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Abstract
This review serves as a comprehensive design strategy for designing quasi-zero stiffness (QZS)
mechanical metamaterials (MMs). It discusses their underlying deformation mechanisms that
enable the attainment of QZS behavior under both compressive and tensile loadings. While the
QZS characteristic of metamaterials has garnered considerable attention, further research is
essential to unlock their potential fully. Numerous QZS metamaterials have been meticulously
reviewed. They comprise various elements and mechanisms, including positive and negative
stiffness elements (PS and NS), PS elements with variable stiffness, bending mechanisms
employing stiff joints/areas, buckling, buckling-rotating, and bending/buckling deformation
mechanisms leading to a QZS feature. Furthermore, the capability of multi-material, adaptive,
smart metamaterials, origami (bending around the hinge of the folded joints), and kirigami
lattices (out-of-plane buckling via cutting patterns) are weighted. These diverse mechanisms
contribute to achieving QZS behavior in metamaterials under both compression and tension
loads, which is paramount for various mechanical applications such as passive vibration
isolation. This review effectively categorizes QZS metamaterials based on their underlying
mechanisms, providing scholars with valuable insights to identify suitable mechanisms for the
desired QZS feature.

Keywords: Smart metamaterials, Adaptive metamaterials, quasi-zero stiffness,
vibration isolation, bending, buckling, 3D printing
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Nomenclature

MMs Mechanical metamaterials
PCs Phononic crystals
QZS Quasi-zero stiffness
PS Positive stiffness
NS Negative stiffness
PPRs Positive Poisson’s ratio structures
ZPRs Zero Poisson’s ratio structures
NPRs Negative Poisson’s ratio structures

1. Introduction

MMs refer to synthetic materials that are typically not nat-
urally occurring. The term originates from the Greek word
‘meta,’ signifying beyond. To elaborate, MMs are compos-
ite materials designed to possess a specific combination of
properties that cannot be achieved by merely combining the
individual properties of their components [1–4]. By arran-
ging the architectural design of the lattice structures in spe-
cific patterns, MMs exhibit a variety of mechanical responses,
including unique electromagnetic [5–13], acoustic [14–24],
energy absorption/dissipation [25–29], sound absorption [30–
34], impact resistance [35, 36], blast resistance [37, 38] and
vibration isolation [39–50] features. They could exist as mech-
anical structures with negative parameters [51, 52], and can
be divided into several main groups, including PPRs [28,
53, 54], ZPRs [55–57], NPRs [58–76], NS [77–83], negative
thermal expansion [84–89], negative compressibility [90–92],
permittivity [93], and negative mass density [94] structures.
These lattice structures derive their extraordinary properties
from their microstructure design rather than the chemical com-
position of the parent material, enabling tailored functionalit-
ies and extraordinarymechanical properties such as the variety
in structural stiffness [59, 74, 75, 94–99]. The design of lat-
tice structures could be carried out by analytical methods like
Monte Carlo [100, 101], genetic algorithm-based optimization
[102], and topology optimization methods such as SIMP [71,
103], BESO [104], and level set [105, 106]. It is worth men-
tioning that apart from the lattice structures, NPR behavior can
be seen in composites and foams [25, 44, 107–109].

The manipulation of stiffness in MMs provides intricate
control over mechanical characteristics. Stiffness is a funda-
mental mechanical property that measures the resistance of
a material or structure to deformation under an applied force
[110]. It quantifies the relationship between the force exerted
on an object and the resulting displacement or deformation it
undergoes. Stiffness is often represented by the ratio of force to
displacement and is typically described in terms of the mater-
ial’s elasticity. In most cases, conventional materials exhibit
PS [111], where an increase in applied force leads to a propor-
tional increase in deformation. This behavior is intuitive and
can be observed in everyday materials such as metals, plastics,
and composites. However, NS or zero stiffness can be advant-
ageous in certain scenarios.

Zero stiffness refers to a mechanical system or material
that exhibits no resistance to deformation under an applied

force [112]. It implies that any displacement applied to the sys-
tem does not increase force. This behavior can be achieved by
using specific designs or materials that incorporate zero stiff-
ness elements. Zero stiffness elements act as highly compliant
(flexible) components that allow for the absorption and dissip-
ation of vibrational energy.

Mechanical vibration, the oscillatory motion of an object
around a stable equilibrium position, is a phenomenon
encountered across various fields and applications [111]. It
is usually divided into two main groups, active and passive
vibration [113]. Passive vibration isolation relies on mechan-
ical components like springs and dampers to absorb vibra-
tions without external power, offering simplicity but lim-
ited adaptability. Active vibration isolation employs sensors
and actuators in a closed-loop system, actively counter-
ing vibrations in real-time, providing adaptability and per-
formance across a broader range of frequencies but requir-
ing external power and increased complexity. Understanding
the characteristics and control of mechanical vibration is
crucial in ensuring the optimal performance and reliabil-
ity of structures and systems. One fundamental aspect that
greatly influences mechanical vibrations is the stiffness of the
system.

When it comes to vibration isolation, PS is convention-
ally employed to attenuate vibrations [113]. The presence
of PS in a system provides resistance to external forces,
thereby reducing the transmission of vibrations from one
part of the system to another. This mechanism is com-
monly employed in traditional vibration isolation techniques,
where materials with high PS, such as rubber or springs,
are used to absorb or dampen vibrations and prevent their
propagation [113].

In contrast, the concept of low or even QZS leads to ultra-
low natural frequencies and presents a fascinating alternat-
ive for vibration isolation and free boundary conditions [114].
To enhance clarity, a typical frequency response curve of a
second-order differential equation system is considered [115],
see figure 1. When stiffness goes to zero, the natural frequency

(Wn =
√

k
m , where k is stiffness, and m is the system’s mass

respectively) goes to zero. Then, the frequency ratio (W/Wn)
goes to infinity, and the magnitude response becomes very
low. This implies that the system is highly effective at isol-
ating vibrations at low frequencies.

Consequently, systems with zero stiffness behave effect-
ively at vibration isolation to enhance the system’s ability to
isolate and dampen vibrations. By carefully designing the sys-
tem to incorporate zero stiffness elements, it is possible to
achieve effective vibration isolation by allowing controlled
displacements and reducing the transmission of vibrations
[114].

One intriguing aspect of MMs is their ability to exhibit
properties not found in natural materials. This includes
the concept of tailored or NS, which can be realized in
metamaterial designs [116]. Unlike conventional materials
with PS resisting deformation, MMs can be engineered to
exhibit unconventional behaviors under specific conditions
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Figure 1. Typical frequency response curve of a second-order differential equation system at different damping ratios, Zeta [115].

such as zero or near-zero stiffness. These MMs can exhibit
unique vibrational characteristics, providing opportunities
for novel vibration control, shock, and isolation approaches
[117–124].

Given the substantial impact of MMs on QZS feature
and vibration isolation performance, this review serves as an
inquiry into the domain of MMs, centering its focus on lat-
tice structures endowed with the QZS attribute, elucidating
the effective deformation mechanisms to pave the way for
the MMs’ designers to take the effective items into account
to achieve a QZS behavior under compressive/tensile loads.
Figure 2 (a) and (b) illustrate a discernible upward traject-
ory, obtained from Scopus, in the field of research concern-
ing vibration isolation and QZS feature. This notable trend
underscores the imperative for a concurrent and comprehens-
ive evaluation. This review begins with periodic structures
concept, including MMs, and PCs, and provides a brief intro-
duction of the effective factors which can be considered within
MMs designs to provide a QZS feature. In the following,
section 3 profoundly elucidates the effective items which
must be taken into account for designing a lattice structure to
achieve a QZS feature. Ultimately, a brief indication of mech-
anical vibration is provided in section 4, demonstrating the
effectiveness of QZS metamaterials in passive vibration isola-
tion applications.

2. Periodicity

Periodicity refers to the regular and repeated arrangement of
elements in a system, where each unit is identical to the pre-
vious one. In a periodic structure, there is a recurring pattern
that can be extended infinitely. This concept is fundamental
in understanding the properties of periodic structures, which
are divided into two main groups, including PCs, and MMs,

see figure 3. MMs encompass various engineered structures
designed to exhibit unique mechanical properties, achieved
through careful structural designs at the macro, micro, or even
nanoscale. Their focus is on manipulating mechanical proper-
ties like changing the local stiffness within the lattice struc-
ture, changing flexibility, and deformation response for such
an important engineering application as vibration control. PCs,
on the other hand, are a subset of MMs specifically designed
to control the propagation of mechanical waves, known as
phonons [125]. Phonons are vibrational modes that transmit
energy through a material. PCs manipulate these phonons by
incorporating carefully designed structures that can alter the
transmission, reflection, or absorption of mechanical waves.
While both PCs and MMs for vibration isolation involve the
manipulation of mechanical waves, they serve distinct pur-
poses. PCs are tailored for controlling the propagation of phon-
ons in specific frequency ranges and are used in applications
such as acoustics. On the other hand, MMs for vibration isol-
ation are designed to absorb, dampen, or prevent the transmis-
sion of mechanical vibrations, often employing features like
QZS or NS. The focus of this review is on the QZS feature of
MMs. The geometry of MMs in this review revolves around
cylindrical structures [26], two-dimensional (2D) structures
[39, 62, 71, 85, 126, 127], three-dimensional (3D) [69, 120,
128], Origami [129] and Kirigami [130] lattices. In addition,
the effective items that must be incorporated within the lattice
design to provide the QZS feature are illuminated. Figures 4
and 5 show the geometries of MMs considered in this study,
and the mechanisms leading to a QZS feature in lattice struc-
tures respectively. They contain consideration of PS and NS
elements [39, 118], variable PS elements [50], bending/buck-
ling [56, 62, 63, 68, 131–133], smart materials in local areas
within the lattice structure [134], and multi-material printing
[96, 135].
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Figure 2. Statistics obtained from the database of Scopus for (a) vibration isolation, and (b) QZS metamaterials research.

Figure 3. 2D structure of phononic crystals, Reprinted from [125], Copyright (2019), with permission from Elsevier.
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Figure 4. (a) cylindrical, Reproduced from [26]. CC BY 4.0. (b) 2D, Reprinted from [39], Copyright (2020), with permission from
Elsevier, (c) 3D, Reprinted from [120], Copyright (2023), with permission from Elsevier, (d) origami structure, Reproduced from [129].
CC BY 4.0 and (e) Kirigami [130], John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

3. Deformation mechanisms leading to a QZS
feature

This section sheds light on the various deformation mechan-
isms leading to a QZS phenomenon in metamaterials under
compressive/tensile mechanical loads.

3.1. Combination of PS and NS elements

In metamaterials, the combination of PS and NS elements
can lead to the emergence of QZS behavior [39, 49, 118,
120, 137, 138], see figure 6. Take the individual elements into
account to understand how this is achieved. PS elements resist
deformation and exhibit a linear relationship between applied
force and resulting displacement. On the other hand, NS ele-
ments behave oppositely. They exhibit a relationship where
the applied force and displacement have opposing signs, caus-
ing a reduction in stiffness when combined with PS elements.
These PS and NS elements are arranged in a specific con-
figuration to achieve QZS behavior in a metamaterial. The
PS elements dominate at small deformations, providing a lin-
ear response. However, as the applied force or displacement

increases, the NS elements/mechanisms become activated,
reducing the overall effective stiffness of the metamaterial.
This reduction in stiffness occurs due to the energy exchange
between PS and NS elements. As the PS elements are com-
pressed or extended, they store elastic energy. When the NS
element is activated, it releases this stored energy, effectively
cancelling out the PS effects and reducing the net stiffness
of the metamaterial. Herein, some unit cell designs leading
to a QZS behavior are presented, see figure 6. This arrange-
ment allows for distinct mechanical behaviors under differ-
ent loading conditions. By strategically arranging these ele-
ments, the unit cell and the overall meta structures can achieve
a state of QZS. The mechanical response of the sinusoidal
beam can be estimated by the research conducted by Qiu
et al [139]. It suggests that when the parameters of the sinus-
oidal beam meet the condition of h/t ⩾ 6, where paramet-
ers ‘h’ and ‘t’ indicate the curvature and the thickness of the
beam respectively, the force-displacement relationship con-
tains a plateau region. Consequently, the force-displacement
curve of the metamaterials containing the simultaneous NS
and PS elements can represent a plateau region under
compression.
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Figure 5. The effective mechanisms leading to the QZS feature via (a) a combination of PS and NS elements, Reprinted from [39],
Copyright (2020), with permission from Elsevier, (b) variable PS elements, (c) bending and buckling caused by high-stiffness regions, (b)
and (c) Reproduced from [56]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0, (d) buckling, Reproduced from [68].
CC BY 4.0, (e) localized smart materials, Reproduced from [136]. CC BY 4.0 and (f) multi-material printing, Reproduced from [135].
CC BY 4.0.

3.2. Combination of variable PS elements

In specific configurations and arrangements, the combination
of low and high PS elements can create metamaterials with
nonlinear mechanical properties that exhibit QZS behavior
[50, 55, 56]. The nonlinear behavior arises from the interac-
tion between different elastic elements and the overall system
response. By carefully designing the structure and geometry,
and interconnection of the low and high-stiffness elements, it
is possible to achieve a nonlinear mechanical response where
the effective stiffness approaches zero over a specific range of
applied forces or displacements. The interplay between dif-
ferent PS elements can lead to QZS behavior due to the non-
linearity of each element. In the following, the nonlinearity
of combined elastic elements and their roles in realizing QZS
feature will be discussed.

From the structural standpoint, a metamaterial design could
contain the simultaneous heterogeneous arrangement of low
and high-stiffness elements, see figure 7. This arrangement
introduces nonlinearity into the system, which alters the
overall stiffness characteristics during deformation. When an
external force is applied to the metamaterial, the load is dis-
tributed among the stiff and soft unit cells. The stiff unit cell
bears a significant portion of the applied load due to its higher
stiffness. This leads to a transfer of forces between the stiff
and soft unit cells, resulting in bending of the soft unit cells.
In fact, the deformation of the soft unit cells can exhibit a non-
linear behavior, resulting in a reduction in the effective stiff-
ness of the metamaterial as the applied force or displacement
increases. This causes a QZS feature in metamaterials under
compression.
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Figure 6. The combination of NS and PS elements effect on QZS feature, Reprinted from [39], Copyright (2020), with permission from
Elsevier.

3.3. Rotating mechanism via stiff joints

In those lattice structures containing stiff joints within their
designs, the QZS behavior can be achieved [47, 62, 122,
124, 140]. When a compressive force is applied to a lat-
tice metamaterial, the stiff joints experience a rotational
motion leading to change/re-arrangement of structural design
and unit cells. This rotation is a consequence of the stiff
joints arrangement, see figure 8. As a result, the cell walls,
or beams in the vicinity of the stiff joints undergo bend-
ing. The rotation of the stiff joints and the simultaneous
bending deformation of neighboring elements contribute
to a nonlinear mechanical response of the structure, lead-
ing to a QZS feature on force-displacement relation under
compression.

3.4. Bending mechanism via localized stiff area/region
contacts

Following the discussion of rotating motion, another similar
mechanism for a QZS feature is introduced here by taking
advantage of the bending motions of the elements located
close to the high-stiffness regions in metamaterials. The lat-
tice metamaterial contains specific regions that are designed
to be stiff, meaning that they offer high resistance to deform-
ation. These regions can be composed of rigid materials or
containing specific structural arrangements that enhance stiff-
ness. When an external compression force is applied to the
lattice metamaterial, it experiences overall deformation. The
force is transmitted throughout the structure, causing the unit
cells and their constituent cell walls to deform, see figure 9.
Due to the presence of the high-stiffness regions (either ori-
ginally existing or from contacts during deformation), the cell
walls in their vicinity experience localized bending. Indeed,
as the high-stiffness regions resist deformation more than
the surrounding elastic elements, bending occurs, resulting

in stress concentrations and deformation redistribution. The
bending of cell walls near the high-stiffness regions creates
a unique mechanical response. In these regions, the effect-
ive stiffness of the material is greatly reduced, approaching
zero [26, 56, 141]. This behavior is termed QZS because,
although the material still offers some resistance to com-
pression, it is significantly lower than the stiffness exhib-
ited by the rest of the lattice. In other words, high-stiffness
regions can induce localized bending or a kind of struc-
tural failure in nearby elastic elements under loading, res-
ulting in a QZS feature. This behavior opens up opportun-
ities for applications in shock absorption, shape-changing
structures, and other areas that benefit from enhanced
mechanical properties and unique responses to external
forces.

3.5. Metamaterials with structural instability

3.5.1. Buckling via support elements. In metamaterial
design, structural failure or instability can be used to realize
the QZS behavior. Buckling is a common type of instabil-
ity with the sudden stiffness drop and lateral deflection incre-
ment of a slender structural element under compression [142]
and can be considered as an effective mechanism leading
to a QZS feature [41, 63, 126, 133]. The structure can
undergo a buckling deformation when a compressive force
exceeds a critical threshold. Buckling introduces nonlin-
ear behavior into the system, which cannot provide effect-
ive support for the external loads. Instead, the relationship
between the applied force and resulting displacement becomes
highly nonlinear, often exhibiting a softening behavior, see
figure 10. In the buckled state, the structure becomes more
flexible, meaning that it can undergo larger deformations
for a given change in applied force. This reduced effect-
ive stiffness is a key characteristic associated with QZS
behavior. In addition, buckling redistributes the applied load
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Figure 7. The emergence of QZS feature due to high and low positive stiffness unit cells in (a) cylindrical, Reproduced from [50].
CC BY 4.0, (b) 3D, Reproduced from [55]. CC BY 4.0, and (c) 2D metamaterials, Reproduced from [56]. CC BY 4.0.

within the structure, leading to changes in stress distri-
bution. This redistribution of internal stiffness and forces
can help to mitigate the impact of external loads or vibra-
tions and provide enhanced isolation or damping character-
istics. Overall, buckling-induced QZS behavior arises from
the interplay of geometric constraints, instability, nonlinear-
ity, and energy dissipation. By leveraging these phenom-
ena, designers can create structures that exhibit reduced
effective stiffness within specific operating strain ranges.

3.5.2. Buckling-induced rotatingmechanism via stiff joints.As
mentioned in section 3.5.1, buckling can contribute to chan-
ging the overall mechanical response of a structure under
mechanical loads. It may influence the emergence of a QZS
feature. Buckling typically introduces nonlinear behavior into
the system. The response of the structure may no longer
be linearly proportional to the applied force or deformation.
Nonlinearities can arise from the changes in stiffness, damp-
ing, or geometrical configurations associated with buckling
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Figure 8. The effect of high-stiffness rotating joints on QZS feature of (a) triangular, Reprinted from [62], Copyright (2020), with
permission from Elsevier and (b) common chiral structures, Reproduced from [140]. CC BY 4.0.

deformation. In some cases, the combined effects of buck-
ling and other design factors (such as the arrangement of ele-
ments or materials) can contribute to the emergence of QZS
behavior. For example, in certain metamaterials, the interplay
between rotation joints, or geometric configurations can lead
to a reduction of effective stiffness within a specific strain
range, resulting in a QZS behavior and possible vibration isol-
ation performance [61, 68]. Figure 11 illustrates the effective

role of the rotational motion of stiff joints under compression
and the corresponding buckling of the cell walls in their vicin-
itieson the emergence of QZS feature. The mechanical loads
induce the stiff joints to rotate first due to their high stiffness,
which consequently results in buckling of the cell walls. This
phenomenon introduces instability into the structure, giving
rise to negative Poisson’s ratio behavior and the emergence of
a prolonged QZS characteristic.

9
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(a)

Figure 9. High-stiffness regions because of (a) tip contacts of the unit cells, Reproduced from [26]. CC BY 4.0, (b) contact of the walls in
the slots, Reproduced from [56]. CC BY 4.0, and (c) triangles positions, Reproduced from [141]. CC BY 4.0.

3.6. Bending/buckling around hinges of origami
metamaterials

Origami, as an art form, traditionally involves folding mater-
ials to create intricate and visually appealing designs [129].
In the realm of engineering, researchers have explored
incorporating specific folding patterns and principles into

the design of structures to achieve zero or extremely low
stiffness feature [143–145]. Origami metamaterials typically
consist of repeated folding units arranged in a periodic or
geometric pattern. These folding units can be designed with
flexible and rigid regions, creating hinges at the points of
folding. When a mechanical load is applied, the flexible
regions of the origami metamaterial undergo bending around
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Figure 9. (Continued.)

these hinges, allowing the lattice to deform while the rigid
regions provide stability. Initially, the deformation is relat-
ively small, and the response of the lattice can be approx-
imately linear. However, as the applied force increases, the
bending around the hinges becomes more significant, res-
ulting in nonlinearity in the system. This nonlinearity arises
from various factors, including the change in force distri-
bution as the lattice deforms. The bending/buckling at the
local flexible regions redistributes forces, transferring a por-
tion of the load to the previously unengaged parts of the lat-
tice. This redistribution alters the stiffness and response of
the structure, leading to nonlinear behavior. The ability to
bend/buckle around high-stiffness hinges and the redistribu-
tion of forces enables the origami lattice to exhibit unique
mechanical behaviors such as QZS feature. This character-
istic allows for easy deformation of the lattice under mech-
anical loads, making it highly suitable for applications such
as shock absorption, precise force control, and adaptable
structures. An alternative method for introducing nonlinearity
and achieving tunable stiffness within origami lattice struc-
tures is through the implementation of embedded tension
springs [144]. By integrating tension springs into the struc-
ture, it becomes possible to manipulate the stiffness of the
creases and consequently achieve adjustable stiffness for the
entire system, see figure 12. This approach offers a versat-
ile means of tailoring the mechanical properties of origami-
based structures, allowing for enhanced control over their
behavior and response to external forces. The integration of
tension springs represents a valuable technique for expanding
the design possibilities and optimizing the functionality of ori-
gami lattice structures in various engineering and architectural
applications.

Furthermore, Sadeghi and Li [145] conducted research
demonstrating a potential method for incorporating the QZS
characteristic into origami metamaterials by implementing a
sealed pressurized structure. The approach takes advantage
of the nonlinear relationship between folding and internal
volume change. By pressurizing the structure, the origami
metamaterial exhibits the desired QZS feature, referring
to extremely low stiffness or high flexibility in specific
configurations.

3.7. Buckling/bending of kirigami metamaterials

Kirigami metamaterials are indeed based on sheet-cutting and
folding techniques [130]. They involve patterns of cuts and
folds within the structure to create unique mechanical prop-
erties. While origami primarily focuses on folding, kirigami
introduces cuts, allowing for more complex elastic element
layouts and deformation behaviors. In a kirigami lattice struc-
ture, when a tensile load is applied, the lattice structure tends to
buckle and deform, see figure 13. The cuts in the lattice act as
hinges that enable the material to fold in specific ways, facil-
itating the lattice’s response to mechanical loads. The interac-
tion between the cuts and folds in the lattice is indeed a source
of nonlinearity. As the lattice deforms, the cuts open, modi-
fying the effective stiffness of the structure. This change in
stiffness contributes to the nonlinearity observed in the mech-
anical behavior and can lead to a phenomenon like QZS [130,
131]. By strategically designing the pattern of cuts, engin-
eers can precisely control the resulting folding behavior and
the response of the lattice to mechanical loads. This control
over the deformation behavior enables the creation of kirigami
structures with desired mechanical properties.
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Figure 10. The QZS feature caused by (a) buckling distortion, Reprinted from [41], Copyright (2020), with permission from Elsevier, (b)
buckling of vertical struts, Reprinted from [63], Copyright (2022), with permission from Elsevier, and (c) sudden transformation of structure
[126], John Wiley & Sons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

3.8. Multi-material lattices

Multi-stiffness metamaterials are a class of engineered mater-
ials that possess multiple regions or elements with distinct
stiffness properties [96, 134, 135, 146, 147]. These materi-
als exhibit a spatial variation in their mechanical response,
allowing for the control and manipulation of stiffness at dif-
ferent locations within the structure, see figure 14. This cap-
ability opens up a wide range of applications in areas such as
soft robotics, energy absorption, and tunable mechanical sys-
tems. The design and fabrication of multi-stiffness metama-
terials often involve the use of additive manufacturing tech-
niques. These processes enable the precise arrangement of dif-
ferent materials, thereby achieving the desired variations in

stiffness at different structural locations. Multi-material lat-
tice structures can introduce nonlinearity in their mechanical
response. Different materials within the lattice may exhibit
nonlinear stress-strain behavior. For example, materials with
elastoplastic or viscoelastic properties can undergo nonlinear
deformation under mechanical loads. When combined in a
lattice structure, the overall response becomes nonlinear due
to the collective behavior of the constituent materials. Multi-
material lattice structures can achieve QZS behavior through
introducing softer materials with lower stiffness within the lat-
tice structure. Indeed, the softer materials located at critical
structural locations contribute to the overall compliance of the
structure, effectively reducing its stiffness under compression
and making an easier realization of the QZS feature during
deformation.
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Figure 11. The effect of buckling-induced rotating mechanism on QZS feature, Reprinted from [61], Copyright (2018), with permission
from Elsevier.

Figure 12. The effect of linear springs to provide QZS feature in origami lattices, Reprinted from [144], Copyright (2023), with permission
from Elsevier.

Figure 13. The effect of cutting pattern on the QZS feature in Kirigami lattices [130], John Wiley & Sons. © 2019 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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Figure 14. The multi-material printing effect on the QZS feature (a) within the cell walls, Reprinted from [96], Copyright (2022), with
permission from Elsevier and (b) a separated combination of two materials, Reproduced from [135]. CC BY 4.0.

3.9. Smart and adaptive metamaterials

Smart materials are a category of materials that exhibit
dynamic and adaptive behavior in response to various stimuli
[147, 148]. These materials possess the ability to sense
external changes, respond to them, alter their properties to
adapt accordingly, and even activate actuation mechanisms.
One example of smart metamaterials is light-responsive lat-
tice structures [136]. Light-responsive smart materials, such
as photo-responsive polymers, can indeed be utilized to cre-
ate soft regions within a material [136]. When combined with
passive materials, this arrangement can lead to the emergence
of QZS feature under compression in specific regions, see
figure 15. Light-responsive smart materials undergo revers-
ible changes in their mechanical properties when exposed to
specific wavelengths or intensities of light. These materials
typically exhibit a transition between a stiff state and a soft
state, allowing for controlled modulation of their mechan-
ical response. By incorporating light-responsive smart mater-
ials in certain regions of a structure, those regions can be
designed to exhibit softness when subjected to light activation.

This softness arises from a reduction in the material’s effect-
ive stiffness, allowing for enhanced flexibility and adaptab-
ility in response to compression. To achieve QZS in com-
bination with passive materials, a strategic integration of the
soft light-responsive regions and passive materials is required.
The passive materials possess a relatively high stiffness and
contribute to the overall structural integrity of the system.
When compression is applied to the combined structure, the
passive materials initially provide resistance, contributing to
the overall stiffness. However, in the regions where the light-
responsive smart materials are incorporated, the application of
light can induce a transition to a soft state, leading to a signi-
ficant reduction in stiffness. This reduction in stiffness effect-
ively results in zero stiffness in those specific regions under
compression.

In parallel with smart metamaterials, adaptive metamater-
ials are also capable of exhibiting QZS features [149]. The
terms ‘adaptive metamaterials’ and ‘smart metamaterials’ are
sometimes used interchangeably due to their similarities in
functionality. The key distinction between adaptive and smart
metamaterials lies in the level of autonomous and intelligent
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Figure 15. The effect of smart light-responsive materials on the QZS feature, Reprinted from [136], Copyright (2022), with permission
from Elsevier.

behavior exhibited by smart metamaterials. While adaptive
metamaterials focus on active adaptation, smart metamateri-
als take it a step further by incorporating actuation capabilities
[150]. One example of adaptive metamaterials is thermally
programmable lattice architectures [149], see figure 16. These
structures consist of a network of unit cells arranged in a
lattice pattern, where the unit cells are designed to undergo
controlled shape changes upon thermal activation. In the
scenario where the active material weakens upon heating,
the concept of QZS in lattice structures under compres-
sion can still be achieved. When the active material weak-
ens upon heating, it undergoes a reduction in its mechan-
ical properties such as stiffness or strength. By combining
this active material with a passive material in a lattice struc-
ture, it is possible to leverage their differential mechanical
responses to achieve the desired QZS feature. Under compres-
sion, the lattice structure experiences deformation. Initially,
the passive material provides the primary stiffness to resist
the applied compressive forces. As the structure is heated,
the active material weakens, reducing the overall structural
stiffness. This weakening effect allows the lattice to exhibit
lower effective stiffnessunder compression, leading to theQZS
behavior. The combination of the active material’s weaken-
ing response and the passive material’s stiffness creates a
scenario where the structure adapts its mechanical properties
under the influence of temperature. The advantage of smart
and adaptive metamaterials is that their unique mechanical
behaviors, like QZS properties, are controllable by excita-
tions from different physical fields other than just mechanical
inputs.

4. Mechanical vibration control

Understanding and controlling mechanical vibration is of
utmost importance in engineering and design. Excessive vibra-
tions can lead to a variety of issues, including structural dam-
age, reduced performance, increased noise levels, and even
safety hazards. Engineers and designers strive to minimize
vibrations to ensure the longevity, reliability, and efficiency of
structures, machines, and systems. Mechanical vibration has
significant implications in numerous industries and applica-
tions. Some notable examples include:

1. Automotive Industry [151]: Vibration control is critical
for vehicle performance, passenger comfort, and safety. It
involves optimizing engine mounts, suspension systems,
and tires to reduce unwanted vibrations.

2. Manufacturing and Industrial Machinery [152]: Vibrations
in industrial machinery can lead to increased wear,
decreased productivity, and safety concerns. Effective
vibration control measures are essential to maintain oper-
ational efficiency and worker well-being.

3. Construction and Infrastructure [153]: Vibrations from con-
struction activities such as pile driving or heavy machinery,
can impact nearby structures, requiring careful monitoring
and mitigation to prevent damage.

4. Structural Engineering [154]: Vibration analysis is cru-
cial for assessing the dynamic behavior of structures like
bridges, buildings, and stadiums. It helps to ensure their
stability, comfort, and safety under normal and extreme
conditions.
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Figure 16. The effect of adaptive thermally programmable materials on the QZS feature [149], John Wiley & Sons. © 2021 Wiley-VCH
GmbH.

Table 1. QZS metamaterials recent works.

Research group
The effective mechanism
leading to QZS

Frequency ranges
(high/low) Year

Liu et al [138] Combination of PS & NS Low 2024
Zhao et al [123] Bending via stiff joints Low 2023
Guo et al [120] Combination of PS & NS Low 2023
Lin et al [121] Bending via stiff joints Low 2023
Zheng et al [49] Combination of PS & NS Low 2023
Zolfagharian et al [50] Variable PS elements Low 2022
Cai et al [117] Bending via stiff joints Low 2022
Lin et al [122] Bending via stiff joints Low 2022
Zhang et al [47] Bending via stiff joints Low 2021
Zhou et al [124] Bending via stiff joints Low 2021
Cai et al [118] Combination of PS & NS Low 2020
Fan et al [39] Combination of PS & NS Low 2020
Liu et al [41] Buckling Low 2020

Understanding and managing mechanical vibrations is cru-
cial for optimizing performance, ensuring safety, and improv-
ing the overall quality of various systems and structures in the
real world. By studying and controlling vibrations, engineers
strive to enhance efficiency, reduce downtime, improve com-
fort, and extend the lifespan of machinery and infrastructure.

4.1. The significant effects of metamaterials for vibration
isolation

Using vibration isolator metamaterials offers several advant-
ages over common vibration isolator mechanisms. Unlike tra-
ditional isolator mechanisms, which often have fixed charac-
teristics or require complex controlling process, metamater-
ials can be designed to exhibit extraordinary variable prop-
erties. This allows for customization and optimization of
isolator performance based on the specific application. QZS
metamaterial-based isolators have the potential to provide
effective vibration isolation over a wide frequency range.
By carefully designing the structural elements and arrange-
ments within the metamaterial design, it is possible to con-
trol and manipulate the transmission of vibrations across a

broad spectrum of frequencies. This adaptability is particu-
larly advantageous in applications where vibrations occur at
varying frequencies. It is worth noting that QZS metama-
terials do not inherently offer benefits in vibration isolation.
Generally, they are employed as integral parts of high static
and low dynamic stiffness systems. These systems are spe-
cifically crafted for vibration isolation applications, leveraging
the effectiveness of QZS within a restricted range of displace-
ments. Besides, QZS metamaterials can be used as shock and
impact absorbers [120, 137], especially where a high strength-
to-weight ratio is required. This is particularly beneficial in
industries where weight and space considerations are critical
such as aerospace and automotive applications [155]. Several
scholarly publications have reported on the remarkable vibra-
tion isolation capabilities exhibited by specific QZS metama-
terials. For a detailed overview of recent scholarly endeavors
in the field of QZS metamaterials, please refer to table 1.

5. Conclusions

This review provided a discussion of the design strategy of lat-
tice metamaterials exhibiting a QZS feature. The key observa-
tions are summarized as follows.
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• One effective way to provide a QZS feature in lattice
metamaterials under mechanical loads is to introduce non-
linearity into the system.

• The simultaneous consideration of PS and NS elements
within the metamaterial designs can introduce nonlinear-
ity into the system. This can lead to the emergence of zero
stiffness. When PS and NS elements are combined in a sys-
tem, their interaction can lead to nonlinearity and the cre-
ation of zero-stiffness regions. This occurs due to the bal-
ance between PS and NS elements by cancellation of forces
provided by PS elements.

• Another approach for introducing nonlinearity can be the
coexistence of variable PS elements. Under compression,
the stiffer elements lead to the densification of the soft unit
cells, resulting in a nonlinear behavior and a QZS feature.

• The other effective approach could be buckling caused by
rotational motion and instability into metamaterials. When
the lattice structure is under compressive loads, the buckled
beams undergo large deformations, resulting in an increase
in flexibility (a decrease in stiffness). As a result, the effect-
ive stiffness of the structure decreases significantly, allowing
for large displacements with minimal resistance.

• By varying material properties of the lattice structure, using
multi-material printing, it is possible to achieve regions with
very low effective stiffness or even zero stiffness. This can
also be obtained by designing unit cells with specific com-
posite configurations with smart and adaptative materials
that provide QZS behavior under mechanical loads.

As future works, QZS metamaterials can provide stability
to sensitive equipment, ensuring the protection of structures
from seismic waves, and limiting ride harshness in automot-
ive and aerospace industries. The use of QZS metamaterials in
seismic-resistant building foundations and structural compon-
ents can be further explored and refined. These lattice struc-
tures could contribute to improving the resilience of infrastruc-
tures in earthquake-prone regions, minimizing damage during
seismic events, and enhancing the safety of occupants.
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