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A B S T R A C T   

This systematic review explores the integration of 4D/3D printing technologies with machine learning, shaping a 
new era of manufacturing innovation. The analysis covers a wide range of research papers, articles, and patents, 
presenting a multidimensional perspective on the advancements in additive manufacturing. The review un
derscores machine learning’s pivotal role in optimizing 4D/3D printing, addressing aspects like design cus
tomization, material selection, process control, and quality assurance. The examination reveals novel techniques 
enabling the fabrication of intelligent, self-adaptive structures capable of transformation over time. Additionally, 
the review investigates the use of predictive algorithms to enhance efficiency, reliability, and sustainability in 
4D/3D printing processes. Applications span aerospace, healthcare, architecture, and consumer goods, show
casing the potential to create intricate, personalized, and once-unattainable functional products. The synergy 
between machine learning and 4D/3D printing is poised to unlock new manufacturing horizons, enabling rapid 
responses to market demands and sustainability challenges. In summary, this review provides a comprehensive 
overview of the current state of 4D/3D printing optimization through machine learning, highlighting the 
transformative potential of this interdisciplinary fusion and offering a roadmap for future research and devel
opment. It aims to inspire innovators, researchers, and industries to harness this powerful combination for 
accelerated evolution in manufacturing processes into the 21st century and beyond.   

1. Introduction 

3D printing, also known as one of additive manufacturing tech
niques, has undergone a huge advancement since its inception in 1980 
[1]. 3D printing has been vastly utilized by the people in every sector 
whether from the consumers or manufacturers perspective in recent 
years [2]. It has advanced 3D printing technology to a point where users 

can now use it to generate their own designs and turn them into products 
[3]. 3D printing technologies relies on a layer-by-layer deposition of 3D 
object based on the computer-aided design (CAD) model, or 3D model 
[4]. With this technology, the 3D model with complex geometry and 
structures can be manufactured easily which contribute to a vast 
application in the industry such as soft robotics [5], biomedical appli
ances [6,7], and construction. 
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During the period of 3D printing development, there are some 
challenges that appear in the real-world applications. In electronics 
application, the production of 3D printed electronics is not feasible 
through a conventional manufacturing process. The reason behind this is 
due to the challenges of fabricating a fully functional electronic com
ponents in a single build sequence that can withstand harsh environ
mental conditions [8]. For instance, to fabricate a flexible 3D electronic 
device requires a complex 3D printer, such as a hybrid of stereo
lithography and direct write technology [9], to make it functional and 
can be applied in the real application. For medical aspects, the source of 
raw materials for construction of similar and suitable products for 
human organ and tissues replacement using 3D printing technology are 
still limited, this has made the development of 3D production of 
biomedical products to slows down [10]. These applications and chal
lenges have led to extended development of 3D printing, which also can 
expand to more intrinsic and extrinsic functionality on the 3D model 
[11,12]. 

Development in 3D printing has now been extended to support multi- 
materials, re-establishing it to be able to produce mixtures of different 
properties in a bid to develop other complex structures intermeshed with 
the many types of material [13–15]. It is important for applications 
where the component may need to have one material in some specific 
regions while another in other regions in terms of mechanical or thermal 
characteristics. Extrinsically, developments have included increased 
resolution and accurate control for printers to create fine and complex 
models [16,17]. Also, there are recent advances in manufacturing that 
incorporate 3D printing with other methods such as direct write method 
and stereolithography techniques [15,18]. These hybrid processes are 
crucial in manufacturing functional electronics and parts, suitable for 
deployment in challenging conditions. Furthermore, integrating 
responsive ‘smart’ materials capable to adapt to various stimuli in the 
surroundings has led to the advancement of the 4D printing technology 
where products made through the process are capable to transform 
shape or function over time hence widening the opportunity of using 
additive manufacturing [19–21]. From this idea, 4D printing has 
emerged as a more advanced application of 3D printing with the addi
tional functionality. 

The idea of 4D printing initiated by Tibbits at the 2013 technology, 
entertainment, design (TED) conference where he demonstrates how a 
static 3D printed object can change its shape overtime [22]. Since then, 
the researchers are eager to develop the 4D printing technology as it is a 
new discovery. 4D printing has created some opportunity in expanding 
the functionality of 3D printing by including the element of smart ma
terial. With the addition of smart material into 3D printing, the 4D 
printed object will be able to have the ability to response to external 
stimuli, such as heat, light and humidity [23,24]. Fig. 1 below shows the 
publication that has been published regarding the subject of 4D printing 
by Scopus. 

The development of 3D printing using machine learning has been 
applied to some application in recent years to optimize the 3D printing 
performance and processes. For example, Castro et al. has developed a 

machine learning model that successfully predicted key aspects of 3D 
printing formulation and in-vitro dissolution properties in drug. It is 
found that the machine learning can provide high level of prediction 
accuracy especially in predicting the hot melt extrusion processing 
temperature, filament aspect, printing temperature and printability [4]. 
Menon et al. also has applied hierarchical machine learning (HML) for 
the optimization of silicone elastomer 3D printing, in which they able to 
increase the printing speed by twofold using the HML algorithm [25]. 
Recently, Zolfagharian and colleagues created a ML model to predict the 
bending angle of a 4D-printed soft pneumatic actuator (SPA) and 
investigate the effect of the input parameters on its bending [20]. 
However, the development of 4D printing is still behind since the idea of 
4D printing is still under development while 3D printing has been widely 
commercialized throughout the world. The evident of this claim can be 
proven as shown in Fig. 2 below which shows the number of articles 
published regarding the application of machine learning for the devel
opment of 3D printing compared to 4D printing by Scopus. 

Optimization in 3D/4D printing is crucial to achieve the best possible 
results in terms of speed, quality, and cost-effectiveness of the 3D/4D 
output. The literature on this subject has expanded significantly 
covering the application of diverse machine learning algorithms in 
specific stages of 3D/4D printing process such as printing material se
lection, design for additive manufacturing, support structure optimiza
tion, process parameter optimization, predictive modeling and defect 
detection/minimization, topology optimization and layer height opti
mization as captured in Fig. 3. 

To the best of our knowledge, there is no review exercise that focuses 
on the critical evaluation in optimizing 4D printing parameters with 
machine learning. To raise awareness within the scientific community 
about the significance of optimizing 4D printing parameters through 
machine learning, the present review has compiled scattered yet recent 
literature discussing the potential for maximizing these parameters 
using machine learning. Section 2 provides an overview of 4D printing, 
focusing on design and properties, while Section 3 critically examines 
the selection of smart materials for 4D printing, including shape memory 
polymers, alloy memory polymers, and hydrogels. Section 4 presents an 
overview of machine learning (ML). Sections 5 critically and compre
hensively survey various methods for optimizing 3D/4D printing pa
rameters. The concluding section highlights future perspectives. This 
review systematically explores the landscape of 4D printing, smart 
material selection, and the optimization of 4D printing via ML, 
providing a comprehensive understanding of the current state of the 
field. By critically assessing and surveying optimization approaches for 
3D/4D printing parameters, the review offers valuable insights into 
advancements and challenges. The highlighted future perspectives 
contribute to guiding further research and development in the dynamic 

Fig. 1. Number of publications for 4D printing.  
Fig. 2. Comparison of publication regarding machine learning for 3D and 
4D printing. 
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field of 4D printing and machine learning, underscoring the significance 
of this review for researchers, practitioners, and industries involved in 
this interdisciplinary domain. 

2. 4D printing 

4D printing can be defined as a targeted evolution of 3D printed 
structure, in terms of shape, property and functionality, which it has the 
capability of self-assembly, multifunctionality and self-repair [26]. The 
capabilities of 4D printing are determined by utilizing the right combi
nation of smart materials in three-dimensional spaces [27]. Fig. 4 shows 
the characteristic differences between 4D printing and 3D printing. The 
fundamental of 4D printing can be classified into five aspects which are 
3D printing facility, stimulus, smart material, interaction mechanism 
and mathematical modelling [28]. These aspects are important to make 
sure the object is produced with suitable equipment and material ac
cording to its functionality [26]. 

The technology for 4D printing can also be regarded as 3D printing 
since the process of producing 4D printable object is the same as pro
ducing the usual 3D printable object [12]. The functionality of stimulus 
reaction can still be applied after being printed since it does not affect 
the features of 4D printing itself [29]. The printing technologies that are 
commonly used for 4D printing application are fused deposition 
modelling (FDM) [30] also known as fused filament fabrication (FFF), 
The Fused Deposition Modeling (FDM) or Fused Filament Fabrication 

(FFF) is inexpensive and works with various types of materials; thus, it is 
suitable for both medical devices and soft robotics applications because 
of the morphable structure [31]. Digital Light Processing (DLP) is ideal 
for resolutions that are useful in designing responsive textiles and even 
airplane parts [32]. Selective Laser Melping (SLM) creates parts with 
high and accurate accuracy of metals that can respond to thermal or 
mechanical conditions, helpful in aerospace and automotive industries 
[33]. Directed Energy Deposition (DED) is used in the formation of 
self-repairing parts from a variety of materials that can be useful in 
aerospace and defense industries [34]. Direct Ink Writing (DIW) in
volves extruding viscous inks to create soft materials like hydrogels that 
have applications in soft robotics and personalized biomedical solutions 
[35]. 

2.1. Influence of external stimuli on 4D printing 

The idea of 4D printing is not only relying on the ability to “self- 
assembly” in order to fulfill the task that has been assigned. The concept 
of 4D printing itself relates to the technique using 3D printing technol
ogies on stimulus-responsive active materials which causes physical or 
chemical changes in the material composition with time [36]. The 
stimulus can be in the form of physical or chemical form, such as hu
midity, pH, light intensity and temperature [37]. 4D printing has 
brought the ability to fulfill desired transformation function. By having 
3D objects to gain a behavioral capability, 4D printing has the capability 

Fig. 3. Machine learning enhanced Optimization aspects in 3D/4D printing.  
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to improve biomimicry [38] and soft robotics [5] application. The 
literature explores how different stimuli applied to 3D objects might 
modify their function and behavior. Based on the number of publications 
(Fig. 2), the following variables related to the environment have 
received the greatest attention in the scientific literature: temperature, 
light, water, magnetic, pH, electric, and humidity. 

Humidity as an external stimulus in 4D printing induces various 
material behaviors, including expansion, contraction, and actuation, 
allowing for shape changes in response to moisture levels. It enables 
materials to bend, fold, or morph surfaces, enhancing their adaptability 
in different environments. Humidity can also trigger self-healing prop
erties, where materials repair themselves under moist conditions, and 
control porosity, affecting structural integrity and permeability [24,39]. 
Additionally, some materials change color when exposed to humidity, 
providing visual indicators. These behaviors facilitate innovative ap
plications in soft robotics, smart textiles, adaptive sensors, and other 
fields requiring responsive and multifunctional materials. Each of these 
triggers for 4D printing technology is summarized below in Table 1 
along with its respective benefits, drawbacks, and potential uses. 

3. Smart materials 

The main factors in selecting the material for 4D printing are 
smartness and printability [41,42]. Consequently, the nature of smart 
material (SM)s depends upon the association of the technical function 
(sensor, transducer, or actuator), the stimulus, and the substance or 
material itself (particularly metal, alloy, polymer and ceramic). It is 
essential to select a material which has the ability to respond when it is 
interacting with a stimulus. Therefore, smart material is the best option 
for 4D printing application since it is a stimulus-responsive materials 
[43]. In definition, SM is a material that changes its own behavior in its 
own manner for a response to a certain stimulus. Smart material also 
known as unconventional actuator as the structure of the material can 
consists of sensing, actuation, and mechanical ability [44]. It is also 
referred to as active material since its behavior is always changing due to 
the external stimulus. 

There are some types of smart materials that can be used in 4D 
printing for more advanced applications in today’s industry. Some of 

them are smart memory alloy (SMA), smart memory polymer (SMP) and 
hydrogels. These materials are common for 4D printing applications 
since the change of the material behavior is significant when observa
tion is made on different condition. Each of them has different purpose 
and functionality for different circumstances [12]. Fig. 5 is an adapta
tion of the taxonomy that was proposed by Demoly et al., 2021, and it 
displays the functional classification of the SMs. It also gives a peek at 
prospective design concepts that need to be appreciated. These are 
supported by a more general category of transformation principles, such 
as expand-collapse, fuse-divide, and expose-cover, in addition to sup
porting transformation enablers such as furcation, function sharing, and 
shelling. 

The advancement of 3D printing technology has resulted in the 
development of 4D printing, which signifies a notable breakthrough in 
the domain of additive manufacturing. 4D printing expands upon 3D 
printing by incorporating an extra dimension, which can be either 
spatial or temporal. This enables printed objects to change and develop 
in terms of their shape, properties, and functionality in response to 
external triggers or influences (Chu et al., 2020; Halligan et al., 2023; 
Peerzada et al., 2020). This evolution takes place either simultaneously 
with the 3D printing process or after the production of the 3D object, 
resulting in the development of dynamic and adaptable structures 
(Azhar and Pei 2022; Yang Liu et al., 2019). The concept of 4D printing 
is based on the integration of precise structures and intelligent features 
to facilitate applications in sophisticated sectors like medicine and 
aerospace [45]. It is seen as a promising new technique and the next 
stage in additive manufacturing, with the ability to create intricate 
structures that can change over time (Bagheri and Jin 2019; Munteanu 
et al., 2021; Peerzada et al., 2020). 

The transition from 3D to 4D printing has been linked to the 
advancement of new materials and composites specifically designed for 
energy-efficient 4D printing, emphasizing the convergence of materials 
science and 4D printing technology [46]. Moreover, the advancement of 
3D printing technology has generated significant attention because of its 
affordable nature and ability to create intricate structures. This has 
paved the way for the development of 4D printing [47]. Furthermore, 
the progress of 3D printing is associated with the breakthroughs in 
photopolymerization-based 3D printing and the creation of innovative 

Fig. 4. The difference in 3D printing and 4D printing [26].  
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3D printable photopolymers. These developments have significant im
plications for the progression towards 4D printing. The study of short
comings in 3D printing processes has also examined the development of 
3D printing technology, highlighting the significance of comprehending 
the temporal evolution of internal material tension, dimension, and 
shape as potential sources of inaccuracies in 3D printing. 

Within the fields of health and materials science, the advancement of 
3D printing has facilitated the creation of 3D-printed structures that 
could modify their properties and functions over time. This aligns with 
the ideas of 4D printing [48]. In addition, the advancement of 3D 
printing has played a crucial role in developing 3D-printed monolith 
composites that have improved photocatalytic capabilities. This shows 
the possibility for further progress in catalysis and materials science 
through the progression towards 4D printing. Smart materials have 
revolutionized the way products are manufactured, opening new pos
sibilities for the development of advanced medical devices and implants 
(Kabirian, Mela, and Heying 2022; Ibanga et al., 2023). The integration 
of smart materials with 4D printing has also led to the creation of 
shape-memory polymer systems that exhibit self-healing properties, 
offering exciting potential for various applications in medicine and 
materials science [49]. 

Moreover, smart materials have been instrumental in enhancing 
sustainability and energy efficiency in architectural applications. They 
have been suggested as key features for the competitiveness of twenty- 

first-century sustainable architecture, allowing controlled transmission 
of light and heat into buildings, thereby improving daylighting and 
energy consumption (Omar, Mohamed, and Al-Nasr Ahmed 2022; L. 
Zhang et al., 2021). 

In the field of structural health monitoring, the development of 
embedded sensors and smart structures has been a significant area of 
research, emphasizing the importance of smart materials in advancing 
engineering technologies [50]. Additionally, smart materials have been 
applied in strain sensing and crack detection in masonry structures, 
demonstrating their versatility in diverse engineering applications [51]. 

The advancements in smart materials have also led to the develop
ment of smart windows with spectrally selective properties, enabling 
high near-infrared light shielding and controllable visible light trans
mittance, showcasing the potential for smart materials in energy- 
efficient building technologies [52]. 

3.1. Smart memory alloy (SMA) 

SMA is a metal alloy that changes its phases or states when exposed 
to external stimulus such as temperature and load. SMA can retain its 
original shape after being deform in various way, which is cause by the 
super elastic behavior of the metal alloy. The transformation is taken 
place in austenite-martensite transformation (forward phase) and 
martensite-austenite transformation (reverse phase) [53]. The phase 
change will cause the fracture toughness of SMA to increases greatly 
which temperature is the main factor the phase change [54]. 

The application of SMA is widely applied in medical and engineering 
sectors. In civil engineering sector, iron-based SMA, such as Fe–Mn–Si 
alloy, is used to repair and reinforce the building structure [37]. Another 
application for the medical field is Nitinol which can be applied for 
biomedical implant. For instance, in simple application, Nitinol paper
clip has SMA properties to make sure the paper will form to its original 
shape after being deformed by compiling a large amount of paper [44]. 
In medical application, NiTi self-expendable neurosurgical stent is used 
for clearing the blockage in the artery using SMA properties [55]. 

3.2. Shape memory polymer (SMP) 

The process of SMP involves shape deforming, shape fixing and 
evacuation of external stress. The polymer is required to be deformed 
first under external stress along with heating process before shape 
memory process taken place. The current shape will retain its shape for a 
long time if there is no external stimulus. When the SMP is stimulated by 
a certain stimulus, such as light, heat or humidity, the SMP will retain its 
original shape. When an SMP is subjected to a specific temperature 
stimulus (Fig. 6), it undergoes a reversible phase transition, enabling it 
to recover its original shape from a temporary deformed state. This 
process is governed by the thermomechanical properties of the SMP and 
is crucial for its diverse applications in various fields, including 
biomedical implants and aerospace engineering. The shape memory 
cycle of SMPs begins with the programming stage, where the polymer is 
deformed into a temporary shape at an elevated temperature, known as 
the programming temperature. During this stage, the polymer chains are 
oriented and fixed into the temporary shape through physical or 
chemical cross-linking, allowing the SMP to retain this shape when 
cooled to a lower temperature. This temporal process is maintained until 
the SMP is exposed to the triggering stimulus, typically heat, which 
initiates the recovery process. Upon exposure to the triggering stimulus, 
the recovery stage is activated, leading to the restoration of the original 
shape of the SMP. The SMP undergoes a phase transition, reverting from 
the temporary deformed state to its original shape as it returns to the 
programming temperature. This phase transition is accompanied by the 
release of stored elastic energy, enabling the SMP to recover its initial 
form with high precision and repeatability. The recovery process is a key 
characteristic of SMPs, allowing them to exhibit shape memory behav
iour and recover their original shape upon exposure to an appropriate 

Table 1 
Summary of stimulus factors used in 4D printing technology [40].  

Stimulus Advantages Limitations Applications 

Temperature  • Control the 
adjustment in a 
fabricated object - 
Perform mechanical 
manipulations.  

• Ease of operation  

• Damaged cells  
• Slow response  
• Complicated  

• Biomedical  
• Drug 

delivery  
• Tissue 

engineering 

Light  • Rapid switching  
• Precise focusing  
• Biocompatibility  
• Sustainability  
• Control of mechanical 

property  

• Potential toxicity  
• Diminished 

shape 
transformation  

• Heat generation  
• Complexity  

• Drug 
delivery  

• Optical 
devices 

Water  • Controllable  
• Convenient  
• Reduced temperature  

• Slow reaction 
times  

• Drug 
delivery 

Magnetic  • Quick response  
• Safety  
• Rapid response  
• Remote guide  

• Highly reactive  
• Aggregation 

affinity  
• Complication 

with 
nanoparticles in 
living systems  

• High density  

• Drug 
delivery  

• Fastening 
purposes 

pH  • Achieve various 
structure behaviors.  

• Improved response  
• Biodegradation  
• Biocompatibility  

• Limited 
applicability  

• Drug 
delivery  

• Soft robots  
• Medical  
• Food 

packaging  
• Spinal cord 

regeneration  
• Tissue 

engineering 
Electric  • Speed  

• Remote control  
• Localized heat - 

Membrane 
disruption - Cell 
death  

• Drug 
delivery  

• Artificial 
muscle  

• Tissue 
regeneration 

Humidity  • Perform various 
behaviors.  

• Low cost  
• Environmentally 

friendly  

• Slow response  
• Need for precise 

control  

• Artificial 
muscles  

• Sensors  
• Biomedical  
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stimulus. 
SMP is lighter, more flexible and has higher biocompatibility than 

SMA which make it more often to be used by the industries. SMP can also 
recover a higher degree of strain and consume greatly lower energy 
during the shape memory process [57]. The application of SMP is mostly 
in aerospace and medical industries to produce a complex shape on 
certain part of the system. For instance, synthetic polymers, such as 
polycaprolactone (PCL) and polylactic acid (PLA)-based SMP, are used 
in biomedical application where it represents the biodegradable sub
stances in comparison to natural extracellular matrix (ECM) proteins. 
The SMP have shown much lesser immunological reaction compared to 
ECM which is beneficial for biomedical industry in the future [58,59]. 

Industrial sectors experience enormous transformation with the help 
of Shape Memory Polymers (SMPs) in 3D and 4D printing processes. 
SMPs further make it possible to develop structures with responsive 
properties for performance enhancement in aerospace [60](Wang et al. , 
2018). In biomedical applications, SMPs help develop dynamic implants 

and devices primarily benefiting the health care of the patients [61]. 
Manuscripts in robotics use 4D printed SMPs in soft robots that are 
sensitive with surroundings [62]. For instance, smart materials in au
tomobiles include SMPs for smart tires and adaptive automotive interior 
[63] whereas textiles and apparels use SMPs in smart fabrics to enhance 
functionality and comfort [64]. These technologies have tremendously 
boosted industrial production through the formulation of material that 
can self-adaptive and self-healing hence minimizing on the costs that can 
be incurred in frequent repairs while at the same time prolonging the life 
of products. In aerospace and automotive industries, the desired com
ponents increase the efficiency and lifespan through changes in various 
conditions [65]. This technology helps to reduce work in progress cycle 
time through smart materials that are already self-assembling which 
dramatically reduces assembly time and costs [66]. In the same manner, 
with the help of 4D printing, it is possible to develop unique products 
that would fit certain environments, for example, medical implants that 
adapt to the person’s movements to enhance compatibility and comfort 

Fig. 5. The functional classification of the smart materials by using functional language for design and engineering [38].  

Fig. 6. Process of SMP cycle [56].  
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[67]. The cost of implementing the 4D printing technology is dependent 
on several factors but will require substantial funding in a specialized 
device and software. Modern commercial 4D printers range between 
$50,000 – $500,000 depending on the capacity of the equipment. 4D 
printing materials such as shape-memory polymers, hydrogels; are 
costlier than that of a general 3D printing material. Prices can range 
from $50 to $1000 per kilogram [68]. Basic CAD software price ranges 
from $100 - $1000 per year while advanced CAD software with simu
lation capabilities ranges from $1000 - $10,000+ per year [69]. Still, the 
net return on investment that is accrued from improved efficiency and a 
concomitant decrease in operation costs is a good enough reason to 
apply this innovation in industries. 

3.3. Hydrogels 

Hydrogels are a hydrophilic polymeric material which has an ability 
to change its volume significantly in response to external stimuli. It has 
lower mechanical strength and extremely brittle compared to SMP [70]. 
To counter its weak body, it can be generally infused with secondary 
polymeric network to increase its mechanical strength. For instance, 
interpenetrating network (IPN) hydrogels is one of the results of 
hydrogels that has been crosslinked between ionic and covalent bond 
with other polymeric network to overcome the weakness of hydrogels 
[71]. 

Recently, hydrogels are used to fabricate artificial muscles that can 
mimic the performance of real muscles as close as possible. However, 
there are still lacking in quick response when interacted with external 
stimuli. The hydrogels only able to undergo huge deformation, con
verting chemical energy to mechanical energy and generate high strokes 
which is partially following the mechanism of real muscles [72]. Table 2 
provides a summary of the materials mentioned in this review. 

3.4. Piezoelectric 

Piezoelectric materials have the capacity to produce an electric 
charge when subjected to mechanical stress, rendering them highly 
useful for applications such as sensors, actuators, and energy harvesting 
devices. Piezoelectric materials have become increasingly important 
since the period following World War II, primarily because of the 
identification of ceramics that can adjust physical characteristics like 
piezoelectric constant, dielectric permittivity, and stiffness to meet 
specific needs [73]. Piezoelectric materials, such as lead 
zirconate-titanate (PZT) and barium titanate (BaTiO3), are widely uti
lized in energy harvesting applications due to their exceptional piezo
electric capabilities. This has garnered great interest in the field [74]. 
Moreover, the effectiveness of piezoelectric materials relies on the 

piezoelectric constants and elastic properties, emphasizing the signifi
cance of material features in attaining desired functions [75]. The 
progress in materials and manufacturing techniques has facilitated the 
development of piezoelectric materials using printing methods. This has 
allowed for their use as flexible sensors, actuators, and generators in the 
domain of flexible electronics [76]. Furthermore, the incorporation of 
screen-printed piezoelectric sensors for detecting force impacts in 
intelligent multifunctional glass applications has showcased the versa
tility and novelty of piezoelectric materials in various applications [77]. 

Researchers in the field of structural engineering have investigated 
the use of piezoelectric materials to regulate the shape of hybrid func
tionally graded plates. This technique involves manipulating the stiff
ness and thickness ratios of the plates to reduce stress concentration 
[78]. Moreover, the examination of intelligent functionally graded 
beams integrated with piezoelectric materials through finite element 
techniques has demonstrated the simultaneous impacts of piezoelectric 
materials as both actuators and sensors, emphasizing their importance 
in the field of structural engineering applications [79]. The utilisation of 
piezoelectric materials for energy generation has been extended through 
the advancement of biocompatible nanogenerators. These nano
generators exploit the capacity of piezoelectric materials to convert 
mechanical energy into electrical energy [80]. Moreover, the potential 
for utilizing piezoelectric actuators as intelligent materials to mitigate 
vibrations in wind turbine blades has been suggested, showcasing the 
wide-ranging uses of piezoelectric materials in the realm of sustainable 
energy [81]. 

The field of composite materials has introduced the concept of 
longitudinally piezoelectric fiber-reinforced composite (PFRC) mate
rials. This has led to research on their mechanical and piezoelectric 
properties, which has expanded the range of applications for piezo
electric materials in composite structures [82]. Furthermore, re
searchers have investigated the customization of piezoelectric 
coefficients to boost the control capability of piezoelectric distributed 
actuators. This has resulted in the creation of new piezoelectric com
posite materials that possess improved capabilities [83]. The versatility 
of piezoelectric smart materials has been showcased by utilizing 
cellulose-based electro-active paper sensors, which have demonstrated 
their potential in artificial muscle applications and piezo-type sensing 
technology [84]. Moreover, the use of piezoelectric materials and shape 
memory alloys has been thoroughly examined in relation to intelligent 
materials and structures, highlighting its importance in aeronautical 
engineering and the use of composite materials [85]. The widespread 
use of piezoelectric actuation devices and smart structures has been 
emphasized, demonstrating the wide range of applications and accom
plishments in the realm of piezoelectric smart materials [86]. Further
more, researchers have examined how anisotropic piezoelectric 
actuators affect the aerodynamic forces on wings, resulting in progress 
in the creation of innovative piezoelectric materials for use in aerospace 
applications [87]. 

3.5. Magnetostrictive 

The field of magnetostrictive smart materials has made notable 
progress and accomplishments in many areas such as energy harvesting, 
vibration control, biomedical applications, and composite materials. 
The combination of magnetostrictive materials with cutting-edge tech
nologies has resulted in the creation of new devices and systems that 
have improved functionality and performance. 

Magnetostrictive materials have been thoroughly investigated for 
their potential in energy harvesting applications, particularly in the field 
of modelling and characterising magnetostrictive vibration energy har
vesters. The developments mentioned encompass material-level 
modelling, lumped parameter models, and finite element models. 
These advancements have played a significant role in the creation of 
highly efficient magnetostrictive energy harvesting devices [88]. 
Moreover, researchers have examined the capabilities of 

Table 2 
An overview of the 4D printing materials [40].  

Material Advantages Applications 

Shape- memory 
polymer  

• Low cost and density  
• Lightweight  
• High recovery strain  
• Biodegradability  
• Sustainability  
• Biocompatibility  
• High-quality product  

• Biomedical  
• Aerospace  
• Automobile  
• Textiles  
• Industrial 

Shape- memory 
alloy  

• Excellent conductor of heat and 
electricity  

• High strength and recovery stress  
• Compatibility  

• Aerospace  
• Neurosurgical  
• Biomedical  
• Automobile 

Hydrogel  • Biocompatibility  
• Transparency  
• Stretchability  
• Ionic conductivity  
• Simplicity of modification  
• Absorb large amounts of fluid  

• Healthcare  
• Agriculture  
• Tissue 

engineering  
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magnetostrictive materials in both passive damping and active vibration 
suppression. These investigations have highlighted the importance of 
these materials in the fields of vibration control and structural engi
neering applications (Munjal, Trivedi, and Sarma 2008; Bandopadhya, 
Bhattacharya, and Dutta 2007). 

The biocompatibility and multifaceted properties of magnetostric
tive materials, like Galfenol, have been studied in the field of biomedical 
applications. These materials have shown potential for remote micro
actuation in cells, which could lead to the development of biomedical 
devices and microactuators. This research offers promising opportu
nities in the field [89]. The study conducted by Zhao and Sui (2021) has 
examined the potential of magnetostrictive materials in temperature 
compensation design for large magnetostrictive actuators. The research 
emphasises the importance of these materials in precision control sys
tems and multiphysics applications. The broad spectrum of accom
plishments associated with magnetostrictive smart materials also 
include composite materials and structural engineering. Research has 
been conducted on the advancement and utilisation of magnetostrictive 
short fibre composites, demonstrating their potential for use in sensors 
and energy-harvesting devices [90]. In addition, the utilisation of smart 
magnetostrictive composites for flexible manipulators has shown the 
capability of magnetostrictive materials to achieve active damping and 
control in structural systems. This has been proved through the model
ling of hybrid damping schemes [91]. 

The versatility of magnetostrictive materials in ultrasonic sound 
generators, position sensors, and micromotional control has been 
emphasized, highlighting their wide range of applications in many 
technical and industrial fields [92]. In addition, the creation of a feed
back control system to manage the vibration of magnetostrictive plates 
under follower force has shown the capability of magnetostrictive ma
terials as intelligent elements in vibration management systems [93]. 

3.6. Shape-memory ceramics (SMCs) 

Shape-memory ceramics smart materials have made notable ad
vancements and found practical uses, especially in the fields of medic
inal implants and aerospace engineering. The incorporation of shape- 
memory ceramics with cutting-edge technologies has resulted in the 
creation of new devices and systems that have improved functionality 
and performance. SMCs have demonstrated potential in the field of 
biomedical implants for creating biocompatible and biodegradable 
materials that might be used in many biomedical applications. The 
utilisation of shape-memory thermoplastics in the development of a 
smart degradable suture exemplifies the capabilities of these materials 
in the field of biomedical applications [94]. Moreover, the advancement 
of shape-memory ceramics that possess exceptional energy output, en
ergy damping, and high-temperature resistance has established them as 
a novel category of actuators or intelligent materials with distinct 
characteristics. Consequently, they are well-suited for biomedical ap
plications like load-bearing scaffolds and packaging materials for 
biomedical microelectrodes. 

SMCs have been explored for their potential in the field of aerospace 
engineering due to their promise in innovative materials and structural 
applications. The study of SMPs and their composites in aerospace ap
plications emphasises the versatility of SMPs and composites, demon
strating their potential for utilisation in aerospace engineering [95]. 
Moreover, the advancement of SMCs that demonstrate consistent super 
elastic deformation has noteworthy consequences for potential energy 
dissipation and micro-actuation uses, establishing them as viable ma
terials for aerospace engineering [96]. In addition, the creation of 
shape-memory ceramics that can repeatedly undergo super elastic 
deformation has potential implications for energy damping and 
micro-actuation applications, making them very attractive materials for 
use in structural engineering. Researchers also have investigated the 
application of SMCs and its composites, in the field of dentistry, 
demonstrating their potential for use in dental procedures [97]. 

3.7. Colloidal 

Colloidal smart materials refer to a wide variety of materials, such as 
colloidal suspensions, nanoparticles, and liquid crystal colloids. These 
materials possess distinct qualities that result from their small size and 
the way their particles interact with each other. Colloidal self-assembly 
approaches have been instrumental in the development of smart nano
structured materials, offering a versatile platform for the design and 
fabrication of advanced materials with tailored functionalities [98]. The 
use of colloidal self-assembly has shown promise in the creation of smart 
materials with multifunctional properties, paving the way for the next 
generation of advanced materials with diverse applications in nano
technology and nanostructures. Colloidal suspensions can undergo 
reversible phase changes when exposed to external stimuli. This prop
erty makes them well-suited for use in tuneable photonic devices and 
adaptive materials. The development of super-resolution optical mi
croscopy has enabled the detailed characterization of smart colloidal 
microgels, offering insights into their network morphology and potential 
applications in a wide variety of fields, including medicine and materials 
science [99]. These achievements have positioned colloidal materials as 
promising candidates for diverse applications, including drug delivery 
systems, tissue engineering, and biomedical diagnostics. 

The design and development of photo- and pH-responsive hybrid 
colloidal particles have demonstrated the potential of colloidal smart 
materials in achieving stimuli-responsive behavior, making them suit
able for a wide range of smart applications [100]. The pronounced 
photochromic effect and high fatigue resistance of these colloids have 
opened new avenues for the development of smart materials with ap
plications in sensors, actuators, and responsive devices. Thermores
ponsive nanoparticles with cyclic-polymer-grafted shells have received 
significant attention in recent years, showcasing the potential of 
colloidal smart materials in achieving responsive behavior to tempera
ture changes [101]. These achievements have positioned thermores
ponsive colloidal materials as promising candidates for applications in 
drug delivery, controlled release systems, and responsive coatings. The 
development of smart-responsive colloidal capsules has emerged as an 
innovative tool for designing multifunctional lubricant additives, of
fering enhanced lubrication performance and tailored functionalities for 
diverse industrial applications [102]. This work has opened a new 
avenue for customizing multifunctional additive packages by utilizing 
smart colloidal capsules in lubrication science. 

4. Optimization of 3D/4D printing via machine learning 

The optimization of 3D/4D printing through machine learning 
merges advanced manufacturing technologies with artificial intelli
gence. This section reviewed how machine learning enhances printing 
processes, covering aspects such as design customization, material se
lection, process control, quality assurance, and topology optimization. It 
highlights the role of AI in achieving efficiency, precision, and innova
tion in additive manufacturing, paving the way for future 
advancements. 

4.1. Optimal printing material selection 

Selecting the appropriate material is of utmost importance for both 
the 3D/4D printing process and the specific application of the printed 
products. This is crucial due to the distinct material types and properties 
that can significantly influence the final quality and performance of the 
product. The categorization of 3D/4D printing technologies is based on 
different printing methods primarily determined by the materials 
employed. This material choice directly impacts the mechanical and 
thermal characteristics, as well as the responsive features of the end 
products. Therefore, 3D/4D printing demands the utilisation of intelli
gent or adaptive materials that can modify their attributes in response to 
external stimuli. Making the correct material selection is a pivotal phase 
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in the printing process, leading to creations with enhanced functionality, 
favorable mechanical properties, and tailor-made 3D geometries [103]. 

Fig. 7 illustrates the hierarchical approach to material selection 
within 3D/4D printing, incorporating machine learning elements. 
Material-related knowledge is also considered a cornerstone of the 4D 
printing paradigm [19]. While material selection invariably seeks to 
embody desired mechanical attributes and plays an essential role in 
defining structure and form, it has expanded to encompass technical 
functionalities and machine learning tools tailored to specific objectives. 
Optimal material selection involves numerous variables, making it 
challenging to track the necessary properties for a part’s material and 
determine the ideal fit. This is where machine learning steps in. Zolfa
gharian and co-workers [104] recently highlighted that machine 
learning and deep learning methodologies offer promising solutions to 
address these intricate challenges. Ramezani and Mohd Ripin [15] 
emphasized the growing significance of machine learning and AI-driven 
material selection in advancing fabrication processes, including 4D 
printing. Machine learning can enhance printing efficiency through 
generative design and testing during pre-fabrication and material se
lection stages [103]. These technologies predict the behavior of 
4D-printed materials and structures, guiding the selection of materials, 
geometries, and fabrication parameters to achieve the intended 

functionalities. 
Material selection transcends mere choice; it embodies a strategic 

optimization process that holds the crux to unlocking unparalleled ef
ficiency, sustainability, and cost-effectiveness for 3D/4D products. Each 
decision within material selection is a pivotal stride toward the holistic 
optimization of the entire 3D/4D product lifecycle. Machine learning, a 
transformative powerhouse in optimization and material selection, has 
redefined how designers approach intricate optimization challenges 
[105]. Sun et al. [106], introduced an innovative approach that melds 
machine learning (ML) and evolutionary algorithms (EAs) to tackle the 
inverse problem of optimizing 4D-printed active composite structures. 
Hamel and co-workers [107], converged the finite element method with 
evolutionary algorithms to fine-tune the distribution of shape trans
formation in 3D/4D printed components. This optimization methodol
ogy was scrutinized through various illustrative cases in active 
composite design, demonstrating concurrence between the target form 
and the best ML-derived solution. 

Machine learning algorithms possess the capacity to scrutinize 
extensive datasets culled from diverse sources, encompassing material 
attributes, performance records, and historical data. This data-driven 
approach underpins well-informed decisions by uncovering correla
tions, patterns, and latent connections. Su and co-authors [108] 

Fig. 7. Material Selection Process in 3D/4D Printing with Machine Learning components.  
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unfolded a comprehensive data-driven workflow empowered by an 
ensemble of ML algorithms for 4D printing. Their study exemplified the 
application of ensemble ML algorithms in optimizing and forecasting the 
morphing mechanisms of 4D-printed active structures. Zhao and col
leagues [109] advanced an optimization methodology for grayscale 
DLP-printed rectangular blocks through machine learning and evolu
tionary algorithms. Their approach encompassed automated finite 
element model-based assessment, predicting material deformation 
shapes with arbitrary grayscale distributions while accounting for 
nonlinear mechanical behaviors. Clearly, optimization and material 
selection invariably entangle intricate trade-offs among multiple 
criteria. Machine learning models have excelled in navigating this in
tricacy, adroitly handling myriad variables simultaneously to arrive at 
solutions that impeccably balance competing objectives. Recently, Ji 
et al. [110] harnessed reinforcement machine learning to craft an 
optimal control method for closed-loop control of thermal Shape 
Memory Polymer actuation in 4D printing. 

Machine learning’s forte lies in prognosticating outcomes based on 
historical data. In the realm of material selection, this equates to fore
casting how diverse materials will perform under specific conditions, 
facilitating the choice of the most fitting material for a given application. 
Zolfagharian et al. [20] devised a machine learning model to predict the 
bending angle of a 4D-printed soft pneumatic actuator. The results 
demonstrated the model’s precise predictions aligned with finite 
element and experimental data, underscoring its viability for 4D print
ing modeling of dynamic structures and soft robots. Machine learning 
techniques shine notably in optimizing high-dimensional spaces; pre
cisely where conventional methods might falter due to the profusion of 
variables [111,112]. This prowess holds immense value in material se
lection for 3D/4D printed components, where the simultaneous 
consideration of diverse properties is paramount. 

4.2. Design for additive manufacturing 

Incorporating the additive manufacturing process into the design of 
3D/4D models involves incorporating features and geometries that can 
be printed layer by layer efficiently, avoiding intricate supports and 
overhangs. Within this context, machine learning emerges as a pio
neering force within the domains of 3D and 4D printing optimization 
and design. This was exemplified by Paz and co-workers [113], who 
devised an optimization technique that melds Latin Hypercube design of 
experiments, Kriging metamodel, and custom genetic algorithms. This 
approach optimized the design of 4D printed components with diverse 
shapes, boundary conditions, and requirements. The adeptness of most 
machine learning models to decipher intricate patterns, process intricate 
data, and iteratively refine solutions has catalyzed advancements in 
these cutting-edge 3D and 4D printing processes [21,114]. Machine 
learning can analyze a diverse array of extensive datasets to uncover 
hidden optimal structures for 3D printing. In another study, Lim et al. 
[115] effectively harnessed machine learning tools to discover an 
optimal structure that met the mechanical and structural stability req
uisites for cranial reconstruction using 3D printing technology. 

Attaining superior printing quality via 3D printing settings 

necessitates a grasp of printing parameters gained through experience 
and knowledge. Within additive manufacturing, refining process pa
rameters stands as a pivotal facet, as manual changes to software pa
rameters lack a definitive forecast of 3D print quality [116]. Fortunately, 
machine learning possesses the capability to dissect real-time process 
data for parameter optimization, augmenting both print quality and 
efficiency. Tamir and co-authors [117] proposed both open-loop and 
closed-loop machine learning models, amalgamating them to monitor 
the influence of processing parameters on printed part quality. This 
encompassed an open-loop classification model using experimental 3D 
printing data and a closed-loop control algorithm that synergized 
open-loop machine learning models with a fuzzy inference system to 
generate optimized processing parameters for improved printed part 
properties (Fig. 8). These machine learning-driven simulations serve as 
the blueprint for triumphs in 3D and 4D printing. Additionally, Zhang 
et al. [118] introduced a method that integrates classic machine learning 
methodologies, including space-filling-based experimental design, 
clustering, classification, regression, and multiobjective optimization. 
Their approach is tailored to aerosol Jet 3D printing based on droplet 
morphology. 

A study carried out by Conev et al. [119] delved into the utilisation of 
machine learning to differentiate between 3D printing configurations 
likely to yield subpar prints and those with more potential. The models 
were built upon Random Forests, trained and evaluated on a dataset 
derived from the fabrication of porous polymer scaffolds through 
extrusion-based 3D printing. Their investigation also sheds light on an 
effective strategy for collecting data to train machine learning models 
for predicting printing quality in extrusion-based 3D printing of bio
materials. Yu and Jiang [120] underscored the integration of machine 
learning into 3D printing processes across various fronts, including 
process optimization, dimensional accuracy analysis, defect detection, 
and material property prediction. 

Implementing additive manufacturing (AM) technologies systemat
ically with a focus on process-parameter optimization requires an inte
grated approach to various influencing factors. The literature reveals 
that optimizing process parameters is essential for achieving high- 
quality and reliable production outcomes in AM [121,122]. Material 
properties are foundational in the optimization process. Different ma
terials like polymers, metal, ceramics as well as composites like for 
example, have properties which enable them to exert a major influence 
on the AM process [123]. The characteristics which are integral to 
powder properties used the powder-based method include the size of 
particles and location influence the flowability for the powder; the 
density and quality of layers when it is deposited [124]. Amorphous bulk 
thickness can be viewed as one of the process-related factors because it 
determines the resolution and accuracy of the printed part topography 
[125,126]. As a result, while the thinner layers can improve the image 
quality and density of the print, the consequence of this is increased 
printing time [127]. Build orientation is another significant factor, 
affecting mechanical properties and surface finish. Optimal orientation 
can minimize the need for support structures and enhance part strength 
[128]. 

Printing speed is a critical factor that influences both production 

Fig. 8. Open-loops based (offline) optimal parameter settings [117].  
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time and part quality. Higher speeds can reduce production time but 
may compromise the bonding between layers, affecting the structural 
integrity of the part [129,130]. The extrusion or deposition rate, 
particularly in material extrusion processes, impacts the dimensional 
accuracy and internal structure of the part [120,131]. Thermal param
eters, including build chamber temperature, extruder or nozzle tem
perature, and cooling rate, play pivotal roles in the AM process. 
Maintaining an optimal build chamber temperature helps prevent 
warping and residual stresses, especially in thermoplastics and metals 
[132]. Proper control of the extruder or nozzle temperature ensures the 
material is adequately melted and deposited, while the cooling rate can 
influence the crystallinity and internal stresses of the final part [133]. 

Mechanical factors such as print bed adhesion and the design of 
support structures are also critical. Adequate bed adhesion is crucial 
mainly to avoid warping and dimensional distortion of the model, the 
adequate design and removal of support structures to create a geometry 
that has overhanging features [113,134,135]. Over time, environmental 
conditions such as humidity and quality of air can affect material as well 
as quality of prints. When moisture or contaminants are present, they go 
on to affect hygroscopic materials therefore causing defects to products 
[97]. However, there are certain issues such as external vibrations and 
stability to address during the course of the actual printing to ensure 
good and quality prints [110]. Specific contingencies like heat treatment 
and surface finishing after the printing process help in enhancing the 
mechanical properties and surface finish of the printed parts. Tech
niques such as sintering can help in reducing internal stresses in the 
material while improving its properties, and techniques such as sanding, 
polishing or any surface coating, increasing surface finish and accuracy 
of dimensions [136]. In-situ monitoring and control systems are there
fore very important for the continual measurement of the process pa
rameters [137,138]. It also makes it possible to track the process using 
sensors and feedback loops that provide alerts of deviations with sug
gestions for making adjustments in real-time, thus maintaining product 
quality [76,139,140]. Another advancement of adaptive control tech
niques that control parameters in real-time data further improves the 
stability of the process and the quality of the part [141]. Simulation 
models, including finite element analysis (FEA) and Machine learning 
algorithms, are essential tools for understanding the effects of process 
parameters on AM outcomes. These simulations can predict thermal, 
mechanical, and microstructural behavior during the AM process, 
providing valuable insights for parameter optimization and reducing the 
need for extensive experimental trials [14,142]. Machine learning al
gorithms unlock the realm of multi-material designs in 3D and 4D 
printing, orchestrating intricate material distributions for optimal out
comes. Athinarayanarao et al. [14] accomplished optimal material 
property distribution within a voxelized structure using a finite element 
analysis-based evolutionary algorithm. Their approach amalgamated 
the benefits of optimizing both material distribution and layout via to
pology optimization, resolving the inverse design challenge of attaining 
an optimal design for a target shape change by incorporating void 
voxels. Their findings further highlight the efficacy of machine learning 
as a powerful tool for designing 4D-printed active composites. Hence, 
machine learning navigates the intricate terrain of material properties 
and dynamic shifts in 4D, resulting in multifunctional structures. 

4.3. Support structure optimization 

Support structures play a pivotal role in complex 3D printing models, 
but they can also result in longer print times, increased material con
sumption, and additional post-processing efforts. An effective strategy to 
mitigate the need for excessive support structures involves orienting the 
model in a manner that minimizes overhangs and bridges. Overhangs 
refer to parts of the model extending beyond the previous layer, while 
bridges are segments spanning gaps [142]. Both necessitate supports to 
prevent drooping or sagging. Employing machine learning tools gener
ates support structures that optimize material usage while upholding 

print quality. 
The literature widely attests to the potency of machine learning in 

optimizing support structures throughout 3D and 4D printing proced
ures. For instance, Li and Peng [16] proposed a 3D model segmentation 
technique grounded in deep learning to enhance surface quality and 
diminish support structures in 3D printed models. Their approach 
entailed designing training datasets based on sub-graphs encompassing 
printing attributes of the original 3D model, including surface quality, 
support structures, and normal curvature. These support structures are 
indispensable in upholding the integrity of intricate designs and over
hanging features. Dabbagh and co-workers [143] introduced machine 
learning-empowered optimization for extrusion-based 3D printing. This 
has the potential to curtail trial-and-error steps before printing, ulti
mately expediting the design-to-end-product timeline while curbing 
material wastage and enhancing cost efficiency. In a comparison, Rojek 
et al. [144] evaluated the optimization of 3D printing attributes with 
respect to the maximum tensile force of an exoskeleton sample using 
both traditional artificial neural networks and a deep learning approach 
involving convolutional neural networks. Machine learning algorithms 
proficiently analyze intricate 3D and 4D geometries to pinpoint regions 
necessitating support structures. 

Hierarchical machine learning was applied to 3D printing of silicone 
elastomer through freeform reversible embedding by Menon and col
leagues [25]. This demonstrated the efficacy of hierarchical machine 
learning as a versatile tool for planning and optimizing additive 
manufacturing of soft materials via the freeform reversible embedding 
technique (Fig. 9). Machine learning identifies defects and areas where 
excessive supports are redundant, thereby minimizing material usage 
[145]. This optimization conserves resources, leading to cost reductions 
and a diminished environmental footprint. The utilisation of convolu
tional neural network-deep learning models results in a more stream
lined and automated 3D printing process, with the potential to mitigate 
the widespread issue of product variability in 3D printing. Machine 
learning’s predictive capabilities extend to determining appropriate 
support structures based on geometry, ensuring effective stabilization 
while minimizing contact points requiring removal [146]. 

Through strategic placement of supports, machine learning can 
curtail print times, facilitating quicker production without compro
mising structural integrity. Polamaplly et al. [130] devised an 
extrusion-based 3D printing process for thermoset biopolymers to 
fabricate support structures. Their investigation identified a suitable 
biomaterial for support structures, addressing challenges related to poor 
dissolvability and the generation of toxic waste from existing materials. 
Machine learning displays potential in identifying weak points in de
signs and introducing supports that reinforce those areas. This augments 
stability during printing and minimizes the risk of failure [147]. Ma
chine learning models predict print success based on support placement, 
ensuring strategic positioning to prevent print failures and minimize 
reprinting [141]. 

4.4. Process parameter optimization 

Process parameter optimization in 3D/4D printing using machine 
learning involves using data-driven techniques to determine the best 
combination of printing control factors (e.g., printing speed, layer 
height, temperature etc) that result in optimal print quality, efficiency, 
and material usage [148]. Fig. 10 shows the steps involved in machine 
learning based process parameter optimization in 3D/4D printing 
process. 

Data collection encompasses the process of acquiring pertinent data 
aligned with the goals and objectives of the 3D/4D printing project. A 
fundamental step in the machine learning pipeline involves gathering 
data for training the machine learning model [149]. This data should 
encompass details about utilized printing parameters (e.g., layer height, 
print speed, temperature), material attributes, sensor readings, and 
resultant print quality indicators like strength, surface finish, and defects 
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[150]. 
Feature extraction from the accumulated data encompasses numer

ical values of process parameters, categorical variables (e.g., material 
type), and sensor data. Xie et al. [151] devised an automated feature 
extraction approach employing convolutional neural network optimi
zation for real-time warping monitoring in 3D printing. Furthermore, 
computed metrics such as print time, material consumption, and print 
success/failure can also serve as informative features. Zhang et al. [140] 
introduced a deep network algorithm for diagnosing faults in 
three-dimensional printers using attitude data with low measurement 
precision. Specifically, feature enhancement was developed to improve 
clustering performance, replacing the traditional comprehensive feed
back fine-tuning in deep models. Other researchers such as [152] have 
formulated innovative feature extraction methods to recover 3D models 
via curvature-based shape distribution. In essence, feature extraction 
transforms raw data into numerical attributes, facilitating seamless data 
preprocessing while preserving the original dataset’s information. It 
yields superior outcomes compared to applying machine learning 
directly to raw data [153]. 

Data preprocessing and division entail cleansing the data to address 
missing values, anomalies, and discrepancies prior to segmenting the 
dataset into training, validation, and testing sets. Yu (2019) devised a 

technique to preprocess G-codes in advance on the PC side, surmounting 
limitations tied to existing 3D printer control systems’ original file 
processing mode. This phase stands as an essential component of 3D/4D 
printing optimization through machine learning. Preprocessing, data 
partitioning, and the elimination of irrelevant or redundant information 
aid in mitigating the risk of overfitting and enhancing the model’s 
aptitude to generalize to new 3D/4D printing data. Data preprocessing 
can also enhance the model’s interpretability [154]. 

Model selection and training entail identifying the appropriate ma
chine learning algorithm for the optimization task. Recent successful 
models deployed in 3D/4D printing optimization encompass regression 
algorithms like linear regression, decision trees, and random forests 
[124,155] for continuous output variables (e.g., print quality metrics), 
and classification algorithms like logistic regression and support vector 
machines for categorical optimization tasks (e.g., print success/failure). 
These models ascertain the correlation between input process parame
ters and desired outputs like print quality and success/failure [137]. 

Hyperparameter tuning and model evaluation phases ensure the 
model’s ability to generalize effectively to new data and prevent over
fitting to training data. Hyperparameter optimization entails selecting 
an optimal set of hyperparameters for a learning algorithm [156]. 
Nguyen (2019) [157] examined Bayesian optimization for expediting 

Fig. 9. Illustration depicting the Hierarchical Machine Learning (HML) model of the Fluidized Bed Electrodeposition (FRE) process [25].  

Fig. 10. Steps involved in machine learning based process parameter optimization in 3D/4D printing process.  
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hyperparameter tuning, spotlighting contributions and outlining future 
research directions. The testing dataset is commonly used to assess the 
model’s performance [5]. Depending on the optimization task, metrics 
such as Coefficient of Determination (R2), Root Mean Square Error 
(RMSE), Mean Average Error (MAE), Standard Error of Prediction (SEP), 
accuracy, precision, recall, etc., can gauge the model’s efficacy [158, 
159]. 

Prediction and optimization underpin numerous real-world analytics 
challenges across various domains [160]. Kumar et al. [161] ascertained 
that machine learning has the potential to unveil untapped insights, 
furnishing decision support for sustainable additive manufacturing. 
Kumar and co-workers [162] maintained that once the model is trained 
and validated, it can predict optimal process parameters for novel 
3D/4D printing projects. The model recommends suitable parameter 
values based on learned patterns from the training data, aligning with 
intended print quality or efficiency targets [3]. 

4.5. Critical discussion on application of intelligent algorithms and soft 
computing techniques to optimize quality objectives parameters 

The application of application of intelligent algorithms and soft 
computing techniques such as machine learning (ML) and artificial in
telligence (AI), to optimize quality objectives parameters in 4D/3D 
printing processes has been discussed extensively in the literature [127, 
140,163]. These algorithms analyze vast datasets generated during AM 
to predict and control quality outcomes. For instance, ML techniques 
such as neural networks [164,165], decision trees [108,166,167], and 
support vector machines have been employed to predict surface 
roughness and dimensional accuracy based on process parameters [5]. 
These models having collection of past data may able to find some 
relationship and co-relation which could not be possible by using con
ventional way of analysis Soft computes including fuzzy logic, genetic 
algorithm, evolutionary computing go well with intelligent algorithms 
used to enhance 4D/3D printing because they are able to handle un
certainty and complexity involved in these processes [168,169]. 

Among these factors are layer thickness, scan speed and laser power, 
which can be targeted through these techniques to work on surface 
quality, a primary area of improvement. Studies show that ML models 
can predict surface roughness effectively by analyzing these parameters 
[20,129,125,126]. Additionally, genetic algorithms optimize process 
parameters to minimize surface roughness, enhancing the aesthetic and 
functional quality of printed parts [133,138,168,170,171]. 

Part strength and mechanical properties are crucial in 4D/3D 
printing processes. Intelligent algorithms predict properties like tensile 
strength and hardness based on input parameters and material charac
teristics [109,172,173]. Neural networks have been trained to forecast 
the tensile strength of parts produced by selective laser sintering (SLS) 
and fused deposition modeling (FDM) [13,174]. Evolutionary algo
rithms optimize infill patterns and density, critical determinants of part 
strength in FDM [175–177]. 

Dimensional accuracy impacts how well the 4D/3D printing parts fit 
and perform. Fluctuations in process parameters often mean that the 
final piece does not adhere to the intended dimensions and therefore 
does not meet the design requirements [144,158]. Intelligent algorithms 
have been employed to predict and correct these deviations. Support 
vector regression models and fuzzy logic systems dynamically adjust 
process parameters to maintain dimensional accuracy throughout the 
build process [120,131,177]. 

Thermal stability, essential for maintaining the integrity of printed 
parts, is another area improved by intelligent techniques. During the 
4D/3D printing processes, uneven heating and cooling can lead to 
thermal stresses and distortions. Machine learning models predict 
thermal behavior based on process parameters and material properties, 
enabling the optimization of temperature profiles to minimize thermal 
distortions [178,179]. Genetic algorithms have also been used to design 
optimal heating strategies that enhance thermal stability [180]. 

Material efficiency, critical for cost-effective and sustainable 
manufacturing, can also be optimized using intelligent algorithms. By 
analyzing the relationship between process parameters and material 
usage, ML models predict the optimal settings to minimize material 
waste while maintaining part quality. Evolutionary algorithms optimize 
the design and orientation of parts to maximize material efficiency and 
minimize support structures [181,182]. 

4.6. Predictive modeling and defect detection/minimization 

A prominent trend in research is the capacity of machine learning to 
forecast potential defects or failures in 3D/4D printing projects by 
scrutinizing patterns within data from prior prints. Detecting these 
anomalies at each layer level of the product holds significant importance 
[183]. In a parallel vein, Khan et al. [145] devised a convolutional 
neural network-deep learning model aimed at real-time identification of 
detrimental defects to avert production losses and decrease human 
intervention for quality assessments in 3D printing. The outcomes of 
their investigation present a refined and automated 3D printing process, 
capable of mitigating the pervasive challenge of product variability in 
3D printing. Through recognizing linkages between specific process 
configurations and defects, machine learning models have the ability to 
prognosticate instances of potential print failure, subsequently 
furnishing essential recommendations on adjusting print parameters to 
circumvent such predicaments [135]. Refer to Fig. 11 for an illustration 
of the constituents within machine learning-driven predictive modeling 
and the minimization of defects in the 3D/4D printing process. 

Machine learning algorithms possess the potential to be trained in a 
manner that enables them to identify and categorize defects within 3D/ 
4D printed objects. This process involves compiling datasets of images or 
sensor data from both flawless and defective 3D/4D printed items. Kaya 
(2023) [184] introduced a novel hybrid optical sensor that employs 
deep learning to detect micro-sized defects on large 3D printed circuit 
boards. This study also employed a deep learning classifier, utilizing 
convolutional neural network algorithms, to categorize defects within 
the printed circuit boards. Researchers have harnessed computer vision 
and artificial intelligence for real-time remote defect detection in 3D 
printing [165]. Typically, the defects are found on a considerable scale, 
often visible in prominent areas of the object through a capturing 
camera. In such cases, deep convolutional neural networks can be 
trained using images showcasing evident stringing issues, then deployed 
in real-time to identify and predict instances of stringing through video 
camera feeds. Furthermore, models can become proficient at accurately 
detecting and classifying defects like surface irregularities, voids, cracks, 
and layer misalignments using techniques such as convolutional neural 
networks [185], deep learning-assisted real-time defect detection [186], 
and closed-loop adjustments for image data [187]. 

Predictive Maintenance constitutes a condition-based strategy that 
performs maintenance actions when needed, avoiding unnecessary 
preventive measures or potential failures [188]. Machine learning 
models can predict 3D/4D printer failures and defects by leveraging 
historical data and real-time sensor readings. These models can antici
pate potential issues and trigger maintenance actions prior to the 
occurrence of defects by analyzing sensor data such as temperature, 
pressure, and material flow rates. Arora and Prithviraj (2022) [131] 
emphasized the importance of assessing printability and optimizing 
process parameters in achieving defect-free prints. Machine learning 
algorithms can uncover complex relationships between various process 
parameters like print speed, layer height, and [133,189] and the like
lihood of defects. Genetic algorithms [170] and reinforcement learning 
[190] are often utilized for discovering optimal parameter settings that 
minimize defects. 

Anomaly detection, employed in root cause analysis, assists in 
identifying root causes of issues through assessing deviations from ex
pected behavior. In the context of 3D/4D printer defects, machine 
learning can play a pivotal role in identifying underlying causes. Petsiuk 
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and Pearce (2022) [127] introduced an open-source method for 
detecting 3D printing anomalies, utilizing image comparison between 
3D printed layers captured by a stationary camera and G-code-based 
reference images. Recognition of visual deviations was achieved by 
analyzing histograms of oriented gradients of local image areas. This 
observation is further supported by Goh and co-workers [123], who 
incorporated computer vision and object detection models in an on-site 
monitoring system for real-time defect detection and correction during 
extrusion-based 3D printing. This approach successfully demonstrated 
autonomous correction during printing. These findings provide a rich 
dataset for machine learning-based anomaly detection research 
[191–193]. 

Machine learning facilitates closed-loop feedback systems, where 
real-time defect information adjusts and optimizes 3D/4D printing pa
rameters dynamically [194]. Various techniques, including neural net
works [195], reinforcement learning [121], deep convolutional neural 
networks and conditional adversarial networks [138] have been inte
grated with closed-loop control frameworks to stabilize and optimize 
3D/4D printing processes. This approach generates precise feedback for 
smart printers, enabling them to identify and address build issues 
autonomously. The closed-loop machine learning algorithm enhances 
additive manufacturing quality, resulting in improved parts with fewer 
quality issues, less time wastage, and material conservation [122,196]. 
Research consistently indicates that this system can correct defects in 
subsequent layers seamlessly as they are detected during the printing 
process. 

Generative design for defect minimization leverages machine 
learning algorithms to generate numerous optimized 3D printing solu
tions based on user-specified parameters and constraints [197,198]. 
Generative design enables designers to explore a range of solutions 
while considering manufacturing limitations, materials, and mechanical 
responses. Li et al. [199] showcased the effectiveness of convolutional 
generative adversarial encoders in creating and optimizing fault detec
tion models from normal 3D printer signals. Saberironaghi and 
co-workers [200] highlighted mainstream methods of industrial defect 
detection in 3D printing, including deep learning-based 3D defect 
reconstruction and parameter optimization. Jin et al. [164] demon
strated anomaly monitoring in 3D bioprinting using deep neural net
works. Their study reported high accuracy in detecting anomalies using 

convolutional neural network methods. Generative design, powered by 
machine learning, offers optimal solutions to reduce the occurrence of 
defects in the 3D printing process. 

4.7. Topology optimization 

Topology optimization involves determining the optimal distribution 
of materials within a specified design area, which is a common practice 
in 3D/4D printing. By integrating machine learning techniques, topol
ogy optimization presents an innovative approach to enhancing the 
capabilities of 3D and 4D printing processes. Kim and co-authors [201] 
showcased a novel framework that employs the representative volume 
element method and a machine learning model to establish continuous 
anisotropic effective material properties. This approach is utilized for 
simultaneous design of overall topology configuration and local fiber 
material layout in functionally graded composite structures. Their 
method demonstrated success in minimizing structural compliance 
through 2D and 3D numerical examples. Machine learning revolution
izes the topology optimization of 3D/4D printing by revolutionizing 
how designers explore the design space. A range of machine learning 
algorithms, including neural networks [202] and generative adversarial 
networks [203] are employed to learn from existing designs and 
generate novel configurations that adhere to constraints while opti
mizing performance. This amalgamation of machine learning and to
pology optimization sparks creative insights, resulting in optimized 
designs that traditional methods might overlook. 

Machine learning algorithms hold the potential to bolster and 
enhance the design phase of 3D and 4D printing processes through to
pology optimization. These algorithms have the capacity to create in
ventive and efficient geometric designs by systematically removing 
material from a designated design space while preserving structural 
integrity, other technical details are captured in Table 3. This method
ology can lead to more lightweight and robust structures [134]. Kal
lioras and Lagaros (2021) [204] introduced a pioneering generative 
design framework that integrates machine learning into generative 
design, facilitating compatibility with 3D printers. The framework’s 
proficiency in addressing diverse problems was validated through 
testing on benchmark topology optimization challenges frequently used 
in the field. Oh et al. [205] proposed an artificial intelligence-based deep 

Fig. 11. Machine learning based predictive modeling and defect detection/minimization in 3D/4D printing process.  
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generative design framework capable of generating numerous design 
options that are both aesthetically pleasing and optimized for engi
neering performance. Their approach combines topology optimization 
and generative models like generative adversarial networks iteratively, 
fostering exploration of new design options and generating an array of 
designs from limited previous design data. 

Previous studies employ a spectrum of machine learning methods for 
topology optimization in 3D and 4D printing, ranging from boundary 
equilibrium generative adversarial networks [163] to Bayesian regula
rization networks [206] and deep convolutional neural networks [207]. 
These machine learning-driven topology optimization methodologies 
enable users to incorporate a machine learning approach into their de
signs, enhancing efficiency in 3D and 4D printing processes through 
non-iterative strategies. The proposed methods significantly decrease 
computational time while enhancing structural performance and design 
quality of printed components. These studies present a fresh perspective 
on topology optimization in 3D printing and underscore the potential of 
machine learning in advancing the efficiency and accuracy of this 
process. 

In 3D/4D printing, the requirement for detailed simulations during 
each iteration can be time-consuming, necessitating the integration of 
machine learning-driven surrogate models. Costa and colleagues [208] 
explored computationally efficient topology optimization employing 
surrogate models to represent material and geometrical properties in 
continuous topology optimization approaches. These models approxi
mate complex simulation outcomes, allowing optimization algorithms 
to explore design variations more rapidly [209]. Utilizing artificial 
intelligence-equipped printing technologies trained on analogous design 
challenges expedites topology optimization tailored for 3D/4D printing 
scenarios. This knowledge transfer across various printing domains, as 
per Pugliese and Regondi (2022) [210], accelerates optimization pro
cesses and leverages accumulated expertise. The synergy between to
pology optimization and machine learning in 3D/4D printing also 
addresses uncertainty. Bayesian optimization, guided by machine 
learning, introduces uncertainty estimates into the optimization process. 
Kim et al. [211] introduced a convolutional neural network-guided 
Bayesian optimization framework, strategically maximizing the 
surface-to-volume ratio of 3D printed lattice supercapacitors. This 
framework applied Bayesian optimization to printing parameters to 
exploit regions favoring uniform and narrow lines. This capability is 
especially valuable in dealing with fluctuating material properties and 
inherent manufacturing uncertainties characteristic of 3D printing. 

4.8. Layer height and resolution optimization 

Optimal layer height and resolution selection significantly affects 
both the speed and quality of the printing process. While finer layers 

yield smoother surfaces, they can slow down printing [212]. Thus, 
striking the right balance is a crucial optimization challenge, which can 
be efficiently addressed using machine learning algorithms. Wang et al. 
[213] devised an adaptive layering algorithm to harmonize the opti
mization of printing quality and efficiency for varying printing re
quirements. Their research effectively formulated a multi-objective 
optimization model considering printing quality, printing time, and 
layer height, based on surface feature variations, profile slopes, and 
model curvature. 

Machine learning assumes a pivotal role in fine-tuning layer height 
and resolution parameters in 3D and 4D printing, leading to elevated 
print quality, reduced production time, and enhanced overall perfor
mance [139]. Regarding print quality anticipation, machine learning 
models can acquire insights from a dataset encompassing print outcomes 
with diverse layer heights and resolutions. This was illustrated by Si 
et al. [214], who examined the influence of fan speed on printing 
quality, introducing a plugin that forecasts and supervises fan speeds 
during printing. Their plugin aims to thwart cyberattacks that specif
ically target fan speed. In a related investigation, Vaid et al. [125] 
established the optimal printing temperature for a cylindrical shaft, 
minimizing dimensional variance in fused deposition modelling 3D 
printing technology. Artificial intelligence prediction models were 
employed to explore the impact of extrusion and build-plate tempera
tures on fluctuations in printed sample dimensions. 

By employing machine learning algorithms like genetic algorithms 
or Bayesian optimization [128], iterative exploration of parameter space 
is feasible to pinpoint the layer height and resolution combination that 
mitigates defects and maximizes 3D printing efficiency. Accumulating 
insights from diverse studies underscores the potential of machine 
learning models to predict print quality based on varying parameter 
combinations. This aids in selecting optimal layer height and resolution 
settings, ensuring the desired quality standards are met and streamlining 
the quest for optimal configurations. For instance, Ulkir and colleagues 
[168] employed a cascade-forward neural network (CFNN) combined 
with a genetic algorithm to determine the optimal combination of input 
parameters for predicting and minimizing the surface roughness of 
samples produced through Fused Deposition Modelling on a 3D printer. 
Utilizing a Box–Behnken Design with four independent printing pa
rameters at three levels, they fabricated 25 parts with a 3D printer and 
conducted roughness tests on the produced parts. The hybrid algorithm 
demonstrated superior performance, yielding the best results for pre
dicting and optimizing surface roughness in 3D-printed parts. The 
trained CFNN, equipped with optimized parameters, exhibited 
enhanced accuracy in surface roughness prediction compared to previ
ous random test results. 

Table 3 
Technical details of machine learning applications in 3D/4D printing optimization  

Aspect of Printing 
Process 

Machine Learning Model Data Requirements Optimization Goals 

Design Customization Generative Adversarial Networks 
(GANs) 

3D model data, design parameters Create unique and complex designs, improve customization 
options 

Material Selection Random Forest, Support Vector 
Machines 

Material properties, historical performance 
data 

Predict optimal material combinations, enhance material 
properties 

Process Control Reinforcement Learning Real-time process data, environmental 
conditions 

Adjust parameters dynamically to maintain quality, reduce 
errors 

Quality Assurance Convolutional Neural Networks 
(CNNs) 

High-resolution images, defect data Detect defects in real-time, improve print quality 

Topology Optimization Genetic Algorithms, Evolutionary 
Models 

Structural data, load conditions Optimize structural designs for weight, strength, and material 
efficiency 

Print Speed 
Optimization 

Bayesian Optimization Print speed data, layer information Find optimal print speeds, balance between speed and quality 

Energy Consumption Neural Networks Energy usage data, process parameters Minimize energy consumption while maintaining print quality 
Dimensional Accuracy Regression Models Measurement data, printer settings Ensure dimensional accuracy of printed parts, reduce 

deviations  
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5. Challenges of using Machine Learning and Artificial 
Intelligence technologies in additive manufacturing 

While adopting and using ML and AI tools for AM has several benefits 
related to process enhancement and greater efficiency, it also has some 
drawbacks. One major weakness is the quality and quantity of data that 
is needed to get the best results [145,215,216]. Many parameters in AM 
process rely on the prediction of ML models and the more data are 
available the better the models are. Yet, acquiring sufficient high-quality 
data can be quite a daunting task, mainly because of the diverse AM 
procedures and types of material employed [217,218]. Yet another 
disadvantage is related to the interpretability of the obtained ML models 
[17,219,220]. Decision making in these technologies is often 
black-boxed, which may be an issue in the case of using these technol
ogies in applications when it is imperative to understand the reasoning 
behind an idea or a choice [17,221]. 

In addition, there is an issue with the generalization capability of the 
models used today’s deep learning. Parameters obtained in specific 
dataset may not be suitable for other materials, machines or operating 
conditions. This problem occurs since AM processes have a level of 
randomness in them and this can cause differences in model perfor
mance from one scenario to another [199,222,223]. Another issue sur
rounding the application of Machine Learning and Artificial Intelligence 
tools into existing AM Systems is the interconnectivity of the two. In
compatibilities, the requirement of a large number of computations in 
real time, as well as the challenges of introducing socioeconomic in
dicators and integrating monitoring systems can become the key ele
ments inhibiting the real application of these technologies [25,123,138, 
195]. Also, as shown in Table 4, the first-time installation cost of 
implementing AI driven systems may be expensive especially for the 

SMEs thus limiting the extent to which it is adopted [12,224,225]. The 
applied models are known to be very effective, but the question is how 
strong and reliable they are. AM processes can be sensitive to small 
changes in parameters or environmental conditions, and ML models 
need to be robust enough to handle such variations without compro
mising performance, however, ensuring robustness requires extensive 
validation and testing, which can be resource-intensive. 

6. Future outlook 

The insights derived from this systematic review illuminate a 
compelling future outlook, signalling the transformative potential that 
lies in the optimization of 4D/3D printing through machine learning—a 
synergy that has the capacity to revolutionize the contemporary land
scape of manufacturing. The amalgamation of these cutting-edge tech
nologies not only opens new horizons but also sets the stage for a 
paradigm shift in how we conceptualize and realize the production of 
intricate structures and functional materials. 

The comprehensive analysis conducted in this review accentuates 
the profound implications of machine learning in fine-tuning various 
facets of the 4D/3D printing process. From influencing design and ma
terial selection to refining process control and ensuring quality assur
ance, machine learning emerges as a linchpin in elevating the efficiency 
and efficacy of additive manufacturing. This newfound understanding 
serves as a solid foundation for envisioning a future where the synthesis 
of machine learning and 4D/3D printing becomes integral to the 
manufacturing fabric. 

Looking ahead, the potential for customization, efficiency, and sus
tainability in the production of complex structures becomes increasingly 
evident. The synthesis of machine learning and 4D/3D printing not only 
streamlines existing manufacturing processes but also paves the way for 
the creation of adaptive, intelligent, and personalized products. The 
implications extend across various industries, including healthcare, 
aerospace, architecture, and consumer goods, indicating a future where 
tailored solutions become the norm rather than the exception. 

In healthcare, for instance, bespoke medical implants and prosthetics 
could be rapidly manufactured to meet specific patient needs. In aero
space, the ability to swiftly produce intricate components tailored to 
precise specifications promises advancements in efficiency and perfor
mance. Architectural designs can evolve into dynamic, responsive 
structures, and consumer goods may undergo a revolution with 
personalized and intelligent products. 

This future outlook hints at a manufacturing landscape where agility, 
innovation, and customization converge to redefine possibilities. The 
collaborative dance between machine learning and 4D/3D printing, as 
explored in this review, serves not only as a reflection of the present state 
of these technologies but also as a harbinger of the transformative po
tential awaiting exploration in the manufacturing landscape of the 
future. 

7. Conclusions 

In conclusion, this systematic review has shed light on the trans
formative potential of optimizing 4D/3D printing using machine 
learning which could revolutionize the landscape of modern 
manufacturing. The synthesis of these two cutting-edge technologies has 
unveiled unprecedented possibilities for customization, efficiency, and 
sustainability in the production of complex structures and functional 
materials. Through a comprehensive analysis of existing literature and 
research, this review has underscored the critical role of machine 
learning in optimizing various aspects of the 4D/3D printing process, 
ranging from design and material selection to process control and 
quality assurance. Moreover, the exploration of diverse applications 
across industries has emphasized the wide-ranging impact of this inte
gration, hinting at a future where personalized, adaptive, and intelligent 
products become the norm rather than the exception. The potential to 

Table 4 
Summary of challenges and limitations in the integration of Machine Learning 
and Artificial Intelligence  

Challenge/ 
Limitation 

Description Impact 

Data Quality and 
Quantity 

Insufficient or low-quality 
data for training ML models 
can lead to inaccurate 
predictions and suboptimal 
performance. 

Hinders model accuracy and 
reliability. 

Computational 
Resources 

High computational power is 
required to process complex 
algorithms and large 
datasets. 

Increases cost and limits 
accessibility for smaller 
enterprises. 

Model 
Interpretability 

Difficulty in understanding 
and interpreting ML models, 
especially deep learning 
models. 

It undermines confidence 
with the current users and 
potential users of the 
products and services 

Integration with 
Existing Systems 

Challenges in integrating ML 
and AI technologies with 
existing manufacturing 
systems and workflows. 

Causes disruptions and 
requires significant changes 
to current processes. 

Real-time 
Processing 

Difficulty in achieving real- 
time data processing and 
decision-making due to 
computational and latency 
issues. 

Limits the ability to make 
timely adjustments during 
the printing process. 

Cost High costs associated with 
implementing and 
maintaining ML and AI 
technologies. 

Restricts its usage, 
particularly for SMEs. 

Skill Gaps Lack of skilled professionals 
with expertise in both 
additive manufacturing and 
ML/AI technologies. 

Slows down implementation 
and innovation. 

Robustness and 
Reliability 

Ensuring the robustness and 
reliability of ML models in 
diverse and changing 
manufacturing 
environments. 

Leads to potential failures 
and inconsistencies in 
production.  
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cater to specific needs in fields like healthcare, aerospace, architecture, 
and consumer goods hints at a world where bespoke solutions can be 
rapidly manufactured, pushing the boundaries of innovation and 
customization. 
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