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ABSTRACT In brain-computer interfacing, the SSVEP (steady-state visual evoked potential) method serves 

to foster collaboration between humans and robots. SSVEP-based detection methods require complex 

multichannel data acquisition, making them difficult to deploy due to discomfort during extended use and the 

complexity of the algorithms involved. On the other hand, single-channel setup offers simplicity and ease of 

use. However, in a single channel, achieving encouraging performance in the SD (subject-dependent) 

scenario is challenging, and accuracy drops further in the SI (subject-independent) scenario. This requires the 

development of a generalized approach to improve performance in both scenarios. This study proposes 

(VMD-DNN) to detect SSVEP in single-channel setups for SD and SI scenarios. The novelty of the proposed 

method lies in utilizing VMD (Variational Mode Decomposition) as a preprocessor, leveraging harmonic 

information and Kurtosis of the cross-correlation function to select harmonics from VMD decomposed signal. 

The preprocessed reconstructed signal uses complex spectrum features as input to the DNN for classification. 

The results show an average accuracy of 93%, 95.3% in SD and 79%, 92.33% in SI scenarios tested on two 

publicly available datasets, respectively. The ITR (Information transfer rate) was 67.50 bit/min, 92.31 bit/min 

for SD, and 46.13 bit/min, 85.94 bit/min for SI for both datasets, respectively. In SD, accuracy is improved 

by 3.34% and 5%, and ITR by 8.87% and 12.91% over baseline methods for both datasets respectively. The 

proposed VMD-DNN model is effective, with improved performance and lower computational complexity. 

The robust single-channel approach makes it user-friendly for human-robot collaboration. 

INDEX TERMS Steady-state visual evoked potential, Single-channel, Human-robot collaboration, Deep 

neural network, Variational mode decomposition, EEG measurement and classification technique, 

Harmonics.

I. INTRODUCTION 

The Brain-Computer Interface (BCI) translates bioelectric 

signals of the brain in order to communicate between humans 

and computers or machines. It allows the machine to receive 

and respond to commands directly from the brain [1]. 

Increasing technological advancements, Industry 4.0, and 

cyber-physical systems are reshaping the interaction 

between humans and machines [2]. The role of humans in 

highly automated systems has evolved from simple roles to 

integral components [3]. BCI can serve as an efficient 

interface, enhancing communication between humans and 

machines or robots, and is suitable to implement in noisy 

environments [4]. In a human-robot interface, humans and 

robots collaborate to accomplish shared tasks, utilizing 

human intelligence along with robot precision and 

repeatability [5]. Whenever the human makes a decision, the 
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robot, as a co-worker, recognizes and executes it 

accordingly.  

The preferable approach for Human-robot Collaboration 

(HRC) with BCI uses naturally produced brain signals and 

does not require extra training or active thinking by humans. 

In addition, it also requires better communication between 

humans and robots. Steady-state visual evoked potential 

(SSVEP) is a reactive electroencephalogram-(EEG-) based 

BCI that occurs as a result of periodic visual stimulation in 

the occipital cortex, manifested by brain responses to 

frequency and harmonics [6]. SSVEP-based BCI is 

preferable for its advantages, such as high signal-to-noise 

ratio, high information transfer rate, and minimal to no 

subject or operator training requirement [7]. For the seamless 

design of human-robot collaboration, it is important to 

develop an accurate and robust algorithm for SSVEP signals 

classification with improved Information Transfer Rate 

(ITR). 

 

(a) 

 

(b) 

When HRC is used with BCI, two learning agents are 

involved: the human operator and the algorithm. Operator 

training for SSVEP-based BCIs is minimal or nonexistent 

compared with other BCIs such as motor imagery. Generally, 

the available algorithms for extracting and classifying SSVEP 

features can be categorized into three groups: training-free 

methods, subject-dependent training methods, and subject-

independent training methods [8]. In the training-free method, 

there is no need for training data, so new users can begin using 

BCI immediately [9]. Due to subject-to-subject variability, 

training-free algorithms are not necessarily robust [10]. 

Subject-dependent (SD) training methods involve training a 

particular subject to extract optimal features for the same 

subject as shown in Fig. 1(a). The subject's training data 

reduced the impact of spontaneous background EEG signals 

on SSVEP response [11]. In SSVEP identification, training 

methods produce higher recognition accuracy than training-

free methods because a machine learning algorithm is trained 

on specific subject data and can predict the outcome later [12]. 

It is highly desirable to build a general training model that is 

applicable for new unseen operators, known as the subject-

independent (SI) training model. The SI approach requires 

training data from different subjects to develop a model that 

can be used for general purposes. In SI models, there is no 

need to collect training data from new unseen subjects as 

shown in Fig. 1(b). Once the SI model is trained, it can be 

applied to predict data from unseen users [10], [12]. 

Several factors affect SSVEP signal classification accuracy, 

including the number of channels used for data acquisition, 

frequency detection algorithm, and signal-to-noise ratio [9], 

[13]. To achieve high accuracy in SSVEP detection, most 

studies prefer a multi-channel setup, which, though effective, 

pose challenges in terms of complexity and discomfort [14], 

especially for operators wearing EEG caps for prolonged 

periods. This discomfort may lead to irritation, potentially 

impacting communication between collaborative robots and 

operators. Conversely, single-channel setups offer simplicity 

and comfort [15], a crucial advantage, particularly when 

operators are required to wear safety helmets 

simultaneously. This is often not feasible with multichannel 

setups, also in multichannel data acquisition the processing 

algorithmic complexity increases due to data from multiple 

electrodes. 

However, achieving satisfactory performance in SD scenario 

with single-channel setups poses a challenge, exacerbated by 

further accuracy drops in SI scenario. Addressing this 

challenge necessitates the development of a generalized 

approach to enhance SSVEP single-channel performance 

across both scenarios. To address this need, our study 

extends efforts by incorporating effective preprocessing 

using VMD and a lightweight DNN model. Additionally, 

training data from multiple subjects is integrated, followed 

by evaluation. To the best of our knowledge, the SI training 

scenario has not been implemented using single-channel 

SSVEP setups. Additionally, single-channel configurations 

have not been utilized in smart industries for Human-Robot 

Collaboration (HRC). 

Our proposed method employs VMD as a preprocessing step, 

leveraging harmonic information along with Kurtosis of the 

cross-correlation function (KCCF) to select necessary 

harmonics from the VMD decomposed signal. The resultant 

reconstructed signal, obtained through preprocessing, utilizes 

complex spectrum features as input to the DNN for 

classification. This preprocessing step effectively denoises the 

SSVEP signal by extracting first and second harmonics while 

disregarding irrelevant and noisy information. The integration 

of a lightweight and improved DNN model compared to more 

elaborate neural network architectures already presented in the 

literature [16], aims to generalize the study, making it 

applicable to both SD and SI scenarios. The introduction of 

the VMD and DNN result in improved accuracy as reflected 

by a higher performance of the proposed method (VMD-

Figure 1. Two training model (a) Subject-dependent training (b) 
Subject-independent training. 
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DNN) compared to several existing related methods such as 

Power spectral density analysis (PSDA), Discrete wavelet 

transform-PSDA (DWT-PSDA), Empirical mode 

decomposition-PSDA (EMD-PSDA) [17], Canonical 

correlation analysis (CCA)-DNN, and Filter bank CCA 

(FBCCA)-DNN on two publicly available datasets: AVI-

SSVEP [18] and [19]. The proposed approach VMD-DNN 

achieved an average accuracy of 93% and ITR of 67.50 

bit/min (bpm) for four subjects on the AVI-SSVEP dataset and 

95.3% average accuracy with 92.31 bpm ITR on a second 

dataset with 10 subjects when tested on SD training scenario. 

Furthermore, it achieved an accuracy of 79% with 46.13 bpm 

ITR for AVI-SSVEP and 92.33% accuracy with 85.94 bpm 

ITR for second Dataset when tested on SI training scenario. 

Overall, this robust single-channel approach makes it user-

friendly for various applications in the automation industry 

and robotics. 

The paper is organized as follows. Section II describes the 

related work. Section III details the materials and methods, 

including the proposed methodology. Section IV shows and 

discusses the results, whereas the scope and application of the 

work are explained in Section V. The paper concludes in 

Section VI. 

 
II. RELATED WORK 

A brain-computer interface has historically been used to 

support disabled people or patients, such as wheelchairs [20], 

electric prostheses [21], and feeding robots [22]. During 

some industrial processes, when operator hands are involved, 

and robotic collaboration is required to automate the process, 

BCI can help humans transfer their decisions to robots. In 

BCI systems based on EEG, a variety of brain responses are 

used, including SSVEP [5], P-300 [23], and motor imagery 

responses [24]. Motor imagery requires additional user 

training, whereas SSVEP and P300 rely on visual stimuli. 

Due to the SSVEP aligning with the stimulus frequency and 

possessing notable advantages such as a high signal-to-noise 

ratio (SNR), fast information transfer rate, and minimal 

training requirements, it can be widely used in various 

industrial applications.  

Target identification is an essential step in constructing 

SSVEP-based BCIs, which translate SSVEP signals into 

commands. As the SSVEP frequency aligns with the stimuli 

frequency, methods such as PSDA and Canonical 

Correlation Analysis (CCA) are used when we have prior 

knowledge of the target frequency. Also, the CCA method is 

commonly utilized for single-channel data [25]. However, 

both PSDA and CCA methods can be affected by 

background noise [8]. Additionally, the CCA method often 

inadequately incorporates harmonic information [26]. Given 

that SSVEP signals contain both the target frequency and its 

harmonics, the filter bank CCA (FBCCA) was proposed 

based on a filter bank approach that effectively integrates the 

target frequency and its harmonics information. FBCCA is 

widely utilized in various training-free SSVEP methods. The 

FBCCA method requires optimization of three parameters: 

the number of harmonics in reference signals, the weight 

vector for sub-bands, and the number of filter banks for sub-

bands. As the performance of the FBCCA method depends 

on these factors, it is a critical consideration in incorporating 

a BCI system [10]. Many single-channel SSVEP studies use 

DWT as a preprocessing method because it allows detailed 

time and frequency localization within the signal. However, 

choosing the right mother wavelet is a key limitation to 

optimizing SSVEP performance. EMD overcomes DWT's 

limitations by eliminating the need for decision-making in 

wavelet selection [17], [27]. However, the EMD technique 

has limitations in mixing intermediate modes [28]. VMD 

effectively addresses the mode mixing problem and has a 

solid mathematical foundation for signal decomposition. 

VMD has the ability to distinguish between two harmonics 

with frequencies that are very close, and this separation 

effect remains unaffected by variations in the sampling 

frequency [29]. This characteristic of VMD makes it a 

suitable choice for integrating SSVEP target frequency 

information with harmonics. 

Many studies in a multichannel setup utilize subject-

dependent training scenarios such as individual template-

based CCA methods, task-related component analysis 

(TRCA), and task-discriminant component analysis 

(TDCA). These methods contribute significantly to SD 

classification scenarios. It was noted that, in SSVEP 

processing, TRCA performs was not optimal when dealing 

with asynchronously processed data [30].  

In the industry, SSVEP is used for HRC using multichannel 

to perform different tasks such as assembly tasks [2], [5], 

picking and placing defective components [31] etc. On the 

other hand, a single channel SSVEP based classification is 

already practiced in a few applications in SD scenarios 

specifically, the convolutional neural network is utilized to 

perform an application of BCI spellers [15]. The fuzzy 

feature threshold algorithm (FFTA) is utilized for single-

channel control of the mobile robot [32]. Numerous efforts 

have been made by utilizing conventional state-of-the-art 

methods of multichannel systems when applied to SI 

scenarios, but the results are still not satisfactory [33] 

because SSVEP signals display non-stationary properties 

and vary in characteristics among subjects [10], [11]. Hence, 

the primary objective of this research is to address the 

challenges inherent in single-channel setups for the SI as 

well as SD scenarios. 

The main challenge in SSVEP-BCI classification is the 

signal from the same subject for the particular task at 

different times instants may have different patterns due to 

several factors such as electromagnetic interference and 

background noise etc. The stated challenge greatly affects 

the performance the of conventional machine learning 

method in the SD scenario which is even worse in SI scenario 

[11]. Comparing deep learning with other SSVEP 

classification methods, it offers numerous advantages. Deep 

learning leverages neural networks with multiple layers to 

uncover hidden patterns in EEG signals, essential for 

accurate classification. A network learns more complex 
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features as data flows through it [34]. The network is fed with 

preprocessed SSVEP signals, eliminating the need for 

additional feature extraction. Due to this property of deep 

learning, it is used for SSVEP signal classification. To meet 

the demands of research, we utilized a single-channel 

SSVEP approach using VMD coupled with a customized 

deep-learning model. This strategy enhances the accuracy of 

classification in both (SD) and (SI) training scenarios, 

making it well-suited for implementation in Human-Robot 

Collaboration (HRC) systems. 

Reviewing the state-of-the-art literature, it is evident there 

are numerous techniques available to improve SSVEP 

performance with multichannel systems in both training 

scenarios, but they are less preferable due to their complexity 

and uncomfortable use. The need therefore remains for a 

single-channel SSVEP classification approach that is 

accurate and robust with a better tradeoff in accuracy and 

ITR, which is addressed in the proposed method. 

III. MATERIALS AND METHODS 

A. DATASETS 

In this study, the performance of the proposed method was 

evaluated using two publicly available datasets. 

 

1) DATASET A 

This dataset is known as the AVI-SSVEP Dataset [18]. There 

are four subjects in this dataset, consisting of three males and 

one female, with an age range of 27-32 years. The trials for all 

four subjects were performed for seven frequencies flickering 

at 6 Hz, 6.5 Hz, 7 Hz, 7.5 Hz, 8.2 Hz, 9.3 Hz, and 10 Hz. The 

single electrode was placed at the ‘Oz’ position, while the 

reference and ground electrode positions were ‘Fz’ and ‘Fzp’ 

respectively. The electrodes were set as per 10-20 

international standards for the placement of electrodes. The 

duration of each dataset trial consisted of 30 seconds at a 512 

Hz sampling rate. The data for each frequency was collected 

at least three times for all subjects. For four subjects, 92 trials 

of data were conducted using seven frequencies. For Dataset 

A, the train-test split was set to 75% training and 25% testing 

in the SD scenario. Table 1 provides detailed information 

about Dataset A. 

Table 1.Dataset A: Details of the AVI-SSVEP dataset. 

Dataset A 
No of 

channels 
Subject wise No of trial 

Trial 

duration 

(sec) 

Total 
classes 

1 2 3  4 total 

AVI-
SSVEP 01 24 26 21 21 92 30 7 

 

2) DATASET B [19]:  
This dataset was collected for 12 classes ranging from 9.25 

Hz to 14.75 Hz with a step size of 0.5 Hz. A total of 10 

subjects with normal or correlated normal vision were 

selected to sit 60 cm away from a 27-inch LCD monitor in a 

dim room. The eight channels (O1, O2, Oz, PO3, PO4, PO7, 

PO8, and POz) were used to acquire EEG data at the occipital 

region. A sampling rate of 2048 Hz was used for data 

collection, which was then down sampled to 256 Hz for 

computation. For each class, 15 trials were conducted, and 

each trial duration was 4sec. 

The data was placed in 4-D matrix format (Number of 

targets, Number of channels, Number of data points, Number 

of trials). We used single-channel (Oz) data for this study. In 

Dataset B, 12 out of 15 trials were used for training, and the 

remaining 3 for testing in the SD scenario. However, in the 

SI training scenario, we tested the subject with the lowest 

accuracy in the SD scenario as the unseen subject in each 

dataset to evaluate the performance of the proposed method. 

The DNN model was trained using combined data from the 

remaining subjects in the same dataset. Table 2 provides 

details on Dataset B. 

Table 2. Details of the Dataset B. 

Dataset 
Maximum 

channels 
Selected 

channel/s 
Subjects 

Total 

trials per 

class 

Trial 

duration 

(sec) 

Total 

classes 

Total 

trial 

B 08 01 (Oz) 10 15 4 12 1800 

Besides the fundamental frequency, the SSVEP signal also 

contains its harmonic components, which are its integral 

multiples [6], [7]. Harmonics analysis is also effective for 

feature extraction and improved classification performance. 

The SSVEP signal of 10 Hz of subject 4 of Dataset A is shown 

in Fig. 2(a). The frequency spectrum of the 10 Hz SSVEP 

signal represents the fundamental frequency (first harmonics), 

2nd and 3rd, harmonics with respect to normalized amplitude as 

shown in Fig. 2(b).  

The first harmonic's amplitude is higher than the second and 

third harmonics. However, in some cases, the second 

harmonic's amplitude is more than the first harmonic [7]. 

While the third harmonic holds minimal significance in 

comparison to the first and second harmonics. 

The SSVEP signals contain the stimulus frequency, its 

harmonics, and noise. To reduce the noise, a moving average 

filter (MAF) is applied because VMD performance is affected 

by the noise in the signal. MAF is a time domain finite impulse 

response filter commonly used for smoothing [35]. The MAF 

reduces noise without disturbing sharp steps [36]. Initially, the 

recorded EEG signal is normalized by its absolute maximum 

amplitude [27]. We scale the values based on the maximum 

signal value. EEG signal normalization can be expressed as 

follows. 

𝑂𝑖 =
𝑅𝑖

‖𝑅̅‖∞
    (1) 

Where, 𝑅 is the recorded EEG signal and ‖𝑅̅‖∞ is the 

maximum value of the recorded signal. The normalized 

signal is represented as 𝑂. Then, MAF is applied to suppress 
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noise added during recording. The MAF is expressed as 

follows. 

𝑧𝑖,𝑘 =  
1

𝑁𝑘
 ∑ 𝑂(𝑖 − 𝑗)𝑁−1

𝑗=0    (2) 

Where 𝑧 is the MAF output signal, and 𝑁 is the filter length. 

The 𝑂(𝑖 − 𝑗) and 𝑖 represent the impulse delayed by 𝑗 sample 

and current index value, respectively. It is important to choose 

an appropriate MAF filter window length for optimal results. 

(a) 

(b) 

A shorter filter length may lower the SNR, while a longer filter 

length can distort the signal and incur higher computational 

costs. We optimized the MAF length based on the maximum 

SNR of the EEG signal. The SNR can be represented as below 

[37]. 

SNRk = 10 log10  
𝑆𝑘

𝑁𝑘
   (3) 

Where 𝑆𝑘 and 𝑁𝑘 are the signal power and noise power 

respectively. In this study, we consider the power of both the 

flickering frequency (10 Hz) and its second harmonic (20 Hz) 

as the power of the required signals, while treating the power 

of all other frequencies as noise power. Initially, the SNR of 

the recorded EEG signal is -5.85 dB which increases to -3.27 

dB by applying MAF with a filter length of 22 as shown in 

Fig. 3. The MAF improves the SNR value by 44.19%. Even 

though the SNR has improved following MAF, the negative 

sign indicates that the signal power is less than the noise 

power. Therefore, VMD is applied to further enhance the SNR 

of the SSVEP signal. 

B. VARIATIONAL MODE DECOMPOSITION 

VMD technique is used to decompose the non-stationary and 

nonlinear signal into various components called intrinsic mode 

functions (IMFs). Each IMF central frequency and bandwidth 

are determined by an iterative search for optimization results 

[38]. The original signal is the sum of all individual IMFs. The 

harmonics and inter harmonics of the original signal are found 

by VMD application with the setting of suitable mode 

numbers [39]. In this study, the EEG signal is converted into 

its harmonics and inter harmonics using the VMD technique. 

The 𝒛(𝒕) is the output of MAF, which can be decomposed 

using VMD. The equation of IMF produces as a result of 

VMD is written as: 

𝑢𝑘 (𝑡) = 𝐴𝑘(𝑡)𝑐𝑜𝑠(∅𝑘(𝑡))  (4) 

Where 𝐴𝑘 (𝑡) is the instantaneous amplitude of signal 𝑢𝑘 (𝑡) 

of 𝑘𝑡ℎ mode and 𝐴𝑘 (𝑡)  ≥  0. Ø𝑘  (𝑡) is a non-decreasing 

phase function and Ø𝑘  (𝑡)  ≥  0. Each IMF bandwidth is 

found by adopting the following steps: 

 

1. The analytical signal is determined for each mode using 

the Hilbert transform to get a unilateral spectrum. 

2. The mode spectrum is shifted to the baseband by 

combining with an exponential tuned to central 

frequency.  
3. The signal bandwidth is obtained by applying H1 

Gaussian smoothness. The constraint problem is depicted 

as: 

𝑚𝑖𝑛{𝑢𝑘},{𝜔𝑘}  {∑ ‖𝜕𝑡[(𝛿(𝑡) +
𝑗

𝜋𝑡
 ) ∗ 𝑢𝑘(𝑡)]𝑒−𝑗𝜔𝑘(𝑡)‖

2
2𝑘 } (5) 

Subjected to: ∑ 𝑢𝑘 (t) = 𝑓𝑘  where 𝑢𝑘 (𝑡)  is the K IMFs 

produced by VMD and 𝜔𝑘  (𝑡) is the central frequency of 

each component. δ (t) is the unit pulse function and * is 

represented as the convolution symbol. Time index is 

Figure 3. (a) Normalized acquired EEG 10Hz signal of Subject 4 (b) 

FFT-based PSDA of EEG signal. 

Figure 2. An optimal MAF window length is selected by the 
maximum SNR of the SSVEP signal. 
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represented by t, {𝑢}  =  {𝑢1, 𝑢2, … , 𝑢𝑘} and {𝜔}  =
 {𝜔1, 𝜔2, … , 𝜔𝑘} are denoted as the modal number and 

center frequencies after decompositions respectively. 

1) VMD PARAMETER OPTIMIZATION 

VMD decomposes the signal into different modes number K 

and the decomposed components are called IMFs. With 

proper parameter setting, the VMD method shows better 

robustness, otherwise, it will significantly affect the accuracy 

of the decomposition results. VMD parameter optimization 

mainly depends upon two parameters, which are mode 

number K and plenty factor α [40]. If the value of K is very 

small, mode aliasing will occur and if K is very large, it will 

produce false decomposed components. Each IMF has a 

limited bandwidth size for a particular mode number K and 

plenty factor α. The bandwidth size mainly depends on the 

plenty factor α. If α is small, then bandwidth is also small 

and the larger bandwidth shows the lager value of α [41]. 

Many methods are available for VMD parameter 

optimization, but we used the Kurtosis maximum method for 

optimization [42]. In Kurtosis maximum method, plenty factor 

α is initially assigned a value and then optimal mode number 

K is found based on Kurtosis maximum. Afterward, the α 

value is optimized using the optimized K value. The optimized 

plenty factor value is determined as the value that produces the 

maximum Kurtosis within the defined range of α. The steps of 

Kurtosis maximum method are applied to Dataset A of subject 

4 of 10 Hz frequency (shown in Fig. 2) and these steps are as 

follows. 

First, mode number K is optimized. We assigned K = 2 

because we are interested in selecting the first two harmonics). 

 

1. Based on the two harmonics approach). Initialize the 

plenty factor α and bandwidth τ with default values such 

as α = 2000 & τ=0. Select the range of the K (K ∈ [2,20]). 

Each IMF kurtosis value (Ku) is calculated under this 

mode number K, which is written as 

 

Kum  =  (Ku1, Ku2, . . . , KuK)  (6) 

 

Where Kum is the Kurtosis value for each IMF and the 

subscript “m” indicates the 𝐾𝑢 value during the mode 

number optimization process. The local maximum value 

for each mode number K is written as 

 

KuK,l
max  =  max (Ku1, Ku2, , . . . , KuK)    (7) 

 

We select the K as K∈ [2,20] so there are 19 local 

maxima. Therefore, it can be written as 

 

Kum,l
max  =  Ku2,l

max, Ku3,l
max , . . . , Ku20,l

max    (8) 

 

The global maximum of the Kurtosis is depicted as 

 

   

Figure 4. Relationship between Kurtosis and mode number. 
 

Ku9,g
max = Kum,g

max = max (Ku2,l
max, Ku3,l

max, . . . , Ku20,l
max)   (9) 

 

The mode value K against this Kurtosis value Kum,g
max is 

called the optimized mode number K’. The global 

maximum Kurtosis value is 11.76 under the mode 

number 9 as shown in Fig. 4. The optimized mode 

number is K’ = 9. 

2. Afterwards the plenty factor α is optimized. The K’ value 

is used to optimize the plenty factor α. Set the value of K 

as the optimized value K’ and the bandwidth value as τ=0. 

The range of the plenty factor α is selected as α ∈ [10, 

2000] and the search step size is 10. The kurtosis value of 

each IMF under the plenty factor α is written as 

Kp  =  (Ku1
p

, Ku2
p

, . . . , KuK′
p

)  (10) 

The local maximum of the 𝐾𝑢𝑝,𝑙
𝑚𝑎𝑥against each plenty 

factor α is given as 

 

Kup,l
max  =  max (Ku1,l

max, Ku2,l
max, . . . , KuK′,l

max)      (11) 

 

There are 201 values of the plenty factor α, the optimized 

value of α is found when the kurtosis value is maximum. 

Therefore, we obtained. 

 

Kup
max  =  Ku10,l

max, Ku20,l
max , . . . , Ku2000,l

max     (12) 

 

The global maximum 𝐾𝑢𝑝,𝑔
𝑚𝑎𝑥 can be written as 

 

Kup,g
max  =  max (Ku10,l

max, Ku20,l
max, . . . , Ku2000,l

max )  (13) 

 

The plenty factor α at which Kurtosis value is 𝐾𝑢𝑝,𝑔
𝑚𝑎𝑥  is called 

the optimized value of the plenty factor α and it is denoted as 

α’. The global Kurtosis maximum value is 12.97 when α’ is 

770. The optimized value obtained from step 1 and step 2 is 

[K’, α’] = [9, 770]. 

C. PROPOSED METHOD 

The proposed method (VMD-DNN) used to detect the target 

frequency is represented as a flowchart in Fig. 5. The recorded 

EEG signal is normalized by its absolute maximum amplitude. 

Normalization means dividing each component value by the 
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maximum component value of the signal, scaling all values 

relative to the maximum. This approach facilitates 

optimization processes, such as improving deep learning 

model convergence, by distinguishing signal components 

close to the maximum value or significantly smaller. To 

improve the signal-to-noise ratio (SNR), normalized EEG 

signals are filtered with MAF. Then, the filtered signal is 

decomposed into an optimized number of IMFs using VMD. 

The kurtosis of cross-correlation function (KCCF) is used to 

segregate the effective VMD-IMFs, which contain the target 

frequency and its second harmonic. Then the EEG signal is 

reconstructed by adding those effective VMD-IMFs 

containing the first and second harmonics of the target 

frequency. The SNR of the restored signal is enhanced by 

removing noise from the EEG signal. The FFT of the 

reconstructed EEG signal is computed to obtain the complex 

spectrum and subjected to a deep neural network for 

classification.  

There are two challenges associated with the application of the 

VMD method. Firstly, it requires the optimization of two 

parameters to achieve accurate signal decomposition: mode 

number and penalty factor, as explained in Section III (B). 

Secondly, for SSVEP signal reconstruction, it is necessary to 

select effective IMFs that contain harmonics. 

Various methods have been developed for the detection of 

harmonics of the VMD decomposed signal such as Strong 

tracking extended Kalman filter (STEKF) [43], Teager 

energy operator (TEO) [44], Permutation Entropy (PE) [45], 

Pearson Correlation Coefficient (PCC) [46]. Using these 

methods, harmonics were picked based on thresholds. 

Selection of an effective threshold is challenging and can 

lead to incorrect harmonic identification. Therefore, we 

introduce the kurtosis of the cross-correlation function 

(KCCF) for harmonic selection. The KCCF method 

efficiently identifies the harmonics of the decomposed 

SSVEP signal based on its minimum value. 
Initially, this method calculates the cross-correlation 

function (CCF) between each VMD-IMF and its parent 

signal to find similarities between them. The following 

equation can be used to calculate the CCF of each IMF with 

its parent signal. 

CCF𝑧,𝑢𝑘(𝑟)  =  ∑  𝑧(𝑡) 𝑢𝑘 (𝑡 − 𝑟)𝑑𝑡+∞
−∞  (14) 

The subscript 𝑧, 𝑢𝑘 of cross-correlation, indicates the 

sequences are correlated, and r is the time shift (lag) 

parameter. In (13) when r changes from positive to negative, 

only the signal 𝑢𝑘 (t) shifts from right to left. There is a 

special case when 𝑧(𝑡) = 𝑢𝑘(𝑡), known as autocorrelation. 

Afterwards, the kurtosis value of each CCF is obtained. The 

Kurtosis value defines the signal's impulsiveness. If kurtosis 

is greater than three, the signal is impulsive, otherwise, it is 

sinusoidal [47]. Accordingly, IMFs with less than three 

KCCF values were ignored. The KCCF (𝜅) is defined as the 

following equation. 

𝜅𝑚  =
1

𝑁
∑

(𝑦𝑖,𝑚 − 𝜇𝑚)4

𝜎𝑚
4

𝑁
𝑖=1    (15) 

Where 1 ≤  𝑚 ≤  𝜅. The 𝜅 represents the KCCF value, y is 

the output of (14) and N is the sampling length of y. The μ 

and σ are the mean and standard deviation of y, respectively. 

The filtered signal is decomposed into 9 IMFs based on VMD 

using optimized parameters. The VMD-IMFs and their FFT-

based PSDA of VMD-IMFs are shown in Fig. 6. The VMD-

IMFs produce the impulse response of the first and second 

harmonics: IMF-7 and IMF-4 respectively. 

 
               (a)      (b)  

Figure 6. Dataset A: (a) 09 IMFs of VMD decomposed signal of 10Hz (b) 
and their FFT-based PSDA responses. 

Figure 5. Flow chart for the VMD-DNN (Proposed Method). 
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Unlike impulsive IMFs, noisy IMFs have more peaks and a 

higher kurtosis value [48]. Therefore, those VMD-IMFs are 

declared effective IMFs with greater than 3 KCCF values 

since less than 3 KCCF values are sinusoidal in nature and 

not impulsive. The KCCF value of each VMD-IMFs is 

represented in Fig. 7. 

The IMF-7 and IMF-4 represent the first and second 

harmonic values, respectively, and have the lowest KCCF 

value. Thus, IMF-7 and IMF-4 were chosen as effective 

IMFs since this study considers only two harmonics. 

All the other IMFs showing higher KCCF values are due to 

noise. The equations for selecting effective IMFs containing 

first and second harmonics based on KCCF technique are as 

follows: 

𝜿 = {𝜅𝑖}    (16) 

Where 𝜅𝑖 is the KCCF value of the 𝑢𝑖  (IMF corresponding to 

𝜅𝑖 ); 1 < 𝑖 < K’, and K’ is the total number of optimized IMFs. 

𝑅𝑠 =  𝑢𝑖  (min{𝜅𝑖}) +  𝑢𝑗 (min {𝜅𝑗}); (17) 

Where 𝜅𝑖  𝑎𝑛𝑑 𝜅𝑗 > 3, Where 𝑖 ≠  𝑗 and 1 ≤  𝑖, 𝑗 ≤ 𝐾’ and 

𝑅𝑠 represents the reconstructed signal with a higher SNR 

than the recoded signal.  

1) DEEP NEURAL NETWORK MODEL 

The two available SSVEP datasets were used to test the 

proposed method of VMD-DNN. The pre-processing steps 

included SSVEP signal normalization, MAF to enhance the 

SNR, selection of effective VMD-IMFs based on the 

stimulus frequency and its second harmonics. Subsequently 

effective IMFs were added to restore the clean SSVEP 

signal. The complex spectrum features of the reconstructed 

signal are obtained and given to the DNN model as input. 

The DNN model was trained for each subject with 1sec, 2sec, 

and 3sec time windows. 

The single feature vector (𝑥) in time domain of the 

reconstructed signal has dimensions 𝑁𝑐 ∙ 𝑁𝑑𝑝. Where 𝑁𝑐 is 

the number of channels used for recording EEG data, and 

𝑁𝑑𝑝 is the length of the data points. The value of 𝑁𝑐  is equal 

to 1 because we used single channel to record the EEG data. 

Whereas 𝑁𝑑𝑝 value is different for different time window 

(1sec, 2sec and 3sec). The shape of the 𝑁𝑑𝑝  =  𝑓𝑠 ∙ 𝑡𝑤. 

Whereas 𝑓𝑠 represents the sampling frequency and 𝑡𝑤 is the 

time window. We provide the model with frequency domain 

data by performing FFT on the time domain data. The output 

of the FFT can be expressed as 

FFT = Re[FFT(𝑥)] + 𝑖𝐼𝑚 [FFT(𝑥)] (18) 

Where 𝑥 is the time domain signal contains 𝑁𝑑𝑝 values and 

𝑖 represent the imaginary part. The Re[.] and Im[.] represents 

the real and the imaginary value of FFT. The magnitude 

spectrum 𝑋𝑚𝑎𝑔 can be written as 

𝑋𝑚𝑎𝑔 =  √Re[FFT(𝑥)]2 + 𝐼𝑚[FFT(𝑥)]2 (19) 

Then the complex spectrum can be obtained by 

concatenating the real and the imaginary parts into a single 

vector. 

𝑋𝑐𝑜𝑚𝑝 = Re[FFT(𝑥)] || Im[FFT(𝑥)] (20) 

The magnitude spectrum contains information related to 

magnitude, but phase related information is missing. On the 

other hand, the complex spectrum provides both magnitude 

and phase-related information. Thus, inspired from the 

previous studies, we use complex spectrum to preserve both 

magnitude and phase related information, also complex 

features perform better than when considering only 

magnitude spectrum [16], [30]. The complex feature input 

given to the model is expressed as  

𝐼𝑐𝑜𝑚𝑝 = [𝑋𝑐𝑜𝑚𝑝  (CH𝑂𝑧
)]   (21) 

Where CH𝑂𝑧
 describe the data from the EEG Oz channel. 

In this study, the proposed deep neural network (DNN) 

model consists of 5 layers and an output layer. The input 

layer is a dense layer containing 32 neurons with ReLU 

activation functions. This layer receives the input data and 

applies a linear transformation by computing a weighted sum 

of its inputs, adding a bias term, followed by a non-linear 

activation function (ReLU). This allows the model to learn 

more complex patterns. Neurons in dense layers transform 

the input features into a higher-dimensional space, allowing 

the model to capture complex patterns and relationships 

within the data. 

In the second layer, 32 neurons are activated by ReLU, 

followed by a third dropout layer with a 30% dropout rate as 

in Fig. 5. Dropout is a regularization technique used to 

prevent overfitting as during training, neurons are dropped 

randomly, so the network is forced to learn redundant 

representations, which improves generalization. 

The fourth layer consists of 32 neurons with ReLU 

activation, while the fifth layer has 64 neurons with ReLU 
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(KCCF) of 9 VMD-IMFs. 
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activation. This increase in neurons adds more complexity to 

the network, helping it capture more complex interactions in 

the data but with an increase in classification time. 

Finally, an output layer with the number of neurons aligned 

with the total number of classes (Dataset A: 7 classes, and 

Dataset B: 12 classes). The output layer activation function 

is Softmax, for multi-class classification. Softmax produces 

a probability distribution for each class in the outcome and 

the class with the maximum probability value is the final 

output of the model. 

The number of neurons in a neural network layer affects its 

learning capabilities and performance. More neurons capture 

complex patterns, enhancing performance but risking 

overfitting and requiring more computational resources. In 

contrast, fewer neurons reduce the risk of overfitting and 

demand less computation but may lead to underfitting and 

poor performance. The proposed model balances accuracy 

and complexity, highlighting this tradeoff. 

Table 3. DNN model summary in terms of trainable parameters and 
FLOPs for 2sec time windows. 

Serial 

No 

Layer 

(type) 

Output 

Shape 

Dataset A Dataset B 

Parameters 

(K) 

FLOPs 

(K) 

Parameters 

(K) 

FLOPs 

(K) 

1 Dense 1 

(Input 

Layer) 

(32) 16.448 32.832 8.256 16.448 

2 Dense 2 (32) 1.056 2.048 1.056 2.048 

3 Dropout 

(0.3) 
(32) 0 0 0 0 

4 Dense 3  (32) 1.056 2.048 1.056 2.048 

5 Dense 4  (64) 2.112 4.096 2.112 4.096 

6 Dense 5 

(Output 

Layer) 

(NC) 0.455 0.896 0.780 1.536 

Total  21.127 41.920 13.260 26.176 

Table 3 summarizes the DNN model according to layer type, 

output shape, trainable parameters, and FLOPs (floating 

point operations) of each layer for both datasets. The output 

shape specifies the shape of the output produced by each 

layer and depends on the number of neurons associated with 

the specific layer of the DNN. The (NC) in the final layer 

represents the total number of classes for each dataset, which 

is 7 for Dataset A and 12 for Dataset B respectively. The 

parameters indicate the number of trainable parameters 

(weights and biases) associated with each layer of the model 

when trained on each dataset. The FLOPs represent the 

number of floating-point operations required for each layer 

of the model when processing data from each dataset. FLOPs 

are a measure of the computational complexity of the model 

during inference or training on the dataset. The total number 

of parameters for Dataset A are 12.935K, 21.127K, and 

37.511K with FLOPs 25.536K, 41.920, 74.688K for the time 

window of 1sec, 2sec, and 3sec respectively, For Dataset B, 

the total number of parameters are 9.164K, 13.260K, and 

21.452K, with FLOPs 17.984K, 26.176K, and 42.560K for 

time windows of 1sec, 2sec, and 3sec respectively. Overall, 

considering the number of trainable parameters and FLOPs, 

the proposed DNN model appears to be lightweight and 

improved compared to more elaborate neural network 

architectures already presented in the literature [16]. It is 

evident that the more complex the deep learning model is, 

the more computationally expensive it will be and requires 

large amount of data for sufficient training [34]. The 

proposed study underlines a balance between accuracy and 

computational efficiency, which may also be suitable for 

certain applications where computational resources are 

limited or where a simpler model is preferred. 

We have presented a custom model that represents a 

feedforward neural network with multiple hidden layers, 

employing dense, dropout regularization, ReLU and Softmax 

activation for multi-class classification tasks. The specific 

values for the number of neurons, activation functions, and 

dropout rate were chosen empirically can be adjusted based on 

the requirements of the task and the characteristics of the data. 

2) TRAINING PARAMETERS 

We performed several training experiments with several 

learning rate settings to choose the best hyper-parameters. 

The number of training epochs and optimizer was fixed to 

100 and ‘Nadam’ (Nesterov-accelerated Adaptive Moment 

Estimation) respectively. Table 4 shows the few training 

iteration results regarding the model's validation loss, 

accuracy, and overall testing accuracy. A backpropagation 

technique minimizes categorical cross-entropy loss functions 

to train the network. ‘Nadam’ was used to train the model as 

Table 4. The choice and fine-tuning of hyper-parameters. 

Epochs 
Learning 

rate 
Validation loss 

Validation 

accuracy       

(%) 

Testing 

accuracy 

(%) 

100 0.01 1.9380 - 0.5961 0.3650 - 0.7953 76 

100 0.001 1.9350 - 0.1547 0.3922 - 0.9521 91 

100 0.0001 1.9265 - 0.4579 0.3954 - 0.8115 81 

100 0.001 1.9364 - 0.0258 0.2895 - 0.9957 95 

an optimizer to minimize errors (loss functions) or maximize 

accuracy. ‘Nadam’ is an extension of Adaptive Movement 

Estimation (Adam) that adds Nesterov's Accelerated Gradient 

(NAG), an improved version of momentum. The validation 

split was set to 20 percent of the training data. The batch size 

(Bs) was set a 2s, s ∈ {5}. The split of both datasets for training 

and testing is described in Section III (A). 

IV. RESULTS AND DISCUSSION 

The raw SSVEP signal consists of an effective signal along 

with noise. The MAF is applied in such a way as to improve 

the SNR of the SSVEP signal without disturbing the signal 

characteristics [36]. It is necessary to suppress noise with 

MAF as a first step since VMD is affected by noise, and 

background noise can influence decomposition [49]. The 

optimum MAF window length for EEG signals is determined 

based on the maximum SNR. As a result, different window 
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lengths and SNR values were iteratively checked to meet the 

requirement. A plot of SNR versus window size reveals that 

MAF optimum window size is 22, as represented in Fig. 3. 

The VMD approach is capable of effectively separating 

harmonics of extremely close frequencies [38]. Due to this 

capability, VMD is used to identify target frequency and its 

higher harmonics by SSVEP signal decomposition. In this 

work, two harmonics are chosen for SSVEP features 

extraction. We select the two VMD-IMFs based on the 

lowest KCCF which contains the first and second harmonic 

peaks. The cross-correlation function between each VMD 

mode and its parent signal indicates their similarity [50], and 

the kurtosis defines the impulsiveness of the function [51]. 

As SSVEP's harmonic order rises, the energy at harmonic 

frequency points decreases gradually [12], [52]. First and 

second harmonic IMFs are more impulsive and contain more 

energy than other IMFs. In addition, kurtosis values greater 

than three indicate impulsive behavior. Therefore, we select 

harmonic IMFs with the least KCCF value but greater than 

three. Based on (3), the SNR after each technique, such as 

MAF and VMD, is shown in Fig. 8. 

 

Figure 8. SNR of the SSVEP signal after each technique. 

According to Fig. 8, VMD significantly improves the SNR 

of filtered SSVEP signals. The improvement in SNR from 

MAF to VMD is 5.49 dB and the overall improvement is 

8.08 dB. Thus, in terms of percentage the MAF enhanced the 

SNR by 44.19% whereas VMD enhanced it by 168.04%. 

Hence, the overall SNR improved to 212.23%. For SSVEP, 

the VMD technique demonstrated a significant increase in 

SNR despite MAF's improvement. Using the VMD 

technique directly on raw EEG signals without MAF reduces 

the SNR to 0.23 dB, resulting in an 89.73% drop in SNR. 

Therefore, VMD performance can be improved with MAF. 

The performance of BCI systems was evaluated based on 

classification accuracy (CA) and information transfer rate 

(ITR). CA indicates the percentage of correctly classified 

prediction, and it is defined as the ratio of correctly classified 

frequencies to the overall number of frequency classes. CA 

is determined by evaluating the trained model on unseen data 

splits (SD and SI training scenarios) as described in Section 

III (A). CA can be expressed as [53] 

CA =  
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃+𝐹𝑁
   (22) 

Where, 𝑇𝑃 is the true positive (number of correctly classified 

target frequency), 𝑇𝑁 is the true negative (number of 

correctly classified non-target frequency), 𝐹𝑃 is the false 

positive (number of incorrectly classified non-target 

frequency as target frequency) and 𝐹𝑁 is false negative 

(number of incorrectly classified target frequency as non-

target frequency). Whereas the ITR measures the 

communication speed of the BCI system, and it depends 

mainly on its classification accuracy and processing time. 

The below equation was proposed by Walpow et al [54] to 

calculate the ITR of the BCI system. 

𝐼𝑇𝑅 =
60

𝑇
[log2 𝐶 + (CA) log2(CA) + (1 − (CA) log2( 

1−(CA)

𝐶−1
 )]  (23) 

Where C is the total number of classes, and T is the BCI 

system processing time. The custom-built model is capable of 

identifying the unique pattern in each class of the dataset. 

Initially, the proposed neural network model was trained and 

tested on subject-dependent scenarios; that is, the model was 

trained and validated using the same subject with a certain split 

of the entire dataset into training and testing data. 

Additionally, the proposed model was trained and validated on 

all the subjects of Dataset A and Dataset B for different time 

windows such as 1sec, 2sec, and 3sec. The time window 

length determines the size of the feature vector utilized for 

classification purposes. Results of the proposed method 

(VMD-DNN) on SD-trained model for both datasets are given 

in Table 5 and Table 6.  

Table 5. Dataset A: classification accuracy of SD-trained models for 
different time windows. 

Subject Classification accuracy for different time window (%) 

1sec 2sec 3sec 

1 77.00 93.00 88.00 

2 76.00 93.00 92.00 

3 73.00 91.00 87.00 

4 79.00 95.00 93.00 

Mean value 76.25 93.00 90.00 

Based on the above results, it is evident that the classification 

accuracy for the 2sec time window decomposed signal is 

better than the 1sec and 3sec for both datasets. For extensive 

experimental evaluation, we further analyze the 2sec split 

signal in comparison with several methods such as PSDA, 

DWT-PSDA, EMD-PSDA, CCA-DNN, and FBCCA-DNN.  

In Tables 7 and 8, it is evident that the proposed method 

(VMD-DNN) achieved an average accuracy of 93% with 

67.50 bpm ITR bpm in Dataset A and 95.3% with 92.31 bpm 

ITR bpm in Dataset B, indicating that it performs better in 

terms of accuracy and ITR than other baseline methods. As 

compared to EMD-PSDA, the proposed method improved 

accuracy by 3.34% and ITR by 8.87% for Dataset A. 
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Additionally, accuracy improved by 5% and ITR by 12.91% 

over FBCCA-DNN for Dataset B. The baseline methods 

such as PSDA and CCA showed deteriorating performance 

because both are influenced by noise [8]. Additionally, 

harmonic information is often not sufficiently incorporated 

into CCA [26]. In the case of DWT, the selection of the right 

mother wavelet is the key limitation for SSVEP optimized 

performance [17], [27]. However, EMD is challenged by 

mixing intermediate modes, [28] which affects its 

performance in both datasets. Moreover, FBCCA showed 

comparable performance to our proposed method. The key 

challenge associated with the FBCCA method is the 

optimization of three parameters: the number of harmonics 

in the reference signals, the weight vector for sub-bands, and 

the number of filter banks for sub-bands. Choosing suitable 

values for these parameters is critical, as only the appropriate 

values will ensure optimized performance in FBCCA, 

making this a complex task [10]. On the other hand, VMD 

properly decomposes the EEG signal using optimized 

parameters (mode number and plenty factor). In the proposed 

method, MAF reduced the noise to 44.19% in the EEG signal 

and VMD further suppressed the noise to 168.04% (as shown 

in Fig. 8) by picking relevant harmonics IMFs using the 

KCCF method. The DNN facilitates robust classification of 

target frequencies. Therefore, compared to baseline methods, 

the proposed method performed better in terms of 

classification accuracy and ITR. 

Table 6. Dataset B: classification accuracy of SD-trained models for 
different time windows. 
 

Subject Classification accuracy for different time window (%) 

1sec 2 sec 3 sec 

1 85.00 96.00 91.00 

2 88.00 96.00 93.00 

3 88.00 95.00 91.00 

4 84.00 92.00 90.00 

5 91.00 96.00 96.00 

6 84.00 95.00 92.00 

7 92.00 99.00 96.00 

8 85.00 93.00 89.00 

9 92.00 97.00 93.00 

10 87.00 94.00 91.00 

Mean value 87.60 95.30 92.20 

We conducted a detailed comparative analysis of the KCCF 

method with other methods on two subjects from each 

dataset, as shown in Table 9. The subjects were chosen based 

on the highest accuracy (Dataset A: subject 4, Dataset B: 

subject 7) and lowest accuracy (Dataset A: subject 3, Dataset 

B: subject 4) values across each dataset. The KCCF method 

selects only the minimum value and sets criteria for choosing 

effective IMFs for SSVEP signals, while other methods use 

either a set of values or a threshold value, which can vary 

with different signals. The KCCF method outperforms other 

related methods in selecting the number of harmonics (NoH), 

as shown in Table 9. KCCF has a computational cost (CC) 

comparable to TEO, PCC, and STEKF, while PE exhibits 

relatively high computational costs. Overall, the KCCF 

method demonstrates superior performance than other 

methods analyzed. Table 9 shows the results for selected 

frequencies from both datasets. Dataset A includes 42 trials 

for 7 classes of subjects 3 and 4, as shown in Table 1. 

Similarly, Dataset B includes 360 trials for 12 classes of two 

subjects, as represented in Table 2. As the other frequencies 

exhibited similar behavior, we focused on these frequencies 

to avoid generating excessively large data in the Table. 

It is observed that classification results are improved when 

signals in frequency domain [16] because in the frequency 

domain, the magnitude spectrum is distinguishable 

according to each class which improves the classification 

capability of the DNN. 

In Fig. 6(b), the FFT based PSDA of the VMD decomposed 

signal is represented, while the time domain VMD 

decomposed signal is shown in Fig. 6(a). In frequency 

domain, the magnitude spectrum for each class has higher 

strength at a target frequency and its second harmonics 

whereas other frequencies are suppressed, and this effect is 

not present for a signal in time domain. 

For extensive evaluation of the proposed VMD-DNN several 

tests are performed for subject-independent scenario. To 

evaluate the performance of the proposed method on unseen 

subjects, we isolated the data of the subject with the lowest 

accuracy in the SD training scenario from that of the 

remaining subjects. The DNN model was then trained using 

the combined data from the remaining subjects. In dataset A, 

subject 3 showed degraded performance as compared to the 

other subjects in the SD evaluation scenario, as illustrated in 

Table 7. As a result, Subject 3 was checked as unseen using 

a DNN-trained model based on the combined data of other 

subjects. In dataset B, data from nine subjects were 

combined to train the model; this model's performance was 

evaluated for the lowest performer (subject 4) in the SD case, 

as shown in Table 8. In the same manner, the second lowest 

(subject 8) and the third lowest (subject 10) were also 

evaluated as unseen subjects separately. The result of the SI 

training scenario for different time windows is represented 

in Table 10. 

The proposed method is evaluated across different time 

windows, such as 1sec, 2sec and 3sec for SI training 

scenarios, as shown in Table 10. In Dataset A, Subject 3 

exhibited encouraging performance with 79% classification 

accuracy and 46.13 bpm ITR when evaluated against the 

trained model as unseen for a 2sec time window. 

Furthermore, in Dataset B, containing 12 classes and 10 

subjects, the three subjects tested as unseen by the DNN 

model showed significantly improved average accuracy of 

92.33% with 85.94 bpm ITR for the 2sec time window. 

However, the CA and ITR of the proposed method for the 

1sec and 3sec time windows are lower than for the 2sec 

across both datasets. From Table 5, Table 6, and Table 10, it 

is evident that in the SD scenario where training and 

evaluation utilize the same subject data, the CA and ITR are 

notably superior to the SI scenario. This is because, in the SI
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Table 7. Dataset A (comprising of 7 classes): Comparison of proposed method VMD-DNN with different methods in terms of classification accuracy 
(CA) in percentage and Information transfer rate (ITR) in bpm

 

 

 

 

 

 

 
 Table 8. Dataset B (comprising of 12 classes): Comparison of proposed method VMD-DNN with different methods in terms of classification accuracy 
(CA) in percentage and Information transfer rate (ITR) in bpm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 9. Comparison of the KCCF method with different methods in terms of Number of harmonics (NoH) selection and computational costs (CC). 

Description KCCF PCC TEO STEKF PE 

Dataset Subject Class 

(Hz) 

NoH CC 

(msec) 

NoH CC 

(msec) 

NoH CC 

(msec) 

NoH CC 

(msec) 

NoH CC 

(msec) 

A 4 10 2 1.5 1 1.2 1 1.7 1 1.0 1 6.6 

A 3 7.5 1 1.9 1 1.0 0 2.1 0 1.1 0 5.4 

B 7 9.75 2 1.3 1 0.9 1 1.5 1 0.8 1 4.7 

B 4 13.25 2 1.4 0 1.2 1 1.2 0 0.9 1 4.7 

 Table 10. Classification accuracy (CA) in percentage and ITR in bpm 
subject-independent (SI) training scenario on different time window 

scenario, training and evaluation involve different subjects. 

The challenge in achieving better performance in SI scenario 

lies in the fact that SSVEP signals display non-stationary 

properties and vary in characteristics among subjects for the 

same task [10], [11]. However, integrating the proposed 

DNN architecture aims to enhance the study's 

generalizability. Results from the SI scenario indicate that 

incorporating training data from a diverse and larger number 

of subjects can significantly improve accuracy and ITR, as 

demonstrated in Table 10 for dataset B. This underscores the 

potential for enhancement even in the SI scenario.  

From Tables 5, 6, and 10, it is found that the classification 

accuracy of the 2sec time window is better than the 1sec and 

3sec. Usually, shorter time windows lead to lower accuracy 

but higher ITR and vice versa [30]. A shorter window length, 

such as 1sec, may encompass less SSVEP information or 

fewer flickering cycles compared to a longer window length. 

As a result, 1sec has a lower accuracy than 2sec and 3sec 

However, in our case with longer time window lengths such 

as 3sec there is more noise and more feature information. 

Because we add two effective IMF (containing the first and 

second harmonics) during the reconstruction phase. This 

addition not only improves the signal component but also 

increases the noise component. An increase in time window 

size means an increase in the length of a feature vector. Each 

time window length is linked to a temporal aspect. Shorter 

windows offer enhanced temporal resolution, allowing for 

Subject 

PSDA DWT-PSDA EMD-PSDA CCA-DNN FBCCA-DNN VMD-DNN 

CA     

(%) 

ITR 

(bpm) 

CA    

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

CA  

(%) 

ITR 

(bpm) 

CA  

(%) 

ITR 

(bpm) 

1 84.70 53.92 88.88 60.43 91.66 65.42 75.00 80.99 87.00 56.29 93.00 66.48 

2 78.90 45.62 86.15 56.14 89.23 61.10 73.00 76.08 87.00 55.84 93.00 67.81 

3 80.64 47.96 78.73 45.33 85.71 55.42 68.00 64.55 84.00 52.78 91.00 64.15 

4 87.30 57.90 87.93 58.99 92.06 66.06 77.00 86.09 88.00 58.89 95.00 71.57 

Mean 82.88 51.35 85.42 55.22 89.66 62.00 73.25. 76.93 86.50 55.95 93.00 67.50 

Subject 

PSDA DWT-PSDA EMD-PSDA CCA-DNN FBCCA-DNN VMD-DNN 

CA 

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

CA  

(%) 

ITR 

(bpm) 

CA  

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

1 63.74 41.57 70.42 49.58 83.79 68.14 85.00 71.89 91.00 81.06 96.00 91.55 

2 75.27 57.39 77.66 61.07 81.24 66.85 83.00 69.83 92.00 86.75 96.00 95.65 

3 50.49 26.10 68.72 48.07 69.41 49.03 81.00 66.62 91.00 84.90 95.00 93.53 

4 53.9 29.84 55.26 31.36 61.21 38.39 75.00 57.26 84.00 71.91 92.00 87.18 

5 80.65 64.59 83.41 69.16 88.61 78.42 88.00 77.28 93.00 87.13 96.00 93.78 

6 77.81 58.96 79.41 61.41 83.92 68.68 79.00 60.78 90.00 79.52 95.00 89.73 

7 81.94 67.69 86.19 75.09 89.22 80.76 89.00 80.33 92.00 86.32 99.00 103.06 

8 58.64 34.25 70.68 49.45 77.24 58.95 77.00 58.58 88.00 76.91 93.00 86.71 

9 76.84 57.78 81.59 65.17 82.54 66.72 80.00 62.63 92.00 83.83 97.00 94.81 

10 65.42 41.67 75.41 55.13 80.56 62.91 78.00 58.96 90.00 79.14 94.00 87.14 

Mean 68.47 47.98 74.87 56.55 79.77 63.88 81.50 66.42 90.30 81.75 95.30 92.31 

Dataset unseen 

Subject 

Performance of SI training scenario for different time 

windows  

1sec 2sec 3sec 

CA 

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

CA 

(%) 

ITR 

(bpm) 

B 

4 74.00 102.32 91.00 83.04 88.00 51.44 

8 77.00 105.86 92.00 84.64 87.00 50.38 

10 72.00 90.30 94.00 90.15 88.00 49.51 

Mean Value 74.33 99.49 92.33 85.94 87.67 50.44 

A 3 69.00 58.06 79.00 46.13 76.00 27.03 
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more precise capture of rapid changes in the SSVEP signal. 

Conversely, longer windows provide a broader perspective 

of the signal and a chance of more noise because of the 

addition of effective IMFs. This can potentially lead to 

missing quick-changing elements. We found that the 

classification accuracy of the 3sec window is slightly lower 

than that of the 2sec window because of this effect. This is 

also evident in Table 5, 6, and 9. Furthermore, one additional 

factor is the number of feature vectors provided to the DNN 

model. Since in the case of the 3sec window, we are dividing 

the feature vector length by 3, hence a smaller number of 

feature vectors are produced and used in training of DNN 

model. 

However, this is not the only case, in some individual cases 

the classification accuracy of the 3sec is higher as compared 

to 1sec and 2sec but considering the overall performance of 

algorithm for our datasets, we found that selection of 2sec 

window is better. Moreover, the ITR rate is a crucial factor 

for practical implementation which is highest for the case of 

1sec but has lower classification accuracy when compared to 

2sec and 3sec windows. Thus, the 2sec window is the 

optimal window size for classification accuracy and ITR for 

practical implementation. 

 

 

We have added four representative confusion matrices based 

on the minimum and the maximum accuracy values from 

both datasets in SD scenario. Additionally, two confusion 

matrices are also incorporated one from each dataset (Dataset 

A: subject 3 and Dataset B: subject 4) to represent the SI 

scenario classification details of the unseen subject (lowest 

performer in SD scenario). These confusion matrices are 

added to show the accurate classified and misclassified 

samples for each class and for both datasets, as shown in Fig. 

9. 

However, despite the advantages of the proposed study in 

accuracy and ITR, some limitations still exist. The limitation 

of our proposed method is that it generally detects two 

harmonics successfully. However, further improvements are 

needed to detect more numbers of harmonics. Furthermore, 

the study is evaluated on two publicly available datasets. To 

address this limitation, future research will involve the 

inclusion of additional SSVEP single-channel custom 

datasets, as well as an evaluation of the method's 

performance in an online scenario. Considering the 

importance of SSVEP-based BCI systems, the technology 

needs to be widely adopted in industrial applications. 

Therefore, optimized setups are required to be developed to 

leverage the benefits of this study. 

Figure 9. (a) Dataset A: Confusion matrix of Subject 3 (minimum accuracy) in SD scenario (b) Dataset A: Confusion matrix of Subject 4 (maximum 
accuracy) in SD scenario (c). Dataset B: Confusion matrix of Subject 4 (minimum accuracy) in SD scenario (d). Dataset A: Confusion matrix of Subject 7 
(maximum accuracy) in SD scenario (e). Dataset A: Confusion matrix of unseen Subject 3 in SI (f). Dataset B: Confusion matrix of unseen Subject 4 in 
SI. 
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V. SCOPE AND APPLICATION 

Initially, the SSVEP-based BCI system found application in 

various domains to assist disabled individuals, including 

controlling robotic wheelchairs, prostheses, and robots for 

patient care, such as assistive feeding robot etc. With the 

emergence of Industry 4.0 and cyber-physical systems, there 

have been remarkable advancements in human-robot 

collaboration, especially in leveraging SSVEP-based 

interfaces for interaction between humans and robots. HRC 

with SSVEP-based BCI is widely employed in various smart 

industries for tasks such as assembly [5] and segregation of 

defective parts [31] , utilizing a multichannel EEG cap for high 

accuracy. 

The proposed work focuses on a single-channel setup, which 

offers more comfort for the operator while maintaining better 

accuracy. For smart industries and automation, where real-

time monitoring and control are crucial, the study's emphasis 

on single-channel setups and efficient classification methods 

could be particularly beneficial. The ability to extract 

meaningful information from SSVEP signals with high 

accuracy and speed suggests that SSVEP-based BCIs could 

contribute to improved human-machine interaction and 

automation processes. Considering the importance of 

automation there is huge demand for extensive research in 

this domain. In the future, we can expect even more diverse 

applications and broader adoption of SSVEP-based BCI.  

For practical implementation, the following guidelines and 

mitigation measures can be used for better performance. A 

single electrode (Oz) should be installed for data acquisition 

rather than data extraction from an EEG cap containing 

multiple electrodes. Additionally, the LED monitor used to 

display the flickering frequency should have a high refresh 

rate (60 Hz or above) because it provides more comfort for 

the user by ensuring accurate frequency presentation. It is 

important to keep the lab and real environment as close as 

possible, such as maintaining a quiet, dimly lit room to 

minimize noise. The operator sits at a suitable distance from 

the LCD, and for classification, uses the optimum window 

size to reduce noise and improve the SNR. In the case of an 

inexperienced user, additional measures should be taken like 

explaining him/her complete guidelines before use and a 

suitable rest period should be provided for the user between 

two data acquisition trials. More comprehensive information 

for practical implementation of multichannel setup is 

provided in reference [5], [31]. 

VI. CONCLUSION 

In this work, we propose an effective and efficient method 

(VMD-DNN) for detecting SSVEP frequencies using a 

single-channel setup. The SSVEP signal is decomposed into 

its harmonic IMFs and noisy IMFs by VMD. Based on the 

lowest value of the KCCF, effective IMFs are selected that 

contain the first and second harmonics of the target 

frequency. This method employs VMD as a preprocessor and 

DNN for effective feature extraction and classification of the 

SSVEP signal.  

The efficacy of the VMD-DNN (proposed method) was 

subsequently validated by utilizing two publicly available 

datasets in two training scenarios: subject-dependent and 

subject-independent. Additionally, the proposed method is 

evaluated against existing relevant methods and results 

further validates the effectiveness of the VMD-DNN. 

Following are the conclusions drawn from the study. 

 

• By incorporating KCCF, the signal-to-noise ratio is 

enhanced by selecting the stimulus frequency and its 

harmonics. This can be achieved by dropping the 

irrelevant noisy VMD-IMFs from the EEG signal. 

• An average accuracy of 93% and ITR of 67.50 bpm for 

Dataset A is achieved. For Dataset B, it attains 95.30% 

accuracy and 92.31 bpm ITR for the SD training 

scenario. 

• The proposed approach was also tested for the SI 

training scenario, achieving 79% accuracy with 46.13 

bpm ITR (Dataset A) and 92.33% average accuracy with 

85.94 bpm ITR (Dataset B). 

• According to the results, the proposed approach 

outperforms existing related methods such as PSDA, 

DWT-PSDA, EMD-PSDA, CCA-DNN, and FBCCA-

DNN in terms of accuracy and ITR. 

• The results highlight the generalization capability of the 

deep learning model and eliminate the need for 

additional training sessions for new unseen operators. 

• The proposed method, VMD-DNN, is based on single-

channel SSVEP frequency detection, which provides 

more comfort for the operator during longer durations of 

work. 

• The proposed VMD-DNN model appears to be 

lightweight and more effective in performance with 

fewer trainable parameters and FLOPs and unified 

approach for both scenarios that is SD and SI. 

This makes our proposed method user-friendly and a suitable 

choice for Human-Robot Collaboration (HRC) applications 

within the smart industry. In future work, we will implement 

the proposed method (VMD-DNN) for seamless HRC to 

enable a single robot to perform multiple tasks. 
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