus creates niche space, which may be filled by the colonizing fil-
amentous algae and emergent macrophytes (Ladle & Bass, 1981). A bottom-up trophic cascade may ensue, including
the loss and replacement of previously abundant macroinvertebrates (e.g., Baetidae and Simuliidae by Chironomidae;
Wright & Berrie, 1987) which in turn alters populations of their predators, including fishes (Mann et al., 1989), aquatic
and riparian invertebrates, and riparian birds (Jenkins & Ormerod, 1996). In addition, a change from dominance of
Ranunculus, a submerged macrophyte, to filamentous algae would alter flow patterns, and thus sediment transport and
deposition, potentially culminating in altered river planforms (Cotton et al., 2006; Gurnell et al., 2006). To date, Ranun-
culus populations have re-established within 2 years of flow recovering after droughts (Holmes, 1999), but any increase
in drought frequency and severity could interrupt their recovery, shifting producer communities toward long-term algal
dominance. Downstream reaches with limited riparian shading (and thus high light availability) and elevated water
temperatures could be at particular risk of such shifts (Hosen et al., 2019).

3.1.2 | Loss of riparian vegetation

Riparian vegetation is sensitive to both soil moisture and groundwater levels and thus to drought (Garssen et al., 2014).
Although drought-driven loss of riparian vegetation has not been reported in the UK (Dobel et al., 2020), droughts have
killed a high proportion of trees in other riparian zones (Giling et al., 2009; Portela et al., 2023; Reich et al., 2023) as
well as in UK and other (non-riparian) temperate woodlands (Kirby et al., 1998; Peterken & Jones, 1987). Headwater

8 of 27 STUBBINGTON ET AL.

 20491948, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1745 by N

ottingham
 T

rent U
niversity, W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and other small streams are at particular risk of ecological impacts resulting from reduced riparian canopies, due to the
increased in-channel light levels and water temperatures and resultant increase in primary production and reduction in
leaf litter inputs (Bowes et al., 2012; Giling et al., 2009). Multiple drought-related and other factors will interact to influ-
ence the outcomes of competitive interactions between the producers that colonize newly illuminated channels (Wilby
et al., 1998). The consequences of altered basal resources will have bottom-up effects that extend through food webs as
well as influencing the growth and reproductive success of individual species, potentially including ecosystem engineers
such as crayfish (Giling et al., 2009, 2012).

Even if supported by management actions, riparian vegetation takes years to recover from drought (Portela
et al., 2023), which could exacerbate the risk of a long-term shift to an alternative stable state with elevated primary
production, reduced inputs of habitat-forming woody material and an altered river planform, in particular if increas-
ingly frequent droughts (or other disturbances; Beniston et al., 2007; Guerreiro et al., 2018) repeatedly interrupt recov-
ery. Over longer timescales, shifts in the composition of riparian plant communities toward drought-tolerant woody
species could re-establish a detrital base to riverine food webs, albeit one with altered characteristics (O'Hare
et al., 2016).

3.1.3 | Loss of a top predator

Droughts are likely to eliminate top predators such as fishes or large-bodied macroinvertebrates from riverine food
webs (Bogan & Lytle, 2011; Ledger et al., 2013; Perkin et al., 2017), because typical predator traits (e.g., long life span,
large body size) can increase drought sensitivity (Aspin, Khamis, et al., 2019; Sarremejane et al., 2020). In particular,
sensitivity to low dissolved oxygen concentrations may reduce or eliminate populations of predatory fishes (Brooker
et al., 1977; Cowx et al., 1984). Such losses could alter food webs via top-down trophic cascades by releasing prey from
predator control (Lennox et al., 2019). For example, Gammarus amphipods and (non-native, invasive) Potamopyrgus
mud snails can be more abundant when Cottus gobio bullhead fish are absent, potentially increasing both leaf litter
decomposition (by shredder amphipods) and biofilm consumption (by grazing snails; Woodward et al., 2008). As a
result, food-web structure and function could be simplified (Ledger et al., 2013; Lu et al., 2016). However, such state
shifts may not occur if predators recolonize and re-establish their pre-drought population densities (Hynes, 1958; Mat-
thews & Marsh-Matthews, 2003), with recolonization rates reflecting taxon-specific resilience traits as well as the dis-
tance and connectivity between drought-impacted sites and refuges. Subsequent population re-establishment by
recolonists will then depend on the availability of sufficient food resources (Hakala & Hartman, 2004; Sarremejane,
Truchy, et al., 2021).

3.1.4 | What is the most likely drought-driven state shift in UK rivers?

Of the three scenarios outlined above, drought-driven state shifts in UK river ecosystems may be most likely if riparian
vegetation is lost, due to the long timescales required to reverse its loss and the increasing likelihood that its recovery
will be interrupted by another drought. The risk of state shifts could then be exacerbated by synergistic interactions
among drought-driven hydrological and thermal changes. For example, drought could be particularly likely to favor the
establishment of filamentous algae rather than macrophytes as the dominant habitat-forming producers in newly illu-
minated channels, initiating unpredictable trophic cascades that lead to structurally and functionally simplified river
ecosystems. Such changes are particularly likely in rivers in which multiple pressures including physical habitat modifi-
cation, flow regulation and water pollution compromise natural ecological resilience (Dunbar, Pedersen, et al., 2010;
Dunbar, Warren, et al., 2010; Wilby et al., 1998) and where drought allows invasive species gain a foothold (Wood &
Petts, 1999), exacerbating drought impacts (Crook et al., 2010).

4 | LIFE AFTER DROUGHT: ECOLOGICAL RECOVERY OF UK RIVERS

Ecosystem recovery from drought is typically defined as the return to a stable pre-drought state (Müller & Bahn, 2022;
Schwalm et al., 2017), but this conceptualization is difficult to reconcile with the everchanging, disturbance-prone
nature of rivers, in which non-equilibrium conditions can dominate (Ryo et al., 2019; Thoms, 2006). Intensifying
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climatic extremity is compounding these conceptual difficulties (Rohde, 2023), and increasingly undermines the notion
that ecosystems fluctuate within unchanging boundaries (Milly et al., 2008). Nonetheless, the post-drought recovery of
taxonomic communities has been well-documented in the UK, largely for macroinvertebrates—which are a unique
community in that overland flight of adult insects as well as aquatic dispersal contributes to their recovery—and also
for microbial biofilms, macrophytes and fish (Table S2).

4.1 | Variability in documented post-drought recovery in UK rivers

Across upland and lowland areas, perennial and non-perennial reaches, surface and groundwater-fed systems, and
across biotic groups, research suggests that biological communities in UK rivers have typically recovered from drought
within 1–3 years (Table S2), as also observed in other freshwaters globally (Niemi et al., 1990). Although these recovery
periods are short and consistent compared to terrestrial ecosystems (Peterken & Mountford, 1996), they are highly vari-
able considering the annual or subannual lifecycles of most freshwater species (except fishes; Blanck &
Lamouroux, 2007; Tachet et al., 2010). This variability reflects differences in drought characteristics, differences among
and within biotic groups, and the environmental context in which drought unfolds, as well as the design of a drought
investigation. Understanding this variability in the rates, trajectories and ultimate extent of post-drought recovery could
inform management actions that support resilience to future drought and prevent ecosystems from tipping to alterna-
tive states in which their biodiversity and functioning are impaired.

4.1.1 | Recovery varies depending on drought characteristics

The rate and extent of post-drought community recovery may reflect drought characteristics including its magnitude
and duration (and thus severity) and spatial extent (Figure 4a). In particular, although drought onset is typically grad-
ual (Lake, 2000, 2003), its effects on local habitats (and thus biological communities) may or may not pass critical
thresholds, from isolation of marginal vegetation through to drying of subsurface sediments in non-perennial rivers
(Aspin, Hart, et al., 2019; Boulton, 2003; Chadd et al., 2017). As such, as drought severity increases, habitat and refuge
availability and quality decline, reducing the in situ survival of viable organisms with the potential to act as post-
drought recolonists, and thus potentially slowing post-drought recovery rates (Magoulick & Kobza, 2003). Increasing
drought severity is likely to increase the spatial extent of ponded and dry in-channel conditions (Sefton et al., 2019),
extending distances between refuges and drought-impacted sites and thus slowing post-drought recovery. As a result,
the diversity of biological communities including macroinvertebrates declines with both the local-scale duration of dry
or ponded in-channel conditions and the river-scale spatial extent of such conditions (Sarremejane et al., 2020).

Drought frequency may also influence community recovery, with higher frequencies repeatedly resetting recovery
trajectories to earlier successional stages and preventing the return of taxa with weak dispersal abilities, thus reducing
their distribution—potentially to the point of local then wider extinction (Hill et al., 2019; Sarremejane, Stubbington,
et al., 2021). To date, such interruptions may only have compromised populations of taxa which lack drought resistance
or resilience traits (Sarremejane, Stubbington, et al., 2021), whereas bet-hedging strategies (Lytle & Poff, 2004) and life-
history diversity have supported the recovery of other taxa and whole communities (Greene et al., 2010; Stubbington
et al., 2016). Drought timing may also explain variability among documented recovery trajectories. For example, recov-
ery may be slower after summer droughts due to the greater likelihood that river drying will eliminate sensitive taxa
(Sarremejane et al., 2020). Equally, winter droughts reduce sediment scouring by high flows, with persistent silt
deposits compromising re-establishment of populations of macrophytes such as Ranunculus the following year
(Holmes, 1999).

4.1.2 | Recovery varies among and within biotic groups

Variability in recovery rates can be explained in part by the contrasting traits of different biotic groups, for example a
high proportion of taxa in microbial biofilms can be desiccation-tolerant, persisting on even “dry” sediments and thus
recovering more rapidly than drought-sensitive macroinvertebrates and fishes (Calapez et al., 2014). However, even
within groups, recovery times vary from weeks to years (Table S2), depending in part on taxon-specific adaptations to
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the prevailing disturbance regime. Frequently disturbed and/or stress-adapted communities, which are typically
species-poor, can recover particularly quickly (Figure 4b; also see Figure 3a,b). For example, after a rare, 9-week, near-
complete summer dry phase in a flashy, oligotrophic, near-perennial river in south England, drought-driven taxonomic
changes in macroinvertebrate communities persisted only until high winter flows restored pre-drought community
composition (Ledger & Hildrew, 2001). In contrast, in hydrologically stable, mesotrophic, near-perennial systems such
as England's chalk streams (Sear et al., 1999), communities may take 3 years to completely recover from a rare dry
phase (Wood & Petts, 1999), with some eliminated k-selected insect taxa requiring up to 10 years to recolonize (Ledger
et al., 2011; Sarremejane et al., 2019; Wright & Symes, 1999).

4.1.3 | Recovery reflects local to catchment-scale environmental context

Drought impacts and subsequent community recovery are context dependent (Ledger & Milner, 2015), reflecting local-
to-network-scale environmental characteristics. At local scales, channel naturalness and thus the availability of drought
refuges determine the extent to which organisms can persist in situ and thus rapidly re-establish populations, with these
pioneer taxa representing the initial stages of community recovery during the drought (Figure 4c; Hynes, 1958; Cowx
et al., 1984; Robson & Matthews, 2004). Refuge extent, diversity and quality can all be reduced by anthropogenic modi-
fication of channel shapes, and community recovery can therefore be faster in relatively natural rivers (Dunbar,
Pedersen, et al., 2010; Dunbar, Warren, et al., 2010). For example, post-drought recovery trajectories of macrophyte
communities in headwater streams include slow, partial recovery of species-poor communities in modified channels
but complete, rapid recovery of species-rich communities at more natural sites (Westwood et al., 2006). Similarly,
Wright et al. (2003) attributed rapid post-drought recovery of macroinvertebrate communities in a chalk river to its nat-
ural habitat characteristics.

River-scale and catchment-wide environmental variability can promote asynchronous fluctuations in local-scale
species-specific population densities during drought, limiting concurrent population declines and promoting long-term,
network-wide metapopulation persistence (Sarremejane, Stubbington, et al., 2021). Then, when a drought termination
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FIGURE 4 Variability in post-drought recovery rates is explained by differences in (a) drought characteristics including severity; (b) the

drought resistance and resilience traits of the taxa in recovering communities; (c) levels of river naturalness or anthropogenic modification,

and thus the extent and diversity of refuges; and (d) connectivity between drought-impacted sites and refuges (i.e., sources of post-drought

recolonists). Extent of recovery is relative to the pre-drought state and thus differs between scenarios (i.e., between black and gray lines).
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phase begins, local post-drought recovery rates and trajectories (in particular at stages beyond the initial pioneer assem-
blage) are influenced by the distance and direction to drought-impacted sites from catchment-wide refuges (including
both hydrologically connected river reaches and other, unconnected waterbodies such as ponds) that represent poten-
tial recolonist sources, as well as connectivity between these sites and sources (Figure 4d; Driver & Hoeinghaus, 2016;
Fournier et al., 2023; Robson et al., 2011). River-scale recovery thus relates positively to the spatial extent of flowing
reaches that persist during drought (Sarremejane et al., 2020). However, widespread anthropogenic fragmentation of
UK and global river networks by artificial barriers routinely reduces connectivity, blocking aquatic recolonization path-
ways (Grill et al., 2015; Jones et al., 2019). As such, motile aquatic organisms including fishes and many
macroinvertebrates may be unable to reach impacted sites from catchment-wide refuges after drought termination,
slowing recovery rates and reducing its ultimate extent (Perkin et al., 2013, 2015; Perrow et al., 2007).

The river-scale spatial arrangement of reaches exposed to different drought intensities influences recovery. Where
drought-impacted reaches occur downstream of hydrologically connected refuges, drifting organisms may supply copi-
ous recolonists that contribute to community recovery soon after flow increases (Fournier et al., 2023; Pařil et al., 2019;
Wood & Petts, 1994, 1999). Isolation from recolonist sources increases with progression upstream, and communities in
near-perennial headwater streams may take longer to recover from drought (Tornwall et al., 2017) due to the lack of
upstream perennial reaches that supply drifting recolonists (Aspin & House, 2022; Berrie, 1992 but see Stubbington &
Wood, 2013).

4.1.4 | Variability in characterized recovery reflects study design

Apparent variability in documented recovery rates and trajectories may also reflect study design. Studies of post-
drought recovery routinely lack pre-drought data, or have insufficient data to adequately represent interannual variabil-
ity in pre-drought conditions (Table S2; Bêche et al., 2009). In addition, characterization of recovery is typically limited
by study duration; few studies report post-drought patterns over multiple years, and these few studies are typified by a
coarse temporal resolution, that is, collection of 1–2 biological samples per year (Table S2). Such studies may describe
considerable but not necessarily complete recovery (Hillebrand & Kunze, 2020). Coupled with the conceptual difficul-
ties of characterizing stable, recovered states in disturbance-prone river ecosystems (Ryo et al., 2019; Thoms, 2006), this
lack of data only allows documentation of post-drought changes (typically increases) in metrics such as abundance, bio-
mass, diversity, richness and biotic index scores, and cannot indicate whether stabilization of such metrics represents
the pre-drought state. For example, abundance and population densities (but not necessarily biomass) can increase rap-
idly after drought due to recolonization by pioneer taxa, with high densities thus indicative of an interim stage during
the recovery trajectory (Ledger & Hildrew, 2001). Moreover, univariate metrics such as taxonomic richness routinely
overlook drought-driven changes in community composition (e.g., Bêche et al., 2009; Wright & Symes, 1999).

4.2 | Recovery after future drought in UK rivers

The concepts of ecological memory and drought legacies acknowledge the persistent effects of past droughts and their
capacity to influence ecological responses to and recovery after future events (Johnstone et al., 2016; Müller &
Bahn, 2022), including alteration of vulnerability to persistent state shifts (see Section 3.1). As dynamic, disturbance-
prone ecosystems, rivers appear to have poor memories, being less susceptible to drought legacies than terrestrial eco-
systems (Müller & Bahn, 2022). Nonetheless, predicted increases in drought severity, frequency, spatial extent,
cooccurrence with heatwaves, rate of onset and termination by flooding in UK rivers could collectively alter the rates,
trajectories and ultimate extent of community recovery, thus increasing legacy effects. For example, increasing drought
frequencies inherently shorten intervening recovery durations, preventing populations or whole ecosystems from “for-
getting” a preceding event and thus compromising their resilience (Morris & Ball, 2021; Szejner et al., 2020). The conse-
quences of predicted increases in drought severity, frequency and spatial extent for community recovery are logical
extensions of patterns described in Section 4.1.1 and are not repeated here (Figure 5a,b).

Alongside any increase in drought severity, the increasing occurrence of compound drought–heatwave events and
hotter droughts (Figure 5c; Table S1) is likely to reduce refuge quality, reducing persistence of potential recolonists
and thus limiting post-drought recovery (see Section 4.1.1; Archdeacon & Reale, 2020; Moidu et al., 2023). In addition,
any increase in flash droughts could mean that fewer organisms manage to move into refuges, also limiting the
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densities and diversity of potential subsequent recolonists (Figure 5d; Archdeacon & Reale, 2020; Magoulick &
Kobza, 2003). Any increase in drought-breaking high-flow events could limit local recovery by washing organisms from
refuges including subsurface sediments, especially if sediments are mobilized (Figure 5e; Stubbington, Greenwood,
et al., 2009), slowing community recovery. Subsequent high flows during the drought termination phase could displace
more individuals, reducing local population densities and interrupting recovery trajectories (Leigh et al., 2015). In non-
perennial reaches, redrying after false starts in flow could cause mass mortality of organisms that hatched during the
short wet phase, depleting egg and seedbanks (Strachan et al., 2015). Although future changes to the frequency of mul-
tiyear droughts in the UK are uncertain, occasional long-duration events may be increasingly extreme (Chan
et al., 2023), which could cause unprecedented loss of freshwater biodiversity (Figure 5f).

FIGURE 5 Possible ecological responses to and thus recovery from future UK droughts with altered characteristics. Each response has

the potential to limit post-drought recovery. Fish and beetle icons illustrate representative aquatic organisms.
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5 | MANAGEMENT TO SUPPORT ECOLOGICAL RESILIENCE TO
DROUGHT

Despite short-term, high-profile ecological impacts such as mass mortality of prized Atlantic salmon Salmo salar driven
by decaying masses of the iconic macrophyte Ranunculus (Brooker et al., 1977; Turner et al., 2021), river ecosystems in
the cool, wet UK have, to date, proven resilient to drought, recovering within weeks to a few years (Table S2). However,
in rivers of the Anthropocene, drought is no longer entirely natural. Driven by climate change, drought is becoming
more extreme (Chan et al., 2023); as human populations rise, drought increasingly reflects water resource use alongside
climatic drivers (Van Loon et al., 2016); and in interaction with multiple stressors, drought now compromises environ-
mental quality (e.g., Turner et al., 2021; van Vliet & Zwolsman, 2008). These anthropogenic game-changers are creating
droughts with greater potential to drive ecosystems beyond thresholds at which they shift to persistent, species-poor,
functionally simplified states (Crook et al., 2010). As such, proactive management strategies are needed to limit future
drought-driven biodiversity loss, and thus to maintain and enhance the resilience of UK river ecosystems (Figure 6;
Kreibich et al., 2022), as summarized in Table S3.

Key management actions, implementation of which will depend on the relative contributions of groundwater and
surface water to streamflow as well as water resource use, include reducing abstraction to maintain sufficient flow to
support biodiversity and ecosystem functioning (i.e., environmental flows sensu Acreman, 2016), where “sufficient” bal-
ances ecological priorities (e.g., a species of conservation concern) with societal needs (Aldous et al., 2011; Er}os
et al., 2023; Kreibich et al., 2022). Catchment-specific management and restoration plans should also routinely incorpo-
rate wider measures to promote drought resilience, including actions that enhance water quality (Durance &
Ormerod, 2009; Huml et al., 2020) and maintain or create a diverse range of high-quality drought refuges (Figure 6).
Long-term actions should also seek to promote connectivity between refuges and drought-prone sites (Bond
et al., 2008), including barrier removals that enable fishes to move to and from refuges (Gido et al., 2016) and creation
of terrestrial habitat corridors that support insect flight between waterbodies (Robson et al., 2011). In the shorter term,

FIGURE 6 Factors affecting ecological resilience to drought. Exposure panel adapted from Crausbay et al. (2017; also see Kovach

et al., 2019); Refuges icons (including Gammarus, as a representative macroinvertebrate) adapted from Stubbington (2012). Blue borders

indicate factors that can be influenced by policy and practice.
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where such barriers remain, fish rescue and restocking may be needed to support populations that cannot naturally
reach and recolonize from refuges (Axford, 2000; Jones et al., 2019), in particular to minimize the risk of shifts in eco-
system state following elimination of predatory fish with keystone roles in food webs (see Section 3.1.3). In addition,
where drought-driven reductions in dissolved oxygen concentrations threaten notable fish populations, managers may
respond with rapid deployment of chemical or mechanical aeration (Boys et al., 2022; Environment Agency, 2022).

We suggest natural drought management as a complementary approach to natural flood management (Harvey &
Henshaw, 2023; Lane, 2017) within holistic natural water management strategies. Such strategies aim to support natu-
ral processes that enable catchments to store water and release it slowly into rivers, both during periods of water deficit
and water excess, thus maintaining flows and mitigating drought impacts (Wohl et al., 2018) as well as flood risk. For
example, allowing large wood to accumulate in the channel can hold up water in headwaters, providing drought ref-
uges for species including salmonids and supporting stable downstream flows (Figure 7; Vehanen et al., 2010). Simi-
larly, beaver dams (and thus beaver reintroductions, which are becoming more common in countries including the
UK) promote storage and slow release of water, thus maintaining baseflows during drought (Brazier et al., 2021; Harvey
et al., 2024). Although enhancing drought resilience using such natural processes is desirable, it takes years for riparian
vegetation to establish, and for large wood to then accumulate and create persistent scour pools that act as high-quality
refuges (Figure 6; Beechie et al., 2010). Given the urgency of future-proofing ecosystems against increasing climatic
extremity (Henriques et al., 2015), natural water management actions that promote catchment-scale resilience to both
droughts and floods may be needed at a larger scale, for example by introducing large wood across networks of headwa-
ter streams. In the longer term, riparian tree planting can provide future sources of large wood that promote natural
hydrological variability and increase shading, moderating water temperatures (Grabowski et al., 2019; Johnson
et al., 2024) and thus keeping coldwater species including salmonid fish within a tolerable thermal environment during
summer droughts and compound drought–heatwave events (Broadmeadow et al., 2011).

5.1 | Concluding remarks: Priorities for future research and monitoring

Widespread, long-term hydrological monitoring data are translated into real-time reporting of daily flows and associ-
ated drought indices for mainstem UK rivers (via the UK Water Resources Portal; Barker et al., 2022), providing early

FIGURE 7 Large wood accumulation in a headwater stream in the New Forest, England (Photo credit: Angela Gurnell).
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warning of drought and thus enabling timely action to mitigate its impacts. Nonetheless, both research progress and
management actions are hampered by the spatial and temporal limitations of these flow monitoring networks, in partic-
ular their poor representation of headwater sites, at which drought-driven changes in habitat conditions may be
particularly pronounced (Krabbenhoft et al., 2022). Biological monitoring is even more limited (e.g., Environment
Agency, 2017), which may allow gradually intensifying drought impacts to unfold largely undocumented, limiting inter-
ventions designed to support ecosystems facing profound change. As such, expanded monitoring networks that couple
hydrological and biological data from both headwaters and mainstems are needed to generate data that enable timely
drought detection and documentation, and thus to inform actions that mitigate its ecological impacts (Kovach
et al., 2019). Citizen science projects and wider public observations could also contribute to the detection then
monitoring of drought as it unfolds, as well as documenting post-drought recovery trajectories (Bachmair et al., 2016;
Environment Agency, 2022; Smith et al., 2020). Earth observation technologies may also have the potential to enable
large-scale, near-real-time drought monitoring (AghaKouchak et al., 2023).

Regulatory agencies may lack the resources to implement spatially extensive drought monitoring networks, but
their rigorous, long-term, albeit limited data can be complemented by targeted surveys to identify at-risk sites as well as
those acting as key drought refuges, and to evaluate the effectiveness of actions taken to enhance drought resilience.
These long-term data also require analysis to develop resilience indicators: metrics that identify ecosystems on the
approach to tipping points (van der Bolt et al., 2021; see Box 1), thus enabling timely action to prevent drought-driven
shifts to alternative, simplified stable states (Dakos et al., 2015). In addition, characterizing responses to and recovery
from drought in interaction with other anthropogenic pressures could identify non-hydrological parameters that man-
agers can manipulate to maximize drought resilience (White et al., 2023). As the prospect of unprecedented, extreme
drought increases even in cool, wet countries such as the UK, insights from research and monitoring require urgent
application to inform actions designed to support the ecological resilience of river ecosystems as they adapt to droughts
in the Anthropocene.
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