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Abstract. Dynamical Energy Analysis (DEA) was introduced in 2009 as a novel method
for predicting high-frequency acoustic and vibrational energy distributions [13]. In this work
we detail how DEA can be reformulated in the time-domain by means of a convolution in-
tegral operator and apply the Convolution Quadrature (CQ)) method to discretise in time.
The CQ method provides a link between the frequency domain and fully time-dependent
solutions by means of the Z-transform. The space and momentum variables may be ap-
proximated using the same approaches that have previously been implemented in frequency
domain DEA. The final result is a fully time-dependent DEA method that can track the
propagation of high-frequency transient signals through phase-space.

1.1 Introduction

Boundary integral methods for modelling time-dependent wave propagation were originally
proposed in the 1960s [1, 2]. The considerable increase in available computer power during the
latter part of the twentieth century made numerical solutions over longer time intervals feasible,
and with this advance long-time instabilities in the numerical solutions also became evident [3,
4, 5]. The cause of these instabilities has been linked to internal resonances of the wave scatterer
for exterior problems [4], or the region being modelled for interior problems. For this reason,
combined field integral equations, such as the time-dependent Burton and Miller formulation,
have been proposed to tackle these stability issues [6, 7]. However, these formulations introduce
additional computational overheads and the need to evaluate hypersingular boundary integral
operators. An alternative is to apply the CQ method, see for example Refs. [8, 9, 10], which is
able to provide stable results based on standard integral equation formulations. The reason
for the preferable stability properties of CQ essentially relate to the reconstruction of the



time domain solution, or alternatively the time domain boundary integral operator, through a
numerical inverse Laplace transform where the contour is taken over Laplace domain frequencies
with strictly positive real part. Since the resonances lie on the imaginary axis in the Laplace
domain, then they do not effect the result in the time domain.

For high-frequency time-dependent wave problems, such as those arising in seismology or
room acoustics, ray-tracing methods are often preferred to full wave models, see for example
[11, 12]. Traditional ray based methods work well for applications where only a few reflections
need to be considered, but not so well for problems including multiple scattering and chaotic
dynamics. In this case, multiple reflections of the rays can give an exponentially growing number
of trajectories to track. Dynamical Energy Analysis (DEA) is a phase-space boundary integral
method that models wave energy densities [13]. DEA is a frequency domain method formed
by seeking solutions of the stationary Liouville equation, circumventing issues regarding the
exponentially growing number of rays to track as time increases [14].

Time-domain simulations are important for various applications such as predicting radar
cross sections, shock-responses and auralisation of room acoustics. In this proceedings paper
we outline a methodology for extending DEA to the time-domain based on the CQ method.
The computational cost of time-domain DEA should scale only linearly with the modelled time
period regardless of the ray dynamics, comparing favourably with conventional ray-tracers.

1.2 Outline of Methodology

In order to develop a time-dependent DEA method for a domain 2 with associated speed of
sound c, the first step is to reformulate the DEA phase-space boundary integral operator to have
explicit time dependence. The result is a one-sided convolution (in time ¢) operator B given by
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which is applied to a specified initial density distribution of rays pyp on the boundary I'. Here k is
the time-dependent kernel of our boundary integral operator, which is given by a multidimensional
Dirac delta generalised function specifying the propagation of a ray through time, position and
momentum. The variables (s',p’) relate respectively to the position and momentum of the
starting position of a ray emanating from I'" and (s,p) correspond to the arrival position and
momentum on I', respectively, following a specular reflection. Note that a damping factor must
be applied to obtain convergence in frequency domain DEA, but this is not necessary in the
time-dependent formulation owing to the fact that we only model a finite time duration [0, 7.

The CQ method can be applied for the time discretisation of one-sided convolution operators
such as B (1.1), see for example [8, 9, 10]. In doing so, the convolution (k * pg) appearing in
(1.1) is approximated by a discrete convolution of the form
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where t; = jAt and At = T/N is the time-step assuming N steps in total. The convolution
weights w; are defined implicitly through the Z-transform as
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where v is the quotient of generating polynomials for the linear multistep method underlying
the CQ discretisation. In this work we will use the second order backward difference formula,
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After applying the time-discretisation, we then need to discretise in the position and momentum
variables in order to obtain a fully discrete problem. Here we may use any of the discretisation
methods previously applied for frequency domain DEA amongst others, see for example [13, 14,
15] for more details.

1.3 Conclusions and Future Work

In this short paper we have motivated and outlined a methodology to extend the DEA method
for time-dependent problems. We will present numerical results based on this work at the
conference. For these results we will apply the position and momentum discretisation methods
from Ref. [15], since this allows for a verification of the time discretisation method in simple
examples for which we can derive an exact solution. We will use these examples to study
whether the order of convergence in time is consistent with the expected behaviour of the
applied time-stepping approach. We will also present examples for which this choice of position
and momentum discretisation is less favourable and it may be preferable to use the methods in
Ref. [14], for example, instead.
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